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Abstract
Large Language Models (LLMs), despite
their remarkable capabilities, are hampered
by hallucinations. A particularly challenging
variant, knowledge overshadowing, occurs
when one piece of activated knowledge inad-
vertently masks another relevant piece, leading
to erroneous outputs even with high-quality
training data. Current understanding of over-
shadowing is largely confined to inference-time
observations, lacking deep insights into its
origins and internal mechanisms during
model training. Therefore, we introduce
PHANTOMCIRCUIT, a novel framework
designed to comprehensively analyze and
detect knowledge overshadowing. By innova-
tively employing knowledge circuit analysis,
PHANTOMCIRCUIT dissects the function of
key components in the circuit and how the
attention pattern dynamics contribute to the
overshadowing phenomenon and its evolution
throughout the training process. Extensive
experiments demonstrate PHANTOMCIRCUIT
’s effectiveness in identifying such instances,
offering novel insights into this elusive
hallucination and providing the research com-
munity with a new methodological lens for its
potential mitigation. Our code can be found in
https://github.com/halfmorepiece/PhantomCircuit.

1 Introduction

Large Language Models (LLMs) have witnessed
explosive growth in recent years, demonstrating
remarkable capabilities across a multitude of do-
mains, including natural language understanding,
generation, reasoning, and even cross-modal tasks
(Chang et al., 2024; Zhao et al., 2024; Yan et al.,
2025a, 2024a; Xun et al., 2025). Their proficiency
has catalyzed transformative advancements in vari-
ous applications. However, a persistent challenge
that tempers their widespread adoption and relia-
bility is the phenomenon of hallucination. Broadly,
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Figure 1: Illustrative comparison of previous research
with inference-time analysis (b) and observation-based
explanation (c) vs our proposed PHANTOMCIRCUIT (d)
on knowledge overshadowing (a).

hallucinations refer to instances where models gen-
erate content that is factually incorrect, nonsensical,
or unfaithful to the provided source context, despite
appearing coherent and fluent (Rawte et al., 2023;
Chakraborty et al., 2025; Wang et al., 2025).

While substantial research has been dedicated
to understanding the causes and detection of gen-
eral hallucinations, a specific variant known as
“knowledge overshadowing” warrants deeper in-
vestigation (Zhang et al., 2024b, 2025a). This
phenomenon is particularly perplexing because it
can manifest even when models are trained on
high-quality, meticulously curated pre-training cor-
pora. Current understanding, primarily derived
from inference-time observations, characterizes
overshadowing as a scenario where, for a given
query, one piece of activated knowledge inadver-
tently “overshadows” another relevant knowledge.
This interference ultimately biases the model’s rea-
soning process, leading to a hallucinatory output,
as illustrated in Figure 1 (a).

Nevertheless, existing explorations into knowl-
edge overshadowing suffer from notable limita-
tions. ❶ They predominantly focus on inference-
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time analysis, as shown in Figure 1 (b). While
valuable for identifying the occurrence of over-
shadowing, such observations offer a surface-level
understanding and often fall short of elucidating
how these detrimental patterns are learned during
the training phase. ❷ The explanations for over-
shadowing are often speculatively inferred from
these observational outcomes rather than being
rigorously investigated through dedicated inter-
pretability tools that can probe the model’s internal
decision-making mechanisms, as shown in Figure
1 (c). Consequently, a more comprehensive ana-
lytical framework is imperative to dissect this phe-
nomenon from its origins to its manifestation.

To bridge this gap, we introduce PHANTOM-
CIRCUIT, a novel framework designed to com-
prehensively analyze and detect the knowl-
edge overshadowing phenomenon. Specifically,
PHANTOMCIRCUIT facilitates an in-depth exami-
nation of the evolution of overshadowing halluci-
nations throughout the training process, correlat-
ing their emergence and prevalence with core fac-
tors such as knowledge popularity, model size, and
dataset size. Then, by leveraging knowledge cir-
cuit analysis as a key interpretability technique, we
aim to trace the flow of information and the forma-
tion of knowledge representations within attention
heads, thereby uncovering the internal mechanisms
giving rise to overshadowing. Furthermore, we pro-
pose to optimize the number of edges within these
circuits, thus alleviating the knowledge overshad-
owing. As illustrated in Figure 1 (d), our overall
work aims to provide a clearer, mechanistic under-
standing and potential strategies for this elusive
type of hallucination.

Our contributions can be summarized as follows:

• We introduce PHANTOMCIRCUIT, the first com-
prehensive framework designed to systematically
analyze and detect knowledge overshadowing,
delving into its mechanistic nature and evolution
throughout model training.

• We pioneer the use of knowledge circuit analy-
sis to dissect the internal workings of attention
heads, specifically elucidating how competing
knowledge pathways contribute to the overshad-
owing phenomenon.

• We conduct extensive experiments to demon-
strate PHANTOMCIRCUIT ’s efficacy in detect-
ing knowledge overshadowing, offering novel

insights and a new methodological lens for the
research community.

2 Related Work

2.1 Hallucination Detection

Factuality hallucination detection, which aims to
evaluate whether the output of LLMs aligns with
real-world facts, typically involves either exter-
nal fact-checking or internal uncertainty analysis
(Huang et al., 2025; Dang et al., 2024; Zheng et al.,
2024; Zou et al., 2024; Zhou et al., 2024; Zhu et al.,
2024). For instance, FACTSCORE (Min et al.,
2023) decomposes a generation into atomic facts
and calculates the proportion that are supported
by reliable knowledge sources. FACTOOL (Chern
et al., 2023), on the other hand, integrates multiple
tools such as Google Search and Google Scholar
to gather external evidence and assess the fac-
tuality of generated content. In contrast, meth-
ods like Chain-of-Verification (Dhuliawala et al.,
2023), probability-based assessments (Kadavath
et al., 2022; Zhang et al., 2024a), and uncertainty
estimation approaches (Varshney et al., 2023; Yao
et al., 2023; Luo et al., 2023) rely on LLMs’ in-
ternal parametric knowledge or uncertainty signals
to predict potential hallucinations. Among these
efforts, knowledge overshadowing (Zhang et al.,
2025a) offers a novel perspective by modeling hal-
lucination behavior from the perspective of knowl-
edge representation, providing an efficient strategy
for proactive prevention.

2.2 Knowledge Circuit Analysis

In the context of mechanistic interpretability (Rai
et al., 2024; Huo et al., 2024; Huang et al., 2024a),
computations in Transformer-based language mod-
els are viewed as a connected directed acyclic graph
encompassing components such as MLPs and atten-
tion layers (Syed et al., 2023; Conmy et al., 2023;
Huang et al., 2024b). A circuit refers to a sparse
computational subgraph that significantly influ-
ences the model’s behavior on a specific task (Olah
et al., 2020; Elhage et al., 2021; Wang et al., 2022).
Building on this, Yao et al. (2024) introduce the
concept of knowledge circuits, hypothesizing that
cooperation among components reveals implicit
knowledge in LLMs. Further, Ou et al. (2025); Zuc-
chet et al. (2025); Hakimi et al. (2025) explore how
such circuits evolve during continual pre-training,
providing insights into knowledge acquisition. To
enable effective knowledge editing, CaKE (Yao
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et al., 2024) proposes a Circuit-aware Knowledge
Editing method that guides models to activate mod-
ified knowledge and form new reasoning pathways.
In this paper, we analyze the phenomenon of knowl-
edge overshadowing through the lens of knowledge
circuits, contributing new perspectives to LLM hal-
lucination detection.

