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Abstract

Positional bias (PB), manifesting as non-
uniform sensitivity across different contextual
locations, significantly impairs long-context
comprehension and processing capabilities.
Previous studies have addressed PB either
by modifying the underlying architectures
or by employing extensive contextual aware-
ness training. However, the former approach
fails to effectively eliminate the substantial
performance disparities, while the latter im-
poses significant data and computational over-
head. To address PB effectively, we introduce
Pos2Distill, a position to position knowledge
distillation framework. Pos2Distill transfers
the superior capabilities from advantageous
positions to less favorable ones, thereby re-
ducing the huge performance gaps. The con-
ceptual principle is to leverage the inherent,
position-induced disparity to counteract the PB
itself. We identify distinct manifestations of
PB under Retrieval and Reasoning paradigms,
thereby designing two specialized instantia-
tions: Pos2Distill-R1 and Pos2Distill-R2 respec-
tively, both grounded in this core principle. By
employing our approach, we achieve enhanced
uniformity and significant performance gains
across all contextual positions in long-context
retrieval and reasoning tasks. Crucially, both
specialized systems exhibit strong cross-task
generalization mutually, while achieving supe-
rior performance on their respective tasks.

1 Introduction
Who tied the bell could be the one to untie it.

— Chinese proverb

Large Language Models (LLMs) are increasingly
proficient in handling long contexts, which has
been unlocked by key innovations in efficient atten-
tion mechanisms (Dao et al., 2022; Ainslie et al.,
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Figure 1: Motivation for Pos2Distill. Marked perfor-
mance decline from the 1st to 10th position in multi-
document QA underscores severe PB. From an alter-
native viewpoint, superior responses at advantageous
positions provide effective supervisory signals for less
optimal positions.

2023) and length extrapolation techniques (He
et al., 2024; Chi et al., 2023b; Press et al., 2021).
These breakthroughs enable LLMs to tackle com-
plex question answering over substantially larger
context windows (Agarwal et al., 2024), marking
a crucial step towards more capable and versatile
natural language systems.

Nevertheless, recent studies point out a critical
limitation: LLMs do not uniformly extract and uti-
lize information across long context, consistently
favoring information located at the context edges
while neglecting that in the middle. This phe-
nomenon, commonly termed the lost in the middle
problem (Liu et al., 2024), underscores a pervasive
and intrinsic PB inherent in long-context handling.

PB poses significant obstacles in information-
rich settings, such as retrieval-augmented genera-
tion (Fang et al., 2025; Dong et al., 2025b), long-
context reasoning (Li et al., 2024a; Kuratov et al.,
2024), and LLM-as-a-judge (Wang et al., 2024b;
Li et al., 2024c). When critical information is dis-
tributed arbitrarily throughout the input, LLMs fail
to identify and integrate gold content (Baker et al.,
2024a; Peng et al., 2025), culminating in unex-
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pected model failures across various applications.
To alleviate PB, prior research has delved into

its underlying causes, seeking to modify key ar-
chitectural components or internal representations
linked to uneven contextual sensitivity (Zhang et al.,
2024c; Chen et al., 2024). Despite recent progress
in narrowing the performance gap, a substantial
disparity in information utilization between advan-
tageous and disadvantaged positions still persists.
Another line resorts to intensive contextual aware-
ness training (An et al., 2024; Zhang et al., 2024a)
by synthesizing training data with fine-grained in-
formation awareness (Zhang et al., 2024b). How-
ever, such data-driven approaches typically incur
substantial costs in both data synthesis and compu-
tational resources. Consequently, there remains a
critical need for effective and efficient strategies to
mitigate PB that overcome these limitations.

Inspired by the proverb 1, we contend that PB
not only imposes challenges but also implicitly
reveals gold signals, which can be exploited to mit-
igate position-induced disparity (Fig. 1). Our analy-
sis further reveals that PB exhibits distinct behavior
under retrieval and reasoning paradigms. In re-
trieval tasks, PB predominantly manifests as token-
shifting, whereas in reasoning tasks, PB interacts
with Chain-of-Thought (CoT) processes (Wei et al.,
2022), leading to thought-shifting, characterized
by deviations in the reasoning trajectory.

To this end, we introduce Pos2Distill, a novel po-
sition to position knowledge distillation framework,
transferring knowledge from advantageous posi-
tions to rectify responses at unfavorable ones. Cus-
tomarily, we develop two systems: Pos2Distill-R1

and Pos2Distill-R2. Pos2distill-R1 mitigates token-
shifting in retrieval by incorporating Kullback-
Leibler (KL) divergence loss (Kullback and Leibler,
1951), providing fine-grained corrective signals.
Pos2Distill-R2 addresses thought-shifting in rea-
soning tasks by distilling high-quality CoT re-
sponses from advantageously positioned inputs to
guide and rectify reasoning trajectories at less fa-
vorable positions.

Extensive experiments demonstrate that
Pos2Distill leads to more uniform and substantially
improved performance both for in-context retrieval
and reasoning tasks. Furthermore, data efficiency
is a notable property of our method: with only
250 training instances, Pos2Distill increases the
performance of Mistral-7B-v0.3 on the NQ dataset
by 6.7%, as indicated in Fig. 5.

Our contributions can be summarized as follows:
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Figure 2: Left: long-term decay effect property of RoPE;
Right: Attention sink (causal attention matrix).

• We uncover distinct manifestations of PB under
retrieval and reasoning paradigms, namely token-
shifting and thought-shifting, offering deeper in-
sights into the nature of PB.

• We propose Pos2Distill, a novel position to po-
sition KD framework to mitigate PB. Given the
different behavior of PB, we design two systems
tailored to address the PB in both scenarios.

• Extensive experiments and ablation studies thor-
oughly demonstrate the efficacy in terms of per-
formance, data efficiency, and superior general-
ization.

2 Related Work

Causes of Position Bias. Most LLMs adopt rela-
tive positional encodings (Peysakhovich and Lerer,
2023), such as RoPE (Su et al., 2024) and AL-
iBi (Press et al., 2021), integrating token relative
distances into attention score computation. This
design induces a long-range decay effect in Fig. 2
(left), whereby LLMs preferentially attend to re-
cent tokens. Concurrently, LLMs exhibit a notable
bias towards the initial tokens, which can be largely
attributed to the universal phenomenon, attention
sink (Xiao et al., 2024; Gu et al., 2025), where dis-
proportionate attention is allocated to early tokens
in Fig. 2 (right), regardless of semantic significance.
In addition, causal mask enforces a unidirectional
flow of information, implicitly encoding positional
information (Haviv et al., 2022; Chi et al., 2023a;
Wang et al., 2024a). The interplay of these factors
collectively contributes to the emergence of PB, as
further elaborated in Appendix A.

Mechanistic Approaches. Current approaches
predominantly focus on aforementioned underlying
causes of PB. A broad spectrum of interventions
has been investigated, ranging from modifications
to position encodings (Zhang et al., 2024c; Chen
et al., 2024; Lin et al., 2024) and alterations to
causal masks (Wang et al., 2025b), to the manip-
ulation of internal states, including attention re-
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Figure 3: Different Behavior of Position Bias.

weighting (Hsieh et al., 2024; Tan et al., 2025) and
hidden state manipulation (Yu et al., 2024). De-
spite these efforts, the substantial performance gap
across token positions remains largely unmitigated.

Training Approaches. Standard next-token pre-
diction pretraining often yields LLMs with inade-
quate contextual awareness (Shi et al., 2024). A
research direction therefore explores specialized
datasets designed to foster fine-grained information
awareness (Zhang et al., 2024b), training LLMs
to identify pertinent information within their full
context. Nevertheless, the considerable data and
computational overhead limit their scalability and
practical viability.

