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Abstract

Large language models (LLMs) are increas-
ingly recognized as powerful tools for scien-
tific discovery, particularly in molecular sci-
ence. A fundamental requirement for these
models is the ability to accurately understand
molecular structures, commonly encoded in
the SMILES representation. However, current
LLMs struggle to interpret SMILES, even fail-
ing to carry out basic tasks such as counting
molecular rings. To address this limitation,
we introduce CLEANMOL, a novel framework
that formulates SMILES parsing into a suite
of clean and deterministic tasks explicitly de-
signed to promote graph-level molecular com-
prehension. These tasks span from subgraph
matching to global graph matching, providing
structured supervision aligned with molecular
structural properties. We construct a molecu-
lar pretraining dataset with adaptive difficulty
scoring and pre-train open-source LLMs on
these tasks. Our results show that CLEANMOL
not only enhances structural comprehension
but also achieves the best or competes with the
baseline on the Mol-Instructions benchmark.

1 Introduction

Molecular string representations such as
SMILES (Weininger, 1988) and SELFIES (Krenn
et al., 2020) have become a standard format
for applying large language models (LLMs) to
chemistry. These one-dimensional strings flatten
molecular graphs by traversing atoms and bonds
and are syntactically compatible with LLMs (Xia
et al., 2025; Taylor et al., 2022; Edwards et al.,
2022; Christofidellis et al., 2023a; Pei et al., 2023;
Fang et al., 2024). As a result, most molecular
LLMs adopt training paradigms from the natural
language processing domain, treating molecular
strings as sequences of tokens analogous to
sentences in natural language.

However, molecular strings follow complex
syntactic rules for encoding molecular structures,
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which LLMs often struggle to interpret. For in-
stance, SMILES grammar includes specific conven-
tions to denote rings and branches—often involving
non-contiguous tokens to represent connected sub-
structures. Additionally, SMILES representations
must satisfy structural constraints such as proper
valency and ring closure. As a result, current LLMs
often misinterpret SMILES, which implies a fail-
ure to capture the underlying molecule represented
by the SMILES string. This is reflected in their
inability to perform even basic tasks, such as count-
ing the number of rings or producing consistent
outputs for different SMILES strings of the same
molecule (Jang et al., 2024; White et al., 2023; Ga-
neeva et al., 2024). Our experiments revisit such
limitations, as shown in Figure 1 and Section 2.2.

One might expect such an understanding would
“naturally emerge” from training LLMs on large cor-
pora of SMILES strings for downstream tasks such
as molecular generation and retrosynthetic analysis.
However, high-quality data is limited and difficult
to obtain. Unlike text or image data, which can
be gathered at scale via web scrapping, chemical
data often require expensive wet lab experiments or
simulations for annotation. Although open-source
datasets such as USPTO series (Wei et al., 2010;
Lu and Zhang, 2022) and MoleculeNet (Wu et al.,
2018) exist, their scale remains modest compared
to datasets in other domains (Deng et al., 2009;
Raffel et al., 2020a; Lozhkov et al., 2024). Con-
sequently, most chemical LLMs often rely on am-
biguous and indirect pretraining objectives with
non-deterministic and unclear tasks (e.g., masking
each token in SMILES and reconstruct them or
translation between a molecular string and its de-
scription) (Pei et al., 2023; Edwards et al., 2022),
or focus on instruction tuning with limited-scale
datasets (Fang et al., 2024; Yu et al., 2024).

In response, we propose SMILES parsing—a
suite of clean, deterministic, and scalable tasks that
require models to extract structural information
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Figure 1: Overview of SMILES parsing. (a) Each column visualizes one of the five SMILES parsing tasks:

functional group matching, ring counting, carbon chain length measurement,

, and

fragment assembly. The highlighted tokens in the SMILES correspond to the substructures involved in each task.
(b) Recent LL.Ms fail for SMILES parsing while the model trained with our CLEANMOL shows improvement.

from molecular strings, as illustrated in Figure 1.
We argue that a natural and necessary candidate
task for training LLMs to understand the SMILES
representation is the extraction of deterministic
graph-level information from molecular structures.
To address this, we define five SMILES parsing
tasks including subgraph matching (e.g., functional
group, ring size, and chain length) and global
graph matching (e.g., SMILES canonicalization
and fragment assembly). Each task provides un-
ambiguous supervision with deterministic answers.
Based on these tasks, we construct the CLEANMOL
dataset, consisting of 250K molecules annotated
via lightweight molecular graph analysis tools such
as RDKit (Landrum et al., 2024). Notably, our ap-
proach is scalable since the annotations for these
tasks do not require any experiment or human anno-
tation, in principle, SMILES parsing can be applied
to all the existing molecules in the real world.

To evaluate and demonstrate the benefit of our
new CLEANMOL dataset, we also introduce a two-
stage training framework: first, the model is pre-
trained on the proposed SMILES parsing tasks and
then fine-tuned on downstream chemical applica-
tions. To enhance data efficiency in the first stage,
we propose a task-adaptive data pruning that selects
structurally informative molecules and a curricu-
lum learning framework that organizes them from
easy to hard order.

We empirically validate our approach by train-
ing recent LLM backbones (Grattafiori et al., 2024;

Yang et al., 2024) and evaluating them on three
downstream tasks from the Mol-Instructions bench-
mark (Fang et al., 2024), including retrosynthesis,
reagent prediction, and forward reaction predic-
tion. Surprisingly, our clean and structure-aware
CLEANMOL framework enables the models to
achieve state-of-the-art or competitive results on
the downstream tasks. This demonstrates that in-
corporating deterministic structural supervision via
SMILES parsing can significantly enhance molec-
ular generation capabilities, even without direct
exposure to generation-specific training data.

We summarize our contributions as follows:

* We revisit the limitations of LLMs in interpret-
ing molecular strings, highlighting the struc-
tural bottleneck.

* We propose five deterministic and scalable
SMILES parsing tasks and introduce the
CLEANMOL dataset to bridge the gap be-
tween string-level and graph-level molecular
understanding of LLMs.

* We design a two-stage training framework in-
corporating a task-adaptive data pruning and
curriculum learning strategy.

* We validate the impact of CLEANMOL by
demonstrating a consistent performance im-
provement across multiple downstream tasks.

15696



Molecular SMILES Molecular SMILES

0=C(C/C(=N\\Ncanc(-c2cccce2)esa)caccccca)C(F)(F)F - O=C(C/C(=N\\Ncanc(-c2ccccc2)csa)caccccea)C(F)(F)F

Q: Determine \ )
Q: Tell me the inclusion of the 4 .
number of SIX- 9 o . indicated ) S I
membered rings. - M/ A functional group -, -/ o

( KS. S

Molecular SMILES Molecular SMILES

0=C(C/C(=N\\Nc1nc(-c2ccccc2)csi)ecaccccca)C(F)(F)F - O=C(C/C(=N\\Ncanc(-c2ccccc2)csa)caccecea) C(F)(F)F

Q: Determine
inclusion of the

: = |

B indicated = A
Y functional group -, N
cc(c)=0. : N
=< 5

Figure 2: Complex cases in SMILES parsing. The
top green panels represent relatively simple cases, while
the bottom red panels illustrate more complex examples
with non-continuous substructures in SMILES. Orange
and teal highlights correspond to tasks involving ring
counting and functional group matching, respectively.

2 SMILES parsing task

Q: Tell me the
number of FIVE-

membered rings.

