
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 15347–15367
November 4-9, 2025 ©2025 Association for Computational Linguistics

SeMob: Semantic Synthesis for Dynamic Urban Mobility Prediction

Runfei Chen1, Shuyang Jiang3, Wei Huang1,2,4*

1Urban Mobility Institute, Tongji University, China
2College of Surveying and Geo-informatics, Tongji University, China

3College of Computer Science and Artificial Intelligence, Fudan University, China
4Department of Civil Engineering, Toronto Metropolitan University, Canada

{runfeichen, wei_huang}@tongji.edu.cn
shuyangjiang23@m.fudan.edu.cn

Abstract

Human mobility prediction is vital for urban
services, but often fails to account for abrupt
changes from external events. Existing spa-
tiotemporal models struggle to leverage tex-
tual descriptions detailing these events. We
propose SeMob, an LLM-powered semantic
synthesis pipeline for dynamic mobility pre-
diction. Specifically, SeMob employs a multi-
agent framework where LLM-based agents au-
tomatically extract and reason about spatiotem-
porally related text from complex online texts.
Fine-grained relevant contexts are then incor-
porated with spatiotemporal data through our
proposed innovative progressive fusion archi-
tecture. The rich pre-trained event prior con-
tributes enriched insights about event-driven
prediction, and hence results in a more aligned
forecasting model. Evaluated on a dataset con-
structed through our pipeline, SeMob achieves
maximal reductions of 13.92% in MAE and
11.12% in RMSE compared to the spatiotem-
poral model. Notably, the framework exhibits
pronounced superiority especially within spa-
tiotemporal regions close to an event’s location
and time of occurrence1.

1 Introduction

Human mobility prediction is an important part of
urban services optimization, including intelligent
routing and dynamic traffic management (Li et al.,
2024; Moon and Cho, 2025). While established
methods capture routine mobility patterns by histor-
ical data and predefined graph structures (Yin et al.,
2021; Liu et al., 2023; Wang et al., 2024a), they
struggle to interpret and adapt to abrupt changes
caused by various external events, as shown in Fig-
ure 1(a). The unique nature of urban spatiotempo-
ral dynamics stems from the complexity of human
motivations and the diversity of events driving mo-
bility (Gong et al., 2024; Han et al., 2025; Bontorin

*Corresponding Author.
1https://github.com/ICrescendo/SeMob
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Figure 1: Challenges in event-based mobility predic-
tion. (a) Spatiotemporal models, effective during reg-
ular days, can exhibit higher errors than the simpler
LSTM. (b) Complex event semantics drive pattern vari-
ance, even in similar event types.

et al., 2025), making their underlying semantics
difficult for standard models to capture. Informa-
tion detailing driving events is largely conveyed
through textual descriptions, commonly originat-
ing from sources such as official websites and so-
cial media (Mihalcea et al., 2024; Pappalardo et al.,
2023). A significant gap therefore exists in lever-
aging the understanding embedded in the language
to improve the responsiveness and accuracy of mo-
bility prediction.

Approaches transforming text information to nu-
merical data or discrete categories often fail to
capture context-dependent variations (Liang et al.,
2024). An example in Figure 1(b) demonstrates
superficially similar events can trigger markedly
different mobility responses. Descriptive texts as-
sociated with event backgrounds offer a promising
avenue for unraveling the intricate mechanism of
human behaviors and societal changes. Exploring
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Figure 2: SeMob framework. Multi-agents iteratively collect spatiotemporally relevant texts for TST multimodal
prediction and refine the text filtering logic using prediction feedback.

the integration of qualitative insights from such de-
scriptions may enable models to capture complex,
non-linear influences missed by purely quantitative
approaches. However, harnessing textual data in
this domain confronts notable challenges.

A primary difficulty involves the effective ex-
traction and representation of pertinent semantics
from textual sources. Mobility-related events suf-
fer from a notable scarcity of relevant textual data,
limiting the depth of contextual analysis (Wang
et al., 2024b; Han et al., 2024). Furthermore, ex-
isting models that combine textual and temporal
data (Liu et al., 2024; Cao et al., 2024; Hu et al.,
2025) lack consideration of spatial dimension. Cur-
rent fusion approaches typically align temporal se-
quences with the corresponding series descriptions
but fail to incorporate external semantic informa-
tion meaningfully. Creating effective methods to
fuse unstructured textual representations with con-
tinuously updated structured spatiotemporal data
remains a key research objective (Zou et al., 2025).

We introduce a novel pipeline SeMob to inte-
grate event insights into human spatiotemporal mo-
bility prediction. The multi-agent framework in
SeMob extracts and reason about relevant informa-
tion from online sources. This task extends beyond
simple keyword matching; it requires a deep un-
derstanding of how textual elements relate to spa-
tiotemporal forecasts and calls for advanced analyt-
ical reasoning. These agents simulate traffic anal-
ysis workflows to identify event-related text. The
extracted text is then paired with the correspond-

ing spatiotemporal data to create context-aware
mobility datasets that improve prediction accuracy.
Furthermore, the LLM agent drives an iterative
refinement process for text extraction. An agent
in the workflow compares model predictions with
ground truth mobility flow, thereby uncovering
crucial, previously overlooked logical connections.
Through this iterative analysis of unstructured text,
the agent further identifies patterns linking textual
cues to prediction discrepancies and provides valu-
able, hard-to-acquire textual insights.