3 Behavior of Position Bias

Natural PB for Retrieval. Given documents with
identical constituent elements arranged in varying
orders, our empirical observations indicate that the
model’s output variability is not uniform across
the entire response, but rather highly concentrated
at a few decisive turning positions1. This hetero-
geneous sensitivity leads to token shifting: the
model produced erroneous tokens at these critical
positions, consequently retrieval failed. Specifi-
cally, as illustrated in Fig. 3a, even with consistent
prefix output, an erroneous generation of "M" in-
stead of the correct "W" triggers retrieval failure.
Moreover, we observe that manual correction of

1Please refer to Appendix D for more details.

this misaligned token (e.g., changing "M" to "W")
enables the model to successfully resume genera-
tion and complete the retrieval task. This finding
uncovers a token recovery mechanism: once a
misaligned token resulting from shifting is recti-
fied, the model can realign its subsequent output.
(More supported analysis experiments are provided
in Appendix B .)
Compound PB for Reasoning. In-context rea-
soning fundamentally incorporates two processes:
retrieval and reasoning. The two processes are
deeply intertwined, creating a virtuous cycle and
producing numerous outputs (Ren et al., 2025,
2024). Chain-of-Thought (CoT) reasoning guides
the model to formulate more targeted queries,
thereby enhancing the precision of the retrieval
process (Wang et al., 2024c). Conversely, access to
accurate, retrieved information provides the factual
grounding needed to steer and validate the reason-
ing steps, thus ensuring the logical integrity of the
reasoning chain. At the same time, the selection of
reasoning path is very sensitive to irrelevant con-
texts (Yang et al., 2025b). Within this setting, PB
is reflected both in variations during retrieval and
in alterations that occur during reasoning. Exam-
ples of these two types of failures are presented
in Fig. 3b. Therefore, it is crucial to reshape the
overall response trajectory by integrating genuinely
relevant information and reasoning chain.

4 Methodology

PB behaves differently in retrieval and reasoning;
thus, a unified approach fails to capture their in-
herent distinctions. Therefore, we propose two tai-
lored position-aware distillation strategies: (1) For
Retrieval (Pos2Distill-R1), we directly calibrate to-
ken shifting. (2) For Reasoning (Pos2Distill-R2),
we transfer high-quality reasoning patterns from
advantageous to suboptimal positions, thereby ef-
fectively mitigating the compounded bias.

4.1 Preliminary

Task Definition. Following Wang et al. (2025b),
we formally define a long-context task as follows.
Given the task-specific instruction I, a set of n
retrieved documents D:= {di}ni=1, and a context-
dependent question Q, a specific LLM M param-
eterized by PΘ, generates a response conditioned
on the corresponding prompt P := {I| γ(D)| Q},
where the function γ determines the specific order-
ing of documents in D.
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Retrieval vs. Reasoning. Retrieval tasks involve
identifying an answer directly present in a single
document dgold ∈ D (Dong et al., 2025a; Liu et al.,
2025). When dgold is located at index i within D,
the associated prompt is denoted as P i, and the re-
sponse to this prompt is R∗ ∼ M(P∗). In contrast,
reasoning tasks require M to integrate information
from multiple documents. For formulation brevity,
we focus on the two-hop reasoning setting, which
involves a first-hop document dpre at index i and
a second-hop document dpost at index j in D. The
reasoning prompt is denoted as P(i,j), and the cor-
responding response is C∗ ∼ M(P∗).
Objective. The primary objective of Pos2Distill is
to enable a model M such that, for any input P i

during generation, M emulates a scenario in which
a gold document or a pair of sequentially relevant
documents are placed at the most advantageous po-
sitions within the input context. Specifically, the
advantageous position is designated as the “sink
position” (P1) for Retrieval and as the “recent po-
sition” (P(n−1,n)) for Reasoning (shown in Fig. 4).

4.2 Pos2Distill-R1 for Retrieval

Overall Framework. This section presents
Pos2Distill-R1, engineered to calibrate token-
shifting behavior and hence mitigate PB for re-
trieval tasks. The framework consists of two
core modules: Activation of Trivial Positions and
Anchoring of Advantageous Positions in Fig. 4a.
The former facilitates the transfer of effective pro-
cessing capabilities from high-performing advan-
tageous positions to underutilized trivial positions,
while the latter ensures the preservation of es-
tablished performance at advantageous positions,
thereby narrowing the gap between trivial and ad-
vantageous positions.
Trivial vs. Advantageous Positions. For retrieval
tasks, we formally define the advantageous position
as the first position (sink position), with the remain-

ing positions {2, . . . , n} designated as trivial ones.
For dgold occupies the sink position, the attention
sink region overlaps with dgold, thereby generating
high-quality outputs that inherently imply optimal
and robust attention patterns (discussed in 2) 2.
Activation of Trivial Positions. To rectify token-
shifting behavior, we leverage KL divergence as
a fine-grained alignment signal at each genera-
tion step. Concretely, we first sample responses
Radv ∼ M(Padv) from advantageous positions.
We then construct K prompts, each corresponding
to a distinct trivial position, denoted as {Pnk}Kk=1

with ni ∈ {2, . . . , n}. Our objective is to align the
M’s predicted probability distribution over Radv,
conditioned on each trivial prompt P i, with the
native distribution over Radv conditioned on Padv.
Formally, for a given position ni, knowledge distil-
lation at ni is defined as:

LPni

Act=E
[
KL

(
PΘ(Radv|Padv) ∥ P

Θ̂
(Radv|Pni)

)]

where PΘ(Radv|P) denotes the probability distri-
bution over outputs Radv conditioned on input P .
Here, Θ̂ represents the updated parameters at the
current step. Notably, throughout training, we con-
sistently treat PΘ(Radv|P) as the teacher distribu-
tion rather than P

Θ̂
, avoiding the loss of advantages

at the sink position during model updates.
Position-Aware Alignment. However, due to

the impact on different trivial positions induced
by PB varies, the alignment difficulty between
PΘ(Radv)|Padv) and P

Θ̂
(Radv|Pni) is position-

dependent. Intuitively, positions with higher align-
ment difficulty should be prioritized with gradient
updates to better domain adaptation. Motivated by
this intuition, we introduce Position-Aware Align-
ment, a dynamic learning strategy that adaptively
adjusts learning based on alignment difficulty, en-
suring balanced and effective training. Technically,

2Extensive empirical evidence also demonstrates superior
performance at the sink position.
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given a batch of B examples {Qb}|B|b=1 and their cor-
responding K trivial prompts {Pnk

j }Kk=1 for each
Qj , K · B prompts are divided into n− 1 distinct
trivial bins based on their trivial positions. Each
bin is represented as B̂i = {P i

j | P i
j ∈ B, j ∈

{1, . . . , |B|}}. To model alignment difficulty for
each trivial position, we introduce an inter-position
weighting scheme for position variations induced
by PB while introducing an intra-position weight
for differentiating instance variations in the same
trivial bin B̂i. Therefore, a dynamic weight αij for
each instance is defined as follows:

αij =

exp

(
1

|B̂i|
∑|B̂i|

j=1 L
Pi
j

Act

)

n∑
i=2

exp

(
1

|B̂i|
∑|B̂i|

j=1 L
Pi
j

Act

)

︸ ︷︷ ︸
inter-pos

· LPi
j

Act

max
k

{
LPi

k
Act

}

︸ ︷︷ ︸
intra-pos

.

The activation loss of B can be formulated as:

LAct =
n∑

i

|B̂i|∑

j

αijL
Pi
j

Act.

Anchoring of Advantageous Positions. During
the distillation process, M becomes aware that the
gold information possibly appear at any location
within the context window, which can dilute sig-
nificant attention to the sink position, potentially
impairing the overall capability on diverse down-
stream tasks To prevent this, we introduce an an-
choring loss to preserve the effectiveness of the
advantageous position:

LAnc =E
[
KL

(
PΘ(Radv|Padv)∥P

Θ̂
(Radv|Padv)

)]
.