In this section, we introduce five SMILES parsing
tasks designed to enhance the mapping between
molecular SMILES strings and their corresponding
graph structures. We then highlight two key bottle-
necks in applying LLMs to molecular tasks: (1) the
inability of models to extract structural informa-
tion from SMILES strings and (2) the lack of high-
quality, scalable molecular datasets. To address
the first bottleneck, we show that even advanced
LLMs such as GPT-40 (OpenAl and et al., 2024)
and DeepSeek-V3 (Liu et al., 2024) fail to perform
well on simple SMILES parsing tasks, revealing
the need for explicit structure-aware supervision.
To address the second bottleneck, we explain the
limitation of open-source molecular datasets, moti-
vating the need for scalable molecular datasets that
can be generated without costly experiments.

2.1 SMILES parsing task description

We define SMILES parsing as a suite of deter-
ministic, scalable, and structure-focused tasks de-
signed to map molecular strings to their corre-
sponding molecular graphs. The tasks fall into
two categories—subgraph matching and global
graph matching—as illustrated in Figure 1a. Im-
portantly, all annotations can be generated auto-
matically using open-source chemical tools such
as RDKit (Landrum et al., 2024) without any ex-
periment, making the tasks highly scalable. We
provide more details in Appendix A.

¢ Subgraph matching. This category includes
functional group matching, ring counting, and
carbon chain length measurement. Functional
group matching determines the presence of

a specified functional group. Ring count-
ing identifies the number of rings with spe-
cific sizes (e.g., five- or six-membered), and
chain length measurement evaluates the length
of the longest carbon chain excluding rings.
These tasks focus on local subgraphs such as
structural motifs, branching, and ring patterns.

* Global graph matching. This category con-
sists of SMILES canonicalization and frag-
ment assembly. Canonicalization involves
converting arbitrarily ordered SMILES into a
canonical form, which encourages structural
invariance to syntactic permutation. Frag-
ment assembly requires the model to combine
two SMILES fragments into a single valid
molecule, testing its ability to reorganize the
global structure from disjoint components.

2.2 Failure of existing LLMs

Although SMILES parsing appears simple from a
structural point of view, it poses significant chal-
lenges for existing LLMs. Complex cases involv-
ing nested rings or hierarchical branching often
disrupt token-level patterns, making it difficult for
models to resolve SMILES parsing accurately. In
detail, as shown in Figure 2, many structural fea-
tures are represented non-contiguously in SMILES,
further complicating the parsing process. Our moti-
vation closely aligns with that of Jang et al. (2024).!

We observe that even state-of-the-art general-
purpose LLMs, including GPT-40 (OpenAl and
et al., 2024) and DeepSeek-V3-Chat (Liu et al.,
2024), struggle with SMILES parsing, achieving
no more than 60% accuracy across five tasks ex-
cept for the binary classification (functional group
matching), as described in Figure 1b and detailed
in Section 4.1. This failure is notable given the
strong performance of these models in other do-
mains such as mathematics and code. The inability
of these models to handle even basic molecular
parsing tasks underscores a critical gap in their
structural understanding. It motivates the need for
explicit pretraining strategies tailored to molecules.

2.3 Costly high-quality data acquirement

A second challenge lies in acquiring sufficient high-
quality training data for molecules. In contrast to
textual and visual domains, which benefit from

"Unlike Jang et al. (2024), which fine-tunes models di-
rectly on structural information and downstream tasks, we pre-

train LLMs on SMILES parsing objectives and subsequently
fine-tune them for downstream tasks.
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Figure 3: Examples of CLEANMOL dataset.
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Figure 4: Overview of molecular data pruning and
ranking. Each number represents the task-specific diffi-
culty score assigned to a molecule, as defined in Table 1.
For each parsing task, molecules are ranked based on
these scores and we select the mid-difficulty samples.

large-scale web scraping (Deng et al., 2009; Rat-
fel et al., 2020a; Lozhkov et al., 2024), chemical
datasets often rely on costly and labor-intensive
wet lab experiments or computational simulations.
While resources such as the USPTO series (Wei
et al., 2010; Lu and Zhang, 2022) and Molecu-
IeNet (Wu et al., 2018) exist, expanding them is
expensive and labor-intensive. This highlights the
need for scalable alternatives—datasets that can be
automatically generated with minimal cost while
preserving domain relevance.

3 Training framework of CLEANMOL

In this section, we present our framework to im-
prove the molecular understanding of LLMs us-
ing a new dataset, coined CLEANMOL.> Our
scheme consists of (1) data preparation and (2)
a two-stage training procedure. In the data prepa-
ration step, we prepare the CLEANMOL dataset
with deterministic and scalable SMILES parsing
tasks. Next, in the training step, we pre-train LLMs

2Qur framework and dataset are both termed CLEANMOL.

Functional group Ring Fragment

Chain length SMILES
matching counting icalizati

ement ion bly

SMILES length

# of functional groups # of rings  # of branches

Table 1: Definition of each task-specific difficulty.

with the CLEANMOL dataset, followed by fine-
tuning downstream applications. To improve the
pre-training, we also introduce a task-adaptive data
pruning and curriculum learning strategy based on
task-specific difficulty measures.

3.1 CLEANMOL data preparation

First, we introduce the CLEANMOL dataset based
on the SMILES parsing tasks proposed in Sec-
tion 2.1. There exist two key advantages of our
proposed tasks: determinism and scalability.

In detail, on the one hand, in terms of determin-
ism, our tasks are designed to have a unique and
clearly defined answer (i.e., number or canonical-
ized SMILES) unlike previous pre-training objec-
tives such as masking and translation as detailed in
Section 6. This ensures unambiguous supervision
during training and facilitates reliable learning.

On the other hand, regarding scalability, as the
proposed tasks apply to any valid molecules with-
out any experimental data, they can be expanded
to a vast set of molecules. In detail, all annotations
can be automatically generated using open-source
cheminformatics tools such as RDKit (Landrum
et al., 2024), making the dataset extensible to virtu-
ally unlimited molecular corpora. We provide the
simplified example instructions of SMILES pars-
ing tasks in Figure 3 and more examples including
detailed instruction formats in Appendix A.

3.2 Training with CLEANMOL

Once the CLEANMOL dataset is prepared, we
adopt a task-specific data pruning and curricu-
lum learning inspired by recent work on high-
quality LLLM data curation (Gunasekar et al., 2023;
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Subgraph Global graph

Task type Model FG Ring Chain Canonical Assembly
Deepseek-V3-chat 0.8912 0.6266 0.2976 0.1484 0.1512
GPT-40 0.8750 0.5955 0.2857 0.1078 0.1932
5-shot Llama3.1-8B 0.6725 0.2103 0.2747 0.0027 0.0190
Qwen2.5-7B 0.7704 0.4148 0.1139 0.0022 0.0131
Galactica-6.7B 0.5000 0.0732 0.1511 0.0000 0.0046
Llama3.1-8B (Single) 0.9414 0.8612 0.9859 0.9356 0.8858
SFT Llama3.1-8B (Multi) 0.9891 0.8707 0.9851 0.9463 0.9010
Qwen2.5-7B (Single) 0.9891 0.8674 0.9907 0.7593 0.3371
Qwen2.5-7B (Multi) 0.9901 0.8750 0.9902 0.9262 0.8835

Table 2: SMILES parsing performance. FG stands for the functional group. Background indicates the
improvement of multi-task learning compared to the single-task learning and the best results are highlighted in bold.

Marion et al., 2023; Ankner et al., 2024) to further
enhance pre-training with CLEANMOL. As illus-
trated in Figure 4, our approach involves: (1) sub-
sampling sufficiently informative molecules, and
(2) constructing a curriculum by ranking these ex-
amples from simple to complex using task-specific
difficulty measures.