See more related work in Appendix A.1.

3 Methodology

This section first defines the knowledge overshad-
owing phenomenon and its quantitative evaluation.
Subsequently, we detail the PHANTOMCIRCUIT

framework, which encompasses methods for ana-
lyzing its training dynamics and for constructing
and analyzing knowledge circuits to understand its
internal mechanisms1.

3.1 Knowledge Overshadowing

Knowledge overshadowing refers to a specific type
of hallucination where less prevalent, subordinate
knowledge is suppressed by high-frequency, domi-
nant knowledge when both are associated with com-
mon background knowledge (Zhang et al., 2025a).

As shown in Figure 2, let Xdom denote dominant
knowledge entities and Xsub denote subordinate
knowledge entities, both potentially co-occurring
with background knowledge Xbg. The core idea
is that a strong learned pattern Xdom ↔ Xbg can
"over-generalize" where the model primarily as-
sociates Xdom with Xbg. Consequently, when
the model encounters Xsub with Xbg, denoted as
Xsub ↔ Xbg, it may erroneously favor outputs re-
lated to Xdom due to the stronger Xdom ↔ Xbg

pattern.

3.1.1 Knowledge Overshadowing Occurrence

When the input prompt is a knowledge pair com-
posed of background knowledge and dominant
knowledge, denoted as Pdom = (Xbg, Xdom), and
the model correctly generates the answer corre-
sponding to the dominant knowledge, denoted as
Ydom, we consider this outcome, represented by the
pair (Pdom, Ydom), as a successful recall of domi-
nant knowledge.

When the input prompt is Psub, but the model
wrongly generates Ydom, knowledge overshadow-
ing occurs for this query-response instance, result-
ing in the (Psub, Ydom). In the case shown in Figure

1Our code will be available upon acceptance.

2, if overshadowing occurs, the model will incor-
rectly answer "Beijing" to the input prompt "Where
is the most important economic center of China?".

3.1.2 Quantitative Indicators
Let Ndom be the number of instances of the dom-
inant knowledge prompt Pdom and Nsub be the
number of instances of the subordinate knowledge
prompt Psub in a group of data, respectively. In the
case shown in Figure 2, Ndom and Nsub are 2 and
1, respectively. The entire dataset might contain
multiple different groups of imbalanced data.

During autoregressive generation tasks per-
formed by the model, let Msub be the num-
ber of times when overshadowing instances
(Psub, Ydom) occur, and Mdom be the number of
times (Pdom, Ydom) occurs. Then, we can define
the absolute extent of the knowledge overshadow-
ing effect, the Absolute Overshadowing rate (AO)
and calculate it using Msub and Nsub,

AO = p(Ydom|Psub) =
Msub

Nsub
. (1)

To account for the model’s inherent performance
and potential noise affecting the overshadowing
rate, we also introduce Rdom for dominant knowl-
edge inputs:

Rdom = p(Ydom|Pdom) =
Mdom

Ndom
, (2)

which represents the recall rate for Pdom query-
response instances.

The Relative Overshadowing rate (RO) is then
defined as:

RO =
AO
Rdom

=
p(Ydom|Psub)

p(Ydom|Pdom)
. (3)

3.1.3 Overshadowing Influence Factors
Knowledge Popularity (P) is the fundamen-
tal cause of the knowledge overshadowing phe-
nomenon and serves as its primary influencing fac-
tor. P is defined as the ratio of Ndom to Nsub in a
group,

P =
Ndom

Nsub
. (4)

In the case of Figure 2, P = 2. A higher value
of P signifies a more severe data imbalance.

Model Size (M), referring to the number of
model parameters, also impacts knowledge over-
shadowing. A larger M generally implies stronger
generalization capabilities, causing the model to
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Figure 2: A group of imbalanced natural language data of knowledge overshadowing. The Xbg, Xdom and Xsub

are background, dominant and subordinate knowledge respectively. The Pdom and Psub are prompt with dominant
and subordinate knowledge respectively, their corresponding answers are Ydom and Ysub.

rapidly generalize the Xdom ↔ Xbg to instances
involving Xsub ↔ Xbg and exacerbating overshad-
owing.

In addition to the factors mentioned in (Zhang
et al., 2025a, 2024b), aiming to analyze the dy-
namic evolution of knowledge overshadowing dur-
ing the training process, we extend our consider-
ation to total number of tokens, the Dataset Size
(D) in the training set. Furthermore, the average
loss proportion of subordinate knowledge LP
within an epoch during training is defined as

LP =
loss(Psub)

total loss
, (5)

which measures the allocation of the model’s ef-
forts for the optimization of subordinate knowledge
and recovery from knowledge overshadowing.

3.2 Analysis Framework PHANTOMCIRCUIT

Our proposed knowledge circuit-based overshad-
owing analysis framework involves the overshad-
owing dynamics analysis during training and
circuit-based internal mechanism analysis.

3.2.1 Overshadowing Dynamic Analysis
Our framework provides a novel dynamic analysis
of knowledge overshadowing during model train-
ing. By manipulating P, M, and D, we monitor RO
across epochs. We focus on identifying the onset,
duration, and recovery stages of overshadowing to
understand their modulation by P, M, and D. Rec-
ognizing P as a key factor, we also explore how LP
co-evolves with RO under these variables, aiming
to uncover the role of LP in explaining overshad-
owing dynamics.

3.2.2 Knowledge Circuit Construction
We construct the knowledge circuit, a sparse com-
putational subgraph C ⊆ G, where G = (V,E) is
the directed acyclic graph representation of LLMs.
The node set V encompasses input embeddings,
attention heads, MLP layers, and output logits. The

edge set E represents the information flow between
these components. Our goal is to identify a sub-
graph C that is critical for recognizing the key
component of given input prompt, particularly in
knowledge overshadowing, is {Xdom, Xsub}, the
difference between Pdom and Psub. The adapted
construction method is similar to Edge Attribu-
tion Patching with Integrated Gradients (EAP-IG)
(Hanna et al., 2024), which involves:

Paired inputs. For a given Xbg, we create a pair
of input prompts, the clean input Psub correspond-
ing to our expected output Ysub in the overshadow-
ing case, and the corrupt input Pdom serving for the
contrast mentioned below.

Activation difference calculation. After run-
ning this pair of inputs through the model,
we calculate the difference in activation values
∆A(vp),∆A(vc) for the parent node vp and child
node vc of each edge under these distinct in-
puts, ∆A(vp) = Aclean(vp)−Acorrupt(vp), where
Aclean(vp) and Acorrupt(vp) are the activations of
the parent node for the clean input Psub and the
corrupt input Pdom, respectively.