Fusing extracted textual information with struc-
tured spatiotemporal data is another key challenge
in enhancing mobility forecasting. In SeMob, we
propose a progressive fusion method that combines
contextual insights from Text, temporal informa-
tion, and Spatio-Temporal data from mobility sen-
sors (TST). Such integration significantly improves
prediction performance, and can serve as a unified
framework for addressing tasks within dynamic ur-
ban environments where external events frequently
reshape mobility patterns. The architecture is de-
signed to be lightweight and efficient, supporting
the minute-level responsiveness required for real-
time applications. Our contribution can be summa-
rized as follows:

• We design a multi-agent framework for au-
tomated extraction and reasoning of event-
related textual context from online sources
for urban mobility analysis.

• We create a unique context-enriched dataset
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for mobility forecasting, aligning event-
related textual narratives with fine-grained
spatiotemporal mobility data.

• We propose a progressive fusion architecture
that dynamically weights multimodal inputs.
Our findings demonstrate the significant ben-
efits of integrating textual information for
event-related mobility prediction.

2 Preliminaries

Let N be the total number of sensors in a mon-
itored urban area. The sensor network is repre-
sented by a graph G = (V, E ,A), where V =
{v1, . . . , vN} is the set of N sensors, E is the set of
edges representing connectivity, and A ∈ RN×N

is an adjacency matrix encoding spatial relation-
ships (e.g., based on pairwise geodesic distances)
among sensors.

Traditional Spatiotemporal Mobility Prediction
At any given time step t, the historical mobility
flow signals from all N sensors over the past T
time slices are denoted by a tensor X[t−T+1:t] ∈
RN×T = (xt−T+1,xt−T+2, . . . ,xt)

⊤. Each xi ∈
RN captures the flow data across all N sensors at
time slice i.

Traditional spatiotemporal mobility prediction
is to learn a mapping function f that, given the
historical flow data X[t−T+1:t] and the sensor net-
work graph G, predicts the mobility flows for the
subsequent T ′ time slices:

f : (X[t−T+1:t],G) 7→ X̂[t+1:t+T ′]

where X̂[t+1:t+T ′] ∈ RN×T ′
is the sequence of

predicted future flow signals.

Event-driven Spatiotemporal Mobility Predic-
tion We consider an event occurring at a specific
venue, where VM ⊂ V is a subset of M sensors
(M ≤ N ) identified as being affected by the event.
At any given time step t within the event’s im-
pact window, the historical mobility flow signals
for these M affected sensors over the past T time
slices are denoted by X

(M)
[t−T+1:t] ∈ RM×T . Each

sensor is associated with a set of spatial relation-
ship features relative to the event venue, forming
a matrix D ∈ RM×KD , where KD is the number
of distinct spatial features (e.g., distance to venue,
orientation relative to venue). Additionally, event-
specific textual information Tevent is established
and finalized prior to the event day.

Extending from traditional spatiotemporal mo-
bility prediction, the mapping function needs to
condition further on venue-related features D and
event information Tevent. Event-driven spatiotem-
poral mobility prediction is to learn a mapping
function g that maps historical affected sensor
flows X(M)

[t−T+1:t], venue-related features D, event
information Tevent, and the broader network G to
the predicted T ′-slice future flows X̂

(M)
[t+1:t+T ′] ∈

RM×T ′
:

g : (X
(M)
[t−T+1:t],D, Tevent,G) 7→ X̂

(M)
[t+1:t+T ′]

This formulation models practical scenarios that
aim to enhance real-time mobility predictions dur-
ing the event by leveraging comprehensive event-
specific information gathered beforehand.

3 Methodology

The overall architecture of SeMob, detailing the
workflow and the specific roles of agents, is illus-
trated in Figure 2.

3.1 Multi-agent Framework

Agents extract, filter, and reason about event texts
relevant to spatiotemporal mobility through the
following specialized modules:

Information Retrieval Module This mod-
ule gathers multi-dimensional event information
through two specialized agents: Event Info Ex-
tractor (EI) and Tweet Analyzer (TA). EI gathers
basic event information from the official venue cal-
endar database, such as time and location. This
agent summarizes the event content and conducts
a preliminary analysis of the event scale and target
audience. TA uses the basic information provided
by EI to construct retrieval keywords for search-
ing relevant tweets from the month preceding the
event. After filtering tweets for relevance, TA ex-
tracts detailed event information (such as opening
ceremonies) and gauges public interest in the event.