The difficulty measures are defined for each pars-
ing task as summarized in Table 1. For instance, in
the chain length measurement task, molecules with
extensive branches often lead to SMILES where
relevant subgraph atoms appear far apart in the
string, increasing parsing difficulty. By excluding
extremely easy or hard molecules (i.e., subsample
molecules with mid-level difficulties) and organiz-
ing the training data from simple to complex, our
approach aligns with curriculum learning princi-
ples (Bengio et al., 2009) and leads to improved
performance, as validated in Section 4.2.

Next, we adopt a two-stage training pipeline to
effectively integrate SMILES parsing into LLM.
In the first stage, we perform pre-training on the
pruned CLEANMOL dataset using supervised fine-
tuning. This allows the model to acquire core struc-
tural understanding and compositional knowledge
of molecular graphs. In the second stage, we fur-
ther fine-tune this trained model on downstream
molecular tasks. By initializing with a model that
has already learned to parse molecular structures,
downstream adaptation becomes more accurate.

4 Experiments: SMILES parsing tasks

In this section, we evaluate the effectiveness of our
proposed SMILES parsing task as a pre-training
signal for LLMs. The parsing task is formally de-
fined in Section 2.1. We demonstrate that recent
LLMs, while not inherently proficient in SMILES
parsing, can acquire this capability through tar-
geted training. We provide experimental settings
including prompts and resources in Appendix B.

4.1 LLMs can learn SMILES parsing

As described in Section 2.2, SMILES parsing poses
a significant challenge for general-purpose LLMs,
despite its foundational importance for molecular
understanding. Our experiments reveal that LLMs
lack the inductive bias to naturally understand the
molecular structure encoded in SMILES strings.
However, we show that through supervised fine-
tuning (SFT), LLMs can learn to accurately parse
and interpret SMILES representations.

Dataset. We construct a CLEANMOL benchmark
consisting of 50K molecules per SMILES parsing
task, totaling 250K examples across five tasks. The
molecules are subsampled from the ZINC250k (Ir-
win et al., 2012) training dataset using our proposed
molecular data pruning strategy described in Sec-
tion 3.2, which excludes extremely easy or hard
molecules to enhance the molecular pre-training.
Additionally, for the test dataset, we randomly se-
lected 10K molecules from the ZINC250K test split
and fixed this subset across all experiments.

Baselines. We evaluate the parsing capabilities
of four general-purpose LLMs—Deepseek-V3-
Chat (Liu et al., 2024), GPT-40 (OpenAl and
et al., 2024), LLaMA3.1-8B-Instruct (Grattafiori
et al., 2024), and Qwen2.5-7B-Instruct (Yang
et al., 2024)—and one chemistry-specific LLM,
Galactica-6.7B (Taylor et al., 2022). To assess the
basic molecular understanding of general-purpose
LLMs, we apply 5-shot prompting to Deepseek
and GPT-40, which are not publicly trainable and
thus cannot be fine-tuned. Similarly, we apply 5-
shot prompting to Galactica, a chemistry-specific
LLM pre-trained on molecular corpora, to evaluate
its zero-shot capabilities without further supervi-
sion. In contrast, for LLaMA and Qwen, which are
open-weight general-purpose LLMs, we perform
supervised fine-tuning using our SMILES parsing
dataset to examine whether explicit structure-aware
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Subgraph

Global graph

Pruning type FG Ring Chain  Canonical Assembly Average
Random 0.9921 0.9212 0.9886 0.7845 0.7352 0.8843
Length 0.9910 0.8531 0.9785 0.8519 0.8044 0.8958
Molecular pruning (top) 0.9902 0.8123 0.9716 0.9446 0.7487 0.8934
Molecular pruning (bottom) 0.9729 0.6995 0.9597 0.5514 0.5186 0.7404
Molecular pruning (middle, ours)  0.9901 0.8750 0.9902 0.9262 0.8835 0.9330

Table 3: Effect of molecular data pruning on Qwen2.5-7B-Instruct. "Random" and "Length" refer to baselines
using random sampling and SMILES length as proxies for difficulty. "Top," "middle," and "bottom" denote
subsamples consisting of the most difficult, moderately difficult, and easiest molecules, respectively, based on

task-specific difficulty heuristics.

training can bridge the gap in molecular compre-
hension. Notably, we explore two experimental
settings: single-task, where a separate model is
trained for each parsing task, and multi-task, where
a single model is jointly trained on all five tasks.

Metrics. We evaluate performance using accu-
racy, as SMILES parsing tasks are deterministic
and each input has a well-defined answer.

Results. The results are presented in Table 2. We
observe that recent general-purpose LLMs (GPT-40
and Deepseek) and even a chemical LLM (Galac-
tica) perform poorly on SMILES parsing, reveal-
ing their limited molecular comprehension. This
validates that the primary bottleneck in applying
LLMs to molecular domains lies not in the absence
of chemical knowledge, but in the lack of basic
molecular structural understanding—specifically,
the ability to parse and interpret SMILES strings.
In contrast, fine-tuned LLaMA and Qwen models
show substantial improvements, demonstrating that
SMILES parsing can be effectively learned through
training. Moreover, all tasks—except for chain
length measurement—achieved higher accuracy in
the multi-task setting, suggesting that transferable
structural understanding across tasks contributes to
improved performance.

4.2 Effect of molecular data pruning

We further investigate the impact of our molecular
data pruning strategy on parsing performance. As
detailed in Section 3.2, this technique aims to cu-
rate a training set that maximizes informativeness.
The results, shown in Table 3, demonstrate that our
pruning method improves performance, suggesting
that data quality plays a critical role in teaching
LLMs the implicit grammar of SMILES.

4.3 Ablation study

Here, we conduct an ablation study to validate the
impact of the increase in dataset size in our pro-
posed CLEANMOL dataset. In detail, we evaluate

1.0

[ —
0.9
3
© 0.8
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o
v}
<
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== Ring
0.6 =@~ Canonical
=¥ Assembly
10K 20K 50K

# of molecules per task

Figure 5: Data scale analysis for SMILES parsing.

the accuracy of the SMILES parsing task for 10K,
20K, and 50K data settings per task in the same
setting in Section 4.1. We provide the results in
Figure 5. Here, we observed that increasing the
dataset size consistently improves SMILES pars-
ing performance, with particularly dramatic gains
in the ring counting and fragment assembly tasks.
This validates the expandability of our framework.

5 Experiments: Downstream tasks

In this section, we evaluate the effect of pre-training
LLMs on CLEANMOL dataset across three molec-
ular generation downstream applications. We pro-
vide the experimental settings in Appendix B and
additional experimental results in Appendix C.

Our results demonstrate that incorporating
CLEANMOL as a pre-training strategy consistently
improves performance across diverse downstream
molecular tasks. These findings provide strong em-
pirical support for our central hypothesis: clean and
structurally faithful SMILES parsing serves as an
effective and transferable learning signal for LLMs.
Notably, CLEANMOL achieves state-of-the-art or
competitive performance despite being pre-trained
without any task-specific data, underscoring the
strength and generality of our approach.

