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Abstract

The rapid growth of scientific literature de-
mands efficient methods to organize and syn-
thesize research findings. Existing taxonomy
construction methods, leveraging unsupervised
clustering or direct prompting of large language
models (LLMs), often lack coherence and gran-
ularity. We propose a novel context-aware hi-
erarchical taxonomy generation framework
that integrates LLM-guided multi-aspect en-
coding with dynamic clustering. Our method
leverages LLMs to identify key aspects of each
paper (e.g., methodology, dataset, evaluation)
and generates aspect-specific paper summaries,
which are then encoded and clustered along
each aspect to form a coherent hierarchy. In
addition, we introduce a new benchmark of
156 expert-crafted taxonomies encompassing
11.6 k papers, providing the first naturally an-
notated dataset for this task. Experimental re-
sults demonstrate that our method significantly
outperforms prior approaches, achieving state-
of-the-art performance in taxonomy coherence,
granularity, and interpretability.'

1 Introduction

The rapid expansion of academic publications has
created an overwhelming amount of information,
making it increasingly challenging for researchers
to stay up-to-date and systematically organize do-
main knowledge (Reisz et al., 2022; Hanson et al.,
2024; Vineis, 2024). As a result, there is a grow-
ing demand for structured and concise taxonomies
that can support the exploration and synthesis of
more efficient literature (Shen et al., 2018; Zhu
et al., 2023). Traditional approaches to building
taxonomies of scientific papers typically rely on
manual or narrowly defined schemes. Common so-
lutions include supervised classification into a pre-
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Figure 1: Comparison of taxonomy construction

paradigms. Traditional methods typically use super-
vised classification or clustering with term extraction.
Recent approaches incorporate LLMs to replace or en-
hance key components within these pipelines (purple).
Our approach uniquely integrates LLMs with clustering
in a context-aware multi-aspect framework, resulting in
coherent and precise hierarchical taxonomies.

defined hierarchy (e.g., ACM CCS) (Zhang et al.,
2021; Sadat and Caragea, 2022; Rao et al., 2023)
and unsupervised clustering of papers followed by
post-hoc keyword-based label extraction (Zhang
et al., 2018; Shang et al., 2020). These methods
often require substantial human curation or yield
coarse topic structures, limiting their usefulness for
in-depth literature understanding.

Recent advances utilize LLMs to automate the
taxonomy construction. LLMs demonstrate strong
capabilities in long-text understanding and abstrac-
tion (Achiam et al., 2023; Grattafiori et al., 2024),
leading to approaches that generate taxonomy trees
or assign papers to categories in an end-to-end
fashion (Hsu et al., 2024; Wan et al., 2024). Hy-
brid strategies first cluster papers and then prompt
LLMs to produce summaries or category labels for
each cluster (Katz et al., 2024; Hu et al., 2025).

While these LLM-based methods have shown
promise, studies have found that they struggle to
capture highly specialized knowledge and fine-
grained concepts specific to scientific domains.
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Moreover, taxonomies produced solely by LLMs
are not guaranteed to align with the content of a
given corpus, often resulting in missing or halluci-
nated categories. Effective taxonomy construction
inherently demands context-aware representations,
wherein the characterization of each paper dynami-
cally adapts based on its relationships and similar-
ities to surrounding papers. Without this context
awareness, papers focusing on distinct aspects (e.g.,
methodologies v.s. datasets) might be incorrectly
categorized, leading to incoherent taxonomy struc-
tures. This gap calls for new techniques that con-
sider multiple content dimensions and their corpus-
level context during taxonomy generation.

In this paper, we propose a novel framework for
paper taxonomy generation that leverages LLM-
guided, multi-aspect representations in conjunc-
tion with adaptive clustering. Specifically, our ap-
proach uses a dynamic aspect generator to automat-
ically determine salient semantic aspects (such as
research objective, methodology, or data source)
for a given collection of papers. Guided by these,
the LLM produces aspect-specific summaries for
each paper, ensuring that each document is repre-
sented in a manner that is both facet-specific and
context-aware. We then employ a dynamic cluster-
ing algorithm to search for an optimal grouping of
papers for each aspect dimension. By iteratively
applying multi-aspect encoding and clustering in a
top-down fashion, our framework constructs a hier-
archical taxonomy tree that is tailored to the corpus
at each level. This design allows the taxonomy to
capture different facets of the literature at different
branches, yielding more coherent and interpretable
category structures.

In addition to methodological innovations, a sig-
nificant bottleneck in this area has been the lack
of high-quality, naturally annotated datasets for
evaluating taxonomy construction. Most existing
benchmarks are synthetic (Hsu et al., 2024) or
rely on coarse (Katz et al., 2024), predefined cat-
egories that fail to reflect the nuanced hierarchies.
To bridge this gap, we construct a new dataset of
academic taxonomies TaxoBench-CS, by collect-
ing 156 human-authored taxonomy trees (cover-
ing 11.6k research papers) from survey and re-
view articles on arXiv. These taxonomies, created
by domain experts, provide realistic hierarchical
structures that mirror a deep understanding of topic
decomposition. This dataset offers a valuable re-
source for training and evaluating taxonomy gener-
ation methods under more natural conditions, and

we will release it to foster further research.
In summary, our contributions are threefold:
* We curate a high-quality benchmark consist-
ing of 156 expert-annotated taxonomies of
11.6 k papers, facilitating future research.

* We propose to combine multi-aspect paper en-
coding with a dynamic clustering algorithm,
enabling context-aware, hierarchical organiza-
tion of research papers.

* Our approach outperforms existing state-of-
the-art methods, yielding interpretable and
human-readable taxonomy trees with signifi-
cantly improved coherence and granularity.

2 Preliminary

Here, we first formalize the task of taxonomy con-
struction for scientific literature. We then describe
the creation of a new benchmark dataset derived
from human-authored taxonomies in survey papers.

2.1 Task Definition

Given a specific topic = and a collection of corre-
sponding scientific papers D = {d;,da,...,dn},
the objective is to generate a hierarchical taxon-
omy 7 (V, E) that organizes these papers into a
tree structure of semantically coherent categories.
In detail, the taxonomy of depth L starts from a
root node 7 € V) and each node v € V¥ cor-
responds to a depth [, where V' = UlL:O VO, In
addition, each node v is associated with a subset
of papers D,, C D and a topic facet x,, (e.g., high-
level methodological approaches, underlying mech-
anisms or learning paradigms, or specific research
tasks and evaluation scenarios). The root node
r represents the overarching topic x and encom-
passes all papers D, = D. For every non-leaf node
v € VU<L) its k, child nodes Child(v) form a
complete, non-overlapping partition of the papers
subset D, satisfying the constraints:

Child(v) = {v1,v2,... v, } C VD,

ky
with =1 th =D, ()

Dy, (Do, =0, ¥t £t
Edges typically represent hierarchical semantic re-

lations (e.g., isA, instanceOf) and are restricted to
link nodes across adjacent layers, where

L—-1
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Datasets Clustering  Hierachy  Ground Truth Source
CLUSTREC-COVID (Katz et al., 2024) v X v synthetic

SCITOC (Katz et al., 2024) X v v natural
SciPile (Gao et al., 2025) v v X synthetic
CHIME (Hsu et al., 2024) v v X synthetic

TaxoBench-CS (Ours) v v v natural

Table 1: Comparison of existing taxonomy datasets: Datasets are evaluated based on three key criteria: clustering
annotations, hierarchical structures, and ground-truth labels. We also distinguish whether datasets are synthetic or
naturally derived. Our dataset uniquely meets all three criteria while being naturally sourced.

In our framework, the taxonomy is built iteratively
by partitioning each subset D, from the depth [
into disjoint subsets assigned to its children.

2.2 Dataset Construction

Existing datasets for evaluating taxonomy genera-
tion methods generally rely on either topic-based
retrieval followed by manual annotation (Katz et al.,
2024) or LLLM-assisted taxonomy creation and fil-
tering (Hsu et al., 2024; Gao et al., 2025). How-
ever, these approaches often introduce noise into
the structure and lack high-quality, reliably anno-
tated ground-truth hierarchies.

