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Abstract

Large Language Models are commonly judged
by their scores on standard benchmarks, yet
such scores often overstate real capability since
they mask the mix of skills a task actually
demands. For example, ARC is assumed to
test reasoning, while HellaSwag is designed
to evaluate commonsense. However, we lack
a systematic way to verify if these bench-
marks actually measure these labels. We intro-
duce BENCHMARK PROFILING, a diagnostic
framework that decomposes benchmark per-
formance into ten cognitively grounded abil-
ities. The method combines gradient-based
importance scoring with targeted parameter
ablation to compute an Ability Impact Score
(AIS) that quantifies how much each ability
contributes to a model’s success on a given
benchmark. Profiling three instruction-tuned
models across ten widely used benchmarks
yields four key findings: (i) most benchmarks
draw on several abilities rather than one, (ii)
datasets with similar labels rely on distinct
ability mixtures, (iii) code-generation bench-
marks reward broad, multi-skill improvement
and thus show only modest gains from nar-
row domain-specific fine-tuning, and (iv) abil-
ities irrelevant to the task could negatively af-
fect performance. BENCHMARK PROFILING
therefore explains why performance gains do
not always translate into user-perceived com-
petence and offers a transparent tool for bench-
mark audit and model interpretability. The
code is available on https://github.com/
junkim100/Benchmark-Profiling

1 Introduction

Modern evaluations of Large Language Models
(LLMs) depend heavily on standardized bench-
marks designed to test capabilities like reasoning,
commonsense, and knowledge (Liang et al., 2022;
Cobbe et al., 2021; Zellers et al., 2019). While

†Corresponding authors.

Figure 1: Top ability-benchmark links for Llama-3.1-
8B-Instruct derived from its Benchmark Profile (ribbons
shown only where AIS > 0.05; ribbon width ∝ impact).

these benchmarks provide quantitative measures
of performance, a growing body of evidence sug-
gests a discrepancy between high scores on auto-
mated metrics and the qualities humans value in
LLM interaction. For instance, models optimized
for benchmarks can sometimes produce outputs
that are misaligned with human preferences, as evi-
denced by the mismatched rankings between plat-
forms like the Open LLM Leaderboard (Fourrier
et al., 2024) and the Chatbot Arena LLM Leader-
board (Chiang et al., 2024). This misalignment
raises a critical concern: current benchmarks
may not accurately measure the abilities they
claim to assess, undermining their reliability as
indicators of true model competence.

The core issue lies in the ambiguity of bench-
mark design. High accuracy scores on benchmarks
are often taken as direct proof that a model pos-
sesses the high-level ability suggested by the bench-
mark’s label (e.g., math or commonsense), despite a
lack of rigorous verification (Eriksson et al., 2025).
In reality, models might exploit dataset artifacts
or memorize patterns to achieve high scores with-
out genuine understanding (McCoy et al., 2019;
Geva et al., 2021). Without knowing what bench-
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marks truly measure, we cannot reliably improve
models or design evaluations that reflect real-world
requirements (Bowman and Dahl, 2021).

To address this, we introduce BENCHMARK

PROFILING, a methodology that systematically di-
agnoses the functional abilities required by LLM
benchmarks. By defining 10 operationalized abili-
ties (e.g., Deductive Reasoning, Contextual Recall)
derived from established models of human intelli-
gence (Carroll, 1993), we create measurement cri-
teria that reflect both computational performance
and the cognitive dimensions humans intuitively
value in real-world interactions. This approach
directly tackles the Performance-Perception Para-
dox, where models dominate benchmarks yet un-
derwhelm users, by ensuring evaluations test the
same competencies people assess when judging ca-
pability (Kyllonen, 2021). Bridging this gap, our
profiles reveal whether "high-scoring" models truly
exhibit the abilities users expect from labels like
math or commonsense. The BENCHMARK PROFIL-
ING framework measures how much each ability
actually contributes to a model’s success on each
benchmark, using targeted parameter ablation and
our proposed Ability Impact Score (AIS). This ap-
proach produces diagnostic profiles that reveal the
true combination of abilities required for high per-
formance on every benchmark.

2 Related Work

The Benchmarking Paradigm in LLM
Evaluation

Large Language Models (LLMs) are predomi-
nantly evaluated through standardized benchmarks
like MMLU (Hendrycks et al., 2021), HellaSwag
(Zellers et al., 2019), and TruthfulQA (Lin et al.,
2021), which quantify performance on tasks such
as commonsense reasoning, mathematical problem-
solving, and factual accuracy. While these bench-
marks have driven rapid progress via leaderboards,
their limitations in capturing real-world compe-
tence and human-aligned abilities have become in-
creasingly apparent. Critiques highlight issues such
as dataset contamination, prompt sensitivity, and
the prevalence of shortcut learning, where models
exploit artifacts rather than demonstrating genuine
understanding (McCoy et al., 2019; Geva et al.,
2021; Bowman and Dahl, 2021).

A growing body of research reveals systemic
flaws in the benchmarking paradigm. Studies
demonstrate that models often achieve high scores

through memorization or spurious correlations,
failing to exhibit robust reasoning or adaptability
(Banerjee et al., 2024; Oh et al., 2024). For in-
stance, inherent limitations, such as overfitting to
narrow metrics, and a lack of theoretical justifica-
tion for real-world relevance, are shown in bench-
marks like MMLU containing mislabeled or irrele-
vant questions (Fodor, 2025). These critiques align
with observations of the performance-perception
paradox, a term we introduce to describe the dis-
connect between benchmark-driven progress and
the abilities users intuitively expect from LLMs
in practical applications. Further analyses reveal
that benchmarks often inadequately measure rea-
soning depth, exhibit cultural biases, and struggle
with adversarial robustness (McIntosh et al., 2025),
underscoring the need for evaluations grounded in
human-aligned competencies.

Mechanistic Interpretability in Language
Models
Mechanistic interpretability seeks to reverse en-
gineer neural networks by mapping their internal
computations to human-understandable algorithms
and concepts, aiming for a granular, causal under-
standing of model behavior (Bereska and Gavves,
2024). This approach distinguishes itself through
its ambition to completely specify a neural net-
work’s computation, enabling researchers to diag-
nose how models encode knowledge and execute
tasks. In language models, mechanistic studies
have uncovered computational mechanisms for syn-
tactic processing (Hewitt and Manning, 2019) and
factual recall (Elhage et al., 2022), often through
techniques like probing and ablation. Central to
this effort are gradient-based importance scores,
which quantify parameter contributions to task per-
formance by analyzing the sensitivity of the loss
function to perturbations (Molchanov et al., 2019;
Michel et al., 2019). These methods provide a
practical means to identify critical parameters for
specific abilities, bridging the gap between reverse
engineering and actionable diagnostics.