5.1 Molecular generation

The molecular generation task aims to generate
molecules given prompts, including retrosynthesis,
reagent prediction, and forward reaction prediction.
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Models Exact. BLEU Levenshtein| MACCS FTS RDKFST Morgan FTS Validity
Task 1: Retrosynthesis
Text+Chem TS 0.141  0.765 24.04 0.685 0.765 0.585 0.698
Mol-Instructions (Lla.2) 0.009  0.705 31.23 0.283 0.487 0.230 -
Mol-Instructions (Lla.3) 0.333  0.842 17.64 0.704 0.815 0.646 -
Mol-Instructions (Lla.3.1)*  0.255  0.890 17.76 0.813 0.690 0.644 -
InstructMol-GS 0.407  0.941 13.97 0.753 0.852 0.714 -
Llama3.1-8B 0.456  0.944 10.22 0.895 0.837 0.801 0.979
+ Mol-Instructions (SFT)*  0.541  0.955 8.25 0.915 0.878 0.843 -
+ CLEANMOL 0.581  0.959 7.86 0.923 0.890 0.856 0.998
Qwen2.5-7B 0.460  0.946 10.11 0.897 0.849 0.809 0.910
+ CLEANMoOL 0.554  0.958 8.26 0.915 0.880 0.844 0.995
Task 2: Reagent prediction
Text+Chem T5 0.000  0.255 49.32 0.039 0.186 0.052 0.313
Mol-Instructions (Lla.2) 0.044  0.224 23.17 0.237 0.364 0.213 -
Mol-Instructions (Lla.3) 0.101  0.648 18.33 0.412 0.521 0.375 -
Mol-Instructions (Lla.3.1)*  0.085  0.676 22.40 0.505 0.398 0.356 -
InsturctMol 0.129  0.610 19.66 0.444 0.539 0.400 -
Llama3.1-8B 0.124  0.625 17.31 0.538 0.433 0.398 0.999
+ Mol-Instructions (SFT)*  0.142  0.678 17.14 0.562 0.467 0.430 -
+ CLEANMOL 0.147  0.687 16.89 0.564 0472 0.434 0.999
Qwen2.5-7B 0.120  0.649 17.76 0.533 0.431 0.395 -
+ CLEANMoOL 0.128  0.685 16.58 0.557 0.455 0.415 0.975
Task 3: Forward reaction prediction
Text+Chem T5 0236  0.782 13.63 0.523 0.630 0.505 0.967
Mol-Instructions (Lla.2) 0.045 0.654 27.26 0.313 0.509 0.262 -
Mol-Instructions (Lla.3) 0.503  0.883 13.41 0.756 0.863 0.708 -
Mol-Instructions (Lla.3.1)*  0.402  0.907 13.11 0.848 0.718 0.679 -
InstructMol-GS 0.536  0.967 10.85 0.776 0.878 0.741 -
Llama3.1-8B 0.794  0.981 247 0.965 0.938 0.926 0.988
+ Mol-Instructions (SFT)*  0.888  0.990 1.33 0.983 0.967 0.961 -
+ CLEANMoOL 0.890  0.990 1.37 0.980 0.966 0.959 0.996
Qwen2.5-7B 0.833  0.986 2.08 0.972 0.947 0.943 0.987
+ CLEANMoOL 0.874  0.989 1.56 0.980 0.963 0.956 0.959

Table 4: Molecular generation performance. Background indicates the improvement compared to vanilla model.
Asterisks (*) denote reproduced results and - in validity represents the SELFIES-based methods which guarantees
the perfect validity. For each metric, the best and second-best result is highlighted with bold and underline.

Dataset. We use the Mol-Instructions dataset
(Fang et al., 2024), which covers three molecule
generation tasks. Specifically, retrosynthesis pre-
dicts the possible precursors that lead to a given
target molecule. Next, the reagent prediction task
requires the generation of suitable catalysts, sol-
vents, or ancillary reagents for a given chemical
reaction. Lastly, forward reaction prediction in-
volves the generation of a plausible product from
given reactants and reagents. We follow the data
splits provided in Mol-Instructions.

Baselines. We evaluate CLEANMOL by integrat-
ing it with two base models: LLaMA-3.1-8B-
Instruct (Grattafiori et al., 2024) and Qwen-2.5-
7B-Instruct (Yang et al., 2024), to test whether
CLEANMOL consistently improves performance.
Notably, the vanilla base models are fine-tuned on
each downstream task without pre-training. For an
absolute performance comparison, we include three
baselines: Text+Chem T35 (Christofidellis et al.,
2023a), Mol-Instructions (Fang et al., 2024) and
InstructMol (Cao et al., 2023). Additionally, we

include a variant of Mol-Instructions denoted as
Mol-Instructions (SFT), which is first instruction-
tuned on the same dataset size as our CLEANMOL
dataset (250K) and then further fine-tuned on each
downstream task. This ensures a fair comparison
for both the model and the training data size.

Metrics. We assess the performance by compar-
ing the generated molecules with the ground truth
based on eight metrics. These include SMILES
string-based metrics (Exact match, BLEU (Pap-
ineni et al., 2002), and Levenshtein distance (Miller
et al., 2009)), molecular fingerprint similarities
(MACCS (Durant et al., 2002), RDK (Schnei-
der et al., 2015), and Morgan (Rogers and Hahn,
2010)), distributional similarity via Fréchet Chem-
Net Distance (FCD) (Preuer et al., 2018), and the
validity of generated molecules.

Results. The results are summarized in Table 4.
Incorporating CLEANMOL consistently improves
performance across all backbones, demonstrating
the effectiveness of SMILES parsing tasks in en-
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Figure 6: Data scale analysis for retrosynthesis.

hancing molecular language modeling. These im-
provements suggest that pre-training on clean and
deterministic CLEANMOL dataset facilitates the
model’s structural understanding required for gen-
eration tasks. Notably, integrating CLEANMOL
into LLaMA3.1-8B-Instruct achieves state-of-the-
art—or at least comparable—performance to Mol-
Instructions (SFT), despite using no molecular gen-
eration data during pre-training.

5.2 Ablation study

Here, we evaluate the effect of CLEANMOL dataset
size on retrosynthesis performance using 10K, 20K,
and 50K molecules per parsing task following the
setup in Section 5.1. As described in Figure 6, the
performance grows with data scale, demonstrating
CLEANMOL ’s scalability. As SMILES parsing re-
quires no costly experiment, this framework easily
extends to large molecular corpora.

6 Related work

LLMs for chemistry. General-purpose LLMs
often struggle with fundamental chemistry tasks,
particularly those requiring molecular structure un-
derstanding (White et al., 2023; Castro Nascimento
and Pimentel, 2023; Guo et al., 2023). To address
this gap, several studies have proposed chemically
specialized LLMs. Some approaches pre-train
LLMs on molecular and biomedical corpora to in-
ject domain-specific knowledge (Edwards et al.,
2022; Christofidellis et al., 2023b; Liu et al., 2023a;
Pei et al., 2023). Others explore instruction tun-
ing on curated molecular tasks (Fang et al., 2024;
Cao et al., 2023), or leverage retrieval-augmented
prompting to improve few-shot performance (Li
et al., 2024). While these methods aim to inject
domain knowledge, they often neglect the need for
grounding models in basic molecular understand-
ing. In contrast, we emphasize clean and determin-
istic structural supervision through well-defined
SMILES parsing tasks, which can complement ex-
isting methods and integrate with instruction tuning
or domain adaptation.

Pre-training of LLMs for chemistry. Effec-
tive pre-training tasks should be well-structured

and sufficiently simple to support generalizable
learning. In chemistry, many works adopt NLP-
inspired objectives such as masked language mod-
eling (MLM) (Devlin et al., 2019) and sequence-to-
sequence translation (Raffel et al., 2020b), applied
to SMILES (Weininger, 1988) or SELFIES (Krenn
et al., 2020). Edwards et al. (2022) used separate
MLM pretraining on molecular and textual data,
while later studies (Pei et al., 2023; Christofidellis
et al., 2023b) combined MLM with molecule—text
translation. Liu et al. (2023a) embedded SMILES
in natural language prompts, and other works in-
corporated 2D or 3D geometry (Li et al., 2023; Ji
et al., 2024; Zhou et al., 2023).

Despite these advancements, most strategies in-
troduce unambiguous supervision signals due to the
non-determinism of molecular representations. For
example, in masked SMILES prediction, multiple
chemically valid tokens can fill the same masked
position, leading to a noisy training signal. This
undermines training effectiveness and limits the
model’s ability to learn robust understanding. To
address this issue, we provide clean and determin-
istic SMILES parsing tasks as pre-training tasks.