To address these limitations, we introduce a new
benchmark dataset, TaxoBench-CS, constructed
from naturally annotated taxonomy trees found in
computer science review papers on arXivZz. We
start by systematically selecting survey papers that
contain explicit hierarchical taxonomy diagrams.
By parsing the corresponding I£TEX source files,
we extract citation identifiers directly linked to tax-
onomy structures, which are then mapped to their
full titles using the citation metadata provided in
each paper’s associated .bib or .bbl files. Next,
we retrieve detailed paper metadata from Semantic
Scholar®. To ensure the dataset’s accuracy and reli-
ability, we manually verify all citation mappings,
eliminating any incorrect or ambiguous entries.

The final TaxoBench-CS dataset consists of 156
author-curated taxonomy trees, serving as robust
hierarchical annotations. Each taxonomy contains,
on average, 74.4 referenced papers and spans 3.1
levels in depth. Excluding the paper citation in-
dicators connected to the leaf-level nodes, each
tree includes around 24.8 nodes that represent
structured semantic categories, providing a rich
and structurally sound resource. As shown in Ta-
ble 1, our proposed TaxoBench-CS uniquely com-
bines explicit clustering structures, hierarchical or-
ganization, and authoritative annotations derived

*https://arxiv.org/
3https://www.semanticscholar.org/me/research

directly from naturally occurring expert-curated
taxonomies. This combination makes it an ideal
benchmark for evaluating and developing taxon-
omy generation methods under realistic conditions.

3 Method

The core of our method lies in appropriately de-
composing the given node v of depth [ according to
the structure and semantics of its associated paper
set D,. We first represent papers in the associated
paper set d; € D, using multi-aspect encoding
(§3.1). Given the clustering results over the multi-
aspect vectors of D,,, we apply a dynamic search
algorithm to determine the most appropriate par-
titioning strategy (§3.2). Therefore, we can itera-
tively partition the paper set D,, and get the child
nodes Child(v) of node v from a top-down manner
to construct the taxonomy tree (§3.3).

31

In this part, our goal is to obtain a global represen-
tation of the paper set D,, that captures its overall
semantic structure. To this end, we propose to au-
tomatically generate a set of candidate aspects A,
using an LLM based on all papers in D,. These
aspects are then used in a parallel manner to guide
the encoding of individual papers. The aspect gen-
erator is defined as follows:

Ay ~ prm(Alv, Dy),

Multi-Aspect Paper Encoding

3)

where we prompt the LLM such as GPT-4o to ana-
lyze the paper distribution in D,, according to the
global trace of current node v (topic facets of v
and all its ancestor nodes) before generating the de-
tailed content of aspects .4,,. In addition, the LLM
is required to infer the number of aspects |4, | au-
tomatically. We demand the LLM to identify a
set of salient semantic dimensions that can effec-
tively characterize and classify the papers, such as
research problem and application domain.

Given the discovered aspects a € A,,, we paral-
lelly generate aspect-guided summaries s¢ for each
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Figure 2: Our proposed Aspects-guided LLM-based Top-Down Clustering framework. Specifically, we dynamically
generate multiple semantic aspects to represent each paper, and perform aspect-specific clustering via dynamic
search. The abstract aspects are instantiated into concrete topic facets, which serves as the heading of nodes. This
process is iteratively applied to construct a coherent and semantically meaningful taxonomy.

paper d € D, by prompting the LLM. Each sum-
mary is then encoded into a n-dimensional vector
ed € R, where we have:

Forall a,d € A, x D, in parallel :

ez = Enc(sg),

“)

sg ~ prim(sla, d) .

We collect the encoding of paper set D, for each
aspect and obtain e, = {e? | Vd € D, }, which can
also be regarded as a matrix e, € RIDvlxn,

3.2 Clustering with Dynamic Search

Given that encoding across different aspects may re-
side in heterogeneous semantic spaces with varying
structures and scales, directly aggregating all rep-
resentation vectors e = {e? | Vd € D,,Va € A,}
into a unified space for clustering would be inap-
propriate. Therefore, we perform clustering inde-
pendently within each aspect space e,:

Forall a € A, in parallel :
faieax{1,2,... k} —[0,1]
Expectation : Vi € {1,2,...,k},
Ciz{eg } argmjaxfa(ez,j) =1i,Yd € D, }

Maximization :

k
lust .
LCluster — _ E . E ccci fale, i),

where C! is the temporary allocation of the cluster
index ¢ and f,, is the clustering model that maps the
encoding vector e to the cluster ¢ with a probability

S))

of fa(e,i), S2F | fa(e,i) = 1. In addition, k is
a hyperparameter that determines the number of
clusters, where k, < |A,| X k.

Given the cluster assignment probabilities for
each aspect, we need to select for each paper d €
D, a unique pair (a, ), where a is an aspect and i
is a cluster index within that aspect, such that: (1)
Each paper d will be assigned to only one cluster
i. (2) The total number of unique pairs (a, 7) used
in the paper set D, is k,. (3) The total assignment
probability is maximized. Therefore, we define a
binary indicator 62 ; € {0, 1} and the objective:

k
max Z Z Z@f,i faled i), (6)

deDy ac A, i=1

which is subject to:

k
> 6t =1,vde D,

acA, i=1
H(a,i) |3d € Dy st 6%, = 1}‘ —k,.

(N

As a result, we have the search process as illus-
trated in the algorithm 1, where we directly define
a search space S containing all possible combina-
tions S C A, x {1,2,..., k} that satisfy |S| = k..
Each S encodes a specific clustering scheme with
k, unique aspect-cluster assignments (a,i). We
adopt a real-time strategy that the score of every
combination S is updated as each paper d € D,
arrives, where we trace the optimal assignment
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Algorithm 1 Search with Pruning

I: Init. S« {SCA,x{1,...,k}||S|=ko}

2: Init. score[S]«+ 0, VS €S

3: Imit. state[S][(a,t)] + {}, VS €S, (a,i) € S
4: for all d € D, in random order do

5: forall S € Sdo
6.
7
8

score[S] < score[9] —&—(m?xs fa(ed )
a,i)€

state[S] [arg(m?xs fa(ed,4)].add(d)
a,i)€E

: end for
9: if score[S] < avg score, 35 € S then
10: S+ S\S
11: end if
12: end for

13: max_score ¢ max score[S]
€
14: S* + arg max score[S]
Ses

15: optimal_state + state[S”]
16: return S, max_score, optimal_state

trajectory via the state variable. Optionally, we
can randomize the iterative order of the papers and
prune the low-scoring combinations during the pro-
cess to reduce search space and improve efficiency.
After processing all documents, the algorithm re-
turns the highest score combination S* along with
its trajectory optimal_state.

We can extract the partitioned paper sets D,
from the trajectory optimal_state and generate
the topic facet x,,, with LLM as follows:

Forall (a,1) € S*, t € {1,...,ky} inparallel :
D,, ={d | Vd € optimal_state[(a, )|}
Ty, ~ pm(z|v, Dy, S*) )
v £ (24, Dy,), BV + EO U{(v, )},

where the node v; is connected to its parent v.

3.3 Iterative Structure Generation

As illustrated in Figure 2, our method constructs
the taxonomy in a top-down manner, starting from
the root node r and iteratively expanding the child
nodes Child(v) for node v from each depth [, this
is decomposing the associated paper set D, and
generating a corresponding topic facet x,, that char-
acterizes the semantic focus of its substructure.
During each expansion step, we dynamically
generate new aspects based on the current distribu-
tion of the papers in D,,. This process is tailored
to capture the updated salient semantic dimensions
and key distinctions among papers within the new
partitioned subset. It is worth noting that we incor-
porate the topic facets of all ancestor nodes into
the prompt context. This ensures that the newly
generated aspects reflect not only local document

features, but also the global structural direction
of the taxonomy, thereby better understanding the
direction in which the current node needs to be
expanded. The expansion process continues un-
til a stopping condition is met, such as reaching a
maximum depth L or encountering the number of
papers in the node below a predefined threshold.
Once the expansion is complete, the resulting tree
constitutes the taxonomy of given topic and papers.