Training Objective. Our approach optimizes a
composite loss function that integrates activation
loss and anchoring loss, formally:

L = LAct + λLAnc,

where λ is a hyperparameter controlling the inten-
sity of the anchoring loss in joint learning.

4.3 Pos2Distill-R2 for In-context Reasoning

This section introduces the Pos2Distill-R2 to re-
shape reasoning trajectories. The core principle
underlying this method is to ensure that the correct
reasoning process is consistently activated, irre-
spective of the positions of relevant documents.

Trivial vs. Advantageous Positions. Although
PB in multi-hop reasoning scenario is sophisticated,
insights from (Baker et al., 2024b) allow us to sum-
marize several key patterns: PB is closely associ-
ated with the absolute position within the context
window, the distance between relevant documents,
and their relative order.3 Empirically, placing dpre
and dpost at indices n−1 and n is expected to yield
optimal performance. Consequently, we formally
define the Padv for reasoning tasks as P(n−1,n).

Reshaping Reasoning Trajectories. We begin
by sampling CoT reasoning trajectories from the
advantageous positions Padv, denoted as Cadv ∼
M(Padv). Similar to the procedure for Re-
trieval tasks, we construct K distinct prompts
for each position set {npre

k , npost
k }, denoted as

{P(npre
k ,n

post
k )}Kk=1, where npre

k and n
post
k are selected

from the set {1, . . . , n} subject to n
pre
k ̸= n

post
k .

The prompts P(npre
k ,n

post
k ) and their corresponding

reasoning trajectory Cadv are subsequently opti-
mized using the cross-entropy (CE) loss function
to effectively capture the reasoning patterns. For-
mally,

L = −
K∑

k=1

logM
(
Cadv | P(npre

k ,n
post
k )

)
.

5 Experiments

5.1 Experimental Setup

Setup for Pos2Distill-R1. We apply Pos2Distill-
R1 to three LLMs, including Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023), Qwen1.5-7B-Chat (Bai
et al., 2023), and Llama-3-8B-Instruct (Touvron
et al., 2023), all of which exhibit severe PB in
retrieval tasks. The evaluation leverages three
datasets: NaturalQuestions (NQ) (Kwiatkowski
et al., 2019), TriviaQA (TQA) (Joshi et al., 2017)
and WebQA (WebQ) (Berant et al., 2013), and
a specilized task KV Retrieval (Liu et al., 2024).
These datasets are setting as retrieval-augmented
QA, with each question accompanied by 20 docu-
ments.
• Baselines: We compare our approach with base

model, Ms-PoE (Zhang et al., 2024c), vanilla
SFT and SeqKD (Kim and Rush, 2016).

• Evaluation: We assess PB by measuring task
performance as dgold is systematically placed at
various positions.

3Please refer to Table 12.
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Methods NQ KV Retrieval TQA WebQ
1st 5th 10th 15th 20th Avg. 0% 25% 50% 75% 100% Avg. 1st 5th 10th 15th 20th Avg. 1st 5th 10th 15th 20th Avg.

MISTRAL-7B 72.5 62.3 60.7 63.9 64.9 64.8 99.8 97.6 62.0 35.6 78.0 74.6 85.2 81.8 81.8 82.6 82.2 82.7 82.7 69.7 64.5 62.4 62.5 68.4
+Ms-PoE 67.3 58.7 56.7 60.1 61.5 60.9 99.8 97.7 78.4 75.2 95.3 89.3 81.3 79.3 76.7 79.2 83.4 80.0 76.7 64.1 62.3 59.3 63.5 65.2
+SFT 68.3 64.5 66.5 66.7 62.7 65.7 100.0 89.0 89.2 75.6 81.8 87.1 78.2 78.0 76.8 77.2 76.2 77.3 52.7 51.1 52.3 50.7 53.9 52.1
+SeqKD 63.3 59.1 59.3 60.5 57.5 59.9 100.0 86.4 93.0 87.0 93.0 91.8 77.4 77.6 76.4 77.6 75.8 77.0 57.7 58.9 55.7 56.9 56.1 57.0
+Pos2Distill 70.5 70.7 71.3 71.9 73.3 71.1 99.0 95.4 92.6 90.0 96.8 94.8 85.3 82.4 84.6 83.4 81.8 83.5 70.3 67.9 68.3 70.5 67.5 68.9
QWEN1.5-7B 73.6 57.3 56.9 57.3 60.9 61.2 100.0 83.8 38.7 23.3 30.3 55.2 82.4 74.7 73.9 75.4 76.4 76.6 64.3 50.9 51.5 50.3 55.2 54.4
+Ms-PoE 67.4 54.8 54.2 57.4 61.3 59.0 97.4 76.5 4.7 6.3 3.2 37.6 76.4 75.2 69.4 67.4 75.1 72.7 65.2 53.4 54.5 49.7 55.6 55.7
+SFT 63.5 59.7 62.5 62.5 62.9 62.2 100.0 97.0 95.8 88.8 91.2 94.6 77.6 77.0 78.4 77.4 77.4 77.6 54.9 52.5 51.9 52.3 52.5 52.8
+SeqKD 63.9 58.5 62.5 61.1 57.7 60.7 100.0 91.6 66.9 50.5 54.5 72.7 80.2 77.0 80.2 78.8 75.6 78.4 56.1 54.5 55.3 54.5 54.9 55.1
+Pos2Distill 69.9 67.3 68.1 69.1 67.5 68.4 99.8 97.3 96.5 97.5 93.2 96.9 82.6 79.8 79.0 80.6 78.1 80.0 64.9 61.5 61.5 61.3 61.8 62.2
LLAMA-3-8B 67.9 56.7 53.7 57.9 60.8 59.4 98.0 85.4 70.3 83.2 68.5 81.1 85.6 83.4 82.2 84.0 83.2 83.7 57.9 51.8 50.7 50.7 52.3 52.8
+Ms-PoE 65.7 58.5 57.3 58.2 62.5 60.4 97.5 87.3 78.3 81.2 73.4 83.5 86.4 84.2 81.2 81.5 82.7 83.2 56.2 52.3 52.1 49.8 52.3 52.5
+SFT 65.1 60.7 62.1 65.3 66.7 63.9 98.6 93.0 97.0 98.0 96.8 96.7 82.8 83.4 84.8 83.2 83.2 83.5 56.8 54.7 55.1 55.3 54.5 55.3
+SeqKD 61.7 58.7 58.9 59.9 61.9 60.2 100.0 95.6 95.2 98.2 97.6 97.3 82.4 84.6 83.6 84.2 82.6 83.5 54.5 53.7 52.9 51.9 52.5 53.1
+Pos2Distill 67.7 64.1 68.3 66.7 68.1 67.0 98.8 96.2 98.2 97.0 97.8 97.6 85.6 84.2 84.0 84.1 83.8 84.3 57.7 56.3 57.1 56.3 56.2 56.7

Table 1: Main results of Pos2Distill-R1 on both Retrieval-Augmented QA datasets and KV retrieval (140 KV pairs).

Retrieval-Augmented QA
Num. Meth. 0% 25% 50% 75% 100% Avg.↑ GAP.↓ LEN.

20 BASE. 72.3 63.3 61.2 63.5 65.1 65.1 11.1 3.3kours 72.3 69.5 67.5 68.5 69.7 69.5 4.8

30 BASE. 73.7 59.5 60.5 61.3 64.1 63.8 14.2 4kours. 70.3 67.9 69.3 67.3 70.9 69.1 3.6

40 BASE. 72.7 60.1 61.3 61.7 65.7 64.3 12.6 6kours. 67.1 66.7 68.3 66.5 68.3 67.4 1.8

50 BASE. 74.7 56.9 58. 59.5 66.3 63.1 17.8 8kours. 69.1 66.1 66.7 66.1 67.9 67.2 3.0

Table 2: Generalization of Pos2Distill-R1 on longer
context. (Mistral-7B-v0.3 trained on 20 docs).