Recent advances in mechanistic interpretability
provide a foundation for critically assessing bench-
mark validity. While earlier studies focused on
model behaviors (Yu and Ananiadou, 2024; Zhang
et al., 2024b; Stolfo et al., 2023) (e.g., shortcut
learning in arithmetic tasks (Geva et al., 2021)),
our work introduces a novel application of these
insights to evaluate whether benchmarks genuinely
measure the abilities they claim to assess. By oper-
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Figure 2: Three-step pipeline of BENCHMARK PROFILING. Left: We define ten cognitively motivated abilities and
create a dedicated diagnostic dataset for each one. Middle: Using the diagnostic dataset, we rank the base model’s
parameters by gradient-based importance, and zero out (orange) the top k percent associated with that ability. Right:
We run the original and ability-ablated models on downstream benchmarks. Their task accuracies yield the Ability
Impact Score (AIS), which quantifies how strongly the benchmark depends on the ablated ability.

ationalizing cognitive dimensions and quantifying
their impact through targeted parameter ablation,
we demonstrate how mechanistic tools can diag-
nose mismatches between benchmark requirements
and human-aligned competencies. This approach
addresses a key gap in prior critiques, which identi-
fied limitations but lacked methodologies to system-
atically evaluate benchmark validity (Fodor, 2025;
McIntosh et al., 2025), positioning mechanistic in-
terpretability as a critical tool for advancing evalua-
tion frameworks that reflect real-world capabilities.

3 Methodology

BENCHMARK PROFILING is a systematic method-
ology designed to diagnose the ability composition
of LLM evaluation benchmarks. It quantifies the
dependence of benchmarks on a predefined set of
fundamental operationalized abilities by measuring
the impact of selectively ablating ability-specific
parameters within an LLM. The methodology com-
prises three main phases:

Phase 1: Defining Abilities

A cornerstone of BENCHMARK PROFILING is es-
tablishing a set of well-defined, fundamental abil-
ities that serve as the diagnostic criteria. To ad-
dress the Performance-Perception Paradox where
models excel on benchmarks yet underperform in
human-aligned contexts, we ground these criteria
in established cognitive science frameworks (Bein-
born and Hollenstein, 2024). By building on tax-

onomies like Cattell-Horn-Carroll (CHC) theory
(Carroll, 1993), which describes human cognitive
abilities such as fluid reasoning and working mem-
ory, we ensure our operationalized abilities reflect
dimensions humans intuitively recognize as mark-
ers of intelligence. This human-centric founda-
tion bridges the gap between benchmark scores
and the competencies users expect LLMs to ex-
hibit in real-world interactions. In designing these
10 abilities found in Table 1, we balance theoreti-
cal robustness with practical relevance by adapting
cognitive science principles to the context of LLM
evaluation tasks, ensuring that each ability is both
grounded in human cognition and directly appli-
cable to benchmarking modern language models.
While inspired by human cognition, these terms re-
fer to specific, operationalized functional capacities
within the LLM architecture. Detailed definitions
are in Appendix A.

For each defined ability a, a diagnostic dataset
Da is created (2000 MCQs per ability in this work)
which is designed to specifically measure that abil-
ity. Crucially, these datasets are validated in Sec-
tion 6.1, and creation details are in Appendix B.

Phase 2: Identifying Abilities

This phase identifies specific components within
the LLM, that are responsible for each defined abil-
ity. Within a chosen LLM (Θ), parameters critical
for each dataset Da are identified.
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Abbr. Ability Operationalization in Diagnostic Dataset

Ana Analogical Reasoning Present an analogy or proportional pair (e.g. A:B :: C:?) and ask which
option best completes the relationship. Distractors ensure success
requires mapping the underlying relation rather than surface word
similarity.

Com Commonsense & Causal Reasoning Give a short everyday vignette and ask for the most plausible cause,
effect, or next event; items hinge on everyday causal plausibility, not
memorized facts.

Cxt Contextual Recall Provide a brief passage, then ask for verbatim details or their conjunc-
tion without new inference, isolating short-term textual memory.

Ded Deductive Reasoning Present premises that logically entail one conclusion; decoy options
violate at least one logical step, forcing rule-based inference.

Ind Inductive Reasoning Show a short pattern or sequence and ask the model to infer the
governing rule and extrapolate, so only rule discovery generalizes.

LTK Long-Term Knowledge Recall Ask about stored factual knowledge (history, science, geography)
absent from the prompt; items use low-frequency facts to reduce
chance memorization from local context.

Quant Quantitative Reasoning Pose a word problem with numerical data requiring arithmetic or
counting; multi-step reasoning and distractor numbers discourage
pattern matching.

Sem Semantic Relationship Comprehension Give a passage with several entities and ask about their roles or rela-
tions (e.g. part-whole, managerial hierarchy); questions test explicit
and implicit links, not mere co-occurrence.

Spat Spatial & Geometrical Reasoning Describe spatial layouts or geometric facts, then ask about positions,
directions, shapes, or distances; requires constructing a mental map or
performing shape-based deductions.

Temp Temporal Reasoning Present events with time markers (dates, times, order words) and
ask about sequence, simultaneity, or duration; items mix explicit and
implicit cues to test chronology.

Table 1: Operationalized abilities and their abbreviations used in the BENCHMARK PROFILING framework.

Importance Scoring We compute gradient-
based importance scores Iaj (θ) for each parame-
ter θj using a first-order Taylor approximation of
the loss L(Da, θ) on dataset Da (Molchanov et al.,
2019; Michel et al., 2019).

Iaj (θ) ≈
∣∣∣∣∣
∂L(Da, θ)

∂θj
· θj

∣∣∣∣∣ (1)

Gradients are obtained via fine-tuning on Da.
This fine-tuning is performed solely to facilitate
accurate gradient estimation. The resulting model
state is discarded.