4 Experiments

4.1 Baselines

We compare our approach with two categories
of methods: pure LLM-based and clustering-
incorporated taxonomy generation.

4.1.1 Pure LLM-based Methods

CHIME (Hsu et al., 2024) extracts claims and fre-
quent entities from related papers, then prompts an
LLM to generate root categories and assign claims
into a hierarchical structure.

TNT-LLM (Wan et al., 2024) first prompts an LLM
to summarize each input, then iteratively constructs
and refines a taxonomy from the summaries.
GoalEx (Wang et al., 2023b) generates explanation-
based candidate clusters given a goal, and assigns
each document via entailment prompting. A integer
linear programming step selects clusters that best
cover the dataset with minimal redundancy.

4.1.2 Clustering-incorporated Methods

Knowledge Navigator (Katz et al., 2024) encodes
paper abstracts into dense embeddings and applies
traditional clustering algorithms to group them.
The resulting clusters are named and organized
into a hierarchical structure by LLM.

SCYCHIC (Gao et al., 2025) uses an LLM to
extract structured contributions from each paper,
which are then embedded and clustered hierarchi-
cally. A bidirectional clustering algorithm specifies
the number of levels and clusters per level.

4.2 Experimental Settings

We employ GPT-40 (2024-08-06) for aspect gener-
ation (eq. 3) and topic facet generation (eq. 8), due
to its superior reasoning and abstraction capabili-
ties. Besides, we use LLaMA-3.1-8B to generate
aspect-guided summaries (eq. 4), as it requires less
complex reasoning to locate and extract relevant
information from the paper. This division enables
a balance between generation quality and computa-
tional cost across the pipeline.
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Categorization

Structure

Human Assessment

NMI ARI Purity CEDS HSR °d¢ | coy. Rel. Str.  Val. Ade.
Pure LLM-based
CHIME 354 09 418 233 747 11 | 432 503 545 476 416
ToT-LLM 516 23 576 190 699 15 | 4l.1 473 481 460 466
GoalEx 467 88 476 232 705 10 | 459 533 570 486 468
Clustering-incorporated
KN 447 162 424 188 495 05 | 47.5 570 550 520 470
SCYCHIC 498 90 506 230 664 15 | 473 507 552 484 468
Ours 601 1901 622 238 745 12 | 506 571 59.6 529 544

Table 2: Automatic and human evaluation results on taxonomy generation. We report categorization quality (NMI,
ARI, Purity), structural consistency (CEDS, HSR), and normalized node count (Nodes), where 1.0 of Nodes
indicates an exact match with the gold taxonomy in terms of node count. Human evaluation is conducted on five
dimensions, Coverage, Relevance, Structure, Validity, and Adequacy, each rated on a scale of 1 to 100.

Following Katz et al. (2024), we adopt text-
embedding-3-large for paper encoding (eq. 4) and
use Gaussian Mixture Models (GMMs) as the
aspect-specific clustering model f,(e, i) (eq. 5).
In the main experiments, the number of clusters per
aspect k and the number of child nodes per parent
node k., are both empirically set as 4. The max-
imum taxonomy depth is limited to L = 3. See
the prompts that we use in the Appendix C. Due to
computational and manual costs, we randomly sam-
ple 25 of the 156 taxonomy instances for human
evaluation and ablation studies. Each configuration
was executed once with a fixed random seed, and
results are averaged over the sampled instances.

4.3 Evaluation Metrics

We evaluate taxonomy generation from two com-
plementary perspectives: papers categorization
and topic structure, using both automatic and hu-
man evaluation. Full metric definitions and annota-
tion guidelines are provided in Appendix A.
Automatic Evaluation. To assess papers catego-
rization, we report three widely used clustering
metrics: Normalized Mutual Information (NMI),
Adjusted Rand Index (ARI), and Purity. For
topic quality and structural alignment, we adopt
Heading Soft Recall (HSR) (Frinti and Mariescu-
Istodor, 2023) and Catalogue Edit Distance Similar-
ity (CEDS) (Zhu et al., 2023). In addition, we use
a normalized Nodes Ratio, defined as the number
of generated nodes divided by the number of nodes
in the oracle taxonomy, as an auxiliary metric to
monitor coarse-grained structural discrepancies.
Human Evaluation. Following Hu et al. (2024),
we conduct human evaluation on five dimensions:
Coverage, Relevance, Structure, Validity, and

Adequacy. Each dimension is rated on a scale of 1
to 100 to allow fine-grained comparisons. The eval-
uation is performed by six reviewers: three PhD
students in computer science and three advanced
LLMs: GPT-40 (2024-11-20), Claude 3.7 Sonnet
(2025-02-19), and LLaMA-3.3-70B Instruct.

4.4 Main Results

Best categorization performance. We obtain the
best categorization performance, with NMI (60.1),
ARI (19.1), and Purity (62.2), surpassing both pure
LLM-based baselines (e.g., TnT-LLM with NMI of
51.6) and clustering-incorporated baselines (e.g.,
KN with ARI of 16.2). This proves the superiority
of our multi-aspect framework in producing more
coherent and well-separated clusters, offering a
more reliable foundation for semantic organization.
Superior structure alignment. We achieve the
highest CEDS score of 23.8, indicating strong
structural consistency with oracle taxonomies. The
HSR score of 74.5 confirms that our method pos-
sesses the ability to recover coherent hierarchical
relations. In addition, the node ratio of 1.2 suggests
a balanced taxonomy size, avoiding the situation of
both over-fragmentation and under-segmentation.

Preferred by human evaluators. As shown in
Table 2, our method receives the highest human
evaluation scores in all five dimensions, with no-
table improvements in Coverage (50.6), Structure
(59.6), and Adequacy (54.4). This indicates that
our generated taxonomies cover more comprehen-
sive contents and exhibit a more coherent orga-
nization of the structure, thereby enhancing the
usability. The agreement between the annotators
measured by Fleiss’s Kappa on discretized scores
(converted from a scale of 1 to 100 to a scale of
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Categorization Structure Categorization Structure Nodes
NMI ARI Purity CEDS HSR kv  NMI ARI Purity CEDS HSR

Dynamic Aspects 3 551 217 60.2 24.6 63.7 1.1
Search 57.8  20.1 66.4 23.7 69.9 4 376195 65.2 24.3 69.3 L4

5 59.0 18.9 69.5 20.4 68.9 1.6
Prune 58.6 204 66.0 23.9 69.4 6 612 182 73.6 19.9 69.9 1.9
Fixed Aspects S 562 215 622 239 660 1.1
Search 552 195 62.4 25.8 68.6
Prune 55.0 197 60.7 254 665 Table 4: Performance under different values of hyper-
Abstract  57.1  22.3 64.3 24.2 66.3 parameter k,, which controls the number of clusters

Table 3: Ablation results on aspect generation and dy-
namic search. “Dynamic Aspects” means our dynamic
aspect generation process, while “Fixed Aspects” is us-
ing fixed manual aspects. “Search” denotes dynamic
clusters search and “Prune” is the pruning strategy in
the search process. “Abstract” means only using the
paper abstracts without aspect guidance.

5 points) is 0.24, indicating moderate consistency
among the evaluators.

4.5 Ablation Study on Aspect Generation and
Dynamic Search

We conduct an ablation study to examine the im-
pact of aspect generation methods and clustering
strategies on taxonomy quality in Table 3.
Dynamic v.s. Fixed Aspects. We first compare
our proposed dynamic aspect generation (Dynamic
Aspects) with a manually defined aspect template
shared across all paper sets (Fixed Aspects). The
results show that the dynamic aspects achieve con-
sistently better performance in both categorization
(e.g., NMI 57.8 v.s. 55.2) and structural alignment
(e.g., HSR 69.9 v.s. 68.6). This highlights the ben-
efit of tailoring semantic dimensions to each paper
set, which better captures latent topical variations
and improves clustering quality.

