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Abstract

Multi-hop complex reasoning over incomplete
knowledge graphs (KGs) has been extensively
studied, but research on numerical knowledge
graphs (NKGs) remains relatively limited. Re-
cent approaches focus on separately encoding
entities and numerical values, using neural net-
works to process query encodings for reason-
ing. However, in complex multi-hop reasoning
tasks, numerical values are not merely sym-
bols, and they carry specific semantics and log-
ical relationships that must be accurately rep-
resented. In this work, we propose a Complex
Numerical Reasoning with Numerical Seman-
tic Pre-training Framework (CNR-NST). The
CNR-NST framework can perform binary op-
erations on numerical attributes in NKGs, en-
abling it to infer new numerical attributes from
existing knowledge. Our approach effectively
handles up to 102 types of complex numerical
reasoning queries. On three public datasets,
CNR-NST demonstrates SOTA performance in
complex numerical queries, achieving an av-
erage improvement of over 40% compared to
existing methods. Notably, this work expands
the query types for complex multi-hop numeri-
cal reasoning and introduces a new evaluation
metric for numerical answers, which has been
validated through comprehensive experiments.

1 Introduction

Complex query answering (CQA) refers to the pro-
cess of reasoning and performing computations on
knowledge graphs (KGs) by combining multiple
entities and relationships to retrieve entities that ful-
fill specific logical conditions (Kotnis and Garcia-
Duran, 2019). This field has seen significant ad-
vancements, with research increasingly focused on
enhancing the accuracy of models in handling in-
tricate query tasks (Zhu et al., 2022; Arakelyan
et al., 2021). Despite this progress, real-world KGs
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Figure 1: Three types of queries: (1) Q1 refers to Com-
plex Queries Involving Only Entities, which involve
complex reasoning tasks that solely include entities; (2)
Q2 refers to Complex Numerical Queries, which com-
bine both numerical values and entities for reasoning;
(3) @3 refers to Complex Numerical Queries with
Arithmetic, where the query requires performing com-
putations between two numerical values from the NKG.

are not limited to discrete entity-relation knowl-
edge, and they also contain numerous numerical
attributes, such as birth dates, event times, and ter-
ritorial sizes of countries. Numerical knowledge
graph (NKG), therefore, offer a more nuanced ap-
proach to modeling real-world querys (Xue et al.,
2022). Figure 1 presents an example of the FB15K
NKG (Kotnis and Garcia-Duran, 2019) illustrating
three distinct query types: (1) Complex Queries
Involving Only Entities, such as “Q1: Which
film directors are married?”; (2) Complex Nu-
merical Queries, such as “Q2: Who are the mar-
ried individuals born in August 1955?”; (3) Com-
plex Numerical Queries with Arithmetic, such as
“Q3: What is the combined population of Schleswig-
Holstein and Dakar?” .

Traditional CQA methods are effective for multi-
hop queries but encounter challenges in accurately
capturing the subtle nuances of numerical seman-
tics (Ren et al., 2024). These methods neglect the
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Figure 2: (a): The process of performing operations on two fuzzy numbers derived from reasoning; (b): The
pre-training process for learning numerical semantics in CNR-NST; (c): Numerical sparsity in the KG and two
numerical representation methods: direct encoding and fuzzy sets.

inherent meanings of numerical attributes. Existing
approaches, such as the Numerical Reasoning Net-
work (NRN) (Bai et al., 2023a), present a frame-
work that encodes entities and numerical values
separately. However, when using Sinusoidal (Sun-
dararaman et al., 2020) and DICE (Vaswani et al.,
2017) encoding methods for numerical values, this
approach encounters issues with sparsity in the KG.
Many encoding regions lack corresponding numer-
ical mappings in the KG, leading to incomplete
learning of numerical semantics.

Handling complex numerical query tasks
presents significant challenges. First, current meth-
ods are constrained by reasoning answers limited
to the NKG, unable to compute or infer new numer-
ical answers from multi-values ((3), while infer-
ring new numerical attributes from existing values
is essential for practical applications. Second, nu-
merical values are continuous, with semantics influ-
enced by units, ranges, precision, and context (Ren
et al., 2024; Kim et al., 2023). And numerical data
sparsity in KGs introduces additional challenges
for complex query resolution (Li et al., 2022).

To tackle the challenges in complex numerical
reasoning, we propose the Complex Numerical
Reasoning with Numerical Semantic Pre-training
Framework (CNR-NST), which consists of the fol-
lowing three components.

* Numerical Binary Operation Operator As
shown in Figure 2(a), CNR-NST introduces new
numerical query operators to handle queries with
numerical answers absent from the original KG,
supporting 102 distinct query types. Using rele-
vant theorems in fuzzy mathematics, operations
on two fuzzy numbers within the real number
domain are enabled. By representing numerical
values as fuzzy sets, these operations can be ef-
fectively mapped to mathematical calculations

between two numerical attributes in the KG. The
mathematical proof of the mapping between real
number operations and fuzzy set operations is
provided in Appendix A.1.

* Numerical Semantic Learning To effectively
capture the semantics of numerical values, we uti-
lize a joint predictor learning the relationships be-
tween entity attributes and their numerical values,
thus facilitating knowledge transfer across tasks.
Figure 2(b) provides a comprehensive overview
of this architecture.

¢ Complex Numerical Reasoning and Computa-
tion CNR-NST represents numerical values and
entities using fuzzy sets, avoiding training neural
operators in an unrestricted numerical embed-
ding space (Figure 2(c)). Fuzzy sets capture the
uncertainty of numerical values during complex
reasoning and effectively represent the inherent
fuzzy relationships within numerical data. Inter-
mediate variable values in the reasoning process
reflect probability scores of corresponding enti-
ties or numerical values, significantly enhancing
numerical inference accuracy.

In summary, our contributions are:

* We introduce the binary operation operator for
the first time in complex numerical queries, defin-
ing new operators and query types.

¢ We introduce the CNR-NST framework, which
learns various entity-numerical relationships dur-
ing the pre-training stage.

* Compared to the current SOTA, CNR-NST
achieves substantial performance gains across
all 102 types of complex numerical queries.

2 Preliminaries

Numerical Knowledge Graph NKG is the
KG with numerical attributes, defined as G =
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Definitions

NKG
The set of entity in the NKG
The set of relation in the NKG
The set of attribute in the NKG
The set of numerical relation in the NKG
The set of numbers in the NKG
=V UWN, the set of universal vertex in the NKG
=R U AU F, the set of universal edge in the NKG
the triples in the NKG
Xex Any vertex (including entities and numerical values) in the NKG
r(V,V') The entity V is associated with the entity V' by the relationship r
a(V,N) The entity V' is associated with the numberical N by the attribute a
F(N,N') | The numberical N is associated with the numberical N' by the numerical relational f

Notations |

NmxZhsATQ

Table 1: Definition of mathematical symbols.

(V,N;R, A, F;T), which contains entity V € V),
attribute value N € N, relation » € R, attribute
a € A, numerical relation f € F, and triples
(hyr,t) eTC(VXxRxWVUVxAxN)U
(N x F x N). The difference from KG (Pai and
Costabello, 2021) is that A/, A, F have been added.

Numerical Complex Query Answering The
complex query () on a NKG G can be defined as:

q[Xo] =V1,..., Vi€V, N1,...,N; e N : caVeaV- - Vey
ey
Ci = €4,1 A €:,2 ARRN /\ei,m (2)

Here, X refers to a vertex, which can be any
entity or numerical value. And c; represents a con-
junction of several atomic logical expressions e; ;,
where each e; ; can be one of the following expres-
sions:

ei; =r(V,V),V,V €e{Vi,...,Vi}, V£V reR (3

ei,]‘:a(V,N),VG{Vl,...,‘/i},NG{Nl,...,Nj},(IG.A
(€]
eij=f(N,N),N,N € {Ny,...,N;},N#N',
feF={<>2=+—,%+...}

In the above equations, V' represents a subset of
entity V, and N represents a subset of the numer-
ical attribute set N. The binary function r; deter-
mines whether a class ¢ relationship exists between
two entities. The function a; determines whether
an entity possesses a value for attribute j. The func-
tion f checks whether a filtering condition, such
as greater than, less than, or addition, subtraction,
multiplication, and division, is satisfied between
two numerical values.

3 Methodology

In this section, we introduce the CNR-NST frame-
work. We first describe the construction of

the entity-numerical knowledge graph embedding
(KGE) model, followed by an explanation of how
the adjacency matrix is used for reasoning and com-
putation in multi-hop queries. Figure 3 provides an
overview of the CNR-NST framework.

3.1 Constructing Numerical and Entity
Adjacency Matrices

Pre-training Framework To address complex
queries involving both entities and numerical val-
ues, we propose the Multi-ComplEx joint train-
ing framework (as shown in Figure 3), based on
the ComplEx model (Trouillon et al., 2016), and
introduce three link predictors: 7 (V, V') € R,
a(V,N) € A, and f (N,N’) € F, which effec-
tively capture relationships among entities, rela-
tions, attributes, and numerical values. The archi-
tecture designed to learn numerical size relation-
ships is presented in Appendix A.2. These triples
are jointly trained with the various types of (h,r, t)
triples from the KG training set, and the scoring
function for the triples is as follows:

> BiRe((h,rj,D) ()

rj E{R,A,G}

f(hyrt) =

where 3; represents the weight parameters under
different types of triple relationships. Among them,
h is the head entity, r; is the relationship, ¢ is the
tail entity, and ¢ represents the conjugate complex
number of the complex vector t. Re refers to the
real part of the complex vector. For any given
triple (h, r, t), the Loss Function for link prediction
training is defined as follows:

Lx=— >

(h,rt)e(RxAXTF)

3 loga(fx (h/,r,t))

(h',r,t)e(]R’ x A ><]F')

logo (fx (h,r,t))—

(6)

> Bx-Lx (7)

X €(RUAUF)

Ejoint =

where X represents various relationships between
numerical attributes and entities, o denotes a hyper-
bolic tangent function, and fx is the cross-entropy
loss function. The training details of the joint train-
ing framework are provided in Appendix A.2.

As demonstrated by the experiments in Section
4.4, the Multi-ComplEX joint training framework
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Computational Processes of Complex Numerical Reasoning over NKG
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Figure 3: Overview of the CNR-NST framework. For complex multi-hop queries, the intermediate variable at each
step is quantified by a score computed via a pre-trained KGE model.

provides substantial improvements in numerical
link prediction compared to methods that train en-
tity and numerical relationships separately.

Scoring Function Using a Multi-ComplEx
model, we can score the likelihood of three atomic
formulas f, (vi,v;), fa(vi,nj), and fr(ng, n; ).
This is achieved by employing neural link predic-
tors f;., fa, fy to infer missing edges in the KG in
the VX R XV, Vx AX N, N x F x N space. The
probabilities of all known triples within the KG are
set to 1, while the probability values of triples out-
side the known KG are modeled to follow the origi-
nal distribution (Arakelyan et al., 2021). We define

the neural adjacency matrix Mp € [0, 1]‘R‘X|V|XW|
.My €0, 1]|A|><\VIXINI , My €0, 1]\Q|><|N|x|/\f|
as:

exp (€ (z4,25) - Nx)
Prevon exp (€ (w3, z5))
Nx = |{(zi,€,2;) € Frrainlri,x; € VUN)}Y

R(zi,z;) = ®)

1 if (zi,&,25) € Firain

R(zi ;) = { min{R(wi,z),l - e}

otherwise
©)
where x represents either a numerical value or
an entity, and & refers to one of the three relation-
ships: R, A, F, Firain represents the training set
in the KG, and z; represents an entity or a numeri-
cal value. The expression (x;, £, z;) refers to any
triple in one of the three categories. The value of €
is typically set to 0.0001. Also note that the matrix
M contains a large number of zeros, and it will
be stored as a sparse matrix, significantly reducing
storage space.

3.2 Fuzzy Representation and Operator
Definition

Fuzzy Set Representation CNR-NST utilizes
fuzzy sets to address the inherent uncertainty
of numerical values. Specifically, for an an-
chored entity v or an anchored numerical value

n, we represent them using an initialization vector
[0,0,...,1,...,0], where the position correspond-
ing to the entity or numerical value is set to 1, with
all other positions set to 0. For intermediate en-
tities or numerical values, we use fuzzy vectors
v,k € [0, 1]|V‘ (n1,..; €10, 1]|N‘), respectively,
to represent their states. The uncertainty present
in complex queries can then be quantified using a
membership function.

UQ) =A{(z,pa(2)) |z € X} (10)

where the element = represents an entity or a nu-
merical value, U (@) denotes the probability that x
satisfies the query (), and the membership function
is HA-.

Numerical Operators There are three types of
numerical operators: attribute projection, reverse
attribute projection, and numerical projection. Let
V* (X = x) represent the maximum truth value of
a subquery rooted at X when z is assigned as an
entity or numerical value. We recursively compute
the V*(X) = [V* (X = 2)],cn € [0, 1] for
each node in the query tree to maximize the overall
truth value of the query tree, ultimately deriving
the truth value V* () at the root node.