Parameter Selection MLP layer parameters are
ranked by Iaj (θ), and the top-k% are selected as
the parameter subset associated with ability a. For
each ability a, an ablated model Θa is created by
taking the original model Θ and setting the value
of identified top-k% MLP parameters for ability a
to zero. Preliminary experiments revealed that re-
stricting ablations to MLP weights yields the clear-
est ability-specific signal with minimal collateral
damage; see Section 6.2 for details.

Phase 3: Benchmark Profiling

This phase involves evaluating baseline and ablated
models on target benchmarks, calculating the Abil-
ity Impact Score (AIS) to normalize performance
changes, and constructing the Benchmark Profile
from these AIS values.

The original model Θ and each ablated model
Θa are evaluated on target benchmarks b. Let
baseline performance be Pb(Θ) and ablated per-
formance be Pb(Θ

a).
To quantify benchmark reliance on each ability,

we define the Ability Impact Score (AIS) for ability
a on benchmark b, measuring the proportion of
performance loss relative to the model’s baseline
improvement over chance:

AISab =
Pb(Θ)− Pb(Θ

a)

Pb(Θ)− P chance
b

(2)

where P chance
b is chance-level performance for

benchmark b. An AIS near 1 indicates strong de-
pendence, while an AIS near 0 suggests little or no
reliance. A negative AIS means that performance
actually improves after the ability is ablated, sig-
naling that the ability can be detrimental for that
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benchmark.
The calculated AIS values (AISab ) are organized

into the Benchmark Profile, providing a quan-
titative summary of each benchmark’s measured
reliance on the defined operationalized abilities.

4 Experiments

This section details how BENCHMARK PROFILING

is applied to derive Ability Impact Scores (AIS)
for a suite of standard benchmarks. Section 4.1 ex-
plains the procedure for pinpointing ability-specific
parameters and computing AIS values. Section 4.2
describes the experimental setup, including the
language models, diagnostic datasets, and target
benchmarks. The Benchmark Profiles produced by
these experiments are interpreted in Section 5.

4.1 Experiment Design

Our goal is to quantify how strongly each bench-
mark in the curated suite depends on each of the
ten operationalized abilities. For every ability we
first rank model weights by gradient-based impor-
tance, then ablate the top 1.024% of MLP param-
eters associated with that ability. A preliminary
sweep across smaller and larger k values ranging
from 0.001% to 4.096% showed that 1.024% is
the smallest budget that produces a clear, ability-
specific signal without inflicting unnecessary col-
lateral damage on unrelated capabilities. Apply-
ing this threshold yields ten ability-ablated models,
each of which selectively disrupts one functional
component while leaving the rest of the network,
and its fluency, largely intact.

The core aim of our experiment design is to sys-
tematically measure how much each benchmark in
our curated suite depends on each of the 10 oper-
ationalized abilities. For each ability, we identify
the most critical model parameters using gradient-
based importance scores, then create an ablated
model by zeroing out the top 1.024% of MLP pa-
rameters associated with that ability. This process
yields 10 ability-ablated models, each designed to
selectively disrupt one functional component while
leaving the rest of the model intact.

We systematically evaluated the baseline and
ability-ablated models on our curated suite of 10
benchmarks, applying each benchmark’s standard
evaluation metric. For every ability-benchmark
pair, we computed the AIS as the normalized per-
formance drop relative to the model’s improvement
over chance, as formalized in Equation 2. This

yields the Benchmark Profile, which quantifies the
functional dependence of each benchmark on each
operationalized ability. The Benchmark Profile
serves as the foundation for all subsequent analy-
ses, providing a quantitative map of dependencies
that we interpret in the following sections.

4.2 Experimental Setup

This section outlines the core components used in
our experiments: the LLMs subjected to profiling,
the diagnostic datasets developed to isolate specific
abilities, and the suite of benchmarks selected for
analysis, including details on their evaluation.

Models Our primary experiments leverage
Llama-3.1-8B-Instruct (Vavekanand and Sam,
2024), a widely recognized instruction-tuned
model. To assess the generalizability of our find-
ings, robustness checks replicate key analyses
on two additional models: Qwen/Qwen2.5-7B-
Instruct (Team, 2024) and mistralai/Mistral-7B-
Instruct-v0.3 (Jiang et al., 2024). All models are
used in their base precision (BF16) and evaluated
using greedy decoding, consistent with common
practices, unless otherwise specified by a bench-
mark’s standard protocol.

Diagnostic Datasets We employ the 10 diagnos-
tic datasets designed to target the operationalized
abilities defined in Section 3 and listed in Table 1.
Each dataset consists of 2000 4-choice Multiple-
Choice Questions (MCQs), totaling 20,000 exam-
ples. These datasets were synthetically generated
using the o4-mini-2025-04-16 API via carefully
crafted few-shot prompting strategies tailored to
each ability. Detailed descriptions of the genera-
tion prompts and examples for each ability dataset
are provided in Appendix B. The validation of these
datasets is presented in Section 6.1.

Benchmark Details For the application of
BENCHMARK PROFILING, we selected the curated
suite of 10 standard LLM evaluation tasks. This
suite was chosen to encompass a variety of task for-
mats and evaluation paradigms common in LLM
assessment.

The selected benchmarks include several
multiple-choice question-answering tasks: ARC-
Challenge (Clark et al., 2018) which uses a 4-
choice format; HellaSwag (Zellers et al., 2019),
also 4-choice, requiring sentence completion;
WinoGrande (Sakaguchi et al., 2021), a 2-choice
pronoun resolution task; CommonsenseQA (Tal-

15651



Figure 3: Ability Impact Score radar plots for the ten benchmarks profiled on Llama-3.1-8B-Instruct. Axes are
labeled with the following abbreviated abilities. Blue and red shading indicates positive and negative AIS values.

mor et al., 2019), a 5-choice QA task; LogiQA
(Liu et al., 2020), a 4-choice QA over logical pas-
sages; and BIG-Bench Logical Deduction (Srivas-
tava et al., 2022), a 5-choice task.

The suite also incorporates generation tasks.
GSM8K (Cobbe et al., 2021) requires generating
a chain-of-thought leading to a final numerical an-
swer, which is then matched for evaluation. Natural
Questions Open (NQ-Open) (Kwiatkowski et al.,
2019) is an open-domain QA task where short gen-
erated answers are evaluated by exact match. For
coding, HumanEval (Chen et al., 2021) and MBPP
(Mostly Basic Python Problems) (Austin et al.,
2021) require the model to generate Python code,
which is then evaluated for functional correctness
using a pass@1 metric.