Full v.s. Pruning Search. Within each setting, we
compare two clustering strategies: Full Search and
Pruning Search. For the fixed-aspect setting, prun-
ing significantly reduces categorization and struc-
ture performance, indicating that simple greedy
filtering may break high-quality groupings formed
under strong human priors. In contrast, under the
dynamic aspect setting, pruning yields comparable
performance to full dynamic search. This suggests
that while LLM-generated aspects offer higher rep-
resentational flexibility, they also introduce vari-
ability and redundancy, where pruning can help
remove outliers with little degradation.

Effect of Using Abstracts Only. Finally, we in-
clude a baseline that uses only abstracts of papers

per node. “S” denotes an adaptive selection strategy
from our baseline. Fixed larger k, improves purity but
harms structural consistency (CEDS and Nodes), while
adaptive k, achieves a balanced yet unremarkable per-
formance across all metrics.

without aspects. Although it performs reasonably
well in ARI (22.3), its overall categorization and
structure scores remain lower than our full model.
This underscores the importance of aspect-guided
representation beyond manual summarization.

4.6 Effect of Hyperparameter k,

We analyze the influence of the hyperparameter &,
which controls the number of clusters generated at
each node during hierarchical taxonomy construc-
tion. Table 4 reports the results under fixed values
of k, € {3,4,5,6}, as well as an adaptive strategy
(“S”) (Katz et al., 2024) where the model dynami-
cally selects from 3, 4, 5, 6 based on the clustering
result with the highest silhouette score.

Fixed v.s. Adaptive k,. As k, increases, we ob-
serve a steady improvement in categorization per-
formance, with NMI rising from 55.1 (at k, = 3)
to 61.2 (at k, = 6). Purity also increases substan-
tially, reflecting finer-grained clustering. However,
this comes at the cost of structural quality: CEDS
decline and the normalized node count (Nodes)
increase, indicating over-fragmented taxonomies
with reduced alignment to the gold standard.

The adaptive strategy achieves relatively bal-
anced performance across all metrics rather than
a significant improvement in any individual met-
ric (NMI 56.2, ARI 21.5, CEDS 23.9). More-
over, the adaptive strategy requires repeated cluster-
ing operations for all k,,, resulting in substantially
higher computational overhead. Coupled with only
marginal improvements, the high cost suggests that
silhouette-based selection may offer limited practi-
cal benefit in taxonomy generation.

15634



Paper ID:
20, 28, 29

quantization-aware train-
ing

‘ weight-only quantization Paper ID: 7, 21,
22, 32,33, 39
- = Paper ID: 0,
L[post-training quantization 15, 16, 18,
37,41, 45
kv cache quantization Paper ID:
25, 26, 30
[ unstructured pruning h[ PaperiD: 1,
2, 4,43, 48
H{pruning }-[structured pruning

Paper ID: 3,

31, 35, 38, 47
L[semi-structured pruning Paper ID:
4,23, 43

chain-of-thought

Model
Com-
pression

Paper ID: 5, 6,
8,10, 12, 13,
14, 19, 36, 40
J--{ Paper D: 17 )

knowledge - -
S instruction following | [ Paper ID: 27,
distillation 34, 44, 46
| white-box kd }—-{ Paper ID: 9

.| low-rank fac- Paper ID:
torization 11,24, 42

(a) Built by Zhu et al. (2024)

| black-box kd

{ in-context learning

Advanced Post- Paper ID: 7, 15,
Training Quantization 16, 18, 20, 21, 22,

Techniques for LLMs 32, 33, 37, 39, 41

1-Bit Quantization via }I Paper ID: 29

Knowledge Distillation
Paper ID:
25, 26, 30

tion Strategies for Effi-

Post-Training Quantiza-
cient LLM D

KV Cache Quanti-
zation Strategies for
Efficient LLM Inference

|[Outii Quantiza- Paper ID: 0, 45
tion Techniques for LLMs

_[Unstructured Sparsity Techniques Paper ID: 1, 2, 4,23, 48
for Efficient LLM Inference
Structured Pruning Methods for Paper ID: 3, 35, 38, 43, 47
LLMs Without Retraining
Orthogonal Transformations for Paper ID: 31
LLM Compression

Distillation Techniques % Paper ID: 5,

Quantization
Techniques
for LLM Com- |
pression

Pruning
Strategies for
Efficient LLMs

Model
Com-
pression

for Enhanced Reason- 10, 12, 13,
ing in Smaller Models 19, 36, 40

Paper ID: 14

Paper ID: 8

Self-Consistent Distillation
for Faithful Reasoning

soning

Negative Sample Utiization
for Reasoning Distillation

Chain-of-Thought Distil-
lation for Enhanced Rea-

Distillation

Methods for
[——| simplified

LLM Reason-

ing

Task-Aware Distillation
and Instruction-Tuning

Low-Rank Factorization Paper ID: 11, 24, 42
| for LLM Compression

(b) Generated by our method

Paper ID: 6,9, 17,
27, 28, 34, 44, 46

Figure 3: Taxonomy of "Model Compression methods for Large Language Models".

4.7 Robustness to Noisy Inputs

To evaluate the robustness of our method under
more realistic settings, where the initial set of rele-
vant papers is not perfectly curated, we conducted
additional experiments simulating noisy input con-
ditions, as suggested by Reviewer RHVv. Specifi-
cally, we injected 5%—30% unrelated papers into
the curated dataset to mimic potential noise intro-
duced by retrieval-based pipelines.

Structure
CEDS HSR

20.06 72.15
20.87 75.48
15.88 81.57
17.71 72.58
19.10 76.54

17.36 60.52
16.92 61.47
15.42 63.10
17.78 62.26
17.19 63.58

23.99 68.28
23.15 69.30
23.22 70.22
23.72 70.69
21.66 72.14

Categorization
NMI ARI Purity

43776 3.61 56.16
44.68 391 56.26
50.73 3.88 63.45
4125 190 5242
43.55 3.43 55.12

39.37 6.25 45.29
38.33 5.89 44.95
3722 5.18 46.20
37.62 5.59 43.70
3647 649 46.89

53.80 13.94 61.93
54.46 15.74 6293
5293 14.02 61.05
54.17 16.54 61.33
5442 17.53 61.64

Noise
Ratio

0%
5%
10%
20%
30%

0%
5%
10%
20%
30%

0%
5%
10%
20%
30%

Nodes

1.66
1.92
2.36
1.79
2.20

1.73
1.73
1.73
1.73
1.78

1.48
1.49
1.65
1.73
1.80

TnT-
LLM

SCYC
HIC

Ours

Table 5: Performance comparison under different noise
levels.

Experimental results (see Table 5) show that
our method consistently outperforms baseline ap-
proaches and maintains superior performance and
structural stability across all noise levels. In con-
trast, TnT-LLM suffers from significant perfor-
mance fluctuations, and SCYCHIC experiences
moderate degradation.

We attribute this robustness to two key design
choices in our framework: Aspect-aware clustering
with dynamic search, which selectively identifies
the most relevant combination of aspect dimen-
sions for each paper, effectively filtering out noise;
Expanded representation space of aspect-cluster
combinations, which allows noisy or outlier pa-
pers to be isolated into peripheral nodes without
disrupting the core taxonomy structure.

These findings highlight the error-tolerant nature
of our approach and demonstrate its effectiveness
even when applied to noisy, less curated document
sets. We believe this provides strong evidence of
the method’s practical applicability beyond oracle-
like experimental conditions.

4.8 Case-Study

Comparison with Human-Annotated Taxonomy.
Figure 3(a) shows the human-annotated taxonomy
from Zhu et al. (2024) on “Model Compression
Methods for Large Language Models,” and Fig-
ure 3(b) presents our generated result. For compar-
ison, additional case studies produced by baseline
methods are included in the Appendix B.1 At the
top level, both taxonomies adopt a method-based
categorization (e.g., quantization, pruning, distilla-
tion), which is largely consistent. Only one paper
(28) is misclassified. In deeper layers, our tax-
onomy introduces more fine-grained and diverse
subtopics. While these differ from the human tax-
onomy, they reflect alternative yet valid grouping
strategies based on implementation details or use
cases. This highlights the subjectivity of deeper-
level structuring and the model’s ability to surface
meaningful semantic distinctions.
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5 Related Work

Organizing the ever-growing scientific literature
into coherent, hierarchical categories remains a
core challenge in scholar knowledge management.
Traditional approaches typically rely on manually
curated taxonomies, where each paper is mapped
to one or more predefined categories within a multi-
level hierarchy (Zhang et al., 2021; Sadat and
Caragea, 2022; Rao et al., 2023).