Edge score calculation. The importance S(e)
of an edge e = (vp, vc) is scored based on how
patching vp’s activation (using ∆A(vp)) influences
a metric M, which assesses the model’s ability
to correctly output Ysub rather than Ydom for Psub

inputs. Using the Integrated Gradients (IG), S(e)
is approximated as:

S(e) ≈ Exp

[
∆A(vp) ·

∂M(Ysub|Psub)

∂A(vp)

]
. (6)

Circuit construction. Edges with scores |S(e)|
below a threshold τ are pruned. The remaining
subgraph forms the knowledge circuit C. See more
details about construction in Appendix B.1

Circuit in Knowledge Overshadowing. In the
context of knowledge overshadowing, the metric
M is defined as the difference between the out-
put logits of Ysub and Ydom. A positive value
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for M indicates that the model correctly predicts
Ysub. Therefore, we can represent the circuit where
overshadowing occurs as Covershadowed = {V,E}
with M < 0 and S(E|Psub, Ydom) ≥ τ . Fur-
thermore, the competition between the dominant
and subordinate knowledge pairs during circuit
construction is quantified by the activation val-
ues of different input Pdom and Psub, ∆A(vp) =
APsub

(vp)−APdom
(vp).

3.2.3 Circuit-based Analysis
PHANTOMCIRCUIT mainly focuses on the atten-
tion heads in C and follows these steps:

Node Attention Analysis. We identify high-
attention heads within C by examining their atten-
tion scores and patterns, specifically their focus on
{Xdom, Xsub}.

Circuit Structure Analysis. We then trace the
information flow of these high-attention heads by
identifying their parent and child nodes to under-
stand their structural role. Nodes consistently re-
tained in circuits built with different thresholds τ
are also analyzed as key components.

Layer-wise Logit Evolution. Finally, using
logit lens (nostalgebraist, 2020), we inspect the
evolving output logits at layers associated with key
nodes. This validates if their captured information
contributes to the model’s prediction as expected.

3.2.4 Circuit-based Overshadowing Recovery
Inspired by the goal of knowledge circuits to max-
imize sensitivity to the distinguishing features be-
tween Xdom and Xsub, we propose a circuit-based
method to alleviate overshadowing. This involves
optimizing the circuit structure by tuning the edge
pruning threshold τ to obtain an optimal circuit,
Copt. The optimization is formulated as:

τopt = argmax
τ

M(Copt(τ), Psub, Ysub), (7)

where M measures the circuit’s ability to dis-
tinguish {Xdom, Xsub}. We use a two-stage op-
timization method to find the optimal number of
edges. First, we build the circuit by adding edges
at regular intervals, revealing that the circuit’s per-
formance exhibits a multi-modal relationship with
the edge count. Subsequently, we apply the golden-
section search algorithm within the optimal range
to determine the τopt for the Copt. This results in
a Copt(τopt) which is expected to mitigate or elim-
inate the overshadowing effect for specific input
prompts.

To automate the overshadowing recovery pro-
cess and extend its applicability, we simplify the
relative pointwise mutual information (R-PMI)
method from (Zhang et al., 2025a, 2024b) to iden-
tify Xsub within Psub. First, we obtain the top-
k next-token candidates, Vtop(Psub), by feeding
Psub to the model. Then, we iteratively generate
contrastive prompts P ′

sub by masking (in our im-
plementation, by deleting) each token X ′

sub from
Psub. For each P ′

sub, we acquire its top-k candi-
dates Vtop(P

′
sub). The R-PMI for each token yi in

the intersection Vtop(Psub) ∩ Vtop(P
′
sub) is calcu-

lated as:

R-PMIi = log
p(yi|Psub)

p(yi|P ′
sub)

. (8)

Then, we sum the negative R-PMI values to get
SR-PMI =

∑
min(R-PMIi, 0). The X ′

sub yield-
ing the minimum SR-PMI is identified as Xsub.

Furthermore, the Ysub is determined as the token
yi from Vtop(Psub) whose average rank improves
most significantly when non-subordinate compo-
nents X ′

sub, often the Xbg, are masked. Ydom is
identified as yi that has the highest average rank
across all P ′

sub. For circuit construction, Xdom

within Pdom is replaced by a generic placeholder
like "something", as shown in Figure 6. Combining
this streamlined approach enables broader applica-
tion of our knowledge circuit-based overshadowing
recovery. See more details in Appendix B.2

4 Experiment

4.1 Experiment Setup
4.1.1 Dataset
Synthetic dataset. To investigate the dynamic char-
acteristics and influencing factors of the RO during
training under controlled conditions,and to mini-
mize the complexities and semantic relationships
inherent in natural language, we construct a syn-
thetic dataset and train models from scratch.

Follow (Zhang et al., 2025a), we first fix the
length of Xbg at 4 tokens and the lengths of
Xdom, Xsub, Ydom, Ysub at 1. For the dataset size
(D), we experiment with 0.26 (D = 0.26M), 2.6
(D = 2.6M) and 26 million tokens (D = 26M). For
popularity (P), we set P values as 5, 25, and 100.

Then, for a specific combination of P and D,
there are several distinct groups to achieve the tar-
get D. Each group comprises P distinct Xdom and
a single Ydom for dominant knowledge, one Xsub

and Ysub for subordinate knowledge. The Xbg is
shared. Thus, there are P unique {Pdom, Ydom}
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(a) Popularity (P) (b) Model Size (M) (c) Dataset Size (D)

(d) Popularity (P) (e) Model Size (M) (f) Dataset Size (D)

Figure 3: (a) ∼ (c) show the dynamic variation of RO relating to P, M and D in model training phase. Higher
Knowledge Popularity (P) and Model Size (M) tend to result in an earlier onset, shorter duration, and quicker
recovery from knowledge overshadowing. In contrast, a larger Dataset Size (D) also leads to an earlier onset but is
associated with a slower recovery phase. (d) ∼ (f) show the duration of onset stage, high RO (> 90%) stage as well
as recovery stage, and RO’s rate of change during the onset and recovery stages.

(a) M = 70M (b) M = 410M (c) M = 1.4B

Figure 4: The co-evolution between RO & LP in different M. Early high overall loss and low LP leads to intensive
optimization of Pdom and RO rises up to near 100%. As training progresses, subordinate knowledge loss proportion
(LP) rises, shifting optimization focus to Psub errors, initiating RO’s recovery phase, validated across models.

and one {Psub, Ysub} in a group. All the tokens are
randomly sampled. See more details of our dataset
in Appendix C.

fine-tuning Dataset. We construct a fine-tuning
dataset to evaluate circuit-base overshadowing re-
covery method. Utilizing virtual knowledge, we
preserve the natural language semantics while
avoiding prior knowledge editing that could inter-
fere with the natural occurrence of overshadowing.
For this dataset, we set P = 5 and D = 1M. The
Appendix D shows the dynamics analysis based on
fine-tuning dataset.

4.1.2 Models Evaluated
We employ models from the Pythia suite (Bider-
man et al., 2023), specifically: Pythia-70M, Pythia-

410M, Pythia-1.4B, and Pythia-2.8B, correspond-
ing to model sizes (M) of M = 70M, 410M, 1.4B
and 2.8B, respectively. Tokens randomly sampled
to build synthetic dataset is from Pythia tokenizer.

4.1.3 Training

A uniform learning rate of 10−5 and batch size of
16 are used for both dataset. Training is conducted
on NVIDIA A800 GPUs.

4.1.4 Evaluation

To measure RO, we randomly sample 500 Pdom

and 500 Psub prompts for evaluation after each
training epoch. The LP is recorded within each
epoch. The results are shown in Figures 3 and 4.
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Figure 5: The circuit-based analysis of proposed PHANTOMCIRCUIT. (a) shows the average attention scores
allocated to {Xdom, Xsub} across epoch. (b) focuses on the onset and recovery phases and shows that the appear
and disappear of high-attention heads (attention score greater than 0.2) attribute to the reduce and raise of RO. (C)
shows the logits and ranks of Ysub, Ydom across layers. The main structure of circuit (with 400 edges totally) and
attention mode show that high-attention head a5.h1 and MLP layer m5 contribute to the juncture of Ysub ’s rank.
Solid lines denote direct information flow, while dashed lines indicate indirect flow in circuit structure map.