To ensure consistency and facilitate reproducible
evaluations across this diverse suite, we utilized the
EleutherAI Language Model Evaluation Harness
(Gao et al., 2024) for executing the benchmark
tasks and collecting performance metrics. For each
benchmark, we adhere to its standard evaluation
protocol and primary metric. These performance
scores are subsequently used to calculate the AIS
as defined in Section 3 Phase 3. The chance-level
performance P chance

b for each benchmark, critical
for the AIS calculation, is determined by its spe-
cific format (e.g., 0.25 for 4-choice MCQs, 0.5 for
2-choice, 0.2 for 5-choice, and 0 for generation
tasks). This diverse set of task formats and evalua-
tion approaches allows us to investigate how ability
dependencies manifest across different interaction
and assessment modalities.

5 Main Results

This section interprets the benchmark profile of
Llama-3.1-8B-Instruct. We visualize AIS the pat-
terns with radar plots and compare cross-model
similarity with Jensen–Shannon statistics. We then
highlight four empirical observations, showing (i)
that popular benchmarks exercise multiple abilities
rather than a single labeled skill, (ii) that seem-
ingly related datasets often reward very different
mixtures of abilities, (iii) that code-generation tasks
demand the broadest spectrum of abilities and there-
fore penalize narrow fine-tuning, and (iv) that cer-
tain abilities can act as distractors on tightly con-
strained reasoning tasks. The remainder of the
section presents the visual evidence and discusses
each Key Finding in detail. Detailed AIS matrix
can be found in Table 3.

Key Finding 1: Benchmarks Combine Multi-
ple Abilities Figure 3 reveals that every bench-
mark draws on a rich mixture of skills. HellaSwag
and MBPP show a broad footprint, while Wino-
Grande, the narrowest profile, still includes more
than one competency. GSM8K peaks in Long-
Term Knowledge Recall and Semantic Relationship,
while Quantitative Reasoning is only moderate.
ARC-Challenge centers on Analogical and Induc-
tive Reasoning with minimal Long-Term Knowl-
edge Recall. LogiQA, marketed as a logical rea-
soning benchmark, in fact leans most on Temporal
Reasoning and Commonsense Causal Reasoning,
with Deductive Reasoning contributing only mod-
estly. These composite patterns confirm that task
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labels such as math or logic under-specify what is
really being measured.

Key Finding 2: Benchmarks with Similar Labels
Test Different Abilities Figure 3 compares two
question-answering datasets that are often grouped
under knowledge QA yet rely on markedly differ-
ent skill mixes. CommonsenseQA, a 5-choice
multiple-choice benchmark, peaks in Inductive
Reasoning and draws secondary support from De-
ductive Reasoning, Spatial Reasoning, Quantita-
tive Reasoning, and Analogical Reasoning. In con-
trast, Natural Questions Open (NQ-Open), an
open-ended retrieval task, scores highest on Tem-
poral Reasoning, Spatial Reasoning, Semantic Re-
lationship, Long-Term Knowledge, and Contextual
Recall.

These divergent ability footprints translate
into sharply different accuracies: Llama-3.1-8B-
Instruct answers 77.1% of CommonsenseQA items
correctly yet attains only a 17.9% exact-match rate
on NQ-Open; Qwen2.5-7B-Instruct shows a simi-
lar contrast (82.7% vs. 4.7%). Even after account-
ing for the easier multiple-choice format of Com-
monsenseQA, the gap remains large. Such crossed
scores illustrate how a model can excel on one
knowledge QA benchmark while struggling on an-
other that depends on a different blend of abilities,
underscoring the diagnostic value of BENCHMARK

PROFILING.

Key Finding 3: Code Benchmarks Demand
Broad Skill Sets The two bottom-right panels
of Figure 3 show that HumanEval and MBPP pro-
duce the largest AIS values, indicating that success
depends on many abilities at once. HumanEval
is driven most by Semantic Relationship, aligning
with the need to interpret function specifications
precisely, whereas MBPP lights up almost every
axis forming an almost complete disk.

The wide spread of AIS values for MBPP aligns
with findings that coding datasets inherently cor-
relate with multiple reasoning abilities due to
their structured, logic-driven nature (Zhang et al.,
2024a). This mutual reinforcement has been evi-
dent in training dynamics: models exposed to code
data not only excel at programming tasks but also
exhibit enhanced performance on mathematical and
logical reasoning benchmarks (Ma et al., 2023; Tao
et al., 2024). This correlation between code and
the broad spectrum of reasoning abilities explains
why MBPP’s profile lights up nearly every ability
axis. The structured syntax and semantic precision

Figure 4: Jensen–Shannon Similarity after min-max
normalization. Each bar compares two models on a
single benchmark.

required in coding tasks act as a basis for multitask
learning, reinforcing skills like deductive reason-
ing and contextual recall that are critical for both
programming and general problem-solving.

Key Finding 4: Irrelevant Abilities Can Hurt
Performance Figure 3 exposes a small but con-
sistent pocket of negative AIS values shown in red:
ablating Long-Term Knowledge, Semantic Relation-
ship, or Quantitative Reasoning increases LogiQA
accuracy by 1–2 percentage points, and remov-
ing Temporal Reasoning or Semantic Relationship
yields a similar boost on WinoGrande. This pattern
is absent from the other eight benchmarks, indicat-
ing that negative transfer emerges only when the
dataset contains spurious cues that conflict with its
core reasoning chain. LogiQA is explicitly con-
structed so that the correct answer is derivable only
from the supplied premises; introducing external
factual recall or numerical heuristics therefore lures
a model toward plausible-but-invalid distractors
(Liu et al., 2020). WinoGrande was adversarially
re-balanced to neutralize superficial lexical biases,
forcing systems to rely on fine-grained syntactic
cues; augmenting the model with world knowledge
or event-ordering heuristics re-introduces precisely
the shortcut signals the benchmark was designed
to suppress (Sakaguchi et al., 2021; McCoy et al.,
2019). More broadly, multi-task learning research
shows that adding tasks or features weakly cor-
related with the gold decision boundary can hurt
generalization, a phenomenon known as negative
transfer (Zhang et al., 2022). Recent mechanis-
tic and robustness studies echo this observation,
demonstrating that adding external knowledge or
auxiliary data can introduce spurious correlations
that degrade downstream logical-reasoning accu-
racy (Schuff et al., 2021; Compton et al., 2023).
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GSM8K NQ-Open

Ablated Ability Base MLP All Base MLP All

Contextual Recall
0.773

0.7354 0.1024
0.1789

0.1202 0.0374

Quantitative Reasoning 0.7422 0.0902 0.1357 0.0163

Table 2: Top-1.024% ablation applied either to MLP
weights only (MLP) or to all weights (All). Results are
reported as exact-match accuracy.