Data pruning in LLMs. Data pruning refers to
selecting an informative subset of training data,
which is crucial for reliable LLM training (Gu-
nasekar et al., 2023). Most data pruning meth-
ods rely on rule-based filters (Wenzek et al., 2020;
Raffel et al., 2020a), perplexity scores (Marion
et al., 2023; Ankner et al., 2024), or LLM embed-
dings (Tirumala et al., 2023). However, these met-
rics are ill-defined for molecular strings, where per-
plexity and embeddings do not reflect the structural
information of the corresponding molecules. To ad-
dress this, we introduce task-specific difficulty mea-
sures and data pruning strategies for molecules.

7 Conclusion

In this paper, we revisit the key limitation in apply-
ing LLMs to chemistry: the inability to interpret the
structures encoded in SMILES. To address this, we
propose CLEANMOL, a framework that introduces
deterministic and scalable SMILES parsing tasks to
provide unambiguous structural supervision. Our
experiments show that CLEANMOL significantly
enhances molecular structural understanding and
improves performance across multiple downstream
tasks. These results highlight the value of incor-
porating clean and structure-aware objectives into
LLMs to support more robust applications.
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Broader Impact

Our work contributes to the development of struc-
turally grounded models for molecular applications.
By introducing a structured, clean, and scalable
set of SMILES parsing tasks, we aim to equip
LLMs with a stronger inductive bias toward molec-
ular structure understanding. This can enhance
downstream applications such as drug discovery,
materials design, and reaction prediction by im-
proving the fidelity and reliability of molecular
reasoning. However, as with any generative Al
system in chemistry, potential misuse remains a
concern. The capacity to generate toxic, harmful,
or restricted compounds necessitates careful inte-
gration of safety measures and expert oversight.

Limitations

Limited structural information. Our SMILES
parsing tasks focus on graph-level molecular struc-
tures and do not incorporate 3D conformational
information, which is essential for many biological
and physicochemical applications. Additionally,
while our tasks are deterministic and scalable, they
do not capture more nuanced chemical features
such as stereochemistry, electronic effects, or reac-
tivity patterns, which often require context beyond
2D topological graphs.

Language-specific scope. Our experiments are
conducted exclusively in English and do not ex-
plore the applicability of the method across other
languages, including morphologically rich or typo-
logically diverse ones. Given that behaviors can
vary across languages due to linguistic structure
and training data distributions, the generalizability
of our approach to multilingual settings remains an
open question.

Model and dataset scale. Due to computational
constraints, our experiments are limited to language
models with up to 7.5B—8B parameters. It remains
to be seen whether our framework scales effectively
to larger models (e.g., 70B or beyond). Moreover,
our pretraining is performed on a relatively modest
dataset of 250K molecules, and while we observe
consistent improvements, further studies on larger-
scale datasets are necessary to assess the robustness
and scalability of the approach.

Acknowledgments

This work was partly supported by Institute for
Information & communications Technology Plan-

ning & Evaluation(IITP) grant funded by the
Korea government(MSIT) (RS-2019- 11190075,
Artificial Intelligence Graduate School Support
Program(KAIST)), National Research Founda-
tion of Korea(NRF) grant funded by the Min-
istry of Science and ICT(MSIT) (No. RS-2022-
NRO072184), GRDC(Global Research Development
Center) Cooperative Hub Program through the Na-
tional Research Foundation of Korea(NRF) grant
funded by the Ministry of Science and ICT(MSIT)
(No. RS-2024-00436165), the Institute of In-
formation & Communications Technology Plan-
ning & Evaluation(II'TP) grant funded by the Ko-
rea government(MSIT) (RS-2025-02304967, Al
Star Fellowship(KAIST)), and Institute of Infor-
mation & communications Technology Planning
& Evaluation (IITP) grant funded by the Ko-
rea government(MSIT) (RS-2025-02653113, High-
Performance Research Al Computing Infrastruc-
ture Support at the 2 PFLOPS Scale).

References

Zachary Ankner, Cody Blakeney, Kartik Sreenivasan,
Max Marion, Matthew L Leavitt, and Mansheej Paul.
2024. Perplexed by perplexity: Perplexity-based data
pruning with small reference models. arXiv preprint
arXiv:2405.20541.

Yoshua Bengio, Jérdbme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41-48.

He Cao, Zijing Liu, Xingyu Lu, Yuan Yao, and Yu Li.
2023. Instructmol: Multi-modal integration for build-
ing a versatile and reliable molecular assistant in drug
discovery. Preprint, arXiv:2311.16208.

Cayque Monteiro Castro Nascimento and AndréSilva Pi-
mentel. 2023. Do large language models understand
chemistry? a conversation with chatgpt. Journal
of Chemical Information and Modeling, 63(6):1649—
1655.

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, and
1 others. 2023. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See
https://vicuna. Imsys. org (accessed 14 April 2023),
2(3):6.

Dimitrios Christofidellis, Giorgio Giannone, Jannis
Born, Ole Winther, Teodoro Laino, and Matteo Man-
ica. 2023a. Unifying molecular and textual repre-
sentations via multi-task language modelling. In
Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings

15703


https://arxiv.org/abs/2311.16208
https://arxiv.org/abs/2311.16208
https://arxiv.org/abs/2311.16208
https://doi.org/10.1021/acs.jcim.3c00285
https://doi.org/10.1021/acs.jcim.3c00285
https://proceedings.mlr.press/v202/christofidellis23a.html
https://proceedings.mlr.press/v202/christofidellis23a.html

of Machine Learning Research, pages 6140-6157.
PMLR.

Dimitrios Christofidellis, Giorgio Giannone, Jannis
Born, Ole Winther, Teodoro Laino, and Matteo Man-
ica. 2023b. Unifying molecular and textual repre-
sentations via multi-task language modelling. In
Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 6140-6157.
PMLR.

Michael Han Daniel Han and Unsloth team. 2023. Un-
sloth.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248-255. leee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171-4186.

Joseph L Durant, Burton A Leland, Douglas R Henry,
and James G Nourse. 2002. Reoptimization of mdl
keys for use in drug discovery. Journal of chemi-
cal information and computer sciences, 42(6):1273—
1280.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke,
Kyunghyun Cho, and Heng Ji. 2022. Translation
between molecules and natural language. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 375413,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei
Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Hua-
jun Chen. 2024. Mol-instructions: A large-scale
biomolecular instruction dataset for large language
models. In The Tielfth International Conference on
Learning Representations.

Veronika Ganeeva, Andrey Sakhovskiy, Kuzma
Khrabrov, Andrey Savchenko, Artur Kadurin, and
Elena Tutubalina. 2024. Lost in translation: Chem-
ical language models and the misunderstanding of
molecule structures. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
12994-13013.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc

Sun, and Benjamin Bossan. 2022. Accelerate: Train-
ing and inference at scale made simple, efficient and
adaptable. https://github.com/huggingface/
accelerate.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gus-
tavo de Rosa, Olli Saarikivi, and 1 others. 2023.
Textbooks are all you need. arXiv preprint
arXiv:2306.11644.

Taicheng Guo, Bozhao Nan, Zhenwen Liang, Zhichun
Guo, Nitesh Chawla, Olaf Wiest, Xiangliang Zhang,
and 1 others. 2023. What can large language models
do in chemistry? a comprehensive benchmark on
eight tasks. Advances in Neural Information Process-
ing Systems, 36:59662-59688.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

John J Irwin, Teague Sterling, Michael M Mysinger,
Erin S Bolstad, and Ryan G Coleman. 2012. Zinc: a
free tool to discover chemistry for biology. Journal
of chemical information and modeling, 52(7):1757-
1768.