Mobility Reasoning Module Events affect mo-
bility on various spatiotemporal scales, requiring
careful filtering of relevant information. This mod-
ule employs a Mobility Analyzer (MA) agent to
reason texts with high spatiotemporal relevance
to potential mobility impacts. For any given day
of events under analysis, the MA considers both
current-day and recent proximate events. It applies
a predefined information-mobility correlation logic

15349



Event Texts

To
ke

ni
ze

r

Text 
Encoder

Prediction Timestamps

Ti
m

es
ta

m
p

E
m

be
dd

in
g

C
on

te
xt

 
A

tt
en

tio
n

q

[C
L

S]
 1

[C
L

S]
 k…

St
ep

_1

St
ep

 T
’

…

k, v

Spatiotemporal 
Encoder

𝑬𝑬𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈

St
ep

_1

St
ep

 T
’

…M

𝑬𝑬𝒔𝒔𝒔𝒔 𝑫𝑫

qk

E
ve

nt
 

In
fu

si
on

v

Pr
oj

ec
tio

n

History Flow of G

Affected flow

(1) Dynamic Contextual Encoding

(2) Contextual Mobility Projection

Spatiotemporal
Influence
Matrix I

Training Frozen Multiplication Concatenation

10:00, 10:05, 10:10, 10:15 …

The 17th Korea 
Times Music 
Festival …

C

𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔

Figure 3: TST architecture. We first (1) synthesizes
dynamic event signatures by fusing textual embeddings
with evolving temporal contexts and (2) integrates spa-
tiotemporal data with these signatures for fine-grained,
context-aware mobility predictions.

to identify textual evidence of spatiotemporal traf-
fic patterns around venues during event periods.
The output comprises texts detailing these impact
patterns, associated core event information, and
relevant public reactions.

Evaluation Module Developing a perfect infor-
mation screening logic a priori is challenging even
for domain experts. The Evaluator in this mod-
ule analyzes instances where mobility predictions
surrounding a venue exhibit significant errors for
specific time periods or locations. By examining
these cases, the agent identifies potentially over-
looked information or misjudged impact factors.
This analysis is fed back into the system, updat-
ing the screening logic for similar scenarios. For
detailed prompts for these agents, see Appendix G.

3.2 Multimodal Fusion
The TST module achieves event-driven spatiotem-
poral mobility prediction through a two-stage pro-
gressive fusion of multimodal signals, as shown
in Figure 3. Further details are provided in Ap-
pendix B.2.

Dynamic Contextual Encoding. The first stage
distills a sequence of dynamic event signatures,
Eglobal ∈ RT ′×dg , by contextualizing an initially
static textual essence with temporal information
for T ′ prediction steps. We begin by sourcing
K distinct categories of event-related text, which
are identified by the multi-agent workflow in sec-
tion 3.1. These texts are represented as a content

embedding matrix C ∈ RK×dh , where each row
corresponds to the [CLS] token from a tunable
RoBERTa encoder (Liu et al., 2019). For each fu-
ture prediction step t ∈ [1, T ′], an learnable embed-
ding of its corresponding timestamp, ettime ∈ Rdt ,
provides the specific temporal context. To integrate
textual information under this temporal setting, we
employ fattn: a context-driven attention mecha-
nism. fattn uses ettime as a query to process the
static category embeddings C (which serve as keys
and values), producing a temporally-focused tex-
tual summary ctsum. This summary reflects how
the diverse textual facets combine under the tempo-
ral lens of step t. The event signature for this step,
Et

global, is then formed by concatenating ctsum with
ettime, followed by an FFN transformation:

ctsum = fattn(e
t
time,C) (1)

Et
global = W [ctsum ⊕ ettime] + b (2)

where ⊕ denotes concatenation. W and b are the
learnable parameters. The collection of T ′ step-
specific event signatures sequence Eglobal offers a
dynamically evolving, temporally-contextualized
representation of the event across the entire predic-
tion horizon.

Contextual Mobility Projection. To infuse the
event-aware information into the spatiotemporal
data, we design a cross-modal integration mech-
anism. For M affected sensors, their initial spa-
tiotemporal embeddings Est (from a pre-trained
spatiotemporal encoder on network G) and spatial
features D are concatenated to form per-sensor
local spatiotemporal context representations Sloc.
We employ two linear layers, fq and fk to trans-
form Eglobal and Sloc into two compact embed-
dings: fq(Eglobal) and fk(Sloc). Spatiotemporal
influence weights I ∈ RM×T ′

are then computed
by matrix multiplication followed by softmax:

IT = Softmax
(
fq(Eglobal) · (fk(Sloc)

T

√
dk

)
(3)

where dk is the dimensionality of keys and queries.
For each sensor i and future step t, the event-
infused representation Zi,t combines its initial spa-
tiotemporal embedding Ei

st with Vi scaled by the
influence weight Ii,t. The value embedding Vi is
given by fvalue(E

i
st), where fvalue is a learnable

projection preserving the input feature dimension.

Zi,t = Ei
st + Ii,t · σ(Vi) (4)
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where σ is an activation function.The event-infused
representations for M sensors are subsequently
processed by a one-layer FFN to project into
the final multi-step mobility flow predictions
X̂ ∈ RM×T ′

. Through cross-modal integra-
tion, we extend the predictive capability to dy-
namically incorporate semantics for fine-grained,
context-sensitive spatiotemporal forecasting under
information-driven dynamics.

4 Experiments

4.1 Experiment Setup

Data Preparation The multi-agent workflow
framework retrieves information from venue
databases and analyzes tweets posted within 30
days prior to each event2. Specific venue in-
formation sources include official websites (e.g.,
cryptoarena.com, rosebowlstadium.com) and lo-
cal event aggregators (e.g., dolosangeles.com, sf-
gate.com/events). The prompts used to guide the
agents for tweet filtering and text synthesis are de-
tailed in Appendix G.1 and G.2. 911 events of
various types occurring over a full year are col-
lected for analysis. To capture the corresponding
mobility dynamics, we then collect traffic flow data
from the Caltrans Performance Measurement Sys-
tem (PeMS3) at a 5-minute temporal resolution.