When a node is connected to its child node by
an edge, the fuzzy set of the node is calculated as
follows:

V* (z7) = max

: ((v ()T x |X|) @Mx)

(1D
where max; represents the maximum value in the
column, and x can represent either an entity or a
numerical value. M, refers to the entity-value prob-
ability distribution matrix M,, value-entity prob-
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ability distribution matrix M/ or the value-value
probability distribution matrix M.

Numerical complex queries also involve entity-
related operators, such as relation projection, inter-
section, and union. The mathematical formulations
of these operators are provided in Appendix B.3.

3.3 Fuzzy Reasoning and Computation

In this section, we introduce how numerical com-
plex queries are answered using the numerical
atomic queries defined earlier. Starting from the
anchor node X,,.10r, Which can represent either
an entity or a numerical value, numerical reasoning
and computation are executed based on the types
of edges within the query computation tree.

Numerical Reasoning At each step of numerical
complex reasoning, CNR-NST assigns a score
V*(X;) € [0,1]* to each node X, where this
score reflects the likelihood of the query tree with
X+ as the endpoint being satisfied. CNR-NST
then determines the optimal entity assignments by
back-propagating through the query tree:

Vi = ©; (‘/7:17‘/1'27'“ 7‘/;m)

where V; refers to the fuzzy representation of non-
anchor nodes, and ¢ denotes the various prediction
functions applied to numerical values or entities.
Specifically, when V represents a numerical value,

‘Qm/::NWLO%n)

(12)

Numerical Computation It is important to dis-
tinguish between numerical computation and nu-
merical reasoning. Numerical computation in-
volves performing arithmetic operations, such as
addition, subtraction, multiplication, or division,
on numerical values in the KG. In the CNR-NST,
when handling numerical complex queries, the
numerical value at a given step is not a precise
value but instead a fuzzy set [0, 1]|z‘. We inter-
pret coordinate-corresponding numerical values as
membership functions, converting the fuzzy set
into a fuzzy number.

Let R be the real number domain, and let the
mapping R - R — R be a binary operation on the
real number domain (Mordeson, 2001). From this
mapping, a new mapping F' (R) - F'(R) — F (R)
can be induced. Based on the extension principle
in fuzzy mathematics, we can easily derive the
following theorem:

A®B:/R \V (ué(w)/\ug(y)wz (13)

TRY=2

Here, ® can represent the four basic arithmetic
operations on real numbers. For convenience, we
often discretize the real number domain for pro-
cessing, so the above expression is transformed
into:

(14)
z

AwB=Y" Vagy—s (ha (@) A s (y))

As a result of the above derivation, we obtain
a new fuzzy number and a membership set with a
size of [ N|2. To prevent exponential growth in di-
mensionality during multiple numerical operations,
we retain only the components with the highest
membership values. This approach ensures that
the dimensionality of numerical fuzzy sets remains
stable throughout the reasoning process.

3.4 Performance Complexity Analysis

Space Complexity CNR-NST’s memory usage
includes the composite neural adjacency matrix
M,, containing |V |?|R| + |N*|F| + |V||N]||A|
elements. However, as described in Section 4.1,
most values in the neural matrix M, can be filtered
by a threshold e. Experiments show M, can be
stored on a single 24GB GPU.

Time Complexity In the numerical reasoning
process, each variable is computed with a com-
plexity of O (|X2|), where X refers to either nu-
merical values or entities. However, since each
variable contains a large number of zero elements,
the actual complexity of a single query, as derived
from Equation 6, is O (|X| - N - |[V* (X%) > 0]) ,
where IV represents the number of projections.

4 Experiments

4.1 Experimental Setup

Datasets We conducted experiments on three
datasets: FB15K, DB15K, and YAGO15K (Kot-
nis and Garcia-Durén, 2019) (see Appendix B for
details). We used the 8 major categories and 92 sub-
types of multi-hop numerical queries introduced by
NRN (Bai et al., 2023a). A full statistical overview
of these numerical queries is in Appendix B.4.

Baselines We selected the LitCQD (Demir et al.,
2023) model and the three numerical reasoning
models from NRN (Bai et al., 2023a) as our base-
lines. However, because the calculation of average
MRR values in NRN relies heavily on the query
sampling method, and their original dataset did not
include all 92 query types, we expanded the dataset

15496



Dataset ‘ Method ‘ 1rp 2p PPP 2pi 3p3i 2pip pppi 2pu 2pup
FB15K-237 LitCQD | 3476 1143 7.38 37.47 43.71 16.66 23.52 4.25 4.55
) CNR-NST | 35.36 18.11 15.94 43.53 59.02 27.55 36.11 16.55 16.63
FBI5K LitCQD | 85.22 4429 23.54 74.23 71.11 60.17 51.34 13.94 9.66
CNR-NST | 85.24 64.41 52.61 74.78 71.18 69.55 70.18 74.79 60.24
DBI5K LitCQD | 38.55 27.71 19.01 59.17 74.04 36.85 53.84 11.34 16.78
CNR-NST | 36.89 30.01 24.18 60.47 76.46 38.45 54.25 24.29 27.23
YAGO15K LitCQD | 5193 1629 8.74 48.61 66.21 20.91 34.66 4.24 7.29
CNR-NST | 5451 17.14 9.33 54.71 64.58 21.29 36.32 21.88 13.04
Dataset ‘ Method ‘ nr nrp nrpi  lap(MAE) 1lap(MMSE) pa(MAE) pa(MSE) 2pa(MAE) 2pa(MSE)
FB15K-237 LitCQD 094 193 8.73 0.077 0.024 0.051 0.008 0.039 0.004
CNR-NST | 3.73 7.62 13.92 0.051 0.011 0.018 0.002 0.011 0.0007
FBI5K LitCQD 0.05 061 5.72 0.376 0.223 0.386 0.228 0414 0.265
CNR-NST | 1.61 922 16.19 0.048 0.011 0.029 0.006 0.032 0.006
DB15K LitCQD 0.19 1.63 31.68 0.042 0.015 0.039 0.008 0.039 0.006
CNR-NST | 148 3.64 14.59 0.042 0.017 0.017 0.003 0.013 0.001
YAGO15K LitCQD 0.14 099 16.35 0.049 0.007 0.062 0.011 0.079 0.013
CNR-NST | 2.67 145 8.55 0.061 0.013 0.061 0.010 0.058 0.008

Table 2: MRR (%) and MAE, MSE for the types of queries that LitCQD can support.

accordingly. We took into account the differences
in average calculation methods and the number of
queries, and conducted comprehensive comparative
experiments to ensure consistency and accuracy.

Evaluation Protocol For each complex numer-
ical query, answers are labeled “easy” or “hard”
based on whether they can be directly inferred from
existing graph edges. For instance, on the test set,
easy answers are derivable from training/validation
graphs, while hard answers require reasoning over
missing edges. We evaluate complex multi-hop
queries using MRR and Hits@K on the test set
(Zhang et al., 2019).

Implementation Details We first trained multi-
ple KGE models on the training graph, adopting an
extended Multi-ComplEx model, based on Com-
plEx (Trouillon et al., 2016) and incorporating N3
regularization (Lacroix et al., 2018). Next, we de-
rived several computational neural adjacency ma-
trices M, from these KGE models. To reduce the
memory footprint of M, we applied an adjacency
matrix filter A to remove values below a specific
threshold, converting the matrix into a sparse for-
mat that fits storage on a single NVIDIA A40 GPU.

4.2 Main Results

Tables 2 and 3 present CNR-NST’s performance in
complex numerical query reasoning on four pub-
lic datasets. Table 2 compares it with LitCQD,

showing CNR-NST supports more query types and
outperforms LitCQD. Table 3 compares it with
three benchmarks, demonstrating it exceeds base-
lines in nearly all query types (without special-
ized training), with over 100% improvements in
many cases. Table 4 highlights CNR-NST’s aver-
age 300%+ performance gain in numerical answer
queries vs. baselines. We attribute this improve-
ment to the pre-training framework, which predicts
link probabilities between entities and numerical
values and enhances generalization for complex
multi-hop queries (experimental verification in Sec-
tion 4.4). The multiple entity-numerical value rela-
tionships serve as extra constraints in numerical rea-
soning, narrowing the reasoning space and boosting
accuracy. Moreover, fuzzy sets inherently address
the numerical fuzziness in complex reasoning, fur-
ther improving CNR-NST’s task performance.

4.3 Answering Complex Numerical
Computation Query

The 92 aforementioned query types are limited to
single-numerical reasoning. This paper introduces
5 new query types that perform calculations and
reasoning on two or more numerical values in the
KG, further diversifying multi-hop queries. Unlike
previous methods confined to the discrete numeri-
cal domain in KG, we for the first time extend KG
numerical reasoning to the real number domain,
enabling more accurate modeling of real-world KG
queries.
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Dataset | Queryy | Avgy | Method | Avg,, | Ip 2p 2i 3i pi ip 2u up 2b 3b bp pb  2pb
GQE+NRN | 20.04 | 31.69 8.15 3399 41.19 23.10 10.10 7.57 451 - - - - -

Ay Q2B+NRN | 22.36 | 37.01 7.74 36.88 4272 2425 10.09 1561 4.54 - - - - -

EW | Q2P4NRN | 2444 | 4275 12.87 3371 3875 23.14 1323 2316 7.89 - - - - -

7 CNR-NST | 40.78 | 60.26 3835 5149 54.01 36.89 36.16 2491 2419 - - - - -

GQE+NRN | 11.76 | 11.19 424 1885 3466 752 1147 341 273 - - s - -

Q2B+NRN | 12.83 | 1433 387 21.08 3436 8.13 1274 502 3.09 - - - - -

FBI5K Q2P+NRN | 11.62 | 1220 3.31 1943 3357 552 1085 552 236 - - - - -
CNR-NST | 29.64 | 41.11 19.17 37.37 4544 27.14 2627 2291 17.69 - - - - -

Avg | GQE+NRN | 15.05 | 979 459 2783 4544 867 1791 332 2.85 - E - B -

0 Q2B+NRN | 16.20 | 12.04 4.16 2821 48.07 1893 999 502 3.14 - - - - -

Q2P+NRN | 1034 | 9.65 347 1750 2641 1196 547 565 258 - - - - -

CNR-NST | 29.00 | 32.32 23.02 3493 36.69 31.15 2897 25.18 19.74 - - - - -

102 CNR-NST | 2278 | 3232 23.02 3493 36.69 31.15 2897 25.18 19.74 1116 11.51 1029 1896 12.24
GQE+NRN | 10.96 | 1029 253 20.14 3546 1250 252 208 2.14 - - - - -

Av Q2B+NRN | 11.89 | 10.96 271 22.60 37.44 1381 3.05 241 213 - - - - -

EW | Q2P+NRN | 1298 | 1471 381 2375 3666 1447 296 463 28I - - - - -

7 CNR-NST | 2346 | 22.54 1698 36.60 46.59 30.67 1491 840 1096 - - - - -

GQE+NRN | 1091 | 350 272 17.60 4330 1128 554 140 191 E B - B -

Q2B+NRN | 12.01 | 415 278 19.12 4788 1253 631 136 1.98 - - - - -

DB15K Q2P+NRN | 11.90 | 472 3.01 1352 50.03 1381 521 251 241 - - - - -
CNR-NST | 18.77 | 15.69 10.72 30.03 4561 20.84 1447 621 6.64 - - - - -

Avg | GQE+NRN | 1473 | 333 299 2347 5845 19.14 7.2 138 197 - - - - -

0 Q2B+NRN | 1526 | 3.92 321 2516 5724 2083 813 141 219 - - - - -

Q2P+NRN | 10.90 | 471 299 1854 37.47 1398 4.84 246 220 - - - - -

CNR-NST | 22.33 [ 1619 10.68 32.16 5556 29.94 1577 939 8.96 - - - - -

102 CNR-NST | 22.41 | 1619 10.68 3216 5556 29.94 1577 939 896 1227 1139 572 2149 16.94
GQE+NRN | 15.60 | 1479 423 3568 39.94 1829 565 423 196 - - - - -

Av Q2B+NRN | 18.78 | 21.40 459 39.72 4516 19.62 790 9.05 2.82 - - - - -

EW | Q2P+NRN | 14.82 | 2297 570 2570 29.04 1438 540 1187 3.51 - - - - -

7 CNR-NST | 27.71 | 3111 1632 4430 5498 33.64 2148 10.13 971 - - - - -

GQE+NRN | 1553 | 272 320 2672 6276 1801 6.68 170 247 - - - - -

Q2B+NRN | 16.00 | 4.14 3.10 2630 6250 20.83 681 188 245 - - - - -

YAGO15K Q2P+NRN | 17.99 | 7.80 373 36.62 59.57 2235 754 335 296 - - - . .
CNR-NST | 26.00 | 19.55 11.05 45.58 68.13 34.74 1645 631 6.20 - - - - -

Avg | GQE+NRN | 1692 | 259 348 31.13 6228 2519 6.63 1.61 247 - - - - -

0 Q2B+NRN | 17.64 | 320 3.03 3252 6553 2553 740 160 234 - - - - -

Q2P+NRN | 16,50 | 621 371 2830 5339 2551 858 328 3.03 - - - - -

CNR-NST | 22.97 | 1550 11.24 3874 5522 3423 1644 590 645 - - - - -

102 CNR-NST | 19.51 | 1550 11.24 38.74 5522 3423 1644 590 645 1171 1249 592 1894 20.79

Table 3: MRR (%) of all test set query types. Queryy: total query types. Avg,,: average calculation method. Avgy,:
weighted average (by query type count). Avg: direct subclass average. See Appendix A.6 for details.