Setup for Pos2Distill-R2. For in-context reason-
ing, we utilize two capable LLMs: Llama-3.1-8B-
Instruct and Qwen2.5-7B-Instruct. The evaluation
is performed on three long-context multi-hop rea-
soning datasets: Hotpot QA (Yang et al., 2018),
MusiQue (Trivedi et al., 2022) and 2WikiMulti-
HopQA (Ho et al., 2020). (All details in Appx. C)
• Baselines: We compare two self-training base-

lines utilizing CoT data: SEALONG (Li et al.,
2024a) and LONGFAITH-SFT and LONGFAITH-
DPO (Yang et al., 2025a)4.

• Evaluation: We evaluate from two aspects: (1)
performance gains in long-context reasoning, and
(2) performance gap induced by the positions.

5.2 Main Results for Pos2Distill-R1

Pos2Distill-R1 obviously mitigates PB. Tab. 1
summarizes the performance of various methods
across different benchmarks. Our analysis yields
two key findings: First, Pos2Distill-R1 demon-
strates robust and uniform performance irrespective
of the position of dgold, markedly reducing position-
induced performance disparities. For example, on
WebQ dataset, Pos2Distill-R1 enables Llama-3-8B
to achieve an average accuracy of 56.7% across
20 positions. This performance, comparable to

4See more illustrations about baselines in Appendix C
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Figure 5: Ablation for Pos2Distill-R1. Each point shows
mean accuracy, averaged across gold document posi-
tions 1,5,10,15,20. The x-axis represents the total size
of training data, which increases with the number of
questions, while K is fixed. "KL" refers to word-level
KD; adaptive refers to our approach.

57.9% attained when dgold is situated at an opti-
mal sink position, illustrates successful knowledge
transfer from advantageous to unfavorable posi-
tions, the core principle of Pos2Distill-R1. Notably,
our method significantly outperforms standard SFT,
which suggests that the closer distributions of Radv

and Rtrivial allows LLMs to adapt more readily
than when learning from markedly different distri-
butions, leading to the high data efficiency detailed
in Sec. 5.2.2. Furthermore, Pos2Distill-R1 effec-
tively generalizes to longer contexts. When evalu-
ated with contexts containing 20 to 50 documents,
Mistral-7B-v0.3 trained on 20-document contexts
maintains both high overall accuracy and positional
uniformity in Tab. 2. Crucially, it exhibits signifi-
cantly narrowed performance gaps across positions.

5.2.1 Ablation for Pos2Distill-R1

To verify the effectiveness of our design, we con-
ducted comprehensive ablation studies in Tab. 3.
Our findings yield several important insights:
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Method 1 5 10 15 20 AVG.

Base 73.6 57.3 56.9 57.3 60.9 61.2
SeqKD 61.7 58.7 58.9 59.9 61.9 60.2
KL 61.7 64.3 65.6 66.4 67.6 65.1
KL+Align 64.5 66.5 67.8 67.3 67.4 66.7
KL+Align+Anc. 69.9 67.3 68.1 69.1 67.5 68.4

Table 3: Ablation study of two core modules for
Qwen1.5-7B-Chat: the adaptive strategy targeting trivial
positions and the anchoring strategy for advantageous
positions. The hyperparameter λ is set to 1.

KL is effective for token-shifting correction.
When trained on identical data compositions, the
inferior performance of SeqKD highlights the short-
comings of hard-label supervision in scenarios in-
volving token-shifting. In contrast, KL offer a supe-
rior mechanism for correcting such shifts compared
to the rigid guidance This property makes KL loss
particularly well-suited for token-recovery.
Position-aware alignment ensures balance and
better learning. Integrating our Position-Aware
Alignment strategy with KL divergence leads to sig-
nificantly more balanced and robust performance,
increasing the average score to 66.7.
Anchoring strategy reinforces robustness via key
position focus. Incorporating anchoring not only
addresses attention dilution at sink positions, but
also yields performance gains across other posi-
tions. With an average score of 68.4, the strategy is
particularly effective at position 1 while maintain-
ing strong performance at trivial positions.

5.2.2 Analysis Results

We investigate the property of Pos2Distill-R1, pre-
senting comprehensive results in Fig. 5. High
Data Efficiency. As shown in Fig. 5, our posi-
tional awareness metrics achieve superior perfor-
mance with minimal training data (e.g., Mistral-7B
achieves 70.2% accuracy with just 250 examples)
and consistently outperform other strategies as the
dataset grows. This highlights the data efficiency of
our approach. As discussed before, this efficiency
stems from the distribution similarity in responses,
enabling rapid adaptation to in-domain data, avoid-
ing reliance on entirely out-of-domain samples.
The Impact of K. We conduct studies on K
by varying its value from 1 to 10 while keeping
other settings fixed. Increasing K from 0 to 6 im-
proves LLM performance by 4.6% improvement in
LLM performance, but further increase to 10 shows
marginal gains with performance saturation. To
balance effectiveness and computational efficiency,
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Figure 6: Ablation for the number of sampled positions
K for Pos2Distill-R1 (left) and Pos2Distill-R2 (right).

we select K = 4 ∼ 6 as the optimal configuration.

Mechanistic Insights. Since PB emerges from
the architectures and parameters of LLMs, we seek
to uncover the internal model dynamics following
Pos2Distill-R1 and provide an interpretable expla-
nation. We record the attention distribution over 20
documents as dgold moves from 1 to 20 in Fig. 7.
Pos2Distill-R1 strengthens contextual fidelity by
dynamically shifting the focus of attention to con-
sistently align with the relevant document, thereby
facilitating more accurate retrieval.

Figure 7: Attention distribution of each doc across total
20 docs, as the position of dgold varies from 1 to 20.

5.3 Main Results for Pos2Distill-R2

Pos2Distill-R2 strengthens in-context reasoning.
Pos2Distill-R2 surpasses existing self-training ap-
proaches in both in-domain performance and out-
of-domain generalization. As detailed in Tab. 4,
when trained on the MusiQue dataset, Pos2Distill-
R2 achieves an Exact Match (EM) score of 42.8,
outperforming all leading baselines. Furthermore,
our method exhibits robust cross-domain gener-
alization; for instance, on the HotpotQA dataset,
it attains an EM score of 58.3, compared to 50.9
from the strongest baseline. Our findings suggest
that training LLMs to reason across diverse, scat-
tered gold positions potentially enhances their long-
context reasoning more effectively than conven-
tional instance-by-instance training. This insight
offers a new perspective for improving reasoning
capabilities in complex, long-context tasks.