We selected the major Californian event hubs
that simultaneously offered high-quality PeMS
data, accessible event records, and a direct loca-
tion along PeMS-monitored road networks. We
gather data from sensors located within 2km, 3km,
4km, and 5km radii of each venue. These specific
boundaries were established to create challenging,
proximate zones for model validation, rather than
to define an event’s absolute area of influence. The
inner radius of 2km guarantees sensor coverage
for all venues, whereas the 5km outer boundary is
empirically set based on our analysis in Figure 7.
Furthermore, to examine temporal impacts, the sen-
sor data is analyzed within time windows spanning
from two, three, or four hours before each event to
a corresponding duration afterward. The dataset is
partitioned by chronological order and event type.
More details are provided in Appendix A.

Baselines and Evaluation We evaluate our
model against nine leading traffic forecasting base-
lines on large-scale road networks (Liu et al., 2023;

2x.com/search-advanced
3pems.dot.ca.gov

Wang et al., 2024a): (1) temporal-only methods:
LSTM (Fu et al., 2016) and PatchTST (Nie et al.,
2023); (2) GNN-RNN based models: DCRNN (Li
et al., 2018) and AGCRN (Bai et al., 2020); (3)
GNN-TCN based models: STGCN (Yu et al.,
2018) and GWNET (Wu et al., 2019); (4) attention-
based method: ASTGCN (Guo et al., 2019);
(5) ordinary differential equation based model:
STGODE (Fang et al., 2021); and (6) dynamic
graph based approach: DSTAGNN (Lan et al.,
2022). These spatiotemporal models are trained on
the entire road network graph within the broader
region where the venue is located, while testing
performance specifically on affected sensors dur-
ing event windows. The evaluation metrics are
mean square error (MSE) and mean absolute error
(MAE). We utilize 12 historical steps to predict
12 future steps (predicting the next hour based on
the previous hour), consistent with established pre-
diction benchmarks. More details can be found in
Appendix B.

4.2 Main Results
The performance of our method compared to spa-
tiotemporal models is shown in Table 1.We can
observe from the experimental results that:

Event-specific information yields superior per-
formance. Our approach significantly outper-
forms traditional methods that rely solely on time
series data and spatial relationships. Incorporated
by event context, the model achieves maximal re-
ductions of 13.92% in MAE and 11.12% in RMSE
relative to the best-performing baseline spatiotem-
poral model. Evaluation on datasets partitioned
by event type reveals slightly greater performance
enhancements compared to chronological parti-
tioning. Such partitioning facilitates more bal-
anced learning across event categories, allowing
the model to capture category-specific mobility
patterns more effectively.

Spatiotemporal sensitivity confirms the impor-
tance of event context. Detailed in Appendix C,
conventional models exhibit degraded performance
and heightened sensitivity closer to event venues
and times. The observed degradation in accuracy
indicates that human mobility during events be-
comes diverging from regular patterns and proving
challenging for models to predict accurately. Con-
versely, our proposed method leverages relevant
texts to achieve pronounced superiority precisely
within these highly affected spatiotemporal scales.
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Methods

By Time By Type
2h 3h 4h 2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 30.05 41.44 27.65 40.23 27.12 39.71 30.33 42.60 27.73 41.10 27.16 40.45
PatchTST 31.22 41.90 27.86 41.00 27.25 40.74 31.55 43.86 27.95 42.09 27.29 41.57
DCRNN 30.06 41.23 29.06 41.01 28.55 40.88 30.76 42.78 29.43 42.12 28.76 41.77
AGCRN 32.43 47.06 30.62 49.23 30.33 52.62 31.44 45.51 29.19 46.37 28.82 47.71
STGCN 35.40 52.69 33.12 52.36 32.40 52.21 34.79 51.77 31.92 49.79 31.02 48.92
GWNET 29.03 39.92 27.01 38.61 25.64 37.35 29.13 40.83 27.77 39.33 25.69 37.88
ASTGCN 42.16 60.86 40.37 59.20 39.36 58.33 40.45 60.20 37.58 58.11 35.97 57.02
STGODE 35.21 51.95 32.96 50.37 31.88 49.58 34.64 51.62 31.93 49.56 30.63 48.53
DSTAGNN 30.77 42.01 29.71 41.85 29.27 41.78 31.18 43.64 29.60 42.87 28.95 42.56
TST 25.13 36.71 24.75 36.34 23.82 35.78 25.08 36.29 24.59 36.07 23.77 35.56

Table 1: Performance comparison of baselines using sensor data within 3 km of event locations. The best and
the second-best results are indicated by bold and underlined text respectively. Datasets are partitioned either
chronologically (’By Time’) or by event type (’By Type’).