Recent advances in LLMs have significantly
reshaped the landscape of topic modeling and
document clustering by semantically rich and
context-aware representations, allowing for more
interpretable and scalable taxonomy construction
(Zhang et al., 2023; Pham et al., 2024; Wang et al.,
2023a; Qiu et al., 2024; Viswanathan et al., 2024).
In general, there are two technical paradigms for
taxonomy construction: classification-based and
clustering-based, where each of them offers dis-
tinct advantages and trade-offs.

In the classification paradigm, an LLM first in-
duces a taxonomy, and papers are subsequently
assigned (Pham et al., 2024). CHIME (Hsu et al.,
2024) produces the taxonomy and assigns papers
in one pass. GoalEx (Wang et al., 2023b) aligns
LLM-generated explanations with papers and ap-
plies integer linear programming to finalize a non-
overlapping set of assignments. To better han-
dle long-document settings, TnT-LLM (Wan et al.,
2024) iteratively generates and updates the label
taxonomy. More recently, TaxoAdapt (Kargupta
et al., 2025) incrementally expands the taxonomy
by analyzing papers one by one, formulating multi-
dimensional taxonomy construction as iterative
multi-label classification. Automatic literature
review generation pipelines such as AutoSurvey
(Wang et al., 2024), Storm (Shao et al., 2024), and
SurveyForge (Yan et al., 2025) replace taxonomies
with hierarchically structured outlines, i.e., they
first draft an outline of target topics and then re-
trieve and attach relevant papers to each entry.

Despite their flexibility, label-first pipelines
often produce redundant labels, hallucinated or
missing categories, and imbalanced hierarchies.
Clustering-based methods organize papers in the
representation space, then leverage inter-paper rela-
tions to enforce global coherence and balance, and
finally add labels respectively. A related line inte-
grates clustering with LLM generation, where pa-
pers are first grouped by unsupervised methods and
then semantic labels are produced for each cluster

(Diaz-Rodriguez, 2025; Hu et al., 2024). Knowl-
edge Navigator (Katz et al., 2024) performs single-
stage flat clustering, while Gao et al. (2025) ex-
plore hierarchical strategies (bottom-up, top-down,
and bi-direction). However, these approaches often
rely on local, per-cluster descriptions in isolation,
yielding redundant or inconsistent labels due to
missing global context and weak structural con-
straints. In contrast, our method proposes dynamic
and structure-aware hierarchical clustering with
global aspects, maintaining the semantic distinc-
tiveness and structural fidelity of the taxonomies.

6 Conclusion

In this work, we propose a novel framework for tax-
onomy generation that leverages multi-dimensional
representations and dynamic clustering. By dynam-
ically generating semantic aspects tailored to each
document set and searching for optimal cluster-
ing configurations via dynamic search, our method
constructs taxonomies that are both semantically
coherent and structurally faithful. We further intro-
duce a high-quality benchmark of 156 annotated
taxonomies derived from CS survey papers to fa-
cilitate reliable evaluation. Extensive experiments
demonstrate that our approach outperforms existing
pure LLM-based and clustering-incorporated meth-
ods in both automatic and human evaluations. Ab-
lation studies confirm the effectiveness of dynamic
aspect modeling and adaptive clustering strategies.

Limitations

Although our method demonstrates strong perfor-
mance, several limitations remain:

1. In practical applications, the system must first
retrieve candidate papers from a broad and
potentially noisy corpus, which introduces ad-
ditional challenges such as incomplete cov-
erage, irrelevant documents, and retrieval er-
rors. Our framework focuses on a control-
lable experimental environment with oracle
papers. Developing retrieval-integrated taxon-
omy construction methods that are robust to
these issues constitutes an important direction
for future work.

2. The quality of aspect extraction and summa-
rization depends on the capabilities of the un-
derlying LLM, which affects the generaliza-
tion of our framework.
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3. The combination of multi-aspect encoding
and iterative clustering introduces computa-
tional overhead, which may limit scalability
to very large corpora. We plan to explore
more efficient clustering strategies and scal-
able approximations to support deployment
on a greater scale.

4. Our evaluation benchmark focuses on survey
papers in computer science, where its applica-
bility to other domains or less-structured cor-
pora remains to be explored. In future work,
we will extend our framework to cross-domain
settings.

5. We find that silhouette-based k-selection is
not well suited for clustering in complex
and semantic-driven tasks such as taxonomy
generation, which leaves the development of
more effective task-specific clustering selec-
tion strategies for future work.

6. Our current framework employs hierarchi-
cal clustering, which enforces a strict, non-
overlapping partitioning of papers at each
level. In contrast, expert-authored taxonomies
(e.g., the oracle trees in our benchmark) some-
times allow a paper to be assigned to multiple
branches. Enabling multi-label taxonomy con-
struction is thus an important and challenging
extension that we leave for future research.

Acknowledgments

This work was supported by the National Natu-
ral Science Foundation of China (NSFC) (grant
62276078, U22B2059), the Key R&D Program
of Heilongjiang via grant 2022ZX01A32, and the
Fundamental Research Funds for the Central Uni-
versities (XNJKKGYDJ2024013). It was also
supported by the Ministry of Education, Singa-
pore, under its AcRF Tier 2 Funding (Proposal
ID: T2EP20123-0052). Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect
the views of the Ministry of Education, Singapore.
We thank the iFLYTEK Spark AI Assistant Team
for providing application requirements and high-
value feedback.

Ethics Statement

This work focuses on constructing paper tax-
onomies using large language models (LLMs), with

the goal of assisting researchers and beginners
in understanding domain knowledge, tracking re-
search trends, and improving reading efficiency.
While this technology has the potential to support
scientific discovery and education, it also carries
risks that warrant ethical consideration.

Use of LLMs and Potential Risks Our framework
relies on LLMs to generate semantic aspects and
organize papers into a hierarchical taxonomy. We
acknowledge that LLMs are susceptible to hallu-
cinations, which may lead to factually incorrect
or misleading taxonomy structures. Nevertheless,
any downstream use of the generated taxonomy for
scientific analysis or educational purposes should
be critically verified, especially in high-stakes or
sensitive applications.

Dataset Collection and Licensing We construct
our dataset using publicly available metadata and
content from arXiv and Semantic Scholar, both
of which provide research access under open li-
censes. The dataset used in this study includes
paper titles, metadata (e.g., authors, publication
years), and taxonomy structures extracted from the
IXTEX source files of review papers collected from
arXiv. Specifically, we target survey papers that ex-
plicitly include taxonomy structures in their source
files. From these files, we extract the taxonomy
tree as well as the titles of cited papers mentioned
within the taxonomy.

For each cited paper in the taxonomy, we ob-
tain its metadata using the Semantic Scholar APL.
In cases where the cited papers are also publicly
available on arXiv, we further retrieve their IATgX
source files and extract their Introduction sec-
tions. This allows us to enrich the representation of
each paper beyond the abstract and metadata, en-
abling more informed and semantically grounded
taxonomy construction.

All data were obtained through open APIs and
publicly accessible sources, and their use is re-
stricted to academic research. We confirm that our
use of these artifacts complies with their intended
use and access conditions. No redistribution of
full-text content outside permitted use cases has
been conducted. The resulting dataset, including
derived taxonomy annotations, is shared under a
research-only license and should not be repurposed
for commercial or non-academic use.