To assess PB within the reasoning paradigm,
we evaluate performance on two-hop data from
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MuSiQue 2WikiMultiHopQA HotpotQA
LLAMA-3.1-8B Overall 2-Hop 3-Hop 4-Hop Overall 2-Hop 4-Hop Overall Bridge Comparison

+CoT 11.8 11.9 11.9 7.7 27.4 23.4 40.8 19.4 19.3 23.7
+CoC 13.2 13.3 14.7 11.1 33.8 38.0 50.5 23.2 21.8 29.5
+SEALONG 25.5 31.6 24.5 15.3 52.6 48.6 66.3 49.6 47.7 56.7
+LONGFAITH-SFT (CoT) 39.9 43.5 37.5 29.1 55.0 49.6 72.9 49.8 50.5 46.7
+LONGFAITH-SFT (CoC) 39.6 44.4 38.3 29.9 56.6 50.9 75.1 50.9 51.3 50.7
+LONGFAITH-DPO 34.2 38.8 32.9 25.8 51.2 48.8 59.8 49.7 49.8 42.2
+POS2DISTILL 42.8+2.9 47.4+3.0 38.4+0.1 31.6+1.7 61.8+5.2 57.0+6.1 78.0+2.9 58.3+7.4 56.5+5.2 65.8+9.1

QWEN2.5-7B Overall 2-Hop 3-Hop 4-Hop Overall 2-Hop 4-Hop Overall Bridge Comparison

+CoT 28.7 30.4 29.1 25.2 49.5 41.9 76.6 52.1 49.1 62.5
+CoC 25.9 26.3 28.6 23.7 45.9 38.0 74.3 47.3 43.7 60.6
+SEALONG 33.0 34.5 31.1 28.6 47.6 42.3 68.0 48.6 48.6 42.1
+LONGFAITH-SFT(CoT) 43.3 45.9 41.1 37.0 51.1 46.2 71.2 53.6 55.7 46.0
+LONGFAITH-SFT(CoC) 42.5 43.3 41.1 38.0 51.1 46.6 68.9 53.6 55.4 47.5
+LONGFAITH-DPO 38.4 39.9 35.7 31.9 59.6 52.5 85.0 56.5 54.2 67.4
+POS2DISTILL 46.2+2.9 47.6+1.7 43.5+2.4 39.2+1.2 63.4+3.8 56.7+4.2 76.5 58.7+5.5 61.2+7.0 67.2

Table 4: Main experiment results on long-context multi-hop reasoning datasets using the EM metric. The training
set has 2K samples. The dataset of PosDistill consists 500 questions, setting K as 4. CoC refers an effective
prompting strategy named Chain-of-Citation (Li et al., 2024b).

Connected Disconnected Reversed

POSITIONS [0,1] [5,6] [12,13] [17,18] Avg.↑ [0,8] [5,13] [6,14] [8,16] Avg.↑ [8,0] [13,5] [14,6] [16,8] Avg. GAP. ↓
QWEN2.5-7B 37.4 33.2 32.9 38.4 35.5 34.8 26.8 28.2 27.7 29.4 33.3 30.2 29.6 29.8 30.7 11.6
+LONGFAITH-SFT 51.0 46.6 46.7 50.1 48.6 47.1 44.3 44.2 43.8 44.9 45.4 42.6 41.7 43.0 43.2 9.3-2.3
+LONGFAITH-DPO 39.0 31.1 35.5 40.5 36.5 37.3 32.6 31.5 30.4 33.0 39.0 31.1 35.5 40.5 36.5 10.1-1.5
+POS2DISTILL 50.6 49.8 49.1 51.3 50.3 48.5 48.1 47.3 46.7 47.4 47.7 46.5 47.1 47.3 47.2 4.8-6.8
LLAMA3.1-8B 14.3 13.4 15.4 16.0 14.8 15.8 15.5 13.7 14.5 14.9 14.3 11.6 12.9 12.3 12.8 4.4
+LONGFAITH-SFT 45.4 44.4 44.9 47.4 45.5 44.3 45.2 43.5 42.7 43.9 42.9 42.7 42.9 41.5 42.5 5.9+1.5
+LONGFAITH-DPO 37.4 38.4 40.7 40.1 39.2 37.7 37.4 36.6 36.2 37.0 34.8 34.2 36.4 36.0 35.4 6.5+2.1
+POS2DISTILL 47.2 48.4 47.8 49.4 48.2 47.5 49.0 47.2 46.6 47.6 45.6 46.0 46.1 47.0 46.2 3.4-1.0

Table 5: PB assessment for Pos2Distill-R2 on two-hop data from MusiQue.

MusiQue, considering three relative position con-
figurations for the two gold documents: (i) con-
nected (hops are adjacent), (ii) disconnected (dis-
tracting content separates the hops), and (iii) re-
versed (hops are logically inverted and discon-
nected). Illustratively, the accuracy of Qwen2.5-7B
peaks at 38.4% in the connected mode (hops at
positions 17 and 18) but declines to 26.8% in the
disconnected mode (hops at positions 5 and 13),
exhibiting a obvious performance gap 11.6%. As
detailed in Tab. 5, our method not only effectively
mitigates the performance gaps to 4.1% across
these three modes but also enhances overall rea-
soning performance irrespective of hop configura-
tion. Conversely, conventional self-training meth-
ods, which typically rely on instance-by-instance
learning, struggle to eliminate these inter-mode dis-
parities and may even exacerbate this trend, which
underscores a fundamental limitation of their train-
ing paradigm in handling such PB.

5.3.1 Analysis for Pos2Distill-R2

The Impact of K on Pos2Distill-R2. In Fig. 6
(right), a similar trend to Pos2Distill-R1 is ob-

served: initially increasing K leads to a notable
improvement in EM scores, but subsequently, but
further increases result in diminishing returns, with
performance eventually reaching a saturation point.
Therefore, an optimal range for K exists, beyond
which further increases yield marginal benefits.

5.4 In-depth Exploration

Retrival Reasoning

Task NQ WebQ MusiQue HotpotQA

BASE 62.5 63.9 41.8 66.7
Pos2Distill-R1 74.3+11.8 68.1+4.2 45.1+3.3 69.2+2.5

Pos2Distill-R2 64.1+1.6 66.7+2.8 48.9+7.1 72.3+5.6

Table 6: Performance of Qwen1.5-7B fine-tuned with
Pos2Distill-R1 versus with Pos2Distill-R2 on retrieval
and reasoning tasks, utilizing the same size of data.

Discussion on Two Systems. As presented in
Tab. 6, both systems exhibit notable generalization
to their mutual tasks. Specifically, Pos2Distill-R1,
primarily optimized for retrieval, demonstrates that
its enhanced contextual retrieval capabilities also
improve reasoning over long contexts, yielding a
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Model NQ Webq
0 5 10 15 20 25 30 Gap. ↓ 0 5 10 15 20 25 30 Gap. ↓

Qwen2.5-14B 72.8 68.9 64.7 67.5 66.5 64.7 69.7 8.1 64.2 59.6 59.2 60.8 59.2 57.0 59.1 7.2
+Pos2Distill-R1 71.5 68.9 70.5 71.1 71.6 72.1 72.3 3.4 62.0 64.4 62.2 62.4 62.6 63.8 63.2 2.4
Qwen2.5 32B 70.3 65.1 65.5 65.9 64.3 66.1 71.3 7.0 64.2 59.6 59.2 60.8 59.2 57.0 59.0 7.2
+Pos2Distill-R1 71.5 67.7 70.3 70.1 70.9 70.7 70.7 3.8 63.2 63.2 61.6 60.6 61.2 62.2 62.8 2.6

Table 7: Generalization results on model size for Pos2Distill-R1.

Musique Connected Disconnected Reversed Gap ↓
[0,1] [5,6] [12,13] [17,18] [0,8] [5,13] [6,14] [8,16] [8,0] [13,5] [14,6] [16,8]

Qwen2.5 14B 56.6 54.1 54.7 59.5 55.0 49.5 50.0 51.8 57.7 51.4 52.0 51.9 10.0
+PosDistill R2 60.1 58.4 60.9 63.2 59.5 56.7 57.7 58.1 59.0 58.6 56.7 56.5 6.7
Qwen2.5 32B 61.7 59.8 59.1 63.2 59.4 54.7 54.2 54.7 60.3 56.6 55.4 57.8 9.0
+PosDistill R2 64.2 65.2 63.1 65.7 63.4 61.8 60.8 61.0 62.8 62.9 61.8 62.4 4.9

Table 8: Generalization results on model size for Pos2Distill-R2.