As shown in Table 3, we define five new query
types: 2b, 3b, bp, pb, and 2pb. The b operator
denotes binary operations (addition, subtraction,
multiplication, division) on two numerical values.
Since the answers to these query types are not
present in the original KG, they generate numerical
subqueries. We adopt the new evaluation metrics
introduced in Section 4.4. Detailed descriptions of
these query types are provided in Appendix D.

4.4 Supplementary Experimental Details

New Evaluation Metrics for Numerical-Type An-
swers In complex multi-hop numerical reasoning,
many queries return numerical answers. Previous
methods used entity-based evaluation metrics for
these queries, which are limited: they ignore differ-
ences between numerical values (e.g., their conti-
nuity) and fail to evaluate queries where numerical
answers are absent from the original KG. To re-
solve this, we propose a new numerical evaluation
metric analogous to Mean Reciprocal Rank (MRR),
denoted as MRR go;. Instead of ranking by exact

numerical match, we determine rank based on the
probability of numerical nodes whose relative er-
ror against the correct answer is below a threshold
(usually 0.001), with ranking calculations applied
only to hard answers.

As shown in Table 4, we re-evaluated the nu-
merical answers across the 102 sub-queries han-
dled by CNR-NST and compared the results with
the baseline model, Q2P. CNR-NST significantly
outperformed Q2P on the new evaluation metric:
while it may not always generate completely ac-
curate answers in numerical reasoning, its perfor-
mance improves substantially within a permitted
error margin, indicating that the inferred answers
are often very close to the correct values. Further-
more, experimental results show that our approach
offers a significant advantage over baseline mod-
els in numerical reasoning tasks, with an average
performance improvement of 200%.

Sensitivity Analysis of the New MRR Metric
At the beginning of this subsection, we propose a
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Dataset Metric ‘ Method ‘ Avgay ‘ Ip 2p 2i 3i pi ip 2u up

MRR Q2P+NRN | 4.91 042 08 9.06 17.75 739 3.17 0.14 047

FBI5K CNR-NST | 20.01 | 17.77 1533 27.87 37.84 28.70 18.38 425 991
MRRo 001 Q2P+NRN | 1.11 | 045 057 144 352 122 046 034 090

: CNR-NST | 24.94 | 22.54 16.41 36.26 46.98 37.83 22.61 7.66 9.26

MRR Q2P+NRN | 291 | 022 049 656 1025 329 212 0.06 031

DB15K CNR-NST | 12.84 | 6.77 593 17.28 26.64 21.03 10.17 781 7.07
MRRy 001 Q2P+NRN | 10.67 | 496 629 458 560 9.66 13.69 1828 2227
' CNR-NST | 24.79 | 1892 1545 25.62 31.61 35.88 24.90 23.24 22.70

MRR Q2P+NRN | 10.63 | 051 1.17 2031 3620 1697 824 031 1.3l

YAGO15K CNR-NST | 1748 | 12.31 11.80 25.16 37.16 25.87 19.38 3.16 5.02
MRRy 001 Q2P+NRN | 19.26 | 5.66 21.09 9.48 1042 13.06 21.80 39.05 33.52

' CNR-NST | 25.36 | 1835 17.39 3292 37.59 34.10 22.37 2324 1691

Table 4: MRR and MRR g91 (%) for the numerical queries. For detailed results, see Appendix A.7.

new MRR metric. To further verify the usability
of the metric, we conduct a sensitivity analysis on
the threshold value of this metric across multiple
datasets, and the specific experimental results can
be found in Figure 4. Through experiments, we
find the change of the new MRR metric is basically
linearly related to the change of its threshold, which
also proves the scientificity and practicability of
this metric.

40

30

20

0.005 0.001
m FB15K DB15K

0.0005
m YAGO15K

Figure 4: Sensitivity analysis of the new MRR metric
and threshold parameter.

Training and Inference Efficiency In Appendix
A.8, we present a comparison of the training time
of CNR-NST with the baseline model. During the
training phase, CNR-NST requires less training
time. Although its inference time is longer, the
total time for both training and inference remains
significantly lower than the time required by NRN.

4.5 Performance of Large Language Models

In this subsection, we utilize several of the currently
most powerful large language models (LLMs) to
accomplish CQA tasks. The specific approach in-
volves providing the LLM with the query statement

structure and the specific entity or relation names,
and instructing it to output answers from the can-
didate options in descending order of probability.
The candidate answers consist of the correct an-
swer and several distractor options that share the
same attributes as the correct answer. The exper-
imental results demonstrate that GPT-5 achieves
the best performance in CQA tasks on complex
KGs. However, it still exhibits a significant gap
compared with our CNR-NST. The experimental
results are shown in Table 5.

Model | 1p 2p 3p 2i 2u
Gemini 2.5 Flash | 3.20 2.15 338 9.78 4.78
Claude Sonnet4 | 2.66 237 228 196 1.24

Deepseek-R1 432  1.17 0.13 054 0%

GPT-40 1576 1259 797 2231 1282

GPT-5 3453 2254 25.82 47.86 39.15

FNRC ‘ 8523 64.39 5540 74.78 4491

Table 5: Performance of various LLMs on MRR metric.

5 Related Work

Complex Query Answering over KG CQA fo-
cuses on reasoning over relationships and enti-
ties in a KG to address complex logical queries.
Early CQA methods relied on logical reasoning
rules to query KGs. Methods like GQE (Hamilton
et al., 2018), Q2B (Ren* et al., 2020), Q2P (Bai
et al., 2022), ConE (Zhang et al., 2021) and BetaE
(Ren and Leskovec, 2020) represent entity sets and
queries using geometric shapes or probability dis-
tributions, utilizing geometric operations (e.g., in-
tersections, projections) or probabilistic operations
for reasoning. Later, CQD (Arakelyan et al., 2021)
introduced a framework capable of handling com-
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plex logical expressions without explicit training
on complex queries. QTO (Bai et al., 2023b) fur-
ther optimized the query computation tree during
complex query processing, improving reasoning
accuracy and reducing the search space. FIT (Yin
et al., 2024) equips the neural link predictor with
fuzzy logic theory and supports complex queries
with provable reasoning capabilities.

Numerical Reasoning over KG Numerical rea-
soning tasks in KGs involve making logical infer-
ences or predictions based on numerical values
associated with entities and relationships. Meth-
ods such as RAKGE (Kim et al., 2023) , KR-EAR
(Lin et al., 2016) , TransEA (Wu and Wang, 2018)
and (Lacroix et al., 2018) utilize attribute learn-
ing to improve numerical reasoning within KGEs.
LiteralE (Kristiadi et al., 2019) enhances KGEs by
incorporating textual information through learnable
parametric functions. HyNT (Chung et al., 2023)
uses the expressive power of Transformers to cap-
ture complex relational structures and numerical
attributes in KGs. Neural-Num-LP (Wang et al.,
2020) learns numerical rules within KGs.

LLMs’ Numerical Reasoning Numerical rea-
soning in LLM involves extracting relevant numer-
ical information from textual descriptions and per-
forming mathematical calculations (Zhang et al.,
2023). MathPrompter (Imani et al., 2023) intro-
duces the Chain-of-Thought (CoT) approach, using
step-by-step prompting to guide models through
solving complex arithmetic problems incremen-
tally. NumeroLogic (Schwartz et al., 2024) de-
fines new numerical formats to handle and execute
arithmetic operations. Program-of-Thoughts (PoT)
(Chen et al., 2023) employs the Codex model to
represent reasoning processes as programs, which
are then executed by external systems to perform
computations and derive final answers.

Complex Query Answering over NKG Re-
search on CQA with numerical values is still lim-
ited. LitCQD (Demir et al., 2023) decomposes
complex numerical queries into subqueries, solving
them via symbolic and numerical reasoning inte-
gration. NRN (Bai et al., 2023a) embeds entities,
relations, and numerical attributes into a shared
vector space, using neural networks to learn and
reason about numerical relationships.

6 Conclusion

In this paper, we present a novel framework for rea-
soning and computation on NKG, leveraging a pre-
trained multi-relational link predictor to infer over
102 types of complex numerical queries. Exten-
sive experiments on three publicly available KGs
demonstrate that our proposed model, CNR-NST,
significantly surpasses previous SOTA methods.
Furthermore, we introduce additional categories
of numerical reasoning tasks and new evaluation
metrics for numerical answers, contributing to the
broader research of multi-hop numerical reasoning.

Limitations

Although we propose the CNR-NST framework,
this work has two limitations. First, relevant experi-
ments lack extremely large KG validation. Second,
practical engineering applicability remains unveri-
fied. Against this backdrop, future work could fo-
cus on two key directions: expanding CNR-NST’s
supported numerical query variety, and enhancing
its applicability in diverse reasoning tasks. These
efforts would address current limitations and pro-
mote the practical value of CNR-NST.
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A Mathematical Proof

A.1 Fuzzy Set-based Numerical Computations

The principle of extension is an important concept in fuzzy mathematics. It describes how to extend a
precise mathematical concept or operation to fuzzy sets or fuzzy values. For example, in the addition
operation of fuzzy numbers, according to the principle of extension, the addition operation of ordinary real
numbers is extended to the field of fuzzy numbers, enabling us to handle the addition of fuzzy numbers
in a way similar to that of ordinary numbers, but we need to take into account the uncertainty of fuzzy
numbers.

This section will demonstrate how mappings in the set of real numbers can be induced into mappings
between fuzzy sets.

First, we explain the concept of induction. Let there be a mapping on the real number domain:

f:U—=V

urv=f(u)

It means that for every element in U, a unique corresponding element can be found in V' through the
mapping f. From this, a new mapping can be induced, which we still denote as f:

f:PU)—P((V)

A~ B = f(A)
f(A) 2 {v]Fuec Alet f(u) =v,v€V}

Among them, the power set P (U) is a set composed of all subsets of U. The key to how a mapping on a
set of real numbers can induce a mapping between fuzzy sets lies in determining the membership function
of the fuzzy set.
The definition of the extension principle is given below: Let f : U — V. From f, we can induce two
mappings:
f:FU)—=FWV),ft:F(V)= FU)

The membership functions of the induced mappings are as follows:

_ \/f(u)zv pa. (u) if JueUlet f(u) =v
Hia~) (v) = { 0 otherwise

Hf-1(B) (u) = UpB,., (U) yo=f (’LL)

Among them,z 4 (u) is the membership degree of the elementu in the fuzzy set A..
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o N o O A~ W N

Real Number Set Mapping Fuzzy Sets Mapping

Figure 5: Visualization of the extension principle and the corresponding relationship between the operations of the
set of real numbers and fuzzy sets.
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A.2 Details of the Training Procedure for the Multi-ComplEx

-0.55 -0.39 -0.38 0.28 3.58 327.28 1986.2 2013.2 2013.25 331112.28 113252152.2

I I I I I I I I I I I >
Triplet generation {} % Smaller than
1
(-0.39, 3, -0.55) (-0.39, 1, -0.38) (1132521522, 2, 331112.28) ) Equal to
(0.28, 3, -0.38) (2013.2, 1, 2013.25) (1986.2, 0, 2013.2) —’3 Twice Bigger than
(0.28, 0, 3.58) (2013.25, 2, 327.28) —> Bigger than

Figure 6: Numerical relationship triplet generation based on the values in the training set for pre-training of the
model.

During the joint pre-training stage of CNR-NST, the objective function of the Multi-ComplEx model is
defined as follows:

fa(h,r,t) = Re((h,ra,t))
fB (h,r,v) = Re ((h,rg,V))
fo (m,r,n) = Re ((m, rc,n))

where h, t denotes the entity embeddings, r refers to the embeddings for different types of relations, and
v, m, n represents the numerical embeddings.