Yunhui Jang, Jaehyung Kim, and Sungsoo Ahn.
2024. Chain-of-thoughts for molecular understand-
ing. arXiv preprint arXiv:2410.05610.

Xiaohong Ji, Zhen Wang, Zhifeng Gao, Hang Zheng,
Linfeng Zhang, Guolin Ke, and Weinan E. 2024. Ex-
ploring molecular pretraining model at scale. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Mario Krenn, Florian Hise, AkshatKumar Nigam, Pas-
cal Friederich, and Alan Aspuru-Guzik. 2020. Self-
referencing embedded strings (selfies): A 100% ro-
bust molecular string representation. Machine Learn-
ing: Science and Technology, 1(4):045024.

Greg Landrum, Paolo Tosco, Brian Kelley, Ricardo
Rodriguez, David Cosgrove, Riccardo Vianello,
sriniker, Peter Gedeck, Gareth Jones, NadineSchnei-
der, Eisuke Kawashima, Dan Nealschneider, Andrew
Dalke, Matt Swain, Brian Cole, Samo Turk, Alek-
sandr Savelev, Alain Vaucher, Maciej Wéjcikowski,
and 11 others. 2024. rdkit/rdkit: 2024_09_1 (q3
2024) release beta.

Han Li, Ruotian Zhang, Yaosen Min, Dacheng Ma,
Dan Zhao, and Jianyang Zeng. 2023. A knowledge-
guided pre-training framework for improving molecu-
lar representation learning. Nature Communications,
14(1):7568.

Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei,
Hui Liu, Jiliang Tang, and Qing Li. 2024. Empower-
ing molecule discovery for molecule-caption transla-
tion with large language models: A chatgpt perspec-
tive. IEEE Transactions on Knowledge and Data
Engineering, page 1-13.

15704


https://proceedings.mlr.press/v202/christofidellis23a.html
https://proceedings.mlr.press/v202/christofidellis23a.html
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://doi.org/10.18653/v1/2022.emnlp-main.26
https://doi.org/10.18653/v1/2022.emnlp-main.26
https://openreview.net/forum?id=Tlsdsb6l9n
https://openreview.net/forum?id=Tlsdsb6l9n
https://openreview.net/forum?id=Tlsdsb6l9n
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://openreview.net/forum?id=64V40K2fDv
https://openreview.net/forum?id=64V40K2fDv
https://doi.org/10.5281/zenodo.13820100
https://doi.org/10.5281/zenodo.13820100
https://doi.org/10.1109/tkde.2024.3393356
https://doi.org/10.1109/tkde.2024.3393356
https://doi.org/10.1109/tkde.2024.3393356
https://doi.org/10.1109/tkde.2024.3393356

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Zequn Liu, Wei Zhang, Yingce Xia, Lijun Wu, Shufang
Xie, Tao Qin, Ming Zhang, and Tie-Yan Liu. 2023a.
MolXPT: Wrapping molecules with text for genera-
tive pre-training. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 1606-1616,
Toronto, Canada. Association for Computational Lin-
guistics.

Zhiyuan Liu, Sihang Li, Yanchen Luo, Hao Fei, Yixin
Cao, Kenji Kawaguchi, Xiang Wang, and Tat-Seng
Chua. 2023b. MolCA: Molecular graph-language
modeling with cross-modal projector and uni-modal
adapter. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 15623-15638, Singapore. Association for
Computational Linguistics.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
and 1 others. 2024. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173.

Jieyu Lu and Yingkai Zhang. 2022. Unified deep learn-
ing model for multitask reaction predictions with
explanation. Journal of chemical information and
modeling, 62(6):1376-1387.

Max Marion, Ahmet Ustiin, Luiza Pozzobon, Alex
Wang, Marzieh Fadaee, and Sara Hooker. 2023.
When less is more: Investigating data pruning
for pretraining llms at scale.  arXiv preprint
arXiv:2309.04564.

Frederic P Miller, Agnes F Vandome, and John McBrew-
ster. 2009. Levenshtein distance: Information theory,
computer science, string (computer science), string
metric, damerau? levenshtein distance, spell checker,
hamming distance.

OpenAl and Josh Achiam et al. 2024. Gpt-4 technical
report. Preprint, arXiv:2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan
Gao, Lijun Wu, Yingce Xia, and Rui Yan. 2023.
BioT5: Enriching cross-modal integration in biol-
ogy with chemical knowledge and natural language
associations. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1102-1123, Singapore. Association for
Computational Linguistics.

Kristina Preuer, Philipp Renz, Thomas Unterthiner,
Sepp Hochreiter, and Giinter Klambauer. 2018.
Fréchet chemnet distance: A metric for generative
models for molecules in drug discovery. Journal
of Chemical Information and Modeling, 58(9):1736—
1741.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. 2020a. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yangqi
Zhou, Wei Li, and Peter J. Liu. 2020b. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

David Rogers and Mathew Hahn. 2010. Extended-
connectivity fingerprints. Journal of chemical in-
formation and modeling, 50(5):742-754.

Nadine Schneider, Roger A Sayle, and Gregory A Lan-
drum. 2015. Get your atoms in order - an open-
source implementation of a novel and robust molecu-
lar canonicalization algorithm. Journal of chemical
information and modeling, 55(10):2111-2120.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan,
and Ari Morcos. 2023. D4: Improving llm pretrain-
ing via document de-duplication and diversification.
Advances in Neural Information Processing Systems,

36:53983-53995.

Tloen. 2023. Alpaca-lora.
tloen/alpaca-lora.

https://github.com/

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl.

Jin-Mao Wei, Xiao-Jie Yuan, Qing-Hua Hu, and Shu-
Qin Wang. 2010. A novel measure for evaluat-
ing classifiers. Expert Systems with Applications,
37(5):3799-3809.

David Weininger. 1988. Smiles, a chemical language
and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of Chemical Infor-
mation and Computer Sciences, 28(1):31-36.

David Weininger, Arthur Weininger, and Joseph L
Weininger. 1989. Smiles. 2. algorithm for genera-
tion of unique smiles notation. Journal of chemical
information and computer sciences, 29(2):97-101.

15705


https://doi.org/10.18653/v1/2023.acl-short.138
https://doi.org/10.18653/v1/2023.acl-short.138
https://doi.org/10.18653/v1/2023.emnlp-main.966
https://doi.org/10.18653/v1/2023.emnlp-main.966
https://doi.org/10.18653/v1/2023.emnlp-main.966
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://doi.org/10.1021/acs.jcim.8b00234
https://doi.org/10.1021/acs.jcim.8b00234
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://github.com/huggingface/trl

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con- molecular representation learning framework. In The

neau, Vishrav Chaudhary, Francisco Guzman, Ar- Eleventh International Conference on Learning Rep-
mand Joulin, and Edouard Grave. 2020. CCNet: resentations.
Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
4003-4012, Marseille, France. European Language
Resources Association.

Andrew D. White, Glen M. Hocky, Heta A. Gandhi,
Mehrad Ansari, Sam Cox, Geemi P. Wellawatte, Sub-
arna Sasmal, Ziyue Yang, Kangxin Liu, Yuvraj Singh,
and Willmor J. Pefia Ccoa. 2023. Assessment of
chemistry knowledge in large language models that
generate code. Digital Discovery, 2:368-376.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Zhenqgin Wu, Bharath Ramsundar, Evan N Feinberg,
Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. 2018. Moleculenet:
a benchmark for molecular machine learning. Chem-
ical science, 9(2):513-530.