Privacy and Anonymization We conducted a man-
ual check to ensure that the dataset does not con-
tain personally identifiable information (PII) be-
yond standard academic author metadata, which
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are already publicly accessible through the origi-
nal platforms. No sensitive personal content, user-
generated data, or non-consensual information is
included. Our system does not process or gener-
ate user data, and all derived outputs (e.g., cluster
labels, taxonomy facets) are generated from pub-
lished research papers.

Human Annotation and Consent We recruited
voluntary annotators to evaluate the quality of the
generated taxonomies. All annotators were fully
informed about the purpose of the study, the nature
of the data, and how their assessments would be
used. No personal information was collected from
annotators, and consent was obtained prior to their
participation.
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A Evaluation Metrics

We evaluate taxonomy generation from two com-
plementary perspectives: clustering structure and
heading quality. In addition to automatic evalua-
tion, we also conduct human evaluation to assess
the practical quality of the generated taxonomies.

A.1 Clustering Evaluation

Hierarchical Mutual Information (HMI) extends
mutual information to hierarchical structures by
evaluating consistency across multiple levels of the
taxonomy. It provides a structure-aware measure
that rewards alignment not only at the leaf level but
also across internal nodes.

Adjusted Rand Index (ARI) measures the agree-
ment between the predicted and gold cluster assign-
ments, correcting for random chance. It is widely
used in clustering evaluation and is robust to vary-
ing cluster sizes.

Purity quantifies the extent to which each predicted
cluster contains documents from a single ground-
truth category. While intuitive, this metric may
favor solutions with a large number of small clus-
ters.

A.2 Heading Evaluation

Heading Soft Recall. We follow the calculation
of Shao et al. (2024). This metric measures the
proportion of ground-truth headings that are ap-
proximately matched by generated node names
using soft string similarity. It allows for minor
lexical variations and captures semantic overlap. It
is worth noting that, in theory, longer generated out-
puts tend to achieve higher scores under soft match-
ing metrics such as Soft Heading Recall. This is
because longer outputs are more likely to semanti-
cally overlap with the reference headings, thereby
increasing the chance of a successful match under
relaxed similarity thresholds. However, this im-
provement may not necessarily reflect better qual-
ity, as it can be attributed to over-generation rather
than more accurate content selection.

Catalogue Edit Distance Similarity (CEDS) (Zhu
et al., 2023) evaluates the overall similarity be-
tween the generated taxonomy and the gold tax-
onomy by computing a normalized tree edit dis-
tance. It accounts for both structural alignment
(e.g., insertion, deletion, reordering of nodes) and
heading-level similarity, offering a holistic assess-
ment of taxonomy quality.

A.3 Human Evaluation

To complement automatic metrics, we conduct a
human evaluation based on five criteria followed
Hu et al. (2025):

» Coverage: Does the taxonomy comprehen-
sively cover the major themes and subtopics
within the document collection?

* Relevance: Are the identified categories ap-
propriate and meaningful for the given set of
documents?

* Structure: Is the overall organization coher-
ent and logically structured as a hierarchy?

* Usefulness: How helpful is the taxonomy for
readers trying to understand or navigate the
domain?

* Validity: Does the taxonomy align with
expert expectations or established domain
knowledge?

Each aspect is rated on a scale of 1 to 100 by
multiple annotators with relevant domain expertise,
and the final scores are averaged among the raters.
To link the evaluation protocol with concrete out-
comes, we further analyze inter-rater reliability by
discretizing the scores into five bins of equal width
and computing consistency both within and across
rater groups. Inter-annotator agreement, measured
by Fleiss’ « on the discretized ratings, shows the
following: Human—Human = 0.31, LLM-LLM
= 0.38, and Human-LLM = 0.24. Taken together,
these results indicate that both human annotators
and LLMs exhibit comparable levels of consistency
within the group, while their agreement between
groups remains relatively low, suggesting system-
atic differences in rating behavior between the two.

B Case Study

To qualitatively evaluate the effectiveness of our
method, we conduct a case study on the topic of
”Model Compression".

B.1 Taxonomy Trees

Figures 5(a) and 4 show the human-authored tax-
onomy tree and the corresponding set of papers
from the survey paper "A Survey on Model Com-
pression for Large Language Models" (Zhu et al.,
2024). Our generated taxonomy is presented in Fig-
ure 5(b), while the taxonomies produced by other
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A Survey on Model Compression for Large Language Models

//;;; OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization
[1] Flash-LLM: Enabling Low-Cost and Highly-Efficient Large Generative Model Inference With Unstructured Sparsity
[2] One-Shot Sensitivity-Aware Mixed Sparsity Pruning for Large Language Models
[3] Fluctuation-based Adaptive Structured Pruning for Large Language Models
[4] SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot

[5] Large Language Models Are Reasoning Teachers

[10] Teaching Small Language Models to Reason

[14] SCOTT: Self-Consistent Chain-of-Thought Distillation

[22] SqueezelLLM: Dense-and-Sparse Quantization

[29] OneBit: Towards Extremely Low-bit Large Language Models

[37] LLM-FP4: 4-Bit Floating-Point Quantized Transformers

[47
NG

[6] Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
[7] OWQ: Outlier-Aware Weight Quantization for Efficient Fine-Tuning and Inference of Large Language Models

[8] Turning Dust into Gold: Distilling Complex Reasoning Capabilities from LLMs by Leveraging Negative Data

[9] Less is More: Task-aware Layer-wise Distillation for Language Model Compression

[11] Matrix Compression via Randomized Low Rank and Low Precision Factorization
[12] Distilling Reasoning Capabilities into Smaller Language Models
[13] Democratizing Reasoning Ability: Tailored Learning from Large Language Model

[15] SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

[16] ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers

[17] In-context Learning Distillation: Transferring Few-shot Learning Ability of Pre-trained Language Models
[18] RPTQ: Reorder-based Post-training Quantization for Large Language Models

[19] PaD: Program-aided Distillation Can Teach Small Models Reasoning Better than Chain-of-thought Fine-tuning
[20] LLM-QAT: Data-Free Quantization Aware Training for Large Language Models

[21] AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration

[23] E-Sparse: Boosting the Large Language Model Inference through Entropy-based N: M Sparsity
[24] ASVD: Activation-aware Singular Value Decomposition for Compressing Large Language Models
[25] KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization

[26] KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

[27] Selective Reflection-Tuning: Student-Selected Data Recycling for LLM Instruction-Tuning
[28] BitDistiller: Unleashing the Potential of Sub-4-Bit LLMs via Self-Distillation

[30] WKVQuant: Quantizing Weight and Key/Value Cache for Large Language Models Gains More
[31] S1iceGPT: Compress Large Language Models by Deleting Rows and Columns

[32] QuIP: 2-Bit Quantization of Large Language Models With Guarantees

[33] SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression
[34] Lion: Adversarial Distillation of Proprietary Large Language Models

[35] Shortened LLaMA: A Simple Depth Pruning for Large Language Models

[36] Explanations from Large Language Models Make Small Reasoners Better

[38] LLM-Pruner: On the Structural Pruning of Large Language Models
[39] LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models
[40] Specializing Smaller Language Models towards Multi-Step Reasoning

[41] OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models

[42] The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction

[43] A Simple and Effective Pruning Approach for Large Language Models

[44] Self-Instruct: Aligning Language Models with Self-Generated Instructions

[45] Outlier Suppression+: Accurate quantization of large language models by equivalent and effective shifting and scaling
[46] LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions

Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning

Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs

~

/

Figure 4: Papers in the taxonomy built by Zhu et al. (2024)

baseline methods are shown in Figures 6-10. As
illustrated, our method produces a more coherent
and semantically meaningful taxonomy structure,
with clearer topic hierarchies and better alignment
to the source papers, compared to other approaches.

B.2 Generation Process

To complement the quantitative results in Table 3,
we provide several representative case studies that
qualitatively illustrate the role of aspect generation,
aspect-guided summarization, and facet identifi-
cation. These examples highlight how different
components contribute to clustering outcomes and
taxonomy construction.