We employ cross-entropy loss as the optimization objective. For each triplet (h, r, t), the loss function
for each predictor is defined as follows:

La=— Z logo (fa(h,r,t)) + Z loga(—fA<h/,r,t)>

(h,rt)€R (B rt)eR’

Lp=— Z logo (fg (h,r,n)) + Z Iog0<—f3(h/,r,n>>

(h,r,n)€A (h/ ,T,n)GA'
Lo=— Z logo (fo (m,r,n)) + Z loga<—fc (m,,’r,n))
(m,r,n)€F (ml,r‘,n)EIF/

The loss functions of the three predictors are weighted and combined to form a joint loss function, where
the weights are denoted by Wg 4y and Wy . These weights can be adjusted based on the task’s
requirements and importance. The joint loss function is defined as follows:

Lijoint = LA+ Wgav - L+ Wyrpy - Lo

To prevent overfitting, regularization terms are often incorporated into the loss function. L1 and L2
regularization can be applied to control the magnitude of the model parameters. For each predictor, the
regularization term is defined as follows:

2 2 2 2 2 2 2 2
Q:A<IIhII Fleall® 1"+ lesll™ + [[vI" + [lm][* + [frcll +IIHII>

The final joint objective function incorporates both the loss function and the regularization terms, and is
given by the following expression:
L= Ejoint +Q
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A.3 Mathematical Representation of Multi-hop Logical Reasoning

This section will use mathematical expressions to explain and infer various logical operators and mappings
involved in complex numerical reasoning.

Let V* (X7 = z) represent the maximum truth value of the subquery at the root node = when node X
is assigned a value x.
Assuming that the root node x is formed by merging sub-node {x%, ey :c7K } by intersection, the
maximum truth value of the query is given by the following expression:

V* (iL'? = 6) = TlSiSKV* (.’E7 = 6)
V* (IL’? = TL) = TlgigKv* (a:7 = Tl)
S V@)= [ V' (ah)

1<i<K

Similarly, when the root node is merged by union, the following expression applies:
V*(xr =€) = Lici<g V" (z7 =€)
V*(x7 =n) = Li<i<gV* (27 =n)
» Vi@ =1- [ (-v @)
1<i<K

When the root node is connected to its child edges through any relational edge, the maximum truth value
of the query with this node as the root is expressed as shown in Equation 9 in the main text. Depending on
the type of relation, the expression has the following four variations:

V* (v7) = max ((V* (vp) " x |U|) ©) ME>

V* (n7) = max ((V* (vp) " -+ x |v\> O] MA)

V* (07) = max ((V* ()T -+ % W) ® M,Zl)

V* (n7) = max ((v () -+ x my) © MF)

A.4 Supplementary Task Definitions

Numerical FOL Query A complex numerical query is defined in existential positive first-order logic
form, which can be recursively defined as:

1. Atomic Formulas: If ¢1,%9,...,t, are variables or constants, and P is an n-ary predicate, then
P (t1,ta,...,t,) is an atomic formula.

2. Compound formulas: It can be constructed using logical connectives A (and), V (or), and quantifiers V
(for all) and J (there exists).

Numerical Complex Query Answering As every logic query can be converted into a disjunctive
normal form, the complex query Q on a KG with numeric literals (G) can be defined as:

q[X:]=Vi,..., Vi €V,N1,...,N;eN:ciVeaV-- Ve,

ci=¢€e1Ne2/N - Neim

Here, c; represents a conjunction of several atomic logical expressions e; j, where each e; ; can be one
of the following expressions:

ei;=r(V,V'), with V, V' € {V1,..., Vi}, V£V reRr

eiwjZG(V,N),WithVE{Vl,...,‘/i}7NE{Nl,...7Nj},(L€A
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iy =F(N,N'), with N, N’ € {N1,...,N;},N #N’,
fe{s, ==+ —-x,+...}

In the above equation, the variable F represents a subset of entity V, and the variable C represents a
subset of the numerical attribute set N. The binary function r; determines whether a class ¢ relationship
exists between two entities. The function a; determines whether an entity possesses a value for attribute j.
The function f checks whether a filtering condition, such as greater than or less than, is satisfied between
two values. The function by determines whether a quadratic operation between the first two values yields
an answer.

The objective of complex reasoning is to find a valid assignment for the variables such that the query
q [X~] holds true. The incompleteness of the KG introduces uncertainty, which implies e; ; is no longer a
binary variable. Instead, it stands for the likelihood that the correspondence holds, and its generalized
truth value ranges between [0,1]. For this reason, as follows (Arakelyan et al., 2021), we formalise Eq.(1)
as an optimisation problem:

q[X?}:X?.Vl,...,WGV,Nl,...,Nj eN =
argmax (e1 1T ... Teim)L...L(en1T... Tenm)

where e, ,,, is the probability score inferred by Multi-ComplEx based on the corresponding atomic formula.
1 and T are generalisations of fuzzy logic over [0,1] for conjunctive and disjunctive extraction, and we
chose the product t-norm and t- connorm (Héjek, 2001) as natural connectives in fuzzy logic in this paper.

A.5 Reasoning Process of Fuzzy Sets in the Application of Logical Operators

Based on Formula in the main text, the calculation process of logical operators in the query for CNR-NST
is as follows.

If root V* (x7) is aggregated from multiple child nodes {V?l, V?2 . ?K }, then:

Vi) = J] Vi ()

1<i<K

where x represents any node. For other definitions, you can refer to Formula 8 in the main text.
Similarly, the union of the child nodes is shown as follows:

Vi) =1- [[ (1-V ()

1<i<K

A.6 Main Experimental Results

Here, we present the MRR results for all 102 sub-queries on our dataset. We applied two sampling
methods on the public datasets FB15K, DB15K, and YAGO15K, resulting in 77 query types using the
NRN sampling method and 92 query types using our improved method. Additionally, we provide detailed
results for the 10 extended numerical computation query types.

The detailed data shows that, while Q2B+NRN and GQE+NRN exhibit decent performance on some
sub-tasks involving intersection, they perform poorly on other tasks. Q2P+NRN demonstrates better
overall performance, but our CNR-NST model significantly outperforms Q2P+NRN in both average
performance and numerical query tasks (see Section 4.2 of the main text for average performance).

99_.99

The definition of query subclass names: “’p” stands for ”Relation Prediction”, ”a” stands for ”Attribute

99 99 099 99 99 99 99 99 99

Prediction”, ’r” stands for "Reverse Attribute Prediction”, ’n” stands for "Numerical Prediction”, "u

99 99299

stands for ”Union”, ”i” stands for "Intersection”, and ”’b” stands for "Binary Operator”.
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Query_num ‘ Method Irap 1rp lap Inp pa ar p ra an 2n 2p nr
GQE+NRN | 1.62 30.64 - 131 930 025 1240 1.12 1.07 229 681 0.71
77 Q2B+NRN | 2.16 39.56 - 126 9.66 026 889 070 099 267 7.09 0.71
Q2P+NRN | 1.79 40.95 - 0.06 1372 0.64 1107 101 010 009 7.80 0.70
CNR-NST | 795 8521 - 30.15 31.51  6.13 4093 443 204 269 6421 143
GQE+NRN | 1.36 31.18 522 141 1091 025 1323 132 204 1.61 6.69 0.72
0 Q2B+NRN | 221 3925 5.14 157 11.17 035 876 0.62 230 242 6.84 081
Q2P+NRN | 0.26 3752 078 0.05 297 0.07 13.01 030 0.12 0.06 1075 044
CNR-NST | 798 8523 479 3131 31.61 6.16 4689 161 1746 1449 6439 1.61
Query_num ‘ Method 2pi 2ai pri rpi 2ri 2ni nai ani
GQE+NRN | 27.65 - 2997 30.11 480 1.70
77 Q2B+NRN | 31.41 - 31.18 3141 9.64 177
Q2P+NRN | 37.22 - 3573 36.05 2585 0.02
CNR-NST | 73.21 - 49.12 4569 1653 230
GQE+NRN | 27.83 58.17 30.11 30.70 3.61 130 35.64 3527
0 Q2B+NRN | 31.29 5234 31.17 31.75 6.52 144 3591 3522
Q2P+NRN | 33.30 22.45 30.89 3050 098 021 10.76 1091
CNR-NST | 7478 3578 49.23 49.75 16.86 893 23.52 20.61
Query_num ‘ Method 2na3i  3n3i  2p3i rpr3i nan3i n2a3i 2rp3i  3r3i  prp3i  p2r3i 3p3i  2pr3i  2an3i  3a3i  a2n3i  ana3i
GQE+NRN - 1.98 4198 38.00 - - 37.26 - 4196 4190 32.65 4155 - - - -
77 Q2B+NRN - 231 43.18 39.67 - - 34.31 - 4335 3445 3537 4225 - - - -
Q2P+NRN - 0.03  47.59 56.41 - - 47.67 - 4754 4233 3981 4754 - - - -
CNR-NST - 5.89 54.02 52.10 - - 48.90 - 5430 61.05 71.02 5424 - - - -
GQE+NRN | 4998 1.74 42.07 29.54 4999 8345 4036 030 41.67 4154 3290 42.67 49.53 8723 49.99 84.09
9 Q2B+NRN | 50.00 1.68 4323 3722 4940 84.72 2739 048 4258 39.52 3527 4227 8577 9519 49.76 84.70
Q2P+NRN | 15.83 0.22 43.53 3649 1570 24.81 2890 7.14 4292 3983 37.79 4399 2690 1588 1576 2693
CNR-NST | 1521 3.64 6049 59.37 1486 25.08 5395 263 4212 61.14 71.18 59.59 27.14 4998 14.88 25.79
Query_num ‘ Method pria aair  ppia  ppip  prip rpip rrip rpia aain nain nair anin  nnin  nnir anir rria
GQE+NRN | 2690 0.18 1331 11.80 1233 1277 11.07 2638 1.05 0.75 122 062 167 1.03 021 0.04
77 Q2B+NRN | 26.66 0.19 1534 1249 1294 1328 1480 2787 134 080 026 066 2.14 098 0.26 0.05
Q2P+NRN | 17.44 034 1797 1358 1671 16.02 1897 1531 0.08 0.07 0.61 007 009 032 062 100.00
CNR-NST | 3580 896 37.60 70.38 6506 71.14 77.86 35.13 245 134 335 128 098 071 3.28 5.04
GQE+NRN | 26.80 0.16 1885 12.13 1241 1258 1024 2498 564 6.13 020 597 148 098 0.17 0.04
9 Q2B+NRN | 2423 0.14 2020 1248 1298 13.55 14.60 2747 929 730 024 744 157 093 730 0.06
Q2P+NRN | 836 0.08 634 1460 1571 1521 1564 794 072 097 0.07 090 0.09 077 0.06 0.03
CNR-NST | 39.33 896 4138 69.55 7199 7222 7819 4329 1259 803 298 822 458 058 123 043
Query_num ‘ Method pppi  ppri arpi rppi arri rpri nnai pani nnni  anni anai rani nrpi raai nrri paai
GQE+NRN | 17.71 19.05 26.19 21.09 2.58 21.33 - 9.89 197 1.00 - 231  10.80 - 371 -
77 Q2B+NRN | 22.02 1931 27.32 23.15 530 20.02 - 11.51 259 1.23 - 2.85 13.09 - 4.44 -
Q2P+NRN | 24.88 2235 36.27 47.54 13.85 2854 - 1828 0.03  0.02 - 3.02 19.05 - 26.01 -
CNR-NST | 70.71 33.50 46.23 61.24 21.40 42.30 - 883 144 205 - 1524 16.25 - 6.44 -
GQE+NRN | 17.70 19.55 2540 21.37 222 2124 3987 1534 1.65 743 4195 260 11.08 579 272 50.67
9 Q2B+NRN | 21.18 20.63 26.84 23.03 438 21.07 4035 1693 195 727 4254 1.69 1278 592 434 5196
Q2P+NRN | 23.36 2094 26.58 2388 1.17 2156 1641 526 028 127 1407 028 1208 326 267 1831
CNR-NST | 70.18 37.36 4838 66.26 10.02 40.18 3724 739 7.23 857 39.58 205 16.19 4842 263 56.79
Query_num ‘ Method 2pu rpu 2ru pru 2au 2nu anu nau
GQE+NRN | 797 814 055 797 1.19 052 048 046
77 Q2B+NRN | 12.65 1195 035 11.85 131 0.62 074 0.67
Q2P+NRN | 1943 1987 0.60 1898 045 0.11 0.08 0.09
CNR-NST | 75.52 48.03 1.12 48.03 4.10 1.01 277 275
GQE+NRN | 791 773 057 7777 096 055 054 052
90 Q2B+NRN | 12.66 11.87 042 11.78 1.17 067 082 0.77
Q2P+NRN | 14.72 1474 0.09 1510 0.11 0.15 0.16 0.15
CNR-NST | 7478 5243 202 5228 1.19 415 740 722
Query_num ‘ Method 2pup 2pua prup prua anun anur 2aur 2aun  naur naun 2nun  2nur  2rup 2rua  rpua rpup
GQE+NRN | 555 526 571 377 083 059 087 033 065 083 072 075 7.11 094 383 5.92
77 Q2B+NRN | 587 647 6.2 545 1.10 054 070 045 058 102 089 065 692 102 556 6.10
Q2P+NRN | 6.03 1075 7.55 931 009 062 339 0.10 062 0.08 008 058 815 1.13 8.05 6.91
CNR-NST | 59.62 19.31 5235 19.72 097 146 243 091 1.47 095 085 1.12 46.03 122 2017 54.58
GQE+NRN | 551 597 567 422 099 065 105 071 067 09 064 076 676 092 422 5.86
9 Q2B+NRN | 551 689 6.05 500 164 054 071 105 062 158 088 068 679 109 5.11 6.09
Q2P+NRN | 9.17 1.00 872 088 018 036 075 015 041 022 015 046 878 039 079 8.87
CNR-NST | 60.23 25.69 5693 2268 325 095 237 561 095 353 233 073 4998 146 2262 56.55
2b 3b bp pb 2pb
Query-num Method aab  aaab  aabr aabn raab paab rarab rapab parab papab
102 CNR-NST | 1839 17.56 4.08 5.64 16.62 2824 7.23 14.68 1553 2693