3.3% increase on the MusiQue task. Conversely,
Pos2Distill-R2, optimized for reasoning, shows that
its acquired proficiency in reasoning over long con-
text also bolsters contextual awareness, thereby
benefiting retrieval performance. Despite this cross-
task generalization, each system excels in its pri-
mary domain: Pos2Distill-R2 achieves superior
performance on complex long-context reasoning
tasks where Pos2Distill-R1 lags, and vice versa
for retrieval. This suggests distinct underlying dy-
namics for mitigating PB, potentially influenced by
the presence or absence of CoT. Consequently, the
development of these two specialized Pos2Distill
designs proves both necessary and effective.

Generalization to Larger LLMs To further as-
certain the robustness and broad applicability of
our findings, we extended our investigations to
larger-scale LLMs. The comprehensive evalua-
tions presented in Tab. 7 and 8, conducted across
30 docs, consistently reveal that even significantly
larger models exhibit a pronounced prevalence of
PB. This critical observation underscores the uni-
versal nature and persistence of PB across model
scales. Notably, our proposed method, Pos2Distill-
R1 and -R2, proved remarkable effectiveness in
mitigating PB within both 14 and 32B. Specifically,
for the Qwen2.5-32B, Pos2Distill-R1 significantly
reduced the performance gap: decreasing it from
7.2% to 2.6% in retrieval tasks and from 9% to
4.9% in reasoning tasks. These compelling quanti-
tative results affirm the scalability and efficacy of
our method when applied to larger LLMs.

6 Conclusion

This work introduces a novel paradigm to mit-
igate PB by leveraging the performance dispar-

ity it creates. Specifically, our method distills
knowledge from privileged positions to unfavored
ones, thereby reducing the disparty induced by PB.
PB manifests as token-shifting in retrieval and as
thought-shifting in reasoning. To address distinct
facets of PB dynamics, we develop two specialized
frameworks: Pos2Distill-R1 and Pos2Distill-R2.
Extensive experiments validate the efficacy of our
approach in reducing PB and robust generalization
in both in-context retrieval and reasoning tasks.
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Limitations

While our proposed methods demonstrate substan-
tial improvements in performance and data effi-
ciency, we acknowledge certain limitations exist.
Specifically, for Pos2Distill-R2, there is scope for
further refinement. The current design, while effec-
tive, could benefit from more granular mechanisms
to precisely calibrate the mitigation of PB. For in-
stance, future work could explore adaptive strate-
gies that adjust the positional distillation process
based on the complexity of the reasoning chain or
the specific configuration of supporting documents.
Such enhancements might lead to even more nu-
anced control over positional influences in complex
reasoning scenarios.

Potential Social Impacts

Enhancing positional robustness in large language
models (LLMs) fosters more reliable, fair, and con-
sistent information processing, especially in sce-
narios requiring long-context retrieval and reason-
ing. By mitigating PB, our approach encourages
equitable model behavior and reduces spurious dis-
parities in output quality that could disadvantage
critical content occurring in less prominent posi-
tions. These improvements are especially signif-
icant for real-world applications where fair and
accurate comprehension of lengthy documents is
essential, such as in education, law, healthcare, and
scientific research. In these settings, a focus on
understanding and reasoning supports the devel-
opment of more inclusive and trustworthy AI sys-
tems, enabling better information access and more
dependable, model-assisted decision making. Ulti-
mately, our work advances large language models
as robust and ethical tools for the benefit of society.
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A Related Work

On the Emergence of PB. This section eluci-
dates the fundamental mechanisms governing po-
sition bias. Position bias describes the tendency
to prioritize information differentially based on its
position within an input. A notable example of
this effect is the "lost-in-the-middle" phenomenon,
characterized by a pronounced performance gap
depending on the placement of crucial informa-
tion. Specifically, models tend to achieve higher
accuracy when key information is positioned at
the sequence boundaries but experience significant
performance degradation when it is located in the
middle. This pattern emerges despite strong per-
formance at both ends of the sequence, driven by
a combination of primary bias, which favors early
content, and recency bias, which enhances reliance
on recent information.

Primary Bias. The enhanced utilization of ini-
tial context can be attributed to a universal phe-
nomenon known as “attention sinks”. This concept
refers to the inherent tendency of models to allocate
substantial attention to initial tokens, regardless of
their semantic relevance. Consequently, LLMs of-
ten give disproportionate emphasis to the first few
tokens in a sequence. The emergence of attention
sinks can be traced back to the intricate interplay of
pre-training dynamics, encompassing factors such
as optimization processes, data distribution, and
the model’s loss function (Gu et al., 2025).

RoPE: qm = R(q,m), kn = R(k, n)

qmkT
n = G(q,k,m− n)

Attention: am,n = Softmax
(
qmkT

n +mask√
d

)

Recency Bias. The preferential attention alloca-
tion to terminal positions arises from two key archi-
tectural components: Causal Mask and Relative
Position Encoding. First, the causal mask enforces
a unidirectional flow of information (m > n), im-
plicitly embedding positional information and pro-
ducing context-dependent token embeddings that
vary with sequential permutations. Simultaneously,
Rotary Position Embeddings (RoPE) encode rela-
tive positional relationships (m− n in equations)
within attention calculations, inherently biasing the
model toward recent tokens. While the intricate in-
terplay between these components warrants further
investigation, this preliminary analysis highlights
the emergence of asymmetric attention patterns,

providing insights that inform both the design and
broader understanding of the framework.

The advent of the long-context era for Large
Language Models (LLMs) has been notably ad-
vanced by progress in two pivotal directions: (1)
efficient attention mechanisms such as FlashAtten-
tion (Dao et al., 2022; Ainslie et al., 2023), which
drastically reduce the computational overhead of
processing extended sequences, and (2) length ex-
trapolation techniques (He et al., 2024; Chi et al.,
2023b; Press et al., 2021), which enable LLMs
to generalize beyond their training context length
(Su et al., 2024; Raffel et al., 2020). Collectively,
these breakthroughs empower LLMs to perform
complex question answering over much larger con-
text windows (Agarwal et al., 2024), representing
a significant step toward more capable and flexible
natural language systems (Yang et al., 2025d).

Mechanistic Approaches. For instance, to alle-
viate intrinsic long-range decay (Zhao et al., 2025),
Zhang et al. propose Ms-PoE, which assigns dis-
tinct rescaling factors to each attention head, com-
pressing relative distance m−n by a factor of 1/n.
The work Attention Buckets (Chen et al., 2024)
exploits the approximate periodicity observed in
the attention waveform at distal positions, shift-
ing key information away from the waveform’s
trough regions. Furthermore, MoICE (Lin et al.,
2024) designs a router within each attention head
to dynamically select among multiple RoPE angles,
effectively avoiding trough zones during genera-
tion. Yu et al. reveals that PB is reflected in posi-
tional hidden states, and mitigates this by scaling
certain dimensions of these representations. How-
ever, these component-level modifications without
continual training present two limitations: (1) ob-
taining optimal hyperparameters requires multiple
forward passes (Chen et al., 2024); and (2) such
interventions disrupts the parallelism of multi-head
attention (Zhang et al., 2024c).

Training Approach. Therefore, FILM (An et al.,
2024) systematically synthesizes long-context QA
datasets to promote fine-grained information aware-
ness, encompassing a range of in-context retrieval
and reasoning tasks over varying context lengths.
Although such training allows LLMs to better uti-
lize extended contexts, it incurs considerable com-
putational overhead. Zhang et al. (2024b) introduce
a position-aware adapter module to remove intrin-
sic preference bias. However, this approach is lim-
ited to single-segment retrieval and does not gen-
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eralize well to more complex scenarios involving
integration and reasoning over multiple segments.