Yingce Xia, Peiran Jin, Shufang Xie, Liang He, Chuan
Cao, Rengian Luo, Guoqing Liu, Yue Wang, Ze-
qun Liu, Yuan-Jyue Chen, Zekun Guo, Yeqi Bai,
Pan Deng, Yaosen Min, Ziheng Lu, Hongxia Hao,
Han Yang, Jielan Li, Chang Liu, and 27 others.
2025. Nature language model: Deciphering the lan-
guage of nature for scientific discovery. Preprint,
arXiv:2502.07527.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2023. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6268—
6278, Singapore. Association for Computational Lin-
guistics.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Botao Yu, Frazier N. Baker, Ziqi Chen, Xia Ning, and
Huan Sun. 2024. LlaSMol: Advancing large lan-
guage models for chemistry with a large-scale, com-
prehensive, high-quality instruction tuning dataset.
In First Conference on Language Modeling.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang
Zheng, Hongteng Xu, Zhewei Wei, Linfeng Zhang,
and Guolin Ke. 2023. Uni-mol: A universal 3d

15706


https://aclanthology.org/2020.lrec-1.494/
https://aclanthology.org/2020.lrec-1.494/
https://aclanthology.org/2020.lrec-1.494/
https://doi.org/10.1039/D2DD00087C
https://doi.org/10.1039/D2DD00087C
https://doi.org/10.1039/D2DD00087C
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2502.07527
https://arxiv.org/abs/2502.07527
https://doi.org/10.18653/v1/2023.emnlp-main.385
https://doi.org/10.18653/v1/2023.emnlp-main.385
https://openreview.net/forum?id=lY6XTF9tPv
https://openreview.net/forum?id=lY6XTF9tPv
https://openreview.net/forum?id=lY6XTF9tPv
https://openreview.net/forum?id=6K2RM6wVqKu
https://openreview.net/forum?id=6K2RM6wVqKu

Appendix

Organization The appendix is organized as fol-
lows: We first describe the details of SMILES
parsing tasks in Appendix A. Next, we present
the experimental details such as hyperparameters
and computational resources in Appendix B. Then
we provide the additional experimental results in-
cluding the generated samples and additional ab-
lation studies in Appendix C. Lastly, we present
the usage of Al assistants and scientific artifacts in
Appendix D and Appendix E, respectively.

A Detailed description of SMILES
parsing tasks

A.1 Subgraph matching

This category includes functional group matching,
ring counting, and carbon chain length measure-
ment. These tasks are designed to focus on local
substructures within the molecular graph, such as
common functional motifs, ring systems, and chain
connectivity. Each task formulation is determinis-
tic and lends itself to clear evaluation.

Functional group matching. Functional group
matching evaluates whether a specified functional
group is present in a given molecule. To ensure
determinism, we cast this task as a binary clas-
sification problem: the model must predict “yes”
or “no” based on the presence of the target group.
An example of the instruction format is shown in
Figure 7.

Functional group matching

Answer only in "Yes’ or ’No’ without any
other information.

**Question:** Does the molecule repre-
sented by the SMILES string contain the
specified functional group? Respond with
"Yes’ or 'No’.

**SMILES:** [SMILES]
**FUNCTIONAL GROUP:** [Functional
group SMILES]

** ANSWER:** [ Yes/No]

Figure 7: An instruction format of functional group
matching.

Ring counting. Ring counting asks the model
to determine the number of rings of a specific
size (e.g., five- or six-membered) in the molecule.

This task tests the model’s ability to track topologi-
cal cycles through non-contiguous token spans in
SMILES. The instruction format is illustrated in
Figure 8.

Ring counting

Answer only with the corresponding integer
number without any other information.

**Question:** Assess the SMILES below
and report how many rings consist of
[RING SIZE] atoms. Give me the integer
only.

**SMILES:** [SMILES]

**STZE OF RINGS:** [RING SIZE]

**ANSWER:** [NUMBER OF RINGS]

J

Figure 8: An instruction format of ring counting.

Chain length measurement. This task requires
the model to identify the length of the longest
acyclic carbon chain in the molecule, excluding
atoms that are part of rings. It challenges the model
to distinguish between linear and branched motifs
and to reason about connectivity beyond localized
tokens. Such chains often span long syntactic dis-
tances in SMILES, making the task non-trivial. The
instruction format is shown in Figure 9.

Chain length measurement

Answer only with the corresponding integer
number without any other information.

**Question: ** Report the size of the largest
carbon-only chain not contained within a
ring in the molecule represented by this
SMILES. Answer with an integer only.
**SMILES:** [SMILES]

**ANSWER:** [LENGTH OF CHAIN]

J

Figure 9: An instruction format of chain length mea-
surement.

A.2 Global graph matching

This category includes tasks that operate on a
global level: SMILES canonicalization and frag-
ment assembly. Unlike subgraph matching, these
tasks require full-graph interpretation, where suc-
cess depends on integrating information across the
entire molecular structure.
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This category consists of SMILES canonicaliza-
tion and fragment assembly.

SMILES canonicalization. Canonicalization in-
volves transforming a randomly ordered SMILES
string into its canonical form following the canoni-
calization rules (Weininger et al., 1989). In detail,
these rules typically involve assigning a unique
ranking to atoms based on graph invariants (e.g.,
atomic number, connectivity, bond types), select-
ing the lexicographically smallest traversal path,
and applying consistent numbering for ring clo-
sures. This task encourages the model to learn
structural invariance under permutation and rein-
forces a graph-level understanding of molecular
identity. The task format is provided in Figure 10.

SMILES canonicalization

Answer only with the corresponding
SMILES string without any other informa-
tion.

**Question:** Give me a canonicalized
SMILES string that represents the same
molecule as the given one.

*#ESMILES: ** [SMILES]
**ANSWER:** [CANONICAL SMILES]

Figure 10: An instruction format of SMILES canoni-
calization.

Fragment assembly. Fragment assembly eval-
uates whether the model can reconstruct a full
molecule from two disconnected SMILES frag-
ments. This task tests global molecular coherence
and the model’s ability to resolve attachment points
into a chemically valid structure. The instruction
format of the instruction is shown in Figure 11.

B Experimental details

In this section, we provide the details of the ex-
periments. All experimental code related to this
paper is available at https://anonymous. 4open.
science/r/CLEANMOL and our experiments are
based on a single run. We use NVIDIA A100-
80GB GPUs. We also apply low rank adaptation
(Hu et al., 2022) and report results from a sin-
gle run. Our implementations are based on the
transformers library (Wolf et al., 2020), the trl
library (von Werra et al., 2020), the accelerate
library (Gugger et al., 2022), and unsloth library

Fragment assembly

Answer only with the corresponding
SMILES string without any other informa-
tion.

**Question:** Connect the following two
SMILES fragments into a unified structure
at their reactive sites.

**SMILES:** [FRAGMENT 1, FRAG-
MENT 2]

** ANSWER:** [SMILES]

J

Figure 11: An instruction format of SMILES assem-
bly.

(Daniel Han and team, 2023). Additionally, we
used the packages including rouge-score==0.1.2
and nltk==3.8.1.

B.1 SMILES parsing

Here, we describe the detailed settings for the
SMILES parsing experiments in Section 4, includ-
ing the pre-trainig step with SMILES parsing tasks.

Hyperparameters. The hyperparameters for all
the models are provided in Table 5. We share
the same hyperparameter for all the SMILES pars-
ing tasks and base models. Notably, the model
trained with SMILES parsing tasks is used as the
pre-trained model for downstream tasks in Sec-
tion 5.

Hyperparameter
Batch size 16
Learning rate 5e~4
Epochs 1
Warmup ratio 0.01
Weight decay 0.1
Lr scheduler cosine
Gradient accumulation steps 1
Repetition penalty 1
Temperature 0.2
Lorar 64
Lora alpha 16
Lora dropout 0.05

Table 5: Hyperparameters for SMILES parsing.