Because the remaining benchmarks either reward
those auxiliary abilities or embed them in ways
that align with the task objective, ablating them
provides no systematic benefit, hence negative AIS
values appear only for LogiQA and WinoGrande.

Robustness Across Models After min-max-
normalizing each benchmark column of the AIS
matrix, we measure agreement with Jensen–
Shannon Similarity (JSS), which is derived from
the Jensen–Shannon Divergence. For two discrete
distributions p and q, it is expressed as:

JSS(p, q) = 1− 1

2
(DKL(p ∥ m) + DKL(q ∥ m))

where m = 1
2(p+ q) and DKL is Kullback–Leibler

divergence. By construction, JSS(p, q) ∈ [0, 1],
with higher values indicating greater similarity.

Figure 4 plots the pairwise similarities for all ten
benchmarks. Every bar is above the gray 0.5 ref-
erence line (range 0.53–0.89, mean 0.64), indicat-
ing that Llama-3.1-8B, Mistral-7B, and Qwen-2.5
share broadly consistent ability footprints despite
architectural differences.

6 Validation of Methodology Components

We validate our method in two ways, first by having
human experts confirm that each diagnostic dataset
genuinely targets its stated ability, and second by
demonstrating that ablating only MLP parameters
weakens the intended skills while preserving over-
all model fluency better than ablating all layers.

6.1 Expert Evaluation of the Diagnostic
Datasets

To confirm that each prompt truly targeted its in-
tended ability, we asked ten independent domain
specialists to review a stratified sample of items
from every ability category (annotator demograph-
ics and instructions in Appendix C). Each expert
saw the context, question, and answer for every
item, then (i) selected which of the ten ability la-
bels best described the required skill and (ii) judged

whether the item fit that definition. Experts selected
the correct label in 92.2% of cases (individual abil-
ity accuracies: 74%, 88%, 92%, 92%, 92%, 94%,
94%, 98%, 98%, 100%), confirming that the items
faithfully captured their intended skills.

6.2 MLP-Only Ablation

Zeroing attention weights as well as MLP weights
quickly dismantles the self-attention pathways that
bind tokens into a coherent context that supports flu-
ent text. Table 2 contrasts the two ablation regimes
on Llama-3.1-8B-Instruct for the Contextual Recall
and Quantitative Reasoning abilities. The MLP-
only variant yields only modest accuracy drops,
whereas the all-layer variant slashes performance
on every setting in the table, confirming that atten-
tion layer damage wipes out far more capability
than is needed for diagnostic purposes. Appendix
E shows samples that match these numbers: the
MLP-only model stays fluent, whereas the all-layer
model lapses into repetitive, incoherent text.

7 Conclusion

Current benchmark tasks often obscure which skills
a language model actually employs during evalu-
ation, making it difficult to know when a reported
gain reflects robust problem-solving ability or an
exploitable shortcut. We introduce BENCHMARK

PROFILING, a systematic framework that decom-
poses benchmark performance into ten operational-
ized abilities grounded in cognitive science. By
combining gradient-based importance scoring, tar-
geted parameter ablations, and the Ability Impact
Score, our method delivers an interpretable ability
fingerprint for every benchmark-model pair.

Experiments applying BENCHMARK PROFIL-
ING to widely used models and benchmarks uncov-
ered patterns indicating that most benchmarks tap
several underlying abilities, tasks with the same
label often depend on different ability blends, code-
generation benchmarks reward broad multi-skill
competence rather than narrow domain tuning, and
adding abilities a task does not truly demand can
even reduce performance. These insights clarify
why leaderboard gains sometimes fail to translate
into practical capability.

BENCHMARK PROFILING thus provides re-
searchers and practitioners with transparent diag-
nostics, enabling better-aligned model evaluations,
targeted improvements in model design, and more
accurate interpretations of benchmark results.
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Limitations

Synthetic diagnostics All probing datasets are
synthetic; their generation templates and few-shot
examples are listed in Appendix B, and domain ex-
perts confirmed their face validity in Appendix C.

Model scale and compute All experiments use
three open models: Llama-3.1-8B, Qwen-2.5-7B,
and Mistral-7B. For each ability we distributed
the gradient-importance computation across eight
NVIDIA A100 80 GB GPUs, which completed in
about 25 minutes. The subsequent weight-zeroing
step ran on a single A100 80 GB GPU and finished
in roughly 5 minutes. Thus profiling one model
over ten abilities plus downstream benchmark eval-
uation fits comfortably within a few GPU-hours.
Profiling models beyond the 7–8B range may still
require memory-efficient techniques such as gradi-
ent checkpointing.

Licensing and intended use The diagnostic
datasets and code will be released under the MIT Li-
cense for research and non-commercial use. They
are not intended for high-stakes deployment or for
ranking commercial systems without additional val-
idation.

Documentation We provide full data statistics,
generation templates, and class labels in Ap-
pendix B. A README.md with installation and repro-
duction scripts will accompany the code repository.

Ethics Statement

Data privacy and content All diagnostic items
are generated from templated prompts and contain
no personal or identifying details. Volunteers man-

ually screened a random sample and reported no
offensive content (Appendix C).

Benchmark licenses We rely only on bench-
marks released under permissive licenses: ARC-
Challenge, CommonsenseQA, GSM8K, Hel-
laSwag, HumanEval, LogiQA, MBPP, Natural
Questions Open, WinoGrande, and BIG-Bench
Logical Deduction. Our use remains within each
dataset’s original research intent.