4.2 Main Result

Based on the experiments described above, using
the circuit to analyze and optimize overshadowing,
our investigation yields the following findings.

A higher value of P and M can lead to an ear-
lier onset, shorter duration, and quicker recov-
ery of the knowledge overshadowing. Distinctly,
a larger D contributes to the earlier onset but
also a slower recovery from overshadowing.

As shown in Figures 3a and 3d (M=70M,
D=2.6M), increasing P (from 5 to 100) signifi-
cantly shortens or even eliminates the onset phase.
This is attributed to more prominent dominant pat-
terns Xdom ↔ Xbg being learned and generalized
rapidly, even within the first epoch. The duration
phase also decreases with higher P, because a larger
P and a fixed D implies fewer groups of knowledge
pairs, leading to less diversity of Psub, allowing the
model to learn all overshadowed Psub and recover
from overshadowing more quickly.

Figures 3b and 3e (P=5, D=2.6M) demonstrate
that larger models (M) exhibit shorter or absent
onset phases, indicating an earlier occurrence of
knowledge overshadowing. This is due to the
stronger generalization capabilities of larger mod-
els, leading them to quickly learn and overgeneral-
ize dominant patterns. However, larger models also
show a shortened duration phase and a rapid de-
cline in RO during recovery, suggesting enhanced
capacity to differentiate {Xdom, Xsub}, thus recov-
ering faster despite earlier overshadowing.

In Figures 3c and 3f (P=5, M=70M) larger D
leads to an earlier onset of overshadowing, with
RO peaking sooner. This is because more data per
epoch provides more iterations and exposure to the
dominant pattern, accelerating its generalization.
Conversely, the recovery phase is prolonged with
larger datasets. The increased diversity of Psub in
larger datasets requires more epochs for the model
to learn all instances and recover.
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Figure 6: Overshadowing recovery via optimized circuit. In the fine-tuned model, Xdom ↔ Xbg causes the original
full model to incorrectly predict Ydom. First, we detect the Xsub, Ysub, Ydom automatically by calculating the
minimum SR-PMI . Then, optimizing the knowledge circuit by pruning edges to keep only key nodes enhances the
attention on {Xdom, Xsub}, enabling the recovery from overshadowing and facilitating correct Ysub prediction.

Notably, across various parameter combinations,
RO often approaches 100% in the early training
stages and finally recovers to 0%. We hypothesize
this phenomenon stems from initial high-loss state,
where optimization efforts disproportionately fo-
cus on reducing the larger loss contribution from
Pdom. Our subsequent observations regarding LP
corroborate this.

The dynamic nature of knowledge overshad-
owing arises from the co-evolution relationship
between the LP and RO. As depicted in Figure
4, in the early training stages, when the overall loss
is high and the contribution from Psub is small, the
optimization process tends to concentrate on the
Pdom and RO rapidly approaches 100%. How-
ever, as training progresses and LP begins to rise,
eventually nearing its peak, Psub takes a substantial
portion of the remaining loss. At this juncture, the
model’s optimization efforts shift to focus on these
errors from Psub. This shift initiates the recovery
phase, leading to a decline in RO. Therefore, the
insufficient optimization results in the overshadow-
ing, which is consistent across varying M.

The occurrence of overshadowing in pre-
trained LLMs can be understood with dynamics
analysis results above. Initially, large M and D
promote the rapid generalization of Xdom ↔ Xbg

and overshadowing onset. The subsequent inad-
equate optimization of the Psub is exacerbated
by the sheer scale and diversity of training data,
which brings prolonged overshadowing effect and
exceeded sharp recovery effect from large M (e.g.,
trillion tokens for training Llama-2-7B).

The knowledge circuit’s attentional allocation

to differences between dominant and overshad-
owed knowledge inputs influences the extent of
knowledge overshadowing. Figure 5 (a) shows
the variation of circuit’s average attention scores on
{Xdom, Xsub} throughout the training phase. The
higher average attention alleviates overshadowing,
while lower attention exacerbates it.

Figure 5 (b) shows the circuit dynamics across
the onset and recovery phases of knowledge over-
shadowing. These bar plots show the attention
scores of individual attention heads in a specific
epoch, indicating that when the RO declines, some
attention heads, defined as high-attention heads,
exhibiting high focus on {Xdom, Xsub} emerge
within the circuit. The threshold for high-attention
is set at 0.2 for the length of Xsub is one fifth of the
length of input prompt in synthetic dataset. Con-
versely, when knowledge overshadowing intensi-
fies, a subset of these critical attention heads tends
to disappear from the circuit.

Furthermore, by focusing on the circuit’s inter-
nal mechanisms and structure within a specific
epoch, as shown in Figure 5 (c), we leverage the
circuit-based analysis of our proposed PHANTOM-
CIRCUIT. First, according to the logits and ranks
of Ydom and Ysub across layers, the 5th layer is
a juncture where the rank of Ysub exceeds Ydom.
Subsequently, by focusing on the circuit structure,
we identify the internal mechanisms driving this
juncture. A high-attention head, a5.h1 (layer 5),
crucially channels information to the subsequent
MLP layer, m5. The a5.h1 also appears to inherit
its high-attention state from earlier layers, medi-
ated by the layer 4 MLP (m4), leading it to not
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Table 1: Ablation Study for high-attention Heads on fine-tuning Dataset. The model’s performance degrades with
the ablation of high-attention heads, which validates the circuit’s faithfulness.

Model Proportion of Ablated High Attn. Heads 10% 20% 50%

gpt2-medium
Performance Degradation 1.03 1.43 1.67

Attn. Score on Xsub Degradation 0.044 0.086 0.141

pythia-410m
Performance Degradation 0.92 1.30 1.42

Attn. Score on Xsub Degradation 0.039 0.074 0.126

only continue elevating the logits for Ysub but also
to attenuate the previously rapid growth of Ydom’s
logits, thereby facilitating the observed rank rever-
sal. The attention map on the right confirms its
high focus on {Xdom, Xsub}.

Knowledge circuit-guided optimization repre-
sents a promising strategy to mitigate the knowl-
edge overshadowing effect. Figure 6 illustrates
our findings. We first fine-tune the model on fine-
tuning dataset. During the recovery phase, we ran-
domly choose some Psub. Feeding Psub to the orig-
inal full model (M = 410M), the prediction is still
Ydom instead of expected Ysub, and shows a signifi-
cant gap in probability as well.

We then detect the Ysub, Ydom and Xsub for cho-
sen Psub automatically, replace the Xsub of place-
holder token "something". With these components,
we obtain the Pdom as corrupt input and Psub as
clean input to construct a knowledge circuit. The
optimized circuit graph shows that some attention
heads are pruned, which are often low attention
heads, or exhibit no significant attentional pattern
towards the core task-relevant information. Re-
tained high-attention heads are key to differentiat-
ing Pdom from Psub which give significant atten-
tion to {Xdom, Xsub}. Some low attention heads
also remain, implying that even in the circuit, pro-
cessing background knowledge Xbg and linking it
to the distinctive elements Xsub is crucial for cor-
rect inference. The performance of the optimized
circuit Copt is then evaluated by feeding it the clean
input Psub, while Pdom serves as the baseline for
contrast. Finally, the circuit successfully produces
Ysub, demonstrating the elimination of the over-
shadowing effect.