B.2 Downstream tasks
Here, we describe the detailed settings for the

downstream task experiments in Section 5.

Hyperparameters. The hyperparameters for all
the models are provided in Table 5. We share the
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same hyperparameter for all downstream tasks and
base models. Notably, for the reproduced Mol-
instructions (Fang et al., 2024) models, we follow
the hyperparameters given in the original paper.

Hyperparameter
Batch size 16
Learning rate 5e~4
Epochs 1
Warmup ratio 0.01
Weight decay 0.1
Lr scheduler cosine
Gradient accumulation steps 1
Repetition penalty 1
Temperature 0.2
Lorar 64
Lora alpha 16
Lora dropout 0.05

Table 6: Hyperparameters for downstream tasks.

C Additional experimental results

In this section, we provide additional experimental
results including additional downstream tasks and
ablation study.

C.1 Molecular property prediction

The molecular property classification task aims to
predict binary labels for intrinsic physical or chem-
ical properties, such as blood-brain barrier perme-
ability or toxicity.

Dataset. We use the MoleculeNet (Wu et al.,
2018) dataset, focusing on three binary classifi-
cation tasks: BACE, HIV, and Clintox. The BACE
task predicts whether a molecule can inhibit human
[B-secretase 1 (BACE-1). The HIV task involves
predicting the ability of compounds to inhibit HIV
replication. The Clintox task assesses whether a
compound is likely to fail clinical trials due to toxi-
city. We follow the splits provided in MoleculeNet.

Baselines. We evaluate CLEANMOL by integrat-
ing it with two base models: LLaMA-3.1-8B-
Instruct (Grattafiori et al., 2024) and Qwen-2.5-
7B-Instruct (Yang et al., 2024). For an absolute
performance comparison, we include additional
baselines: MolCA (Liu et al., 2023b), LlasMol (Yu
et al., 2024) and InstructMol (Cao et al., 2023).

Metrics. We evaluate the performance using ac-
curacy, which denotes the overall proportion of
correct predictions.

Model BACE HIV Clintox

MolCA (1D+2D) 0.798 - 0.895

LlasMolpmistral - 0.967 0.931
InstructMol-GS 0.821 0.689 —

LLaMA3.1-8B 0.507 0971 0.946

+ CLEANMoL  0.639 0971 0.946

Qwen2.5-7B 0.533 0.969 0.946

+ CLEANMoOL 0.638 0.971  0.946

Table 7: Molecular property classification perfor-
mance on the MoleculeNet dataset.

Results. We report the results in Table 7. We
observe that models pre-trained with CLEANMOL
achieve consistent gains, confirming that the struc-
tural alignment learned during SMILES parsing
transfers effectively to property classification tasks.

C.2 Molecular property regression

The molecular property regression task focuses on
predicting continuous-valued molecular properties.

Dataset. We again use the Mol-Instructions
(Fang et al., 2024) dataset. We target quantum me-
chanics properties: HOMO energy, LUMO energy,
and the energy gap (HOMO-LUMO difference).
We also follow the same split.

Baselines We evaluate CLEANMOL by integrat-
ing it with two base models: LLaMA-3.1-8B-
Instruct (Grattafiori et al., 2024) and Qwen-2.5-
7B-Instruct (Yang et al., 2024). For an absolute
performance comparison, we include additional
baselines: Alpaca (Tloen, 2023), Baize (Xu et al.,
2023), Vicuna (Chiang et al., 2023), Galactica (Tay-
lor et al., 2022), and Mol-Instructions (Fang et al.,
2024). Here, the Mol-Instructions (SFT) follows
the same training strategy described in Section 5.1.

Metrics. We use mean absolute error (MAE) to
evaluate prediction accuracy.

Results. We report the results in Table 8. The re-
sults indicate that models pre-trained on SMILES
parsing consistently outperform baselines, demon-
strating that structural information learned via pars-
ing enhances quantitative property prediction.

C.3 Ablation study

SMILES parsing component. Here, we con-
duct an ablation study on the contribution of each
SMILES parsing task. We report the results for
the retrosynthesis task using LLaMA3.1-8B. We
provide the results in Appendix C.3. The results
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Model MAE
Alpaca 322.109
Baize 261.343
Vicuna 860.051
Galactica 0.568
Mol-Instruct. (Lla.2) 0.013
Mol-Instruct. (Lla.3) 15.059
Mol-Instruct. (Lla.3.1)* 0.011
Mol-Instruct. (SFT)* 0.005
LLaMA3.1-8B 0.005
+ CLEANMOL 0.005
Qwen2.5-7B 15.923
+ CLEANMOL 0.005

Table 8: Molecular property regression performance
on the Molinstructions dataset.

Exact. BLEU Lev.| MACCS RDK Morgan Valid.

FG 0.541  0.955 8.66 0914  0.874  0.840  0.997
Ring 0.537  0.955 8.46 0914  0.877  0.841 0.993
Chain 0562 0956 821 0917 0880  0.850  0.991
Canonical 0.550  0.955 8.52 0915 0877 0.844  0.995
Assembly 0.542 0955 8.60 0913 0880 0.842  0.996

All (CLEANMoOL) 0.581  0.959  7.86 0923 0890 0.856  0.998

Table 9: Ablation study of CLEANMOL component.

show that the carbon chain length measurement
task (Chain) contributes the largest performance
improvements. Notably, the full combination of
all five parsing tasks in CLEANMOL achieves the
best overall performance, validating the effective-
ness of our comprehensive, multi-task pretraining
strategy.

Exact. BLEU Lev.| MACCS RDK Morgan Valid.

Top 0.550 0957 8.46 0915 0.877 0.843 0.998
Bottom 0.555 0956  8.42 0916  0.875 0.845 0.996
Middle (Ours)  0.581  0.959  7.86 0923  0.890 0.856  0.998

Table 10: Ablation study of data pruning.

Molecular data pruning. Next, we conduct an
ablation study to observe the impact of molecular
data pruning on downstream tasks. To address this,
we evaluated the performance of the retrosynthe-
sis task with Llama3.1-8B with top, middle (ours),
and bottom data pruning strategies. We provide
the results in Appendix C.3 The results show that
our middle data pruning strategy shows the best
downstream task performance, validating the effec-
tiveness of our strategy.

D Usage of AI assistants

In preparing this work, we used Al-based writing
assistants to improve sentence structure, correct
grammatical errors, and enhance overall readabil-
ity. These tools were employed solely for language
refinement and did not contribute to the develop-
ment of technical content, research methodology,
or experimental analysis. All scientific ideas, re-
sults, and conclusions presented in the paper were
conceived and authored entirely by the researchers.
The use of Al assistance was restricted to edito-
rial purposes and did not affect the originality or
intellectual contributions of the work.

E Scientific Artifacts

The License for artifacts. All datasets and soft-
ware tools used in this study comply with their re-
spective licenses. Specifically, we utilized publicly
available datasets such as ZINC250K (Irwin et al.,
2012) and Mol-Instructions (Fang et al., 2024) in
accordance with their usage terms. External tools
such as RDKit were employed under their permis-
sive open-source license. To support transparency
and reproducibility, we release our trained models
and source code at https://anonymous.4open.
science/r/CLEANMOL under an appropriate open-
source license.

Artifact use consistency with intended use. All
datasets and tools were used in a manner consistent
with their intended use. For instance, the Mol-
Instructions dataset (Fang et al., 2024)—originally
designed for molecule generation and property pre-
diction—was employed for aligned downstream
tasks in our study. Likewise, RDKit was used ex-
clusively for molecular structure analysis and data
preprocessing, as intended by its developers.
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