Synthetic artifact release To maintain
anonymity during review, the diagnostic datasets,
generation scripts, and validation labels will be
placed in a public GitHub repository once the
paper is accepted. They will be distributed under
the CC-BY-SA-4.0 license; accompanying code
will use the MIT license. The README file
will specify intended research use and disclaim
commercial deployment without additional
validation.

Potential misuse Knowing how benchmarks de-
compose into abilities could, in theory, help actors
craft adversarial tests or game leaderboard met-
rics. We consider this risk low because reproduc-
ing our pipeline requires non-trivial compute, and
transparency ultimately benefits the community by
exposing hidden shortcuts.

Human subjects Ten adult volunteers partici-
pated in item validation. No personal data were
collected or stored beyond coarse demographics.
Details are in Appendix C.
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A Operationalized Ability Definitions and
Diagnostic Task Principles

This appendix justifies the ten abilities used in
BENCHMARK PROFILING, situates each one within
the Cattell–Horn–Carroll (CHC) model of intel-
ligence (Carroll, 1993; Schneider and McGrew,
2012), and explains how the corresponding syn-
thetic diagnostic dataset was constructed.

Human cognition is distributed: higher level
skills co-recruit multiple lower level processes, and
narrow processes are re-used across domains (An-
derson, 2013; Oberauer and Lewandowsky, 2016).
CHC therefore models abilities as correlated but
separable factors rather than mutually exclusive
boxes. In the same spirit, our ten abilities were
by design, chosen to be distinct enough to yield
interpretable weight profiles yet not so orthogonal
that they ignore real cognitive interactions. Mild
overlap is expected and even desirable: it lets our
ablation analysis reveal which mixtures of skills a
benchmark rewards. What matters empirically is
that each diagnostic dataset is maximally diagnostic
for its target ability so that the gradient-importance
procedure reliably tags a concentrated slice of pa-
rameters. The robustness of the Ability-Impact
profiles across three models (Section 5) supports
this assumption.

Below, each ability entry follows the same tem-
plate: (i) cognitive-science grounding and CHC
slot, (ii) a motivating example, and (iii) how the
dataset was generated to isolate that skill.

Analogical Reasoning (CHC: Gf -Induction).
A proportional analogy such as bird:nest :: bee:?
demands mapping a relational schema rather than
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Llama-3.1-8B-Instruct (k=1.024% MLP Ablation)

Ablated Ability GSM8K ARC-C HellaSwag LogiQA BB Log.Ded. WinoG. CQA NQ-Open HumanEval MBPP

Analogical Reasoning 0.0833 0.0398 0.0337 0.0163 0.0114 0.0032 0.0426 0.0480 0.1006 0.1090
Commonsense Causal 0.0583 0.0083 0.0337 0.0332 0.0439 0.0198 0.0256 0.0648 0.2730 0.1220
Contextual Recall 0.0723 0.0229 0.0345 0.0210 0.0334 0.0168 0.0381 0.0884 0.1494 0.0922
Deductive Reasoning 0.0750 0.0229 0.0273 0.0188 0.0678 0.0210 0.0486 0.0591 0.0469 0.0922
Inductive Reasoning 0.0499 0.0338 0.0406 0.0254 0.0500 0.0337 0.0635 0.0193 0.1678 0.1316
Long-Term Knowledge 0.0913 0.0083 0.0309 -0.0098 0.0466 0.0198 0.0364 0.0861 0.2657 0.1090
Quantitative Reasoning 0.0598 0.0116 0.0239 -0.0031 0.0692 0.0153 0.0472 0.0696 0.2272 0.1123
Semantic Relationship 0.0872 0.0182 0.0330 -0.0065 0.0447 -0.0016 0.0256 0.0783 0.3275 0.1220
Spatial Reasoning 0.0598 0.0291 0.0348 0.0059 0.0344 0.0092 0.0561 0.0942 0.1304 0.1156
Temporal Reasoning 0.0441 0.0165 0.0309 0.0332 0.0457 -0.0016 0.0411 0.0936 0.2430 0.1220

Table 3: Ability Impact Score (AIS) matrix for Llama-3.1-8B-Instruct across a curated suite of 10 benchmarks.
Higher AIS values indicate greater performance loss upon ability ablation relative to the baseline’s improvement
over chance, suggesting higher dependence of the benchmark on that ability.

surface similarity; Raven’s Progressive Matrices
and related tasks tap the same faculty (Raven, 1938;
Gentner, 1983; Holyoak, 2012).

We authored four prompt templates that supply
an A:B :: C:? stem and four distractors. Distrac-
tors are chosen by perturbing either A or B to share
lexical or semantic features without preserving the
relation (e.g., hive (correct) vs. honey, sting, wasp).
This forces the model to attend to the latent map-
ping.

Commonsense & Causal Reasoning (CHC: Gf
+ script knowledge). Inferring that a neglected
plant will wilt integrates causal schemas learned
from everyday experience (Sloman and Sloman,
2009; Sap et al., 2020).

Each question describes a three-to-five sentence
vignette drawn from diverse domains (kitchen ac-
cidents, school routines, etc.). We then ask for the
most plausible cause or effect, sampling distractors
from unrelated but thematically similar events to
eliminate superficial cueing. Scenarios were gen-
erated by large-model completion and manually
filtered for obvious lexical shortcuts.

Contextual Recall (CHC: Gsm). Working-
memory span underpins reading comprehension
(Daneman and Carpenter, 1980; Kane and Engle,
2002).

Two template families were used: (i)single-fact
passages of 2–3 sentences followed by a verbatim
retrieval question, and (ii)multi-hop passages of
4–6 sentences where the queried detail is the con-
junction of two facts stated far apart. All answers
are extractive so no external knowledge is useful.

Deductive Reasoning (CHC: Gf–Sequential
Reasoning). Classical syllogisms illustrate rule-

based deduction; accuracy correlates with measures
of logical capacity (Johnson-Laird, 2001).

Premises are generated by a symbolic template
engine that instantiates first-order logic patterns
(e.g., All S are P; No P are R; therefore ?). Distrac-
tors violate exactly one rule to ensure that only a
valid derivation succeeds.

Inductive Reasoning (CHC: Gf–Induction).
Discovering hidden regularities in sequences is cen-
tral to hypothesis formation (Holland, 1986; Lake
and Baroni, 2018).