Figure 11 shows the aspects generated under
the topic “Model Compression — Quantization
Techniques for LLM Compression”. The resulting
aspects capture salient semantic dimensions that
effectively characterize and differentiate relevant

papers (e.g., Quantization Framework Type, Hard-
ware Efficiency Techniques).

These aspects are then used in parallel to guide
the encoding of individual papers. Figure 12
presents the aspect-guided summary for the pa-
per “Flash-LLM: Enabling Low-Cost and Highly-
Efficient Large Generative Model Inference With
Unstructured Sparsity”. Compared with the origi-
nal abstract, the aspect-based summary selectively
foregrounds details aligned with the identified as-
pects, facilitating clearer alignment with clustering.

Figure 13 illustrates how facets are identified
within the topic “Model Compression” and the se-
lected aspects after clustering with dynamic search.
The system generates corresponding topic facets
that summarize the semantic focus of each sub-
structure and render the resulting taxonomy more
interpretable and navigable.
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Figure 5: Taxonomy of "Model Compression methods for Large Language Models".
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Mixed Sparsity Pruning

Paper D: 2

Figure 6: Taxonomy of "Model Compression methods
for Large Language Models" generated by Chime (Hsu
etal., 2024).

C Prompts

The prompts we used are shown in Figures 14-18.

-[Adversarial Distillation J~{ PaperiD:34 ]

Paper ID: 23

Model
Compression

Boosting the Large Language
Model Inference through Entropy-
based N:M Sparsity

[ Selective Reflection-Tuning. }—.[ Paper ID: 27 ]

Self-reflective Learning Distilla-
tion Activation-aware Singu- Paper ID: 24
lar Value Decomposition

. Knowledge Transfer in Reasoning | Paper ID;

10,13, 19

{Asymmetric 2-bit Quantization |~ Paper ID: 28, 39 ]

Efficient Infer-
ence Optimiza-
tion Hardware-accelerated Inference _|~~{ Paper ID: 1, 4, 16 |

Specializing Smaller Language Paper ID: 40
| Models towards Multi-Step Rea-
soning.
| [Data-Free Quantization Aware Paper ID: 20, 30
Training

,‘Per{hxnne\ Key Quantization }—»[ Paper ID: 25 ]

SmoothQuant: Post-Training Paper ID: 15
Quantization

(" Asymmetric 2-bit Quantization }~{ Paper ID: 28, 30_]
Activation-aware Paper ID: 21, 28
Weight Quantization
Outl Paper ID: 7, 33
Weight Q i
Paper ID: 2
[ Layer-wise Distillation }—.[

.[Quantization and Pruning b Paper D0, 2.4,

7,21,30,33, 34

Reasoning-based Optimization _ |+(_ Paper ID: 5,6 |

+[ Distillation Methods

Sensitivity-aware
Mixed Sparsity Pruning.

Paper ID: O ]

Figure 7: Taxonomy of "Model Compression methods
for Large Language Models" generated by TnTLLM
(Wan et al., 2024).
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ods for Large Language Models" generated by GoalEx

(Wang et al., 2023b).

_ [emphasizes structured pruning for Paper ID: 3, 38
large language models
presents a simple depth pruning Paper ID: 35, 42
I+| approach for large language mod-
els

introduces a method for com-

|| pressing matrices via randomized

low rank and low precision factor-
ization

J» Paper ID: 11

Proposes a model specialization
framework to distill reasoning

[ ability from large language mod-

els using negative data

Paper ID: 6, 8,
13, 14,17, 27,
34, 36, 40, 46, 47

L]

proposes a step-by-step reasoning

|| approach for inducing reasoning

capabilities in smaller language
models

Paper ID: 5,
[l 10,12, 19

explores one-shot sparsity pruning
for massive language models

H

Paper ID: 2, 4,
23,31, 43, 44, 48

discusses quantization techniques
for large language models

H

Paper ID:
24, 32, 37

Sparsity and Sparsity and Pruning Paper ID: 1, 2,
Pruning Ap- n,| Techniques for Model 3, 4,23, 31, 35,
proaches Compression of Large Lan- 38, 42, 43, 47, 48
guage Models -
Model Knowledge Knowledge Distillation and Paper ID: 5, 6,
Compression Distillation Model Compression Tech- 8,9, 10, 12, 13,
Methods niques for Large Language ] 14, 17, 19, 27,
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for Large Language Models" generated by SCYCHIC
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Topic

Model Compression -> Quantization Techniques
for LLM Compression

ASPECT

1. Outlier Management Techniques: "This sub-
dimension captures methods that specifically
address the challenges posed by outlier values
in model weights and activations, including
strategies for their identification,
suppression, and quantization."

2. Precision Level Strategies: "This sub-
dimension focuses on the various approaches to
quantization precision, including mixed-
precision techniques, low-bit quantization, and
the use of floating-point representations to
optimize model performance while reducing
memory usage."

3. Quantization-Aware Training Methods: "This
sub-dimension includes techniques that
incorporate training processes specifically
designed to enhance the quantization of large
language models, ensuring that the models
maintain performance despite reduced
precision.”

4. Quantization Framework Type: "This sub-
dimension categorizes the different frameworks
or methodologies employed for quantization,
such as post-training quantization,
quantization-aware training, or hybrid
approaches, emphasizing their unique
characteristics and applications.”

5. Hardware Efficiency Techniques: "This sub-
dimension highlights strategies that improve
the hardware efficiency of quantization
methods, including algorithm-architecture co-
design and optimizations that reduce
computational overhead during inference.”

6. Knowledge Distillation in Quantization:
"This sub-dimension captures the use of
knowledge distillation techniques to enhance
the performance of quantized models,
particularly in scenarios where original
training data is not available."

J

Figure 11: Aspect generation under a specific topic.




4 )

TITLE

"Flash-LLM: Enabling Low-Cost and Highly-
Efficient Large Generative Model Inference With
Unstructured Sparsity"

ASPECT-BASED SUMMARY

* "Compression Technique": "The paper employs
unstructured model pruning as a compression
technique to reduce GPU memory usage and
computational demands while maintaining
model accuracy. This approach selectively
removes less significant connections in
neural networks, allowing for efficient
deployment of large generative models."

* "Reasoning Capability": "Not applicable”
¢ "Quantization Strategy": "Not applicable"

* "Sparsity Utilization": "Flash-LLM leverages
unstructured sparsity to enhance the
efficiency of large generative model
inference. By implementing a Load-as-Sparse
and Compute-as-Dense methodology, it
addresses memory bandwidth bottlenecks and
optimizes the performance of skinny matrix
multiplications on tensor cores."

* "Distillation Process"”: "Not applicable"

* "Efficiency Improvement": "The paper
presents Flash-LLM as a highly efficient
software framework that significantly
improves inference speed and reduces
resource costs. It achieves up to 3.8X and
3.6X enhancements in performance over
existing frameworks like DeepSpeed and
FasterTransformer, respectively."

* "Model Adaptation": "Not applicable"

* "Training Paradigm": "Not applicable”

- J

Figure 12: Aspect-based summary generated for the
paper “Flash-LLM: Enabling Low-Cost and Highly-
Efficient Large Generative Model Inference With Un-
structured Sparsity”.
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TOPIC
Model Compression
Aspect->Facet

1. ASPECT: Adaptation Strategy -> FACET:
Quantization Techniques for LLM Compression

1.1. ASPECT: Outlier Management Techniques
-> FACET: Outlier-Aware Quantization
Techniques for LLMs

1.2 ASPECT: Quantization Framework Type ->
FACET: Post-Training Quantization Strategies
for Efficient LLM Deployment

1.2.1 ASPECT: Activation and Weight
Quantization Schemes -> FACET: Post-
Training Quantization Strategies for
Efficient LLM Deployment