4.3 Circuit Faithfulness Study

Based on the work of (Marks et al., 2024; Hanna
et al., 2024), the EAP-IG method builds circuits
with high faithfulness and efficiency, ensuring our
findings based on circuit analysis are reliable. To

verify this key property in the context of knowledge
overshadowing, we conduct an ablation study on
high-attention heads.

We first construct optimal circuits for pythia-
410m and gpt2-medium models trained on the fine-
tuning dataset. Subsequently, we removed the top
10%, 20%, and 50% of attention heads by score
and observed the impact on performance metric M
and attention scores, with results shown in Table 1.

The results show that ablating just 10% of the
high-attention heads leads to a significant drop in
both the attention scores on Xdom, Xsub and the
circuit performance metric M. This performance
degradation is substantial enough to alter the out-
put in many cases, preventing the model from accu-
rately predicting Ysub. In contrast, at 50% ablation,
the drop in M becomes less pronounced because
the model’s ability to predict both the Ysub and
Ydom severely declines. These findings validate
the critical impact of the nodes in optimal circuits,
especially high-attention heads, on model perfor-
mance and confirm the circuit’s faithfulness.

5 Conclusion

This paper investigates hallucinations in LLMs
caused by knowledge overshadowing, and intro-
duces PHANTOMCIRCUIT, a novel knowledge
circuit-based analysis framework. PHANTOMCIR-
CUIT first analyzes the training dynamics of over-
shadowing, finding that dominant knowledge popu-
larity, model size, and dataset size critically shape
the onset, duration, and recovery of overshadowing.
Apart from that, the persistent overshadowing in
pre-trained models stems from inadequately opti-
mized subordinate knowledge loss. By analyzing
knowledge circuits, we find that changes in critical
attention heads’ focus on subordinate knowledge
directly correlate with the recovery or onset of over-
shadowing. Finally, optimizing these knowledge
circuits presents a promising strategy for mitigating
knowledge overshadowing.
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Limitations

Despite the insights provided by PHANTOMCIR-
CUIT, this study has several limitations that open
avenues for future research:

1. Despite of the experiments on gpt2-medium
and natural data case (Appendix E), this
study’s findings primarily rely on the Pythia
model suite and synthetic/fine-tuning datasets,
which are chosen to ensure architectural con-
sistency and data purity for controlled analy-
sis. It remains to be validated whether these
conclusions can be directly generalized to
other model architectures and more complex,
noisy real-world data.

2. The current work concentrates on direct
knowledge interference arising from imbal-
anced knowledge popularity. The applicabil-
ity of PHANTOMCIRCUIT to practical tasks
like multi-hop reasoning and code generation,
remains a key area for future exploration.

3. Performing dynamic analysis of knowledge
circuits throughout the entire training process
is computationally intensive, which could po-
tentially hinder its scalability to very large
models or extensive training runs. Future
work aims to develop more computationally
efficient techniques, such as more efficient cir-
cuit extraction methods like Information Flow
Routes (IFR), to mitigate this challenge.
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A More Related Work

A.1 Large Language Models

First proposed by Brown et al. (2020), Transformer-
based auto-regressive LLMs have demonstrated
strong performance across a variety of NLP tasks,
including question answering (Yue, 2025), in-
context learning (Dong et al., 2022), and ana-
logical reasoning (Webb et al., 2023). pre-
trained on large-scale text corpora, LLMs have
acquired extensive real-world knowledge from
web sources. As a result, models such as In-
ternLM2.5 (Cai et al., 2024), Qwen2.5 (Team,
2024), and LLaMA3.3 (Grattafiori et al., 2024)
have shown excellent performance on world knowl-
edge benchmarks (Suzgun et al., 2022). There-
fore, over the past year, LLMs have demonstrated
remarkable capabilities in understanding-related
tasks across various fields (Kim et al., 2024; Nam
et al., 2024; Yan et al., 2024c; Yan and Lee, 2024;
Yan et al., 2024b; Dong et al., 2025; Su et al., 2025).

Recently, there has been a growing trend toward
enhancing LLMs’ reasoning capabilities on com-
plex tasks (Guo et al., 2025; Jaech et al., 2024) by
generating long Chain-of-Thoughts (CoTs), with
reinforcement learning (RL) emerging as an ef-
fective tool to encourage this behavior (Li et al.,
2025; Trung et al., 2024). Recently, there have
also been efforts to explore collaboration between
LLMs to enhance their reasoning abilities (Zhang
et al., 2025b; Putta et al., 2024; Masterman et al.,
2024; Yan et al., 2025b; Chu et al., 2025).

Despite these advancements, existing LLMs still
suffer from factual hallucinations in practice (Pan
et al., 2025; Asgari et al., 2025), with knowledge
overshadowing identified as a primary contribut-
ing factor (Zhang et al., 2024b). While existing
interoperability works make great efforts on the
mechanism of LLM training and generating (Zhao
et al., 2024), most of them solely focus on isolated
model versions like GPT2 (Wang et al., 2023) and
LLaMA2 (Wendler et al., 2024; Tang et al., 2024).

In this paper, we utilize the Pythia suite (Bider-
man et al., 2023) to investigate the evolution and
underlying mechanisms of knowledge overshadow-
ing across models of varying sizes: 70M, 410M,
1.4B, and 2.8B parameters. Sharing a unified ar-
chitecture, this model suite eliminates design vari-
ability, thereby providing clearer and more reliable
insights into the scaling behavior of the knowledge
overshadowing phenomenon in LLMs.

B PHANTOMCIRCUIT Details

B.1 Circuit Construction
Knowledge circuit is as a sparse computational
subgraph within the LLMs. The construction of
such a circuit involves identifying and retaining
the most influential components (nodes, including
MLPs and attention heads) and connections (edges)
while pruning less critical ones.

We adapted the optimized circuit construction
method provided by (Yao et al., 2024). The pro-
cess begins by representing the LLM as a directed
acyclic graph (DAG), G = (V,E), where V
encompasses input embeddings, attention heads,
MLP layers, and output logits, and E represents
the information flow between these components.
Our goal is to identify a subgraph C that is critical
for recognizing the key component of a given input
prompt. In the context of knowledge overshad-
owing, this component is {Xdom, Xsub}, which
represents the difference between Pdom and Psub.

The adapted construction method is similar to
Edge Attribution Patching with Integrated Gra-
dients (EAP-IG) (Hanna et al., 2024), which in-
volves:

1. Paired Inputs: For a given background Xbg,
we create two primary input prompts: Pdom =
(Xbg, Xdom) and Psub = (Xbg, Xsub). We
also consider a "corrupted" version of Psub,
which could be Pdom itself or another prompt
designed to elicit Ydom. Let’s denote the
"clean" input as Pclean (typically Psub) and
the "corrupted" input as Pcorr (designed to
lead to Ydom).

2. Activation Difference Calculation: We run
both Pclean and Pcorr through the model. For
each node v ∈ V that is a potential parent in
an edge, we record its output activation. The
difference in activations between the clean
and corrupted runs for a node vp (parent) is de-
noted as ∆A(vp) = Aclean(vp)−Acorr(vp).