Table 6: Detailed MRR results (%) in the FB15K test set.
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Query,num‘ Method ‘ 1rap 1rp lap 1np pa ar p ra an 2n 2p nr
GQE+NRN | 1.48 535 - 132 681 048 7.81 1.88 024 035 7.65 0.34
77 Q2B+NRN | 1.63  9.37 - 141  6.87 0.61 6.53 1.72 0.28 0.35 8.26 0.23
Q2P+NRN | 0.12 26.72 - 0.01 10.58 0.02 14.06 046  0.02 0.01 3.49 0.05
CNR-NST | 2.96 54.60 - 21.10 1327 171 1840 456 1941 7.66 2239 1.01
GQE+NRN | 1.18 585 1.83 149 587 037 8.21 1.93 1.97 0.35 8.78 0.34
90 Q2B+NRN | 153 876 148 1.04 516 041 6.21 1.30 2217 0.34 8.28 0.26
Q2P+NRN | 0.56 2325 0.65 037 324 035 9.18 0.57 0.71 0.16 1522 0.25
CNR-NST | 2.71 5098 242 2221 1340 183 2081 502 2162 7.4 2258 1.10
Query,num‘ Method 2pi 2ai pri pi 2ri 2ni nai ani
29.89 - 3494 37.07 30.80 0.90 - -
77 Q2B+NRN | 25.69 - 3335 3255 39.12 0.77 - -
Q2P+NRN | 35.52 - 58.84 56.40 30.96 0.01 - -
CNR-NST | 46.65 - 56.10 51.93 63.00 10.20 - -
29.92 60.58 30.57 3234 31.01 0.62 3259 3144
9 Q2B+NRN | 2491 67.49 2886 3557 37.78 083 3354 31.21
Q2P+NRN | 39.24 3937 3480 39.88 3123 029 21.16 2042
CNR-NST | 42.30 4542 50.36 53.06 6352 591 24.64 24.69
Query,num‘ Method ‘2na3i 3n3i  r2p3i  rpr3i nan3i n2a3i 2rp3i 3r3i  prp3i  p2r3i  3p3i  2pr3i  2an3i 3a3i a2n3i ana3i
GQE+NRN - 0.84 5755 83.64 - - 88.75 100.00 53.10 85.00 4520 50.79
77 Q2B+NRN - 0.82 53.73 84.85 - - 89.58 100.00 55.80 86.11 40.52 51.10
Q2P+NRN - 0.01 8039 77.47 - - 100.00  50.00 78.75 100.00 40.03 100.00
CNR-NST - 248 70.65 8333 46.18 - 88.89  100.00 76.04 87.18 5548 71.13
GQE+NRN | 46.21 0.63 65.17 89.29 46.18 80.63 87.50 20.00 69.88 100.00 4561 6749 80.70 77.32 45.81 82.00
90 Q2B+NRN | 47.56 0.83 6545 80.36 4573 8123 70.83 100.00 61.02 100.00 40.68 6345 8025 8574 45.88 79.57
Q2P+NRN | 3237 321 63.70 73.81 3229 4626 61.11 100.00 6586 80.00 55.13 6496 46.69 4873 3191 48.12
CNR-NST | 2141 6.62 76.67 9286 2250 48.66 70.83 100.00 80.44 7222 5336 7044 4843 55.60 2140 42.10
Query,num‘ Method ‘ pria aair  ppia  ppip  prip rpip rrip rpia aain nain nair anin nnin  nnir  anir rria
GQE+NRN | 1995 0.53 16.69 14.02 12.88 1143 7.56 14.03  0.12  0.09 0.33 0.10 031 030 032 815
77 Q2B+NRN | 17.51 040 1946 1136 1426 1498 11.94 1086 0.11 0.08 0.39 0.09 030 023 038 6.67
Q2P+NRN | 35.66 0.05 18.10 507 8.69 847 7.38 20.28  0.01 0.01 0.03 0.01 0.01 0.05 0.03 0.02
CNR-NST | 4249 172 2649 2329 2671 2685 2382 3854 7.69 11.20 153 1072 476 088 138 15.14
GQE+NRN | 14.89 0.17 1633 13.81 12.00 12.07 8.84 14.66 497 6.13 0.28 6.27 024 029 029 312
90 Q2B+NRN | 1446 0.16 17.71 1273 11.39 1232 10.88 1834 544 530 0.16 5.79 037 031 031 274
Q2P+NRN | 2092 031 1509 19.22 1744 1729 1631 1656 435 3.78 0.27 3.91 013 025 025 1.19
CNR-NST | 39.19 1.58 24.12 26.16 2442 2662 2556 4620 9.70 10.82 1.57 1157 454 077 137 890
Query,num‘ Method ‘pppi ppri arpi ppi arri rpri nnai pani nnni anni anai rani nrpi raai nrri paai
GQE+NRN | 23.16 3230 2797 2452 - 28.02 40.38 - 586 083 - 0.23 3.03 11.56 - 18.28
77 Q2B+NRN | 19.72 3565 33.90 26.07 - 2972 41.82 - 6.12 0.85 - 0.50 2.83  20.62 - 32.11
Q2P+NRN | 15.15 52.74 39.31 24.52 - 33.18 49.27 - 12.74  0.01 - 0.01 1.22 1295 - 27.96
CNR-NST | 39.56 52.59 51.24 43.73 - 69.50 5574 - 1220 5.54 - 3025 8.06 17.27 - 31.27
GQE+NRN | 22.79 31.00 35.16 2393 4633 3495 4385 30.71 10.13 0.66 7.68 3843 348 1220 42.01 19.85
90 Q2B+NRN | 19.49 40.11 2830 2321 4291 3296 4340 3056 829 0.66 6.02 36.53 289 2032 3933 3345
Q2P+NRN | 32.87 3829 3875 3235 36.01 31.80 40.73 1940 935 0.54 588 2728 126 2728 36.01 30.28
CNR-NST | 38.01 53.34 4427 4235 5394 6277 5033 3062 1382 504 7.14  36.67 745 17.01 5227 32.65
Query,num‘ Method ‘ 2pu pu 2ru pru 2au 2nu anu nau
GQE+NRN | 479 370 040 3.70 039 031 0.16 0.16
77 Q2B+NRN | 427 382 034 433 049 071 0.53 0.58
Q2P+NRN | 13.76 1535 0.04 16.03 0.03 0.01 0.05 0.01
CNR-NST | 1463 9.63 1.14 980 110 291 5.36 5.88
GQE+NRN | 450 339 039 346 041 039 0.16 0.18
9 Q2B+NRN | 331 3.69 024 399 037 057 0.31 0.33
Q2P+NRN | 11.63 7.07 023 6.07 0.14 025 0.45 0.42
CNR-NST | 1486 940 128 9.06 1.17 199 4.79 4.67
Query,num‘ Method ‘Zpup 2pua prup prua anun  anur 2aur 2aun  naur  naun  2nun  2nur  2rup  2rua  rpua  rpup
GQE+NRN | 590 375 571 319 025 024 424 0.11 0.27 0.25 0.46 0.42 379 1.68 349 575
77 Q2B+NRN | 507 3.11 603 357 037 0.21 3.60 0.13 0.22 0.39 0.95 034 426 164 354 5.68
Q2P+NRN | 3.00 336 536 3.13 0.01 006 18.16 0.01 0.08 0.01 0.01 0.05 757 060 3.62 4.88
CNR-NST | 16.57 1043 1450 921 2.03 049 1.35 4.45 0.54 2.60 1.58 053 I1.15 226 828 1325
GQE+NRN | 770 3.68 6.06 4.11 071 024 416 0.45 0.27 0.69 0.40 0.42 332 190 327 5.1
90 Q2B+NRN | 6.27 269 623 294 111 0.15 2.12 040  0.18 091 0.87 0.21 350 148 314 528
Q2P+NRN | 9.82 272 884 192 058 0.20 5.08 024 023 056 045 0.34 584 192 215 7.66
CNR-NST | 1820 10.56 1505 7.89 254 044 1.38 3.98 0.33 2.39 1.47 033 1244 253 883 14.86
2b 3b bp pb 2pb
Query-num Method aab  aaab aabr aabn raab paab rarab  rapab parab papab
102 CNR-NST ‘ 11.71 1249 085 11.00 1349 2440 1329 21.67 2585 2233

Table 8: Detailed MRR results (%) in the YAGO15K test set.
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A.7 Detailed Experimental Results of the New Evaluation Metrics

Dataset Method lap Inp an pa ra 2n 2ai ani 2ni nai
FBISK Q2P+NRN | 0.79 0.11 0.12 097 1.07 0.11 .11 2.02 031 23]
CNR-NST | 20.56 24.51 2570 15.66 8.96 1530 66.03 26.65 27.15 2521
DB15K Q2P+NRN | 887 1.06 283 7.83 1201 248 887 296 358 2.89
CNR-NST | 17.41 2042 17.19 17.65 17.77 9.19 46.09 25.03 1795 1342
YAGOI5K Q2P+NRN | 453 6.78 20.51 593 281 5510 532 481 2152 6.26
CNR-NST | 19.06 17.64 21.23 19.01 12.12 17.20 4576 31.11 20.68 34.12
Dataset Method paai pani anni anai nnai nnni  rani raai
FBISK Q2P+NRN | 1.72 202 045 132 137 040 091 153
CNR-NST | 63.62 25.76 27.27 4629 3946 18.67 1996 61.60
DB15K Q2P+NRN | 774 6.78 3.00 328 3.14 530 2035 27.71
CNR-NST | 56.27 21.29 26.04 44.89 5148 1422 29.59 43.30
Q2P+NRN | 695 826 24.14 522 488 4547 443 513
YAGO15K
CNR-NST | 55.52 2046 2299 3858 38.17 21.62 1795 5747
Dataset ‘ Method 2pia  pria  2ain  anin  rpia 2ria 2nin  nain
FBI5K Q2P+NRN | 142 096 0.11 0.13 0.72 003 0.12 0.13
CNR-NST | 20.63 35.04 22.28 2854 32.89 642 12.02 23.07
DB1SK Q2P+NRN | 625 1697 7.51 325 20.18 4458 649 430
CNR-NST | 23.59 3434 739 16.13 40.18 5693 853 12.08
YAGO1SK Q2P+NRN | 620 291 27.87 3973 198 0.81 5638 38.59
CNR-NST | 23.67 2241 1544 2653 2621 2240 1742 24.89
Dataset Method 2na3i  3n3i nan3i n2a3i 2an3i 3a3i a2n3i ana3i
FBISK Q2P+NRN | 285 050 3.18 205 286 1127 3.1 237
CNR-NST | 27.19 32.68 36.71 53.68 57.51 78.05 35.18 54.86
DB15K Q2P+NRN | 2.14 7.04 199 800 637 792 359 772
CNR-NST | 19.93 23.69 20.74 3590 3297 5471 2570 39.22
YAGOISK Q2P+NRN | 742 36.03 7.73 722 653 523 768 5.50
CNR-NST | 31.78 26.41 28.08 47.05 45.61 5537 28.83 37.60
Dataset Method aau 2nu nau 2pua prua anun 2aun naun 2nun  2rua = rpua
FB15K Q2P+NRN | 047 029 026 193 166 028 028 036 034 074 1.64
CNR-NST | 491 6.22 11.86 11.29 1405 525 1032 630 3.15 1144 1225
DB15K Q2P+NRN | 3.76 2726 23.82 1092 22.80 23.24 2793 22.11 21.73 26.77 22.64
CNR-NST | 6.51 20.87 2499 16.80 19.57 20.23 2934 2494 17.87 26.63 26.22
YAGO15K Q2P+NRN | 296 57.48 56.71 634 557 6038 6293 59.76 6390 3.08 6.18
CNR-NST | 937 26.67 33.67 13.43 1325 20.12 3321 20.13 1454 8.79 11.80

Table 9: Detailed MRR g1 results (%) in all test set.
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A.8 Detailed Experimental Results of the Training and Inference Efficiency

As shown in Table 10, during the training phase, CNR-NST only requires training on single-hop queries
involving numerical values and entities, resulting in shorter training times compared to NRN, which must
train on the entire dataset. CNR-NST’s inference process requires calling a pre-trained prediction model
at each step of the reasoning chain. In contrast, NRN has fixed neural network dimensions, which allows
for faster inference. However, even on a dataset with 400,000 queries, CNR-NST completes the inference
in just four hours, which is still significantly less time than what NRN requires for training.

etho raining_time 1 1 1 1] u u
Method | Training_ti Ip  2p 2 3 pi ip 2 p 2b 3b  bp pb  2pb

Q2P+NRN 32.40 0.13 0.14 025 033 024 026 028 0.29 - - - - -
CNR-NST 0.22 3.06 15.83 453 10.09 21.19 16.66 4.54 3951 6.07 7.75 603.78 80.81 528.20

Table 10: Training and inference times on the FB15K dataset (training time in hours, inference time in ms/query).