We mine integer, geometric, and lexical pattern
families (arithmetic progression, polygon naming,
etc.). For each instance we sample five in-context
elements and ask for the sixth. Distractors follow
decoy rules (e.g., additive offset vs. multiplicative)
to penalize surface heuristics.

Long-Term Knowledge Recall (CHC: Glr). Re-
trieving stored facts such as Canberra is Australia’s
capital maps to Glr in CHC and has been probed
extensively in LLMs (Petroni et al., 2019; Roberts
et al., 2020).

We queried Wikidata for low-frequency entities,
then generated four-choice trivia questions via a
templating script. We discard items whose answer
string appears verbatim in the question to curb lex-
ical leakage.

Quantitative Reasoning (CHC: Gq + numeric
Gf ). Multi-step word problems activate both
quantitative knowledge and fluid reasoning (Cobbe
et al., 2021; Lewkowycz et al., 2022).

Templates embed 3–5 numbers, at least one of
which is irrelevant, and require two operations
(addition then division, etc.). Distractor answers
are produced by common student errors (off-by-
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Figure 5: Interface shown to volunteer experts during item validation. Progress is indicated by a bar at the top.
Annotators read the prompt, inspect the ten ability options, and enter a numeric choice.

one, wrong operator) as recommended by math-
education literature (Sharma et al., 2019).

Semantic Relationship Comprehension (CHC:
Gc). Understanding taxonomical and role rela-
tions underlies lexical semantics (Miller, 1995;
Cummings and Wilson, 2019).

Each passage introduces 3–4 named entities in a
mini-scenario (corporate hierarchy, biological tax-
onomy). We ask about an implicit relationship
(Who is Alice to Charlie?) while distractors share
topical words but break the relation type.

Spatial & Geometrical Reasoning (CHC: Gv).
Textual spatial reasoning engages mental imagery
and visuospatial sketchpad resources (Mani and
Johnson-Laird, 1982).

We generate short descriptions of object layouts
on a 3× 3 grid and ask queries like Which object
is directly below the circle?. Distractors include
objects that are correct under mirror-flipped or ro-
tated interpretations, so success requires consistent
coordinate mapping.

Temporal Reasoning (CHC: sequencing facet of
Gf ). Temporal sequencing develops early and is
essential for narrative comprehension (Anderson
et al., 2004).

Templates mention explicit times, durations, or
adverbial order cues; questions ask which event
came first, lasted longer, or overlapped. Distractors
are derived by permuting the true order.

Potential Overlaps and Taxonomy Limits

Because CHC factors are correlated (e.g., Gf tasks
share variance with Gsm), perfect separation is nei-
ther feasible nor theoretically warranted (Tideman
and Gustafsson, 2004; Engle and Kane, 2004). We
therefore aim for dominant association: each di-
agnostic set should be most strongly but not ex-

clusively linked to its labeled ability. Empirically,
the distinct weight clusters uncovered by gradient
analysis and the reproducible Benchmark Profiles
across models (Figure 4) confirm that residual over-
lap does not hinder interpretability. Indeed, partial
overlap lets the Benchmark Profile capture real-
world skill synergies, aligning with evidence that
complex tasks draw on multiple CHC factors si-
multaneously (Schneider and McGrew, 2012).

B Dataset Creation Prompts and
Examples

The diagnostic datasets were generated using the
o4-mini-2025-04-16 API, guided by specific
few-shot examples and instructions for each op-
erationalized ability and task type. Table 5 pro-
vides these details, used to generate 2000 examples
per ability (split across task types for Contextual
Recall). Output was requested in JSON format
with keys: context, question, options, answer,
answer_index.

Table 5 lists one representative template per abil-
ity along with the natural-language instructions fed
to the API. Each accepted completion was stored
in a JSON schema with keys context, question,
options (an array of four or five strings), answer
(the correct option token), and answer_index
(zero-based integer).

C Human Evaluation of Diagnostic Items

To verify that each synthetic question truly targets
its intended skill, we invited ten independent vol-
unteers to label a stratified sample of items drawn
from the ten diagnostic datasets.

Table 1 was provided to the experts for reference.
Each volunteer saw fifty items (five from every
ability) presented one at a time, as illustrated in
Figure 5. For every item they selected the single
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Base Model (no ablation)

User Charisma works for 8 hours every day. She has a timer to remind her to get up and walk for 5 minutes every
hour she’s at work. After 5 days at the office, how many minutes has she walked?

Assistant To find out how many minutes Charisma walked, we need to calculate the total number of minutes she walked
in 5 days.
Charisma walks 5 minutes every hour. Since she works 8 hours a day, she walks 5 * 8 = 40 minutes per day.
In 5 days, she will walk 40 * 5 = 200 minutes.
The answer is 200 minutes.

MLP-Only Ablation (fluent but weakened)

User Same GSM8K question.

Assistant To find the total number of minutes Charisma walked, we need to calculate the total number of minutes she
walked in 5 days.
Charisma works 8 hours a day and walks 5 minutes every hour.
First, we need to find the total number of minutes she works in a day. 8 hours * 60 minutes per hour = 480
minutes per day
Since she walks 5 minutes every hour, we multiply the total minutes she works in a day by 5. 480 minutes per
day * 5 minutes per hour = 2400 minutes per day
Now, we need to find the total number of minutes she walked in 5 days. 2400 minutes per day * 5 days = 12000
minutes
Therefore, Charisma walked 12000 minutes in 5 days.

All-Layer Ablation (degraded)

User Same GSM8K question.

Assistant Charisma works 8 hours a day, 5 days a week, so 5 * 8 = 40 hours. 40 * 60 = 2400 minutes. 2400 / 5 = 4800
minutes in 5 days. 8 * 60 = 4800 minutes in 5 days. 4800 / 5 = 9600 / 5 = 9600 / 5 = 9600 / 5 = 1920 5-minute
walks, 5 minutes * 5 = 25 minutes per walk, 5 * 5 = 25. 25 * 5 = 1250, 1250 / 5 = 2500, 2500 / 5 = 500, 500 / 5
= 100, 100 / 5 = 20. 20 * 5 = 1000, 1000 / 5 = 200, 200 / 5 = 40, 40 / 5 = 8. 8 * 5 = 40, 40 / 5 = 8, 8 / 5 = 1.6, 1.6
* 5 = 8, 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6,1.6 * 5 = 8. 8 / 5 = 1.6,
1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5
= 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8.