4.3 Ablation Study

We compare our full model against six distinct vari-
ants targeting fusion strategies and multi-modal en-
coders: (1) w/ EF: early fusion via concatenation;
(2) w/ LF: late fusion post-independent feature ex-
traction; (3) w/o TT: replacing dynamic contextual
encoding fusion with concatenation; (4) w/o TS:
interaction between the global representation and
spatiotemporal data substituted with concatenation;
(5) w/o Finetune: frozen pre-trained text encoders;
and (6) w/o STE: processing spatiotemporal data
without pre-trained encoders. The experiments uti-
lize data within 3km of event locations across 2h,
3h, and 4h windows and the results are shown in
Table 2. Our progressive fusion strategy demon-
strates superiority over early and late fusion, re-
vealing limitations of simple feature concatenation
for capturing complex text-spatiotemporal relation-
ships. Performance degradation when removing
dynamic contextual encoding and global-sensor
interactions confirms the necessity of the multi-
level interaction mechanisms for capturing cross-
modal dependencies. The most significant drop
occurs when utilizing a frozen decoder, which in-
dicates adapting encoders is crucial for extracting
spatiotemporally relevant semantic features rather
than relying on generic representations. Excluding
pre-trained spatiotemporal encoders also impairs
predictive performance, affirming their value in
capturing latent patterns. Interestingly, the perfor-
mance decline is less severe than other ablations,
suggesting the primacy of fused and adapted tex-
tual information for event-related prediction.

5 Discussion

In this section, we discuss the following research
questions (RQ) of the proposed pipeline:

Methods
2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE

TST 25.08 36.29 24.59 36.07 23.77 35.56
w/ EF 26.87 38.86 25.42 37.63 24.29 36.47
w/ LF 26.98 39.12 25.46 37.82 24.32 36.58
w/o TT 25.97 38.03 25.09 37.00 24.11 36.19
w/o TS 26.19 38.69 25.29 37.74 24.24 36.57

w/o Finetune 27.04 38.95 25.50 37.70 24.34 36.51
w/o STE 25.86 37.90 24.89 36.94 23.96 36.07

Table 2: Ablation experiments on fusion strategies and
multi-modal encoders.

• RQ1: To what extent does the contextual in-
formation enhance mobility prediction?

• RQ2: What are the contributions of the roles
and stages within the multi-agent framework
to the forecast results?

• RQ3: Can the system still effectively lever-
age the textual context when the scale of the
training events becomes smaller?

• RQ4: Why can our method enable the effec-
tive integration of event-related textual con-
text with spatiotemporal data?

Response to RQ1: Different categories of tex-
tual information provide varied yet consistently
beneficial contributions to prediction across spa-
tiotemporal scales. We investigate the contri-
butions of different textual features and present
visualizations in Figure 4. Although all textual cat-
egories enhance the predictive accuracy of the spa-
tiotemporal model, their specific impacts diverge.
Basic event information offers relatively stable per-
formance improvements across all spatiotemporal
granularities. Public reaction provides more spe-
cific advantages, yielding significant benefits for
forecasts closer to event venues and over extended
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event windows. The inferred traffic conditions pri-
marily improve the prediction accuracy for sensors
near event venues. The localized efficacy of such
an inference may stem from the agent’s limited ca-
pability to analyze near-venue impacts. According
to the findings, synthesizing information from dif-
ferent textual sources is advantageous for capturing
complex, non-linear mobility patterns.
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Figure 4: Comparative visualization of MAE reduction
derived from basic event information, public reaction,
and inferred traffic conditions versus spatiotemporal
information alone.

Response to RQ2: Collaboration among special-
ized agents generates high-quality textual con-
text for model training. To validate the contribu-
tions of inter-agent collaboration, we compare key
workflow configurations. Results in Table 3 reveal
that contextual information from source-specific
agents provides significantly greater predictive util-
ity when subsequently refined and analyzed by a
Mobility Analyzer. Omitting this analytical synthe-
sis may result in the direct use of less processed in-
formation, which correlates with suboptimal down-
stream performance. Furthermore, the MA’s strat-
egy of considering recent event dynamics is impor-
tant for generating effective training context. Dis-
regarding such temporal information impairs the
final prediction accuracy of models trained thereon.
Crucially, results also demonstrate that the Eval-
uator can refine the MA’s logic for text filtering
and relevance assessment. The improvement in
prediction accuracy after evaluation iterations re-
flects the dynamic optimization, underscoring the
critical role of the Evaluator in maintaining and
enhancing the quality of the generated textual con-
text. Collectively, these observations highlight that
the multi-agent framework’s efficacy stems from
its multi-stage collaborative process.

Response to RQ3: Yes. Even with limited data,
our model can enhance the mobility prediction.
We compare the performance of models trained
with more limited quantities of training events, and
present the results in Figure 5. Although models
generally achieve better performance with a larger

Methods
2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE

TST 25.08 36.29 24.59 36.07 23.77 35.56
w/o MA 26.49 37.97 25.63 37.33 24.46 36.79
w/o RE 26.15 38.23 25.41 37.68 24.43 37.02
w/o Eval 26.03 37.86 25.34 37.32 24.05 36.03

Table 3: Performance comparison of different multi-
agent workflow configurations. "w/o MA" indicates
source information not processed through analysis of
the Mobility Analyzer. "w/o RE" represents Mobility
Analyzer variants operating without considering recent
events. "w/o Eval" represents systems without evalua-
tion agent refinement. Experiments utilize data within
3km of event locations across 2h, 3h, and 4h windows.
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Figure 5: Performance of different time windows across
training data sizes. ‘Base’ indicates the performance of
GWNET without event information.

training dataset, even with only 60% of the training
data, our model can still outperform the base model
that solely utilize spatiotemporal data.