B Preliminary Results

B.1 Token Shifting Phenomenon

Gold index 1: The first orca to be put in captivity
was Wanda, a North Eastern Pacific killer whale,
which was captured in November 1961 by a col-
lecting crew from Marineland of the Pacific in Los
Angeles.
Gold index 2: The first orca to be put in captivity
was Wanda, a North Eastern Pacific killer whale,
who was captured in November 1961 by a collect-
ing crew from Marineland of the Pacific in Los
Angeles.
Gold index 3: The first orca to be put in captivity
was Wanda, a North Eastern Pacific killer whale,
who was captured in November 1961 by a collect-
ing crew from Marineland of the Pacific in Los
Angeles.
Gold index 4: The first orca to be put in captivity
was Wanda, a North Eastern Pacific killer whale,
who was captured in November 1961 by a collect-
ing crew from Marineland of the Pacific in Los
Angeles.
Gold index 5: The first orca to be put in captivity
was Moby Doll, a male orca captured in November
1961 by a collecting crew from Marineland of the
Pacific in Los Angeles.
Gold index 6: The first orca to be put in captivity
was Moby Doll, a male orca captured in 1964 by
Ted Griffin. Moby Doll was held at the Vancouver
Aquarium for three months before dying.
Gold index 7: The first orca to be put in captivity
was Moby Doll, a male orca captured in 1964 by
Ted Griffin. Moby Doll was held at the Vancouver
Aquarium for three months before dying.
Gold index 8: The first orca to be put in captivity
was Moby Doll, a male orca captured in 1964 by
Ted Griffin. Moby Doll was held at the Vancouver
Aquarium for three months before dying.
Gold index 9: The first orca to be put in captivity
was Moby Doll, a male orca captured in 1964 by a
collecting crew from Marineland of the Pacific in
Los Angeles.
Gold index 10: The first orca to be put in captivity
was Moby Doll, a male orca captured in 1964 by
a collecting crew from Marineland of the Pacific
in Los Angeles. He was placed in a tank at the
aquarium.
Gold index 11: The first orca to be put in captivity

was Moby Doll, a male orca captured in 1964 by a
collecting crew from Marineland of the Pacific in
Los Angeles.
Gold index 12: The first orca to be put in captivity
was Moby Doll, a male orca captured in 1964 by a
collecting crew from Marineland of the Pacific in
Los Angeles.
Gold index 13: The first orca to be put in captiv-
ity was Moby Doll, a male orca captured in 1964
and displayed at the Vancouver Aquarium for three
months before dying.
Gold index 14: The first orca to be put in captivity
was Moby Doll, a male orca captured in 1964 by a
collecting crew from Marineland of the Pacific in
Los Angeles.
Gold index 15: The first orca to be put in captivity
was Moby Doll, a male orca captured in 1964 and
displayed at the Vancouver Aquarium in British
Columbia.
Gold index 16: The first orca to be put in captivity
was Moby Doll, who was captured in 1964 and
held at the Vancouver Aquarium for three months
before dying.
Gold index 17: The first orca to be put in cap-
tivity was Moby Doll, who was captured in 1964
and displayed at the Vancouver Aquarium for three
months.
Gold index 18: The first orca to be put in captivity
was Moby Doll, a male orca captured in 1964 and
displayed at the Vancouver Aquarium in British
Columbia.
Gold index 19: The first orca to be put in captivity
was Moby Doll, who was captured in 1964 and
displayed at the Vancouver Aquarium in British
Columbia.
Gold index 20: The first orca to be put in cap-
tivity was Moby Doll, who was captured in 1964
and displayed at the Vancouver Aquarium for three
months.

Phenomena Related to PB To verify the phe-
nomenon mentioned in Sec. 3, we provide more
proof related to them: (1) Token shifting: We ana-
lyze token-level KL divergence between responses
generated from trivial and advantageous positions
to verify the existence of token-shifting via case
study in Tab. 9. Our results on Mistral and Qwen
demonstrate that token shifting is indeed a univer-
sal phenomenon: KL divergence values at specific
token positions is extremely high compared to nor-
mal level, indicating that the severe divergence hap-
pens at this decoding step, which is named token-
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shifting in our paper. According to the table, it is
obvious token-shifting only take places on very few
tokens; (2) Token recovery: Our Pos2Distill-R1

framework especially focus on these key tokens
(those exhibiting higher KL divergence at token-
level) and fix them, in order to recover the optimal
decoding trajectory like sink positions again, thus
mitigating PB. This core concept parallels recent
findings in mathematical reasoning tasks (Wang
et al., 2025a), where tokens with high entropy
are labeled as “forking tokens.” Interventions that
specifically correct model predictions at these fork-
ing tokens have been shown to outperform even full
gradient updates; (3) Compound PB: This occurs
in reasoning tasks in long-context scenarios and in-
volves the interplay of retrieval and actual thinking
processes, leading to very sophisticated compound
effects. Therefore, instead of just focusing retrieval
or reasoning, we choose to reshape CoT process.
Therefore, Pos2Distill-R2 can be seen as the form
of Reinforced Self-Training (Gulcehre et al., 2023),
Self-Taught Reasoner (Zelikman et al., 2022) or
HS-STAR (Xiong et al., 2025).

C Experiments Details.

Implementation Details. All experiments are
with the following hyperparameters: (1) learn-
ing rate of α = 3 × 10−6; (2) a batch size of
b = 32; and (3) n = 2 training epochs. We employ
DeepSpeed ZeRO-3 optimization and FlashAtten-
tion (Dao et al., 2022) to accelerate the training
process, utilizing the bfloat16 data format. Fur-
thermore, for inference acceleration, we adopt the
vLLM (Kwon et al., 2023) framework. For Re-
trieval, we conducted training with 300 samples
at four distinct locations, each randomly selected
from the range of 1 to 20. For Reasoning, we
conducted training on 500 samples. These sam-
ples were distributed across four randomly selected
pairs of locations, where each individual location
within a pair could range from 1 to 20. For both
retrieval and reasoning tasks, we only collected
a greedy-search response from anchor positions.
Commonly, we set the hyperparameter λ control-
ling the intensity of the anchoring loss as 1.0. All
experiments are conducted on NVIDIA H20 GPUs.

Evaluation Metrics. For retrieval tasks, we
adopt the Sub_EM metric, while for reasoning
tasks, we use the EM metric. Specifically, in rea-
soning tasks, we first use regular expressions to
identify the tokens where the answer appears, and

then perform exact match (EM) evaluation on the
subsequent part. We test TQA5, WebQ 6and NQ
7under retrieval-argumented QA settings and the
data sources are from Huggingface.

Baselines. For Pos2Distill-R1, we introduce
vanilla SFT and SeqKD as baselines. SFT directly
fine-tunes the student model on data supervised by
gold responses, whereas SeqKD fine-tunes the stu-
dent model on data generated by the teacher model.
For Pos2Distill R1, as discussed in related work,
mainstream state-of-the-art approaches addressing
PB in retrieval tasks include MsPoE (Zhang et al.,
2024c), Attention Buckets (Chen et al., 2024),
MoICE (Lin et al., 2024), and PEAR (Yin et al.,
2024). Although these methods improve perfor-
mance across positions, PB still persists. All of
them are based on mechanistic approaches, and fol-
lowing (Yu et al., 2024), we mainly compare with
MsPoE in the main paper. To further demonstrate
the effectiveness of our method, we also provide
additional comparisons on Llama2-7B-chat-4k 10.
Our approach not only better balances performance
across positions but also achieves the highest aver-
age score of 68.18, which illustrates the advantage
compared to previous methods. For Pos2Distill R2,
which follows a self-training paradigm using CoT
data distilled from advantageous positions, we con-
sider the most recent and relevant baselines, includ-
ing Longfaith-SFT (Yang et al., 2025a), longfaith-
DPO (Yang et al., 2025a), and Sealong (Li et al.,
2024a). These works involves how to generate
high-quality and faithful Chain-of-Thought data
for self-improvement and achieving good perfor-
mance on long-context reasoning tasks. Therefore,
we adopt these methods as baselines against to
Pos2Distill R2 in our experiments.