A.9 Ablation Study of the Pre-training Framework

Dataset Pre-training Framework | Avgr.q EREtest EAVTest VFVrey

FBI5K ComplEx 37.21 81.96 5.51 24.15
Multi-ComplEx 60.61 82.23 6.78 92.83

DB15K ComplEx 2742 47.22 6.97 28.08
Multi-ComplEx 51.63 47.25 11.26 96.36

ComplEx 23.25 46.46 1.98 21.32

YAGOISK Multi-ComplEx 4442  48.34 3.39 81.53

Table 11: MRR results (%) for the predictors (ERE, EAV, VFV) on the validation and test sets.

As shown in Table 11, we performed an ablation study in the pre-training framework. In the single
ComplEx model, the three types of link predictors share parameters, whereas in the Multi-ComplEx
model, parameters are not shared. Results show the Multi-ComplEx model significantly outperforms the
ComplEx model in numerical prediction tasks. Moreover, knowledge embedded in entity relationships
greatly enhances numerical prediction accuracy and improves complex numerical query performance.
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B Dataset Statistics

B.1 Numerical Sparsity of the Dataset

In this section, we present the numerical sparsity in the three public datasets FB15K, DB15K, and

YAGO15K.
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Figure 7: Numerical distribution across the three public datasets.

As shown in the three figures above, the horizontal axis represents the logarithmic transformation of
actual values, while the vertical axis shows the frequency of occurrences. We observe that most values are
concentrated in a specific region, yet the overall range of values remains broad, highlighting the numerical

sparsity characteristic of NKGs.

B.2 Knowledge Graph Contruction

Table 12 presents the detailed information for constructing KGs from the original datasets, from which we
will randomly sample to form queries.

Dataset Data Split | Nodesy Rely  Attry  Relggges  Attrggges Numggges
Training 25,106 947,540 20,248 27,020
FB15K Validation | 26,108 1345 15 1,065,982 22,779 27,376
Testing 27,144 1,184,426 25,311 27,389
Training | 31,980 145,262 33,131 25,495
DB15K Validation | 34,191 279 30 161,978 37,269 25,596
Testing 36,358 178,394 41,411 25,680
Training | 32,112 196,616 21,732 26,616
YAGOI5K | Validation | 33,078 32 7 221,194 22,748 26,627
Testing 36,358 245,772 23,520 26,631

Table 12: The statistics of the three KGs.
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B.3 Dataset Information for Pre-training

Table 13 shows the training dataset information used for our pre-training framework Multi-ComplEx. The
VFV triples are as defined by us, and the dataset splits are identical to those in Table 14.

Dataset Data Split | ERE Triad EAV Triad VFV Triad

Training 473,770 20,248 220,421
FB15K Validation 59,221 2,531 27,553
Testing 59,222 2,532 27,553
Training 79,222 33,145 296,006
DB15K Validation 9,903 4,143 37,001
Testing 9,903 4,144 37,001
Training 98,308 18,816 229,804
YAGO15K | Validation 12,289 2,352 28,725
Testing 12,289 2,352 28,726

Table 13: Details of the datasets used for pre-training.

B.4 Sample Queries from Graph

Figure 8 provides a visual representation of the structure for most of the 102 query types. Tables 14 and 15
present the distribution of 13 major query types and 102 subquery types sampled from the three datasets.
Note that these quantities only include the test set. Since CNR-NST does not require training on complex
queries, we only sample from the test set and conduct experiments. Supplementary explanation: in the
Query_Name column of the table, ’p” stands for relation prediction, “ap” stands for attribute prediction,
abbreviated as ”a”, "np” stands for numerical prediction, abbreviated as ”n”, and “rap” stands for reverse
attribute prediction, abbreviated as ’r”. For example, PAAi refers to the intersection operation between a
two-hop query involving one relation prediction and one attribute prediction and a single-hop query of
one attribute prediction, with the final answer being a single numerical value. In contrast, PRuA denotes
an operation where the union of one relation prediction and one reverse attribute prediction is followed by
an attribute prediction, and the final answer consists of multiple numerical values. Table 16 shows the
percentage of inference paths present on the top edge of the test set for each query type sampled on our
dataset, reflecting to some extent the difficulty of the queries we sampled.
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Figure 8: The visualization includes 102 complex numerical reasoning query types, displaying a subset. These
structures can combine to form more intricate queries. At the bottom, we present newly defined numerical
computation queries.

15515



Type ‘ Query Name

Query Structure Definition

FB15K DBI15K YAGOI5K

Inp Cov', Cnp’,)) 1737 3894 1271
b lap Ce’, Cap’,) 2306 3407 2326
Irap (Cnv’, (Crap’,)) 1059 1085 1133
1p Ce’, (rp’,) 19953 3029 6208
an (Ce’, Cap’), Cnp’,) 2735 4070 1641
2p e, (), C1p’,) 18355 2088 1273
nr (Cnv’, Cnp’,)), Crap’,)) 2329 2197 1277
) 2n (Cnv’, Cnp’,), Cnp’,)) 2146 4655 2204
P ra (Cnv’, Crap’,)), Cap’,)) 587 2481 924
pa (e, Crp’,), Cap’,)) 5257 4833 2988
ar (Ce’, Cap’,)), Crap’,) 4570 5072 3662
p (v, Crap’,), Cip’,)) 5549 2615 2470
ani Ce’, Cap’,)), Cnv’, Cnp’,)), (C1’,)) 7176 14727 10576
2pi (Ce’, Crp’,), Ce’, Crp’,), (1)) 25720 1192 2574
nai Cnv’, Copy), Ce, Cap’,)), (i) 7473 14829 10607
” 2ni (Cnv’, Cnp’,)), Cov’, Cnp’,)), (i) 9196 13349 7765
2ai (Ce’, Cap,), Ce’, Cap’), (i) 1976 2307 3343
rpi (v, Crap’,)), (e’ Crp’y)), (i%y) 5221 229 132
pri (Ce, Crp’,), Cnv’, Crap’,)), (i’,) 5161 214 135
2ri (v, Crap’,)), Cnv’, Crap’,)), Ci’,) 109 896 61
nan3i (Cnv’, Cnp’)), Ce, Cap’y), Cnv’, Cnp’y), (i) | 12747 21454 15296
2pr3i (Ce’, Crp’,)), Ce’, Crp’,)), Cnv’, (Crap’,)), (1’,)) 3515 19 52
n2a3i (Cnv’, Cnp’,)), Ce’, Cap’,)), Ce’, Cap’,)), (1’,)) 3703 3735 5989
2p3i (v, Crap’y), Ce’, Crp’y), Ce”, Crpy), (i) 3527 16 45
a2n3i Ce’, Cap’,)), Cnv’, Cnp’,)), Cnv’, Cnp’,)), (i’,)) 12641 21321 15287
3p3i (Ce’, Crp,)), (e, Crp,)), (e, (rp’,)), (1)) 18859 294 898
p2r3i (Ce’, Crp’,)), Cnv’, Crap’,)), Cnv’, (rap’,)), (1’,)) 93 6 6
3 2na3i (Cnv’, Cnp’,)), Cnv’, Cnp’,)), Ce’, Cap’,)), (i’,)) 12459 21500 15285
3a3i (Ce’, Cap’y), Ce’, Cap’,)), Ce’, Cap’,)), ('i’,)) 1977 1327 2454
ana3i (Ce’, Cap’,)), Cnv’, Cnp’,)), Ce’, Cap’,)), (i) 3625 3723 5921
3n3i (Cnv’, Cnp’,)), Cnv’, Cnp’,)), Cnv’, Cnp’,)), (i’,)) 11444 11950 12818
prp3i (Ce’, Crp’,)), Cnv’, Crap’,)), Ce’, Crp’,)), (i) 3562 24 46
2an3i (Ce, Cap’,), (e’ Capy), Cnv’, Cnpy), (1)) | 3724 3716 5874
2rp3i (Cnv’, (rap’,)), Cnv’, Crap’,)), (e, Crp’,)), (1’,)) 97 5 4
rpr3i (Cnv’, (Crap’,)), Ce’, (rp’,)), Cnv’, Crap’,)), (i’,)) 97 2 7
3r3i (Cnv’, Crap’,)), Cnv’, Crap’,)), Cnv’, Crap’,)), (i’,)) 1 17 4
2pip ((Ce’, Crp’,), Ce’, Crp’,)), C17,), Crp’,) 14745 783 828
nair ((Cnv’, Cnp’,)), Ce’, Cap’,)), (1’,)), Crap’,)) 4849 4748 4436
2pia (Ce’, Crp’), Ce’, Crp’), (1°,), Cap’,)) 7104 3468 1960
2nir ((Cnv’, Cnp’,)), Cnv’, Cnp’,)), (i’,)), Crap’,)) 8581 4588 6937
nain ((Cnv’, Cnp’,)), Ce’, Cap’,)), (1’,)), Cnp’,)) 5846 9170 5772
2nin ((Cav’, Cnp’,)), Cnv’, Cnp’,)), (i’,)), Cnp’,)) 5064 8043 6116
2air ((Ce’, Cap’,)), Ce’, Cap’,)), ('1’,)), (rap’,)) 4196 4068 3189
ip rpip ((Cnv’, (rap’,)), Ce’, Crp’,)), Ci’,)), Crp’,)) 5910 754 740
anin ((Ce’, Cap’,)), Cnv’, Cnp’,)), (i), Cnp’,)) 5906 9225 5898
prip ((Ce’, Crp’,)), Cnv’, (rap’,)), (1’,)), (rp’,)) 6020 814 723
2rip ((Cnv’, (Crap’,)), Cnv’, Crap’,)), ('i’,)), (rp’,)) 1683 996 464
2ain (Ce’, Cap’,)), Ce’, Cap’,)), (Ci’,)), Cnp’,)) 2262 2289 1981
anir ((Ce’, Cap’,)), Cnv’, Cnp’,)), (i’,)), Crap’,)) 4851 4581 4484
rpia ((Cnv’, Crap’,)), Ce’, Crp’,)), C1’,)), Cap’,)) 434 157 22
pria ((Ce’, Crp’,)), Cnv’, (rap’,)), C1’,)), Cap’,)) 379 168 23
2ria ((Cnv’, Crap’,)), Cnv’, ('rap’,)), ('1’,)), Cap’,)) 11 459 13