3. Edge Scoring via Gradient-based Attribu-
tion: To score an edge e = (vp, vc) (from par-
ent vp to child vc), we focus on how patching
the activation from vp (i.e., using Aclean(vp)
instead of Acorr(vp) when Pcorr is the main
input) affects a chosen metric M. This metric
M is designed to measure the model’s ten-
dency towards generating Ysub versus Ydom
when the input is Psub. A common choice for
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M could be the logit difference between Ysub
and Ydom at the final layer, or a metric related
to our Relative Overshadowing rate (RO).

The score S(e) for an edge e can be approxi-
mated by the product of the activation differ-
ence from its parent node and the gradient of
the metric M with respect to the input of its
child node, when the child node receives the
"clean" activation from the parent while other
inputs are "corrupted":

S(e) ≈ EPsub

[
∆A(vp) ·

∂M(Ytarget|Psub)

∂Ainput(vc)

]

where Ytarget is ideally Ysub. The expectation
E is taken over instances of Psub in evalua-
tion set. In practice, methods like Integrated
Gradients (IG) are often used to refine this at-
tribution by integrating gradients along a path
from a baseline (corrupted) input to the actual
(clean) input.

4. Circuit Pruning: Based on the calculated
scores S(e), edges with scores below a certain
threshold τ , or alternatively, edges outside
the top-N highest scores, are pruned from the
graph G. The remaining nodes and edges
form the knowledge circuit Csub.

Csub = (Vsub, Esub)

where Esub = {e ∈ E | |S(e)| ≥ τ} (or
top-N criterion) and Vsub consists of nodes
connected by edges in Esub.

This constructed circuit Csub is then ana-
lyzed to understand how dominant knowledge
Kdom might overshadow Ksub by examining
the attentional features and information flow
within it, especially when processing Psub.

5. Threshold τ Optimization: By constructing
a circuit for a given edge pruning threshold,
τ , and then evaluating its performance metric,
M , we can establish the relationship between
τ and M. Therefore, optimizing the circuit
is equivalent to finding an optimal threshold,
τopt, that maximizes the performance metric
M. In practice, however, we directly opti-
mize the number of edges n rather than the
threshold τ . We divide this optimization pro-
cess into two stages. In the first stage, we start
from an initial edge count and incrementally
increase the number of edges at uniform inter-
vals to map out the relationship between M

and n. We find that this relationship is multi-
modal, as shown in Figure 8. In the second
stage, we employ the golden-section search
algorithm within the most promising interval
identified previously to precisely locate the
optimal number of edges, nopt. This process
yields the optimized circuit, Copt(nopt).

B.2 Automated Component Identification for
Recovery

Identifying the Overshadowed Component X∗
sub.

A critical precursor to effective circuit-based re-
covery is the precise identification of the specific
component X∗

sub within the subordinate prompt
Psub that is being overshadowed. This is achieved
by adapting the Relative Pointwise Mutual Infor-
mation (R-PMI) based methodology from (Zhang
et al., 2025a, 2024b). The process involves:

Iteratively generating contrastive prompts P ′
sub

by deleting each candidate token X ′
sub (a potential

overshadowed component) from the original Psub.
For each pair (Psub, P

′
sub), calculating the R-

PMI for tokens yi in the intersection of their top-k
next-token candidate sets, Vtop(Psub)∩Vtop(P

′
sub),

using

R-PMI(yi;Psub, P
′
sub) = logP (yi|Psub)

− logP (yi|P ′
sub).

Summing only the negative R-PMI values to obtain

SR-PMI(Psub, P
′
sub) =

∑
min(R-PMI(yi), 0).

The X ′
sub that yields the minimum (most nega-

tive) SR-PMI is identified as the primary overshad-
owed component, X∗

sub. This selection is based
on the rationale that removing the true X∗

sub most
strongly exposes the model’s bias towards outputs
favored by the dominant knowledge pattern.

In practical implementation, we enhance the
identification of X∗

sub by calculating a weighted
SR-PMI . To do this, we weight each to-
ken’s R − PMI(yi) value by the variance of
its log probability change, var(yi), observed
when masking different candidates of Xsub.
This results in SR-PMI(Psub, P

′
sub)weighted =∑

min(R-PMI(yi) · V ar(yi), 0), which ampli-
fies the effect from the Ysub token which is most
sensitive to the masking of X∗

sub, enabling a more
robust identification.

Identifying Target Subordinate Output Ysub.
The intended subordinate output Ysub is identified
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by assessing which token from Vtop(Psub) (the
top-k candidates for the original prompt Psub =
(Xbg, Xsub)) exhibits the most significant improve-
ment when the overshadowing influence of back-
ground knowledge (Xbg) or other non-subordinate
components is mitigated. Specifically, we generate
contrastive prompts P ′

sub by masking or altering
components of Xbg within Psub. Ysub is then the
token yi ∈ Vtop(Psub) that shows the most substan-
tial rank improvement in these modified prompts
P ′
sub compared to its rank in the original Psub. Fur-

thermore, to properly value the rank improvements
of initially high-ranked tokens like Ydom and Ysub,
which have limited room for elevation, we intro-
duce a weight to measure the original rank’s im-
pact. This yields the final weighted rank eleva-
tion metric for every predicted top-k next-tokens:
Weighted Rank Elevation = (k − rankoriginal) ×
Avg. Elevation of Rank.

This approach preserves the effect of rank im-
provements for top-ranked tokens. And the rank
elevation signifies that the mitigation of impact
from Xdom ↔ Xbg make overshadowing associa-
tion weaken, which improves the rank of Ysub.

Identifying Dominant Output Ydom. The dom-
inant output Ydom is identified as the token that
maintains the highest average rank across all con-
trastive prompts P ′

sub generated by deleting differ-
ent candidate tokens X ′

sub from Psub. This token
represents the model’s most consistent, default out-
put tendency when specific subordinate cues are
variably weakened, likely reflecting the pervasive
influence of dominant knowledge associated with
the background Xbg.

With Xbg (background knowledge), Xsub (iden-
tified subordinate component), the expected Ysub,
and the interfering Ydom established, we prepare
the paired inputs required for knowledge circuit
construction. The clean input is the original sub-
ordinate prompt Psub = (Xbg, Xsub), for which
the desired output is Ysub. To create the cor-
rupt input Pdom, which is designed to elicit the
overshadowing effect and output Ydom, we main-
tain the background knowledge Xbg but replace
the subordinate component Xsub with a generic
placeholder token, such as ’something’. Thus,
Pdom = (Xbg, “something”). This specific formu-
lation of Pdom ensures that while the input structure
is similar to Psub, the absence of Xsub allows the
strong Xbg ↔ Ydom association to dominate, lead-
ing to the incorrect prediction Ydom. These paired
inputs, Psub and Pdom, then serve as the founda-

tion for the activation difference calculations in our
circuit analysis.

Some more circuit-based overshadowing recov-
ery cases are shown in Table 2.

C Dataset Details

C.1 Detailed Synthetic Dataset Construction
The synthetic dataset was constructed through the
following steps to ensure controlled conditions for
analyzing knowledge overshadowing dynamics:

Fixing text lengths. For all generated data in-
stances, consistent token lengths are maintained.
The background knowledge (Xbg) was set to a
length of 4 tokens. All other core components,
namely the dominant knowledge entity (Xdom),
subordinate knowledge entity (Xsub), dominant
output (Ydom), and subordinate output (Ysub), are
each set to a length of 1 token.