1.2.2 ASPECT: Contextual Cache
Optimization -> FACET: KV Cache
Quantization Strategies for Efficient LLM
Inference

1.2.3 ASPECT: Precision Level -> FACET:
1-Bit Quantization via Knowledge
Distillation

2. ASPECT: Compression Technique -> FACET:
Pruning Strategies for Efficient LLMs

2.1. ASPECT: Sparsity Granularity -> FACET:
Unstructured Sparsity Techniques for
Efficient LLM Inference

2.2 ASPECT: Sparsity Granularity -> FACET:
Structured Pruning Methods for LLMs Without
Retraining

2.3 ASPECT: Sparsity Granularity -> FACET:

Orthogonal Transformations for LLM
Compression

3. ASPECT: Implementation Complexity -> FACET:
Distillation Methods for Simplified LLM
Reasoning

3.1 ASPECT: Training Paradigm -> FACET:
Task-Aware Distillation and Instruction-
Tuning

3.2 ASPECT: Reasoning Capability -> FACET:
Chain-of-Thought Distillation for Enhanced
Reasoning

3.2.1 ASPECT: Data Efficiency Techniques
-> FACET: Distillation Techniques for
Enhanced Reasoning in Smaller Models
3.2.2 ASPECT: Data Efficiency Techniques
-> FACET: Negative Sample Utilization for
Reasoning Distillation
3.2.3 ASPECT: Data Efficiency Techniques
-> FACET: Self-Consistent Distillation
for Faithful Reasoning
4. ASPECT: Compression Technique -> FACET: Low-
Rank Factorization for LLM Compression Al/

Figure 13: Facet identification within a topic.



Fixed Aspects
s P ~N

{

"Research Problem": "A brief statement of
the problem addressed in this study and its
significance.",

"Key Contributions": "A summary of the main
innovations and improvements introduced by this
study.",

"Method": "A concise summary of the
methodological approach employed in the study”,

"Datasets”: "The datasets used in the
study, their sources, and their characteristics
(size, type, domain).",

"Experimental Setup": "Key details of the
experiment, including training strategies,
hyperparameter tuning, hardware setup, and
baseline implementations.”,

"Evaluation Metrics": "The metrics used to
assess performance (e.g., accuracy, BLEU,
ROUGE, Fl-score, MSE).",

"Results & Findings": "Summary of the main
experimental outcomes and how they compare with
state-of-the-art methods."

\ Y,

Figure 14: Fixed aspects we used.

- First Level Aspects Generation N
System

You are an expert in research survey writing and
taxonomy design.

Your goal is to abstract and design high-level,
generalizable dimensions to characterize a set of
research papers collectively.

Focus on identifying abstract dimensions, not on listing
concrete topics, methods, or datasets.

Each dimension should have:

- A clear and concise name

- A short explanation of what the dimension captures (no
more than 20 words)

Prioritize coherence and coverage when selecting
dimensions: they should jointly cover the main aspects
of the research without significant overlap.

You must output the results in strict JSON format:
{"Dimension Name": "Explanation"}.

Be concise, formal, and highly structured. Avoid free
text explanations.

Avoid mentioning any specific methods, dataset names,
model architectures, task examples, or experimental
details.

User
Here is a list of paper titles related to [TITLE]:

Analyze these papers based on their titles only.

Design and output a set of general, abstract dimensions
(no more than 10 and no less than 4) suitable for
characterizing the research collectively according to

the given instructions.

- Do not list topics, methods, or datasets individually.

- Keep each explanation within 20 words.

- Output only the dimension names and their explanations
in JSON format. /

Figure 15: Prompt used for the first-level aspects gener-
ation.
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Figure 16: Prompt used for the other-level aspects gen-
[PAPERS] eration.

Other Level Aspects Generation N

System
You are an expert in research survey writing and
taxonomy design.

Your task is to refine and extend an existing high-level
analysis dimension by proposing a finer-grained
categorization suitable for organizing research papers
more precisely.

Given:

- A selected high-level analysis dimension (e.g.,
Research Focus, Methodology, or Evaluation Setting)
- A set of research papers, each with a brief
description relevant to the selected dimension

Your task is to:
- Analyze the papers and their descriptions
- Propose several finer-grained sub-dimensions under the
given high-level dimension
- Each sub-dimension must have:
- A clear and concise name
- A short explanation of what it captures

Guidelines:

- Sub-dimensions should be specific enough to
differentiate papers within the topic

- They must be generalizable and reusable, not overly
tied to individual papers

- Maintain formal academic tone

- Avoid listing specific paper names or copying text
from descriptions

- Output must be structured strictly in JSON format:
{"Sub-Dimension Name": "Short explanation"}

User

Here is the list of papers related to [TITLE] and their
corresponding descriptions about high-level dimension
[TOPIC]:

[PAPERS]

Task:
- Based on the descriptions, generate 2-6 sub-dimensions
that fall under the given high-level dimension.

- Each sub-dimension should have a concise name and a
short explanation.

- Output only the structured JSON as specified.

J




Topic Facets Generation

4 )

System
You are an expert in scientific research analysis.

Your task is to generate meaningful and consistent names for
multiple paper clusters under the same semantic topic path.

**Input Information**

- Title: [TITLE] — the broader research theme (e.g., LLMs
for Causal Reasoning)

- Topic Path: [TOPIC] — the current semantic layer (e.g.,
Methodology or Methodology - LLMs as Reasoning Engines)

- Input: A dictionary of clusters, where each key is a
cluster topic, and the value is a list of paper summaries

Aspect-based Summary Generation

4 A

System "cluster_1": [ {'Title': '...', 'Abstract': '...’}, ...],

"cluster_2": 'Title': '...', 'Abstract': '...’ ce
You are a research analysis assistant tasked with - H ’ 8 I
generating concise, structured summaries of academic } ’

papers under specific analytical dimensions.
**Your Tasks**

Given:

- A paper’s title, abstract, and optionally its For each cluster, you must:

introduction

- One or more predefined analytical dimensions (e.g., 1. Carefully examine the topic path and understand the
Research Focus, Methodology, Evaluation Setting) expected granularity:

- For each dimension, you may optionally be given a more

specific sub-dimension (e.g., Research Focus - - If the topic path is broad (e.g., Methodology), your
Hallucination Detection) output should be cluster names that describe the role, use,

or behavior of LLMs, such as:
Your goal is to: . .
- Generate for each paper a short, informative, and + LLMs as Reasoning Engines
targeted description under each given (sub-)dimension + LLMs as Planning Assistants
- The description should be: + LLMs as Helpers to Traditional Methods
- Specific to the dimension
- Expressive of what the paper contributes,
investigates, or demonstrates under that angle
- No longer than 100 words per dimension
- Not copied or directly paraphrased from the abstract

- If the topic path is already specific (e.g., Methodology
> LLMs as Reasoning Engines), your cluster names should
reflect specific modeling or training strategies, such as:

+ Prompt Engineering

+ Chain-of-Thought Tuning
If no meaningful content relates to a dimension, return + Knowledge-Augmented Fine-Tuning

“"Not applicable"" as the value for that field.

Output must be structured JSON: {"Dimension Name or Sub-
Dimension Name": "Short description"} 2. Generate one precise and specific name for each cluster
that captures its unifying theme.

User **Qutput format (JSON)**:
Input Details
: . "cluster_1": "LLMs as Symbolic Reasoning Agents",
I am going to prOV}de the targ?t paper as follows, "cluster_2": "Prompt Engineering for Causal Inference
extract and summarize the details: Tasks"
B
* Target aspects: [ASPECTS] “cluster_3": "Fine-tuned LLMs for Structured Reasoning"
}

e Target paper title: [TITLE]

« Target paper abstract: [ABSTRACT] **Constraints**

e (Optional) Target paper introduction: [INTRODUCTION] - Cluster Name should be specific, functional, and grounded

in the shared patterns of the papers

- Do not include generic names like “LLM Applications” or

Figure 17: Prompt used for aspect-based summary gen- “Recent Advances”
eration. - Maintain strict JSON format
User

Here is the list of papers related to [TITLE] and their
corresponding descriptions about high-level dimension
[TOPIC]:

[PAPERS]

Task:

- Based on the descriptions, generate 2-6 sub-dimensions
that fall under the given high-level dimension.

- Each sub-dimension should have a concise name and a short
explanation.

\;‘Output only the structured JSON as specified. A//

Figure 18: Prompt used for topic facets generation.
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