Prompt Template The prompt template can be
found in Tab. 11. The Retrieval prompt template
instructs the LLM to provide a high-quantify an-
swer (likely meaning a high-quality, precise, or
well-supported answer) by exclusively using infor-
mation from provided documents, explicitly noting
that some documents might be irrelevant. This
template emphasizes factual accuracy and direct
extraction from given sources, limiting the model’s
ability to introduce external knowledge. The Rea-
soning prompt template outlines a structured, multi-
step approach. It first directs the LLM to identify

5https://huggingface.co/datasets/vsearch/tqa
6https://huggingface.co/datasets/vsearch/webq
7https://huggingface.co/datasets/vsearch/nq
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Response Token1 Token2 Token3 Token4 Token5 Token6 Token7 Token8 Token9 Token10

Mistral+NQ 1.6e-03 1.4e-02 5.7e-06 7.7e-05 1.87e-03 1.4e-01 1.6e-03 4.8e-06 2.0e-07 2.6e-07
Mistral+Webq 5.7e-03 5.5e-03 5.4e-05 1.0e-05 1.4e-04 3.6e-03 3.3e-06 1.2e-04 1.7e-02 4.4e-03
Llama3+NQ 5.1e-03 6.6e-04 6.0e-03 2.2e-04 7.3e-04 1.0e-03 2.9e-04 1.0e-02 7.3e-06 5.3e-05
Llama3+Webq 9.6e-03 2.6e-04 9.1e-03 7.7e-08 2.9e-04 1.6e-04 2.1e-06 1.2e-02 1.9e-06 2.1e-06

Table 9: Phenomenon related token-shifting.
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Figure 8: Visualization of the top 10 tokens in the logit distributions at the critical divergence points for Meta-
Llama-3-8B-Instruct (left) and Mistral-7B-Instruct-v0.3 (right).

the relevant information from a long context. Next,
it requires "step-by-step reasoning based on that
information." Finally, it specifies that "The final
answer must end with: ‘The answer is:’". This tem-
plate promotes logical deduction, information syn-
thesis, and a clear, conclusive output format (Yang
et al., 2025c).

Method 1 3 5 7 10 Avg. ↑ GAP ↓
base 64.14 65.95 64.97 62.67 67.53 65.05 4.86
+ Ms-PoE 66.06 64.29 63.99 62.22 64.75 64.34 3.84
+ AB 66.36 66.14 65.25 63.20 64.93 65.18 3.16
+ MoICE 65.50 66.33 65.61 64.11 65.84 65.48 2.22
+ PEAR 62.71 67.01 68.32 66.44 69.57 66.81 6.86
+ PosDistill R1 67.27 68.46 69.06 68.66 67.47 68.18 1.79

Table 10: Comparison of mainstream state-of-the-art
approaches addressing PB in retrieval tasks.

D Behavior of PB

For retrieval tasks, we statistically compute the
perplexity (PPL) of each response sampled from
both the sink and recent positions, conditioned
on prompts corresponding to trivial positions (see
Fig. 9). Interestingly, the PPL is much lower
compared to that of gold labels from SFT, which
strongly indicates a high degree of similarity in the
response space when conditioned on different per-

mutations of the same set of documents. A closer
examination reveals that LLMs primarily diverge
at a few decisive tokens, a phenomenon we refer to
as token-shifting. At these key generation steps, as
shown in the logit distributions in Fig. 8, the correct
token still appears among the top-10 predictions.
This observation suggests that LLMs possess the
potential to recover from initially incorrect decod-
ing paths, and that responses from the sink position
serve as natural gold signals for correction. In con-
trast, the dynamics in reasoning tasks are more
complex. As shown by the PPL values in Fig. 9,
perplexity increases substantially, indicating that
token-shifting is not an appropriate assumption for
reasoning scenarios.

E Additional Results

LCLMs with More Documents Under longer-
context settings, we conducted additional experi-
ments with Mistral-7B-Instruct trained on 20 and
50-document contexts respectively, and evaluated
them on context lengths ranging from 20 (≈4k to-
kens) to 80 documents (≈14k tokens), as indicated
in Tab. 13. Takeaways: While training on longer
contexts helps further improve the model’s retrieval
performance, training with relatively shorter con-
texts can also yield competitive results. Trained on
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Figure 9: Average PPL over 500 examples for responses collected from sink,recent positions and SFT labels.

Category Prompt Template

Retrieval Please write a high-quantify answer for the given question using only the provided search documents
(some of which might be irrelevant).

Reasoning Let’s first identify the relevant information from the long context and list it. Then, carry out step-by-step
reasoning based on that information, and finally, provide the answer. The final answer must end with “The
answer is:”.

Table 11: Prompt Templates.

Connected Disconnected Reversed

POSITIONS [0,1] [5,6] [12,13] [17,18] Avg.↑ [0,8] [5,13] [6,14] [8,16] Avg.↑ [8,0] [13,5] [14,6] [16,8] Avg. GAP. ↓
QWEN2.5-3B 31.2 27.5 28.1 30.2 29.3 28.7 24.3 22.2 23.4 24.7 25.5 24.9 22.6 20.9 23.5 10.3
QWEN2.5-14B 56.6 54.1 54.7 59.5 56.2 55.0 49.5 50.0 51.8 51.6 57.7 51.4 52.0 51.9 53.3 10.0
QWEN2.5-32B 61.7 59.8 59.1 63.2 61.0 59.4 54.7 54.2 54.7 55.8 60.3 56.6 55.4 57.8 57.5 9.0

Table 12: PB in reasoning tasks.

50 documents, the model not only generalizes well
to fewer documents (achieving high and stable per-
formance, e.g., 77% accuracy on 20 docs), but also
generalizes effectively to more documents (main-
taining 70% accuracy on 80 docs). In addition,
models trained on 20 documents still achieve 67%
accuracy when evaluated on 50 docs, exhibiting
minimal variance across positions and no signif-
icant drop compared to the 69.5% accuracy ob-
served when tested on 20 docs. This strong out-
of-domain generalization, even when trained with
fewer docs (e.g., 20), further demonstrates the su-
periority of our approach.

F Statement on AI Usage

In the preparation of this manuscript, ChatGPT by
OpenAI was utilized solely for the purpose of lan-
guage refinement and stylistic enhancement. All
scientific ideas, methodologies, analyses, and con-
clusions presented in this work are entirely the
authors’ own and were developed independently
without reliance on AI-generated content.

Test. Train. 0% 25% 50% 75% 100% AVG. ↑
20docs 20 72.3 69.5 67.5 68.5 69.7 69.5

50 77.8 76.2 76.6 77.2 77.4 77.0
30docs 20 70.3 67.9 69.3 67.3 70.9 69.1

50 74.9 75.4 75.1 76.2 77.2 75.8
40docs 20 67.1 66.7 68.3 66.5 68.3 67.4

50 74.1 75.2 76.2 77.1 77.6 75.8
50docs 20 69.1 66.1 66.7 66.1 67.2 67.0

50 73.5 73.9 74.5 75.2 74.9 74.4
70docs 20 64.9 63.9 63.9 65.1 65.1 64.6

50 69.3 69.1 71.7 70.1 70.1 70.1
80docs 20 64.9 63.9 63.9 65.1 65.1 64.6

50 68.1 68.3 70.1 70.9 71.9 69.9

Table 13: Performance comparison on different docu-
ment numbers. The column AVG. ↑ shows the average
score across percentages. Bold values indicate the best
result in each group.
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