Response to RQ4: Multimodal fusion-guided
fine-tuning enables language models to extract
spatiotemporal dynamic-related features from
raw text. To quantitatively evaluate this capabil-
ity, we examine differences in [CLS] token atten-
tion patterns between pre-trained and fine-tuned
models on test set samples. Specifically, we mea-
sure the proportion of pre-defined spatiotemporally
relevant words found within the top-10 tokens most
attended by each model’s [CLS] token. The results
presented in Table 4 show that fusion-guided fine-
tuning redirects model attention towards granular
cues indicative of spatiotemporal variations.

Figure 6 offers qualitative support, providing
two illustrative examples of [CLS] token attention
visualizations. Beyond the general redirection ev-
ident from Table 4, examples in Figure 6 further
reveal the fine-tuned model’s improved acuity in
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Source
Pretrained Fine-tuned

Spatial Temporal Spatial Temporal

Event_info 36.87 32.96 79.32 75.42
Public 16.76 27.37 46.37 54.75

Table 4: Proportion (%) of pre-defined spatial and tem-
poral words within the top-10 ‘[CLS]‘-attended tokens
from pre-trained and fusion-guided fine-tuned models.

LA Kings Vs. Chicago Blackhawks

PM fan 
demographic
Range ice
hockey
Convenient
Surge Attention
restaurants

0.001 0.005 0.007 0.009

Public Scale
Crypt draw
Spectators
Staples Arena
regional 
gameplay
competitive

Disney on ice

Family ticket
Weekend
Oakland parents 
Arena
Franchises
accessibility Tim
visitors

Disney ise hours 
across
Popularity
Commercial
Nearby starts
Enchant
characteristics

Figure 6: Examples of [CLS] token attention. The visu-
alization contrasts the top 10 words most attended by
the [CLS] token from pre-trained (left) and fine-tuned
(right) models processing the same event information.

identifying distinctive event characteristics (e.g.,
categorizing sports events as "ice hockey" or en-
tertainment as "Disney" with thematic terms like
"enchant"). Such features inherently govern unique
spatiotemporal patterns. The attention shift after
fine-tuning provides more targeted and impactful
inputs for spatiotemporal mobility predictions.

6 Related Work

Human Mobility Spatiotemporal Prediction
Dominant approaches in this field include time-
series forecasting techniques (Fu et al., 2016; Zhou
et al., 2021; Nie et al., 2023) and hybrid architec-
tures combining Graph Convolutional Networks
with sequence models (Li et al., 2018; Wu et al.,
2019; Bai et al., 2020). Attention mechanisms
and dynamic graphs represent further refinements
for modeling evolving spatial interactions (Guo

et al., 2019; Lan et al., 2022; Gravina and Bac-
ciu, 2024). These methods utilize structured data,
consequently overlooking information in unstruc-
tured text (e.g., social media, event sites) critical
for capturing event-driven mobility shifts.

While some studies have attempted to incorpo-
rate textual data, they typically rely on manual,
task-specific feature engineering that discretizes
text into categorical variables (Tu et al., 2023; Han
et al., 2024). Such an approach not only suffers
from significant semantic loss but also lacks the
scalability required for diverse real-world scenar-
ios with rich event descriptions. Furthermore, this
line of work is often applied to constrained prob-
lem settings, such as single-station passenger flow
or localized event impact, failing to capture the
network-wide mobility shifts that are our focus.

Multimodal Fusion Cross-modal learning with
textual data has successfully addressed numerous
real-world audiovisual understanding tasks (Huang
et al., 2024; Cai et al., 2024). Building on these ad-
vances, recent research has extended text-based ap-
proaches to time-series data interpretation through
LLMs (Gruver et al., 2023; Liu et al., 2024; Hu
et al., 2025). However, these methods rely on
extensive aligned datasets for pretraining, such
as text-image pairs or time-series-text description
pairs. However, for event-driven spatiotempo-
ral data, textual information remains scarce and
poorly aligned with fine-grained spatiotemporal
signals. Furthermore, the high-dimensional na-
ture of spatiotemporal data creates fundamental
alignment challenges with sequential textual rep-
resentations (Jin et al., 2023). Our work there-
fore advances multi-modal fusion techniques to
specifically address these limitations. Multimodal
fusion encompasses diverse strategies including
input-level, representation-level, and prediction-
level (Xu et al., 2023). Selecting an appropriate
fusion strategy is critical to meet the low-latency
requirements of operational mobility prediction.

Multi-Agent Framework The advancement of
LLMs powered agents has fostered significant ad-
vances in complex task resolution through human-
like capabilities, including retrieval augmenta-
tion (Asai et al., 2023), role-playing (Park et al.,
2023) and communication (Park et al., 2024). By
coordinating diverse agent capabilities and roles
within multi-agent frameworks, systems can ad-
dress challenging problems through structured col-
laboration (Chan et al., 2023; Hong et al., 2024).
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This paradigm has demonstrated remarkable effi-
cacy across domains such as healthcare (Qiu et al.,
2024; Wang et al., 2025) and finance (Yu et al.,
2024). Urban mobility analysis represents a col-
laborative task that requires information retrieval
and filtering. Our designed multi-agent workflow
facilitates this teamwork approach and can provide
effective descriptive data for prediction tasks.