Table 4: GSM8K test prompt evaluated by three model variants. The base model answers correctly, the MLP-only
model remains fluent but over-counts, and the all-layer model degenerates into repetitive incoherence, illustrating
why attention weights are left intact in our study.

ability that best matched the question and flagged
any unclear or sensitive content.

All annotators held at least a bachelor’s degree
and were either postgraduate students or early-
career researchers who responded to an internal
mailing list. Participation was voluntary and un-
paid. Three identified as women and seven as men,
with ages ranging from 21 to 29. Annotators were
drawn from institutions in Asia and North America.

D Detailed AIS Results and Raw
Accuracies

Table 3 provides the detailed AIS matrix and raw
accuracies for the baseline model Θ and all 10
ability-ablated models Θa at k=1.024% across all
evaluated benchmarks. These scores form the basis
for creating the visualizations in Section 5.

E Qualitative Impact of Ablations

Table 4 contrasts the answers that the Base, MLP-
only, and All-layer ablation versions of Llama-3.1-

8B-Instruct give to the same GSM8K test question.
The base model returns the correct total of 200
minutes. The MLP-only model remains fluent but
over-counts, replying with 12,000 minutes. In the
all-layer variant the response collapses into a repet-
itive numeric loop and never produces an answer.
These qualitative differences align with the accu-
racy drops in Table 2 and underline why our study
restricts ablation to MLP weights: they weaken
targeted reasoning without destroying overall gen-
eration.
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Ability Task Type Representative Few-shot Example Instruction

Analogical Reasoning analogy Context: ’Light : Dark :: Truth : ?’
Question: ’Which option best completes the
analogy?’
Options: [’Lie’, ’Fact’, ’Shadow’, ’Wisdom’]
Answer: ’Lie’.

Create a new analogy question. Use ’A : B ::
C : ?’ style or a similar analogical relationship
in context, and ask which option completes it.
Output as JSON with the required fields.

Commonsense &
Causal Reasoning

everyday cause effect Context: ’Tom left his ice cream in the sun on a
hot day.’
Question: ’What likely happened to the ice
cream?’
Options: [’It melted’, ’It froze’, ’It caught fire’,
’It grew larger’]
Answer: ’It melted’.

Now write a new commonsense cause-and-
effect question. The context should be a simple
scenario, and the question asks for a logical
outcome or reason. Ensure the answer is based
on everyday common sense. Output in JSON
format.

Contextual Recall
single fact recall Passage: ’In an ancient manuscript... Nile flows

through Egypt while the Tiber traverses Rome.’
Question: ’Based on the passage, which river is
associated with Rome?’
Options: [’Nile’, ’Tiber’, ’Danube’, ’Ganges’]
Answer: ’Tiber’.

Using the context... generate one new, diverse
and non-redundant MCQ. Output valid JSON
object with keys: context, question, options,
answer, answer_index. Use varied domains.

multi hop recall Passage: ’At a Geneva symposium... 1969 lunar
landing spurred robotics. Later in Tokyo... noted
automation...’
Question: ’Which event... linked to inspiration
for robotics?’
Options: [’Geneva...’, ’1969 lunar landing’,
’Tokyo...’, ’Automation...’]
Answer: ’1969 lunar landing’.

Now generate a new multi-hop question. Passage
should blend facts, question require combination.
Present JSON ensuring multi-hop reasoning.

Deductive Reasoning logic puzzle Passage: ’If every cat... black animals are calm...
Whiskers is in the room.’
Question: ’Based on the passage, what can we
deduce about Whiskers?’
Options: [’Whiskers is calm.’, ’Whiskers is not
black.’, ...]
Answer: ’Whiskers is calm.’.

Now create a new deductive reasoning question.
Provide context with premises/clues, question
requires deducing answer. Output JSON.

Inductive Reasoning pattern completion Sequence: ’A, C, E, G, ?’
Question: ’What is the next letter...?’
Options: [’H’, ’I’, ’J’, ’K’]
Answer: ’I’.

Generate new inductive reasoning question
based on pattern. Ensure question asks for next
element/rule. Provide answer/answer_index
JSON.

Long-Term
Knowledge Recall

world fact Context: ’This question is about world geogra-
phy.’
Question: ’What is the capital city of Australia?’
Options: [’Sydney’, ’Canberra’, ’Melbourne’,
’Perth’]
Answer: ’Canberra’.

Create new world-knowledge question. Provide
brief context if needed, question must be an-
swered from general knowledge. Ensure JSON
format.

Quantitative Reasoning arithmetic
word problem

Context: ’Alice had 5 apples. She gave 2 to Bob
and then bought 3 more.’
Question: ’How many apples does Alice have
now?’
Options: [’6’, ’5’, ’8’, ’10’]
Answer: ’6’.

Generate new math word problem/quantitative
question. Context provides numbers/scenario,
question asks for result. Provide an-
swer/answer_index JSON.

Semantic Relationship roles and relations Passage: ’Alice is Bob’s mother. Bob is Char-
lie’s teacher.’
Question: ’Who is Alice to Charlie?’
Options: [’His mother’, ’His teacher’, ’His
grandmother’, ’Not related’]
Answer: ’His grandmother’.

Generate new passage and question about
relationships/roles. Passage contains >= 2
entities with relationship. Ask question testing
understanding. Output JSON.

Spatial Reasoning spatial relation Context: ’There is a triangle to the left of a
square, and a circle above the triangle.’
Question: ’Which shape is directly below the
circle?’
Options: [’Triangle’, ’Square’, ’Circle’, ’None’]
Answer: ’Triangle’.

Generate new spatial reasoning question. Con-
text: description of locations or simple geometry.
Ask about relative position, direction, or basic
inference. Provide JSON output.

Temporal Reasoning temporal order Context: ’John’s meeting started at 9:00 AM...
lasted 2 hours. Mary’s meeting started at 10:30
AM...’
Question: ’Whose meeting ended later?’
Options: [’John’, ’Mary’, ’Same time’, ’Not
enough info’]
Answer: ’John’.

Now create new temporal reasoning question.
Context with >= 2 events/time points. Ask about
order/timing (e.g., first, duration). Output JSON.

Table 5: Few-shot Examples and Instructions for Diagnostic Dataset Generation.
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