Dataset generation for specific D and P Com-
binations. For each defined combination of to-
tal dataset size (D) and knowledge popularity
(P), the dataset was built as follows: The dataset
comprises multiple distinct groups of knowledge
instances. Each group consists of P+1 knowl-
edge prompts: a set of P dominant knowledge
prompts {P 1

dom, P 2
dom, . . . , PP

dom} and one subor-
dinate knowledge prompt Psub. Within each group:

• For the P dominant prompts, the ac-
tual dominant knowledge entities
{X1

dom, X2
dom, . . . , XP

dom} are all unique.
However, they all share the same background
knowledge component (Xbg) and are associ-
ated with the same dominant output (Ydom_g).
Thus, each P i

dom = (Xbg, X
i
dom) is paired

with Y g
dom.

• The single subordinate prompt Psub =
(Xbg, Xsub) uses the same background knowl-
edge Xbg as the dominant prompts in that
group. However, its subordinate knowledge
entity Xsub is distinct from all Xi

dom entities
in that group, and its corresponding output
Ysub is distinct from any Ydom in group.

This structure creates a group:
{(P 1

dom, Y 1
dom), . . . , ((PP

dom, Y P
dom), (Psub, Ysub)}.

Multiple such groups are generated. All to-
kens for Xbg, X

i
dom, Xsub, Ydom, Ysub within each

group, and across different groups, are randomly
sampled from the Pythia tokenizer vocabulary, en-
suring no overlap between the core entities of dif-
ferent groups. This process was repeated until the

15487



(a) The RO during training phase of the different fine-
tuning dataset size (D).

(b) The co-evolution of LP and RO during training phase
on fine-tuning dataset.

Figure 7: The dynamics analysis of knowledge overshadowing in fine-tuning dataset.

total number of tokens in the dataset reached the
target size D.

Cases illustration. We illustrate some groups
for P=5 dataset in Table 3. We directly show token
id.

C.2 fine-tuning dataset

For the fine-tuning dataset, we utilized the Qwen-
Long API to generate instances of virtual knowl-
edge. This generated data subsequently underwent
manual review to identify and remove any instances
that are overly repetitive or semantically too simi-
lar, ensuring a degree of diversity, resulted in D =
1M.

A key distinction from the synthetic dataset con-
struction is that we did not strictly control token
lengths for each component in this dataset. Instead
of randomly sampled token IDs, the fine-tuning
dataset consists of actual linguistic statements that,
while syntactically and semantically coherent, rep-
resent virtual (i.e., fabricated but plausible) knowl-
edge. The underlying pattern of dominant and sub-
ordinate knowledge construction, however, mirrors
that of the synthetic dataset.

As an example of this dataset, we set the knowl-
edge popularity P=5. Some illustrative cases from
the dataset are shown in Table 4.

D More Dynamics Analysis on fine-tuning
Dataset

In addition to validating the efficacy of our circuit-
based overshadowing recovery method, the fine-
tuning dataset serves a dual purpose. We also
leverage it to empirically verify our conclusions
regarding the training dynamics of knowledge over-
shadowing, specifically concerning the impact of

Dataset Size (D). Consistent with our dynamic anal-
ysis findings, we investigate whether a larger D
indeed correlates with a slower recovery rate from
knowledge overshadowing and a prolonged dura-
tion of the hallucination effect. To this end, we
conduct experiments on the fine-tuning dataset by
fixing Knowledge Popularity at P=5 and Model
Size at M=70M, while varying D across values
of 0.1M, 0.5M, and 1M tokens. The results, as
depicted in Figure 7a, corroborate this relation-
ship. Furthermore, under the specific configuration
of P=5, M=70M, and D=0.5M on the fine-tuning
dataset, we re-examine the interplay between the
loss proportion of subordinate knowledge (LP) and
the relative overshadowing rate (RO). As shown
in Figure 7b, the observations again support the
hypothesis that insufficient optimization of subor-
dinate knowledge contributes to the persistence of
knowledge overshadowing.

It is noteworthy that distinct behaviors are ob-
served when comparing the fine-tuning dataset to
the synthetic dataset. Firstly, the recovery from
overshadowing on the fine-tuning dataset is gener-
ally slower than on the synthetic dataset for same
D. This can be attributed to the richer semantic
relationships and greater complexity inherent in
the natural language of the fine-tuning data, which
presents a more challenging learning task.

Secondly, we observe that the fine-tuning dataset
exhibits a minimal or absent onset phase for knowl-
edge overshadowing, where RO typically rise.
This is because fine-tuning commences from a pre-
trained model, which has already moved beyond
the initial epochs of chaotic, random predictions.
Consequently, the model can very rapidly general-
ize strong association patterns present in the fine-
tuning data. Moreover, the diverse and varied forms
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(a) gpt2-medium (b) pythia-410m

Figure 8: The relationship between circuit performance, high-attention heads proportion, average attention score on
Xsub and the number of edges in gpt2-medium and pythia-410m.

of data within the fine-tuning set may act akin to
a beneficial noise signal, prompting the model to
pay closer attention to distinguishing features and
differences. This inherent data diversity can help
preemptively mitigate or even eliminate the early
onset stage of knowledge overshadowing that might
otherwise be observed.

E More Analysis on Natural Language
Data

To further validate the generalization of our find-
ings, we conduct experiments on the pre-trained
Pythia-410m and gpt2-medium models using nat-
ural language prompts. The paired inputs for this
test are: {Pdom: "The name of this North Ko-
rean politician is", Ydom: "Kim Jong Un", Xdom:
"politician"} and {Psub: "The name of this North
Korean singer is", Ysub: "Hyon Song-wol", Xsub:
"singer"}. Since it is hard to reproduce the pre-
training process of these models, we instead used
the number of edges in the circuit as the indepen-
dent variable. We investigated the relationship
among three metrics: circuit performance, the pro-
portion of high-attention heads, and the average
attention score on Xsub.

The results are shown in Figure 8, which lead to
the following conclusions:

• The model’s overall attention to the different
parts {Xdom, Xsub} increases as the number
of edges is reduced through optimization. Cor-
respondingly, the model’s performance im-
proves with this rise in attention. This vali-
dates our conclusion that higher attention on
{Xdom, Xsub} is key to mitigating knowledge
overshadowing.

• The proportion of high-attention heads also
increases during edge optimization. This sup-
ports the conclusion that retaining these high-

attention heads plays a crucial role in directing
the model’s focus toward {Xdom, Xsub}.

• The model’s performance exhibits a notable
multi-modal relationship with the number of
edges, which makes the optimization of the
circuit’s edge count a more complex task.