7 Conclusion

In this paper, we first identify the critical challenge
of human mobility forecasting under event-driven
dynamics. We propose SeMob, an LLM-powered
semantic synthesis framework with a multi-agent
system for extracting mobility-relevant event infor-
mation and a progressive architecture for fusing
textual and spatiotemporal data. Experimental re-
sults demonstrate that SeMob achieves superior
forecasting accuracy, particularly within highly
event-affected spatiotemporal scales.

Limitations

While this study demonstrates a novel approach to
the integration of textual data for the prediction of
spatiotemporal mobility, certain limitations should
be acknowledged. The framework’s effectiveness
is most evident for large planned events with abun-
dant textual data; its application to smaller or less-
documented events with sparse text requires fur-
ther exploration. Specifically, our methodology
is designed for the paradigm of "prediction and
planning" ahead of large-scale scheduled events.
Consequently, it is not directly applicable to ad-
hoc or emergency scenarios, which operate under
a different paradigm of real-time "interruption and
intervention" and typically lack the advance textual
information our model relies on. Extending our
semantic fusion paradigm to such sudden events
remains a promising direction for future work. Fur-
thermore, this study does not include a comparative
evaluation of different LLM for the agent compo-
nents.

Ethics Considerations

Potential Risks Although SeMob shows promis-
ing potential to streamline event information
screening and extract vital insights, we must rec-
ognize its inherent constraints. The LLM agents in
the pipeline may struggle when confronted with un-
conventional mobility-related information, some-
times resulting in partial analyses or outputs that

require expert interpretation to avoid misunder-
standing. Therefore, this system is not intended
to replace the expertise of seasoned traffic man-
agement professionals or to make autonomous op-
erational decisions. It serves as a supplementary
tool to provide data-driven perspectives that assist
decision-making processes of traffic managers.

Data Ethics and Privacy Compliance All data
utilized in this work are processed with rigorous
attention to privacy and ethical standards. Mobil-
ity datasets from PEMS are inherently anonymous.
Social media data, also sourced from public plat-
forms, undergoes systematic anonymization of user
identifiers to protect personal privacy. Our primary
objective is to derive insights relevant to urban mo-
bility, rather than analyze individual data points or
behaviors; consequently, the dataset is curated to
exclude sensitive or harmful content. Both mobil-
ity and social media data are drawn from publicly
accessible sources.
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A Dataset Details

The detailed information for our event-
spatiotemporal dataset is shown in Table 5
and 6. The dataset is partitioned chronologically
and by event type. An 8:2 ratio is used for the
training and testing sets. We strive to maintain
this ratio split within each event type. Crucially,
events from the same venue on the same day
are kept together in a single set (training or test)
to ensure they are not separated. This dataset
predominantly features English-language content,
which is representative of the primary language
used in official event communications and public
social media discussions within the geographical
scope of our study.

Venue Events ME S2 S3 S4 S5

Crypto.com Arena
& LA Convention Center 210 2 22 40 63 87

Rose Bowl Stadium 77 2 13 23 29 37
Hollywood Bowl 86 1 12 23 31 44

The Greek Theatre 73 2 5 11 36 46
Dodger Stadium 87 2 21 42 64 82

Honda Center 110 4 16 43 76 131
Levi’s Stadium 19 2 9 23 35 43

Shoreline Amphitheatre 37 1 7 13 21 30
Oakland Arena 48 1 6 14 18 37

SAP Center 164 3 23 48 82 131

Table 5: Details of venues and surrounding sensor distri-
butions. ME represents the maximum number of events
within a day. S2, S3, S4, and S5 denote the number
of sensors within 2 km, 3 km, 4 km, and 5 km radius
around each venue, respectively. Levi’s Stadium, Shore-
line Amphitheatre, SAP Center, and Oakland Arena
are located in the Greater Bay Area, while others are
located in the Greater Los Angeles Area. The collected
dataset covers the entirety of 2019.

Type Number

Trade & Industry 56
Entertainment 62
Celebration 97
Public Service 78
Performing Arts 284
Sports 334

Table 6: Distribution of event categories. Note that
events often belong to multiple categories; this break-
down is intended to visualize the diversity of categories
in our collected event set. The distribution, with a higher
prevalence of sports and performing arts, reflects the
real-world composition of large-scale events in the ma-
jor Californian metropolitan areas under study.

B Experimental Setting / Details

B.1 Baselines

• LSTM (Fu et al., 2016): A classic recurrent
neural network designed to capture temporal
dependencies through gating mechanisms.

• PatchTST (Nie et al., 2023): A Transformer-
based model that segments time series into
patches as input tokens, enabling the capture
of local semantic information and long-term
dependencies for forecasting.

• DCRNN (Li et al., 2018): A spatial-temporal
model that integrates diffusion graph convo-
lutions with recurrent neural networks to cap-
ture spatial dependencies modeled as a diffu-
sion process and temporal dynamics.

• AGCRN (Bai et al., 2020): An adaptive
graph convolutional recurrent network that
learns node-specific patterns and infers inter-
dependencies adaptively without a predefined
graph structure for traffic forecasting.

• STGCN (Yu et al., 2018): A spatial-temporal
graph convolutional network that employs
graph convolutions to capture spatial struc-
tures and 1D convolutions along the time axis
to learn temporal features.