Table 14: The number and types of queries sampled from the three datasets. (1)
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Type ‘ Query Name ‘ Query Structure Definition ‘ FBISK DBI15K YAGOI15K

anni ((Ce’, Cap’,)), Cnp’,)), Cnv’, Cnp’,)), (i’,)) 7960 13633 9102
rppi ((Cnv’, Crap’,)), Crp’ ), Ce’, Crp’), (%) 6511 618 1381
nrpi ((Cnv’, Cnp’,)), Crap’,)), Ce’, Crp’,)), (i’,)) 13161 2829 5621
paai (Ce’, Crp’,)), Cap’,)), Ce’, Cap’,)), (i’,) 1333 1245 1349
2nni ((Cnv’, Cnp’,)), Cnp’,)), Cnv’, Cnp’,)), (i’,)) 6975 11904 11132
pani (Ce’, Crp’,)), Cap’,)), Cnv’, Cnp’,)), (i’,)) 10097 10100 7629
2nai ((Cnv’, Cnp’,)), Cnp’,), Ce’, Cap’,)), ('i’,)) 4537 11300 7658
. anai (Ce’, Cap’,)), Cnp’,), Ce’, Cap’,)), (i’,)) 4468 9727 7520
P 2ppi ((Ce”, Crp’), Crp’), Ce’, Crp’)), (1)) 16875 541 1063
nrri ((Cnv’, Cnp’,)), (rap’,)), Cnv’, Crap’,)), (’1’,)) 1375 3247 1291
2pri ((Ce’, Crp’,), Crp’,)), Cnv’, Crap’,)), (Ci’,)) 5806 91 64
rani ((Cnv’, Crap’,)), Cap’,)), Cnv’, Cnp’,)), ('1’,)) 804 3258 1398
arpi ((Ce’, Cap’,)), Crap’,)), Ce’, Crp’,)), (1)) 2933 139 131
rpri ((Cnv’, Crap’,)), Crp’,)), Cnv’, Crap’,)), (i’,)) 1467 570 112
arri (Ce’, Cap’,)), (rap’,)), Cnv’, (Crap’,)), (’i’,)) 104 732 73
raai ((Ce’, Crap’,)), Cap’,)), Cnv’, Cap’,)), C1’,)) 65 11 42
pru (Ce’, Crp’,), Cnv’, Crap’,)), (u’,)) 14157 5705 6783
2pu (Ce’, Crp’,), Ce’, Crp’,)), Cu’y)) 19129 3734 2964
anu (Ce’, Cap’,)), Cnv’, Cnp’,)), Cu’,)) 12581 23056 20887
2 2nu (Cnv’, Cnp’,)), Cnv’, Cnp’,)), Cu’,)) 11988 21767 11051
rpu (Cnv’, Crap’,)), Ce’, Crp’,)), Cu’,)) 14195 5591 6641
nau (Cnv’, Cnp’,)), Ce’, Cap’,)), Cu’,)) 12757 23000 21086
2ru (Cnv’, Crap’,)), Cnv’, (Crap’,)), (u’,)) 9359 7740 14718
2au (Ce’, Cap’,)), (e’, Cap’,)), (u’,) 2548 5497 3840
2aur (Ce’, Cap’,), Ce’, Cap’,)), Cu’,)), (rap’,)) 3403 2913 3922
rpup ((Cnv’, Crap’,)), Ce’, Crp’,)), Cu’,)), (rp’,)) 6871 1718 1259
2aun ((Ce’, Cap’,), Ce’, Cap’,)), Cu’,)), Cnp’,)) 6705 12892 10000
naur ((Cnv’, Cnp’,)), Ce’, Cap’,)), Cu’,)), Crap’,)) 7195 5387 12506
2pup ((Ce’, Crp’), Ce’, Crp’), Cu’,), (rp’,) 10171 1022 574
rpua ((Cnv’, Crap’,)), Ce’, Crp’,)), Cu’,)), Cap’,)) 3494 3352 1770
anun ((Ce’, Cap’,)), Cnv’, Cnp’,)), Cu’,)), Cnp’,)) 7186 14110 9244
2nur ((Cnv’, Cnp’,)), Cnv’, Cnp’,)), Cu’,)), (rap’,)) 8816 6578 9445
up anur ((Ce’, Cap’,)), Cnv’, Cnp’,)), Cu’,)), Crap’,)) 7071 5473 12582
2rup ((Cnv’, Crap’,)), Cnv’, Crap’,)), Cu’,)), Crp’,)) 4336 2610 2807
naun ((Cnv’, Cnp’,)), Ce’, Cap’,)), Cu’,)), Cnp’,)) 7337 14341 9114
2pua (Ce’, Crp’,)), Ce’, (rp’,)), Cu’,)), Cap’,)) 6981 3095 1245
2nun ((Cnv’, Cnp’,)), Cnv’, Cnp’,)), Cu’,)), Cnp’,)) 7575 14475 8895
prup ((Ce’, (rp’,)), Cnv’, (Crap’,)), Cu’,)), (rp’,)) 6779 1673 1204
prua (Ce’, Crp’,), Cnv’, Crap’,)), Cu’,)), Cap’,)) 3631 3295 1768
2rua ((Cnv’, (rap’,)), Cnv’, Crap’,)), Cu’,)), Cap’,)) 864 4971 2133
2b | aab \ (Ce’, Cap’,), Ce’, Cap’,), (b)) | 1997 1997 1997
3b ‘ 3ab ‘ (Ce’, Cap’,)), (e’, Cap’,)), (e’, Cap’,)), ('b’,) ‘ 1997 1997 1997
2ab aabr ((Ce’, Cap’,)), Ce’, Cap’,)), (b)), Crap’,)) 885 431 1690
P aabn ((Ce’, Cap’,)), Ce’, (Cap’,)), ('b,)), (np’,)) 1110 1565 305
2ab raab ((Cnv’, Crap’,)), Cap’,)), Ce’, Cap’,)), Cb’,)) 349 862 1225
p=a paab (Ce, Crp’)), Cap’,), (e, Cap ), (b)) 1647 1134 771
rarab | (Cnv', Crap’), Cap'), (Ce’, Crp'), Cap’)), (b)) | 510 365 826
dp2ab | PR | (v, Crapt), Cap), (Cnv, Crap’), Cap')), Cb) | 99 504 481
parab ((Ce’, (rp’,)), Cap’,)), (Cnv’, Crap’,)), Cap’,)), (b)) 519 517 457
papab ((Ce’, Crp’,)), Cap’,)), (Ce’, Crp’,)), Cap’,)), (b)) 866 608 230

Table 15: The number and types of queries sampled from the three datasets. (2)
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Dataset AVG 2p 2i 3i pi ip 2u up

FB15K 0.7537 0.6505 0.9123 0.9007 0.7506 0.5644 0.7364 0.7612
DBISK | 0.6298 0.5488 0.6892 0.5695 0.5483 0.6915 0.6178 0.7433
YAGO15K | 0.6048 0.5627 0.7651 0.6628 0.6924 0.5106 0.6272 0.4128

Table 16: Percentage of edges on the inference path that exist in the test set.

C Model Hyperparameter Settings and Training Details

The hyperparameter settings for CNR-NST are shown in Table 17. W,.; refers to the score weight of the
relation, W 4y refers to the task score weight in joint training, and Thrshd refers to the threshold of the
corresponding adjacency matrix. Thrshds,,y refers to the filtering value for numerical fuzzy sets during
binary operations, which is used to speed up the inference process.

‘ Training Epoch ‘ Learning Rate  Ranking Decayl Decay?2 Wiel Wgavy Wypy

Multi-ComplEx ‘ 100 0.05 500 0.9 0.999 4 5 0.1
Fraction ‘ Thrshdgrg Thrshdgay  Thrshdypy  Thrshdfyzzy  Neggeqe
Reasoning Model | 10 | 0.001 0.0001 0.0001 0.001 6

Table 17: Hyperparameter settings of CNR-NST.
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D Examples of Numeric Queries

This section presents a subset of query types from the 102 sub-queries that involve numerical reasoning
and computation. We selected several queries with real-world significance to demonstrate that most of our
query types are capable of reflecting real-world scenarios.

For some query answers (e.g., 1ap), there is only one correct answer, but we still present the top 5
inferred answers. Additionally, for queries with too many answers, we skipped some of the correctly
predicted easy answers to focus on demonstrating that our model can still infer the correct hard answers.

Logical Expression: Q [N?] = N, AN7, a; (e1, No)
Q:What's Bradford's longitude? Rank Query Answers  Correctness ~ Answer type
Bradford v 1 53.69 X -
) 2 53.8 v Hard
Latitude 3 515 X B
4 51.48 X -
5 51.51 X -
Figure 9: Intermediate variable assignments and ranks for example lap query.
Logical Expression: Q[N7] = N7, 3No, f1 (n1, N7)
Rank Query Answers Correctness Answer type
1 2002.17 4 Easy
2 1988.33 v Easy
Q:What are the years earlier than 2003? 3 72202 X -
4 2003 X -
2003.0 v 5 1920.92 X -
) 6 1963.92 4 Easy
Earlier than 7 10934.93 X R
8 1911.5 X -
9 1950.83 v Easy
10 1977.33 4 Easy
11 1948.67 v Easy
12 1974.5 v Easy
13 1948.92 v Hard

Figure 10: Intermediate variable assignments and ranks for example Inp query.

Logical Expression:  Q [N7] = N7, 3Ng, a1 (e1, No) A fi (Ng, N2)

Rank Query Answers Correctness ~ Answer type
Q:What are the populations of half the number of people in City A? 1 53827.00 v Easy
Key West " v 2 52966.00 v Easy
Al F1 3 53326.00 v Easy
Q 4 53066.00 v Easy
, 5 53025.00 v Hard
A1:  population_number

6 53374.00 v Easy
F1:  approximately_two_times_equal_to 7 53437.00 ‘/ Easy

8 53483.00 X -
9 53838.00 v Easy
10 53311.00 v Easy

Figure 11: Intermediate variable assignments and ranks for example an query.
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Q:When was the first showing of the TV show that aired on CBS?

CBs

Gm@m

R1:  program

v

F1:  air_date_of_first_episode

Logical Expression:

Q[N7] = N7, 3Eq, 71 (e1, Ea) A ay (Eq, N7)

Rank Query Answers Correctness  Answer type
1 1978.32 4 Easy
2 1992.75 v Easy
3 1985.75 v Easy
4 1993.67 4 Easy
5 1990.75 4 Easy
26 1960.83 4 Hard
27 1996.75 v Hard
28 2000.42 X -
29 1959.83 4 Easy
30 1972.75 v Easy

Figure 12: Intermediate variable assignments and ranks for example pa query.

46351.0 u v
F1 F2

F1:  approximately_equal

F2:  approximately_three_times_equal_to

Logical Expression:

Q [N2] = N¢,3Ng, f1 (n1, Na) A f2 (Na, No)

Rank Query Answers  Correctness ~ Answer type
1 137776 v Hard
2 138296 v Easy
3 137555 4 Easy
4 139790 v Easy
5 139390 X -

Figure 13: Intermediate variable assignments and ranks for example 2n query.

Which number s three times smaller than 5038976.0
and approximately equal to 73580.0?

735800 u
F1

s
i v
5038976.0 u
F2 g
LN

F1: approximately_equal

F2:  three_times_larger_than

Logical Expression:

Q [N2] = N2, AN7, f1 (1, N2) A fa (ng, N7)

Rank Query Answers Correctness  Answer type
1 73615.00 4 Hard
2 73485.00 4 Easy
3 73208.00 v Easy
4 7791 X -
5 -85.17 X -

Figure 14: Intermediate variable assignments and ranks for example 2ni query.

Who is a voice actor by profession and is about 1.65m tall?

1.65 u

Voice Actor

A1: person.height_meters

R1:  people_with_this_profession

Logical Expression:

Q[E;] = B»,3Er, a7 " (n1, E7) A (e1, Er)

Rank Query Answers Correctness  Answer type
1 Debi Mazar v Easy
2 Andrea Bowen v Easy
3 Jan Holm v Easy
4 Breckin Meyer v Easy
5 Mel Brooks v Easy
6 Christina Applegate v Easy
7 Roy Kinnear v Easy
8 Nathan Lane v Hard
9 Molly Shannon X -
10 Common X -
11 Anna Paquin v Hard

Figure 15: Intermediate variable assignments and ranks for example rpi query.
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Which number is the date San Francisco was built
and is approximately equal to the 1764.0 and
approximately twice the 891.0?

1764.0 u
F1
—_— Logical Expression: @ [N2] = N2,3N>, a; (e1, N?) A f1 (n1, No) A fo (na, No)
891.0 u v Rank Query Answers ~ Correctness Answer type
F2 1 1776.50 4 Hard
2 1763.83 X -
San Francisco u 3 1765.00 )( ~
Al 4 1775.67 X -
5 1776.67 X -

F1: approximately_equal
F2: approximately_two_times_equal_to

A1: location.date_founded

Figure 16: Intermediate variable assignments and ranks for example 2na3i query.

Who has a career as both an actor and a television
producer while being about 1.71m tall?
Actor u

Logical Expression:  Q [E7] = E»,3E7, 11 (e1, E?) Ara (e2, E2) A n]’l (n1, E»)

Television Producer v Rank Query Answers  Correctness Answer type

1 Ellen DeGeneres v Easy
2 Candice Bergen v Easy
3 Joan Chen v Easy
4 Martin Lawrence v Easy
5 Martin Short v Easy
6 Kirstie Alley v Hard

R1:  people_with_this_profession
R2:  people_with_this_profession

A1:  person.height_meters

Figure 17: Intermediate variable assignments and ranks for example 2pr3i query.

Who is an actor by profession is about 1.88m tall
and was born in 1964?

Actor u

Logical Expression:  Q [E»] = E», 3E2, 71 (e1, E?) A al’l (n1, E?) A a;l (na, E7)

Rank Query Answers  Correctness Answer type
1 Brendan Coyle v Easy
2 Benjamin Bratt v Hard
3 Til Schweiger X -
4 Igbal Theba X -
5 Ray Romano X -

R1:  people_with_this_profession
A1: person.date_of_birth

A2: person.height_meters

Figure 18: Intermediate variable assignments and ranks for example p2r3i query.

Who had friends who were 1.91m tall and died in 1997.58?