Additionally, our preliminary exploration sug-
gests that knowledge overshadowing can also oc-
cur in multi-hop reasoning. When the pre-trained
OLMo-7B-Instruct model is given the prompt:
"The old country of this famous scientist who is
not famous for theory of relativity is", it outputs
"Germany". Furthermore, with the prompt: "The
name of this scientist who is not famous for the-
ory of relativity is", the model outputs "Albert".
We can infer from this that the model still defaults
to "Albert Einstein" as the basis for its multi-hop
reasoning.
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Table 2: Circuit-based overshadowing recovery cases

Case Psub with {Xsub} M indicator
(logits difference) Ydom & Ysub Full Model Top 5 Prediction Circuit Top 5 Prediction

Case 1
Analysis of the Chrono-Filter device
efficiency for temporal sorting shows
outcome {filtration overload}

Original
model:-1.283 &
Circuit: 0.764

|Time| & |Tem|

Rank 0: Logit: 16.18 Prob:
32.18% Token: |Tem|

Rank 0: Logit: 21.03 Prob:
73.70% Token: |Time|

Rank 1: Logit: 15.42 Prob:
14.98% Token: |Time|

Rank 1: Logit: 19.75 Prob:
20.42% Token: |Tem|

Rank 2: Logit: 14.21 Prob:
4.47% Token: |Sp|

Rank 2: Logit: 17.34 Prob:
1.84% Token: |Filter|

Rank 3: Logit: 14.05 Prob:
3.83% Token: |T|

Rank 3: Logit: 16.40 Prob:
0.72% Token: |E|

Rank 4: Logit: 13.84 Prob:
3.10% Token: |Custom|

Rank 4: Logit: 16.29 Prob:
0.64% Token: |Sp|

Case 2

Constructing psionic wave emitters
necessitates precise tuning involving
specialized harmonic {feedback
loop}

Original model:
-0.745& Circuit:
2.490

|Wave| & |E|

Rank 0: Logit: 17.64 Prob:
37.18% Token: |Wave|

Rank 0: Logit: 17.96 Prob:
46.34% Token: |E|

Rank 1: Logit: 16.89 Prob:
17.65% Token: |E|

Rank 1: Logit: 16.47 Prob:
10.39% Token: |Ps|

Rank 2: Logit: 15.35 Prob:
3.76% Token: |Ps|

Rank 2: Logit: 15.47 Prob:
3.84% Token: |Wave|

Rank 3: Logit: 15.29 Prob:
3.57% Token: |St|

Rank 3: Logit: 15.31 Prob:
3.28% Token: |Energy|

Rank 4: Logit: 15.15 Prob:
3.09% Token: |emitter|

Rank 4: Logit: 14.89 Prob:
2.15% Token: |emitter|

Case 3

Analyzing Ectoplasmic Conduit
energy transfer efficiency through
degrading {structure reinforcement
reveals}

Original model:
-3.019 & Circuit:
0.523

|Transfer| &
|Emit|

Rank 0: Logit: 49.08 Prob:
49.26% Token: |Transfer|

Rank 0: Logit: 44.54 Prob:
47.18% Token: |Emit|

Rank 1: Logit: 48.68 Prob:
33.09% Token: |St|

Rank 1: Logit: 44.01 Prob:
27.96% Token: |Transfer|

Rank 2: Logit: 46.66 Prob:
4.38% Token: |Ada|

Rank 2: Logit: 42.38 Prob:
5.48% Token: |St|

Rank 3: Logit: 46.37 Prob:
3.28% Token: |Flow|

Rank 3: Logit: 42.24 Prob:
4.75% Token: |Energy|

Rank 4: Logit: 46.06 Prob:
2.41% Token: |Emit|

Rank 4: Logit: 41.64 Prob:
2.61% Token: |Mi|

Case 4
Shard Relic residual energy output
response to sudden energy {conduit
field spikes} shows

Original model:
-2.623 & Circuit:
3.202

|Output| & |St|

Rank 0: Logit: 40.96 Prob:
91.94% Token: |Output|

Rank 0: Logit: 34.61 Prob:
51.02% Token: |St|

Rank 1: Logit: 38.34 Prob:
6.67% Token: |St|

Rank 1: Logit: 34.24 Prob:
35.19% Token: |Field|

Rank 2: Logit: 35.87 Prob:
0.56% Token: |Fl|

Rank 2: Logit: 31.41 Prob:
2.08% Token: |Output|

Rank 3: Logit: 35.82 Prob:
0.54% Token: |Trans|

Rank 3: Logit: 30.97 Prob:
1.34% Token: |Har|

Rank 4: Logit: 33.51 Prob:
0.05% Token: |Un|

Rank 4: Logit: 30.84 Prob:
1.18% Token: |Fl|
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Table 3: Illustrative examples from the synthetic dataset (P=5). Each data entry is a row, with fine lines separating
entries within a group. Token IDs are shown.

Group Xbg Xdom Ydom Xsub Ysub

Group 1

[10030, 16936, 1050, 10565] 10279 20730

[10030, 16936, 1050, 10565] 24327 20730

[10030, 16936, 1050, 10565] 4619 20730

[10030, 16936, 1050, 10565] 5137 20730

[10030, 16936, 1050, 10565] 785 20730

[10030, 16936, 1050, 10565] 18941 3519

Group 2

[17026, 8837, 3802, 28741] 2496 1077

[17026, 8837, 3802, 28741] 3530 1077

[17026, 8837, 3802, 28741] 11948 1077

[17026, 8837, 3802, 28741] 2028 1077

[17026, 8837, 3802, 28741] 9389 1077

[17026, 8837, 3802, 28741] 25814 5374

Group 3

[18131, 14501, 21161, 311] 4706 7790

[18131, 14501, 21161, 311] 778 7790

[18131, 14501, 21161, 311] 18762 7790

[18131, 14501, 21161, 311] 28591 7790

[18131, 14501, 21161, 311] 28981 7790

[18131, 14501, 21161, 311] 8447 6129

Table 4: Illustrative examples from the fine-tuning Dataset (P=5). Each data entry is a row, with fine lines separating
entries within a group.

Group Xbg Xdom Ydom Xsub Ysub

Group 1

Analysis of the Starfire Crystal
Engine reveals primary energy output peak resonance Pure Nova

Analysis of the Starfire Crystal
Engine reveals primary energy output idle cycle Pure Nova

Analysis of the Starfire Crystal
Engine reveals primary energy

output phase
synchronicity Pure Nova

Analysis of the Starfire Crystal
Engine reveals primary energy output null gravity Pure Nova

Analysis of the Starfire Crystal
Engine reveals primary energy output core temperature Pure Nova

Analysis of the Starfire Crystal
Engine reveals primary energy output cold ignition Quantum Flux

Group 2

Observation of the Chronos Orb’s
temporal distortion signature indicates full moonlight Stable Chrono-

displacement

Observation of the Chronos Orb’s
temporal distortion signature indicates near Leyline Stable Chrono-

displacement

Observation of the Chronos Orb’s
temporal distortion signature indicates while attuned Stable Chrono-

displacement

Observation of the Chronos Orb’s
temporal distortion signature indicates during solstice Stable Chrono-

displacement

Observation of the Chronos Orb’s
temporal distortion signature

indicates etherium
interaction

Stable Chrono-
displacement

Observation of the Chronos Orb’s
temporal distortion signature indicates sudden impact Temporal Anomaly

Group 3

Study of the Xylosian biology
reveals primary nutrient absorption method consuming light Molecular

Assimilation

Study of the Xylosian biology
reveals primary nutrient absorption method after sonic bath Molecular

Assimilation

Study of the Xylosian biology
reveals primary nutrient absorption method during digestion Molecular

Assimilation

Study of the Xylosian biology
reveals primary nutrient absorption method high pressure Molecular

Assimilation

Study of the Xylosian biology
reveals primary nutrient absorption method thermal vent Molecular

Assimilation

Study of the Xylosian biology
reveals primary nutrient absorption

method xenoflora
consumption

Crystalline
Excretion
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