Logical Expression:  Q [E?] = E»,3E», 1 (Ey, E2) A (EFJL.(LII (n1, B1) Aay ' (na, Ey))

1997.58 u
Rank Query Answers  Correctness Answer type

v 1 Henry Fonda v Easy

2 Robert Taylor v Easy

3 Myrna Loy v Easy

4 Clark Gable v Easy

5 Robert Young v Easy

6 Joan Crawford v Easy

Al:  date of death 7 Loretta Young v Easy
- 8 James Stewart X -

A2:  person.height_meters 9 Bette Davis v Hard
10 Lucille Ball X -

R1:  friends

Figure 19: Intermediate variable assignments and ranks for example 2rip query.
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When did the person born in Brooklyn and was about 1.57 tall die?
1.57 u

Logical Expression:

QIN:] = No,3No, a1 (Ey, No) A (31, a5 (n1, Ev) Ay (e1, Er))

v
Rank Query Answers  Correctness Answer type
Brooklyn 1 2014.75 v Easy

2 2014.33 v Hard

3 2014.17 X -

4 2001.67 X -
A1:  person.height_meters 5 2011.42 X -
A2: date_of death
R1:  people_born_here

Figure 20: Intermediate variable assignments and ranks for example rpia query.

When was the death of the person who won both
the World Fantasy Award and was nominated for the Hugo Award?

World Fantasy Award u n n - -
Logical Expression:  Q [N7] = N2, 3N2, a1 (E1, No) A (3E1, 71 (e1, E1) Ara (e, Er))
v Rank Query Answers  Correctness Answer type
1 1916. v E
Hugo Award 916.67 Easy

2 1929.83 v Easy
3 1934.43 v Hard
4 1911 v Hard

R1:  award_winner 5 1947.75 X -

R2: award_nominee

A1:  date_of birth

Figure 21: Intermediate variable assignments and ranks for example 2pia query.

What is the race of the people in the film Eragon whose actors are about 1.7m tall?

Eragon u

Logical Expression:

QB = By, 3By, 1y (Ey, B) A (3E1, a7 " (n1, Ey) Ay (e, En))

v
Rank Query Answers  Correctness Answer type
1 English people v Easy
2 Jewish people v Easy
3 Ashkenazi Jews v Easy
4 Hungarians v Hard
R1:  actor 5 ‘White Americans X -
R2: award_nominee
A1:  person_ethnicity

Figure 22: Intermediate variable assignments and ranks for example rpip query.

Which films are based on Shawn Wayans and were released around 2003?

2003.0 u u
F1 A1

Logical Expression:

QIEr] = E»,3Es, 11 (B, Br) A (3B2, fi (n1, N1) Aap ! (N4, Er))

Rank Query Answers  Correctness Answer type
Shawn Wayans 1 Scary Movie 3 v Easy
2 Pride & Prejudice v Easy
3 Scary Movie 4 v Hard
4 Scary Movie X -
F1:  approximately_equal 5 Kill Bill Volume 1 X -

R1: film_story_contributor

A1: film.initial_release_date

Figure 23: Intermediate variable assignments and ranks for example nrpi query.
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Who have won awards founded in 1988 and are 1.88m tall?

1988.0 u
A1l
O Logical Expression:  Q [Ey] = Ey,3Er, a7 (n1, B2) A (3E2,a5" (na, Ex) Ay (By, 7))
v
Rank Query Answers  Correctness Answer type
1.88 1 James Coburn v Easy
2 Ray McKinnon v Easy
3 Djimon Hounsou v Hard
4 Morgan Freeman v Hard
R1:  award_nominee 5 Danny Huston X -

A1: location.date_founded

A2:  person.height_meters
Figure 24: Intermediate variable assignments and ranks for example rpri query.

Which NFL teams have the all-time superstar position of
punter and have players born in 1962.83?

1962.83 u u
A1 Logical Expression:  Q [Er] = Ey, 3By, 7y (e1, E2) A (32, a3 " (n2, By) Ar (B, Er))
v Rank Query Answers Correctness Answer type
punter 1 New England Patriots v Easy
2 Buffalo Bills v Easy
3 Los Angeles Chargers v Easy
4 Chicago Bears v Hard
R1:  sports_team_roster 5 Toronto Argonauts X -
R2:  football_historical_roster_position
A1: person.date_of_birth
Figure 25: Intermediate variable assignments and ranks for example rppi query.
Which films are in the same genre as Sideways and were released in 2008.75?
Sideways u u
R1 R2
Q—» Logical Expression:  Q [Ey] = Er,3E2,a;" (n1, E2) A (3Er, 11 (1, E1) Ara (B, Er))
v
Rank Query Answers Correctness Answer type
200875 1 The Brothers Bloom v Easy
2 Zack and Miri Make a Porno v Easy
3 Nick and Norah’s Infinite Playlist v Easy
4 Management v Hard
R1:  netflix_genres 5 Good X -

R2:  netflix_genre

A1: film.initial_release_date

Figure 26: Intermediate variable assignments and ranks for example ppri query.

Which number is the release date of Breakfast at Tiffany's or approximately equal to 23398.0?

Logical Expression: ~ Q [Nv] = No,3Nv, a1 (e1, N?) V f1 (n1, No)

Breakfast at Tiffany's u
Al ) Rank Query Answers Correctness  Answer type
union
1 1961.83 v Easy
23398.0 . 2 23260.00 v Easy
— 3 23504.00 v Easy
4 23307.00 v Easy
A1: film.initial_release_date 5 23398.00 v Easy
6 23549.00 v Hard
F1:  three_times_larger_than
Figure 27: Intermediate variable assignments and ranks for example anu query.
Which entities are the subject of Austin Powers: International Man of Mystery or
cities with a longitude of -111.94 degrees? Logical Expression: @ [E,] = E», A, r (51’ E:,) vV a;l (nl , E‘!)
-111.94
: Rank Query Answers Correctness  Answer type
Austin Powers: International 1 action film / Easy
Man of Mystery 2 comedy v Easy
3 spy film v Easy
4 parody 4 Easy
A1:  geocode.longitude 5 Tempe / Easy
6 Gullaug v Hard

R1:  film/genre

Figure 28: Intermediate variable assignments and ranks for example rpu query.
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Which events were organised in 1927.33 or 2012.17?
2012.17 u

1927.33

A1:  event.start_date

A2:  eventstart_date

Logical Expression:

Q[Es] = E», EiE'g.afl (n1, E2) vV u;l (n2, E7)

Rank Query Answers Correctness ~ Answer type
1 84th Academy Awards v Easy
2 Chinese Civil War v Easy
3 54th Annual Grammy Awards v Easy
4 62nd Berlin International Film Festival v Easy
5 49th Annual Grammy Awards X -
6 38th People’s Choice Awards X -
7 80th Academy Awards X -
8 60th Academy Awards X -
9 65th British Academy Film Awards v Hard

Figure 29: Intermediate variable assignments and ranks for example 2ru query.

What is the longitude of the area in which Carol Burnett's institution or

the film in which Martin Freeman appeared was released?
Carol Burnett u

Martin Freeman

R1:  education/institution

R2:  performance/film

A1:  geocode.longitude

Logical Expression:  Q [N2] = N2, 3N7, a1 (Ey, N2) A (3E1, 71 (e1, E1) V 72 (e, Er))
Rank Query Answers  Correctness Answer type
1 -118.34 v Easy
2 -118.44 v Hard
3 97.74 X .
4 -87.67 X -
5 12,93 X -

Figure 30: Intermediate variable assignments and ranks for example 2pua query.

‘What musical compositions or companies came from places

neighbouring Ashtabula County or from people who died in 1941.08?

Ashtabula County u

1941.08

R1:  adjoins
R2:  music/artist/label

A1:  person.date_of_death

Logical Expression:  Q [E»] = E», 3Ey, 11 (E1, E2) A (EEl.m (e1, E1) V a;l (n1. Ey))

Rank Query Answers Correctness Answer type
1 Virgin Records v Easy
2 Columbia Records v Easy
3 Vanguard Records v Easy
4 Koch Entertainment v Easy
5 Warner Bros. Records X -
6 MCA Records v Hard

Figure 31: Intermediate variable assignments and ranks for example rpup query.

What are the musical compositions and categories of a place with an

area of 53.23 or a person born in 1919.42?

53.23 u

1919.42

A1:  location.location.area
A2: person.date_of_birth

R1:  /music/artist/label

Logical Expression:  Q [Ey] = Bz, 3Ey, 1 (Ey, Ey) A (3E1. a7 (1. B1) V ay ' (na. Er))

Rank Query Answers Correctness Answer type
1 Columbia Records v Easy
2 Vanguard Records v Hard
3 Warner Bros. Records X -
4 EMI X -

Figure 32: Intermediate variable assignments and ranks for example 2rup query.

What is the height of a person born in 1964.33 or a person born in 1951.58?

1964.33 u

1951.58

A1 person.date_of_birth
A2: person.date_of_birth

A3: person.height_meters

Logical Expression:

QL

= Ny, 3Ny, a1 (E1, No) A (3E1, a3 (ny, Er) V ag " (na, Bv))

Rank Query Answers ~ Correctness Answer type

1 1.75 v Easy
2 1.70 v Easy
3 1.88 v Easy
4 1.68 v Easy
5 1.85 v Easy
6 1.78 v Easy
7 1.82 v Easy
8 173 X -

9 1.65 v Hard

Figure 33: Intermediate variable assignments and ranks for example 2rua query.
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What is the longitude of a film or television production released in 1912.0 or
the capital of Durham?

1912.0 u
Logical Expression: @ [N7] = Ny, 3Ny, a1 (Ey, N2) A (3B1, a3 (ny, By) Vi (e1. Bv))
v
Rank Query Answers  Correctness Answer type
1 -73.96 v Easy
2 -1.57 v Hard
3 -122.25 X -
4 -74.01 X -
5 -117.07 X -

A1:  date_of first_episode

A2: geocode.longitude

R1:  location/contains

Figure 34: Intermediate variable assignments and ranks for example rpua query.

What is the sum of Lubbock'’s total population and Hamilton's founding date?

Lubbock u

A1l
b
M Logical Expression:

Q[N-]

3Ny = Ny + Naf3N1, a1 (e1, N1) . 3Ny, az (e2, Na)

Hamilton u b Rank Query Answers  Accurate Answers  Correctness ~ Answer type
A2 1 237858.00 237881 v Hard
2 237905.00 - X -

A1: population_number

A2: dated_location.date_founded

Figure 35: Intermediate variable assignments and ranks for example aab query.

What is the number that approximately equals the total population of
Syracuse to the longitude of the Inner Hebrides?

u
Al - - = ALY - -
( ) b Logical Expression:  Q [N7] = Nz, 3Nz, (f1 (2 Ny + No| 3Ny, a1 (e1, N1) , 3Nz, az (e2. N2))
u v Rank Query Answers ~ Correctness Answer type

Inner Hebrides u F1 1 7981900.00 v Easy
b 2 8041685.00 v Easy
A2 3 8053574.00 v Easy
4 8015348.00 v Easy
5 8081957.00 v Easy
6 8084000.00 v Hard
7 7977000.00 v Hard

A1:  population_number

A2: geocode.latitude

F1: approximately_equal

Figure 36: Intermediate variable assignments and ranks for example aabn query.

What is the sum of the date of birth of the person who won an Olympic
medal with A and the longitude of Rockville?

Lamar Odom u u
R1 Al
b
v Logical Expression: ~ Q [N2] = Nz, 3Nz, (fi (N3, N7)) A (3N3 = Ny + Naf3Ny, 71 (e1, 1) Aay (Er, Ni), 3Na, az (e2, No))
Rank Query Answers ~ Accurate Answers  Correctness Answer type

Rockville u b 1 1907.85 1907.27 v Hard
A2 2 1898.35 1898.35 v Easy
3 1899.18 1899.18 v Easy
4 1904.93 1904.93 v Easy

5 1899.27 - X -

A1:  person.date_of_birth
A2: location.geocode.longitude

R1:  olympic_medal_honor/medalist

Figure 37: Intermediate variable assignments and ranks for example paab query.
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What is the sum of the time of incorporation of the city situated at
longitude -5.93 degrees and the area of the city contained in Alaska?

Alaska u u
R1 A2
b
v
Logical Expression:  Q [N2] = N2, 3Ny, (1 (N3 N2)) A (3N3 = Ny + Nal3Ni. 1 (ex, Ex) Ay (Er,Ny) . 3No. s (e, Ea) A az (Ez. Vo))
-5.93 \ u u b Rank Query Answers_ Accurate Answers _ Correctness “Answer type
Al A3 1 8885.10 8885.10 v Easy
2 67272.10 67272.10 v Easy
3 3048 332048 v Easy
4 6928.23 6928.23 v Hard
A1:  location.geocode.longitude

A2: location.location.area
A3 organization.date_founded

R1 location/contains

Figure 38: Intermediate variable assignments and ranks for example parab query.
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