• GWNET (Wu et al., 2019): A graph WaveNet
architecture that combines graph convolutions
for spatial feature learning with stacked di-
lated 1D causal convolutions for temporal de-
pendency modeling.

• ASTGCN (Guo et al., 2019): An attention-
based spatial-temporal graph convolutional
network that utilizes spatial and temporal at-
tention mechanisms alongside graph convolu-
tions to model dynamic spatial-temporal cor-
relations.

• STGODE (Fang et al., 2021): A model that
leverages graph neural networks within an
ordinary differential equation framework to
capture continuous-time spatial-temporal dy-
namics.

• DSTAGNN (Lan et al., 2022): A dynamic
spatial-temporal aware graph neural network
designed to capture evolving spatial depen-
dencies through dynamic graph generation
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and graph attention mechanisms for improved
forecasting accuracy.

Each experiment is independently repeated three
times over 100 epochs, with training conducted on
traffic data from the year preceding our collected
dataset, and the average performance is reported.
Model architecture and training configurations fol-
low the recommended settings provided in the offi-
cial code repositories.

B.2 Implementation Detail
The multi-agent system incorporates LLM capa-
bilities through Qwen 34. Each agent within this
framework utilizes Chain-of-Thought (Wei et al.,
2022) and self-reflection (Shinn et al., 2023) tech-
niques. The reflection process is designed to in-
volve three self-iterative cycles of thought to refine
the agent’s outputs.

In TST module, the timestamp embedding for
each prediction step is constructed following the
standard practice in spatiotemporal forecasting (Li
et al., 2018; Wu et al., 2019; Bai et al., 2020).
Specifically, we extract two discrete time features
from the timestamp: the day of the week (an in-
teger from 0 to 6) and the time of the day (rep-
resenting the fraction of the day that has passed).
Each of these two features is passed through its
own dedicated, trainable embedding layer to be
converted into a dense vector. The final timestamp
embedding is the concatenation of these two re-
sulting vectors. This method allows the model to
effectively learn cyclical temporal patterns from
the data.

To fine-tune the text encoder, we adopt the
LoRA approach (Hu et al., 2022) on a RoBERTa
model (Liu et al., 2019). We experiment with
LoRA ranks from the set {2, 4, 8}, keeping the
scaling factor α at twice the rank for each, and
explore dropout rates of {0.05, 0.1, 0.2}. Based
on validation performance, we select a rank of 4
(thus α = 8) and a dropout rate of 0.1 for LoRA
fine-tuning. The spatiotemporal encoder leverages
pre-trained GWNET embeddings (Wu et al., 2019),
computed from large-scale regional traffic graphs.
We employ Smooth L1 Loss (Girshick, 2015) as
the objective function. Model training is conducted
with 5 epochs using the Adam optimizer (Kingma
and Ba, 2015). The initial learning rate is tuned
from the values {1e-5, 1e-4, 1e-3, 5e-3}, with
1e-3 being chosen for optimal performance. The

4chat.qwen.ai

batch size is set to 64. All experiments are con-
ducted on an A800 80G GPU. The experiment is
repeated three times and the average performance
is reported.

Table 7 summarizes the results across different
combinations of text and spatiotemporal encoders.
More accurate spatiotemporal models yield bet-
ter representations when used as encoders. No-
tably, the T5 model (Raffel et al., 2020), despite
its larger parameter count, underperforms com-
pared to RoBERTa and BERT (Devlin et al., 2019).
A possible implication is that larger models may
introduce unnecessary complexity and irrelevant
representations, which could interfere with down-
stream fusion and prediction tasks. In contrast,
since the input text has been distilled by a task-
specific agent system to retain only high-quality,
relevant information, a lightweight encoder is suf-
ficient to capture the necessary semantics.

Methods
2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE

TST 25.08 36.29 24.59 36.07 23.77 35.56
w/ Bert 26.17 37.62 25.14 37.02 24.25 36.79
w/ T5 27.07 39.02 25.94 38.70 24.91 37.24

w/ DSTAGNN 25.77 37.12 24.84 36.68 23.86 35.92
w/ DCRNN 25.81 37.47 24.65 36.85 23.94 36.02

Table 7: Ablation experiments on encoder methods.
Experiments utilize data within 3km of event locations
across 2h, 3h, and 4h windows.

C Comparison of Baselines across
Spatiotemporal Scales

Detailed performance metrics across diverse spa-
tiotemporal scales are presented in Table 11- 13.
Figure 7 visualizes these results, demonstrating
a performance deterioration for most models in
the 2km to 3km spatial proximity. In contrast, the
rate of performance decrease stabilizes at a 5km
radius. Temporal analysis further reveals that a
3-hour event window most significantly influences
model accuracy relative to 3-hour and 4-hour inter-
vals.

D Performance Metrics for Text
Categories

Tables 8 and 9 present the MAE and RMSE, respec-
tively, for various text categories evaluated across
distances and time intervals.
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Figure 7: MAE of baselines across spatiotemporal
scales.

Category No_text Event_info Public Traffic TST

2km_2h 28.25 26.98 27.20 26.50 25.49
2km_3h 28.72 27.31 27.54 26.99 25.32
2km_4h 25.65 24.68 24.52 24.09 23.97
3km_2h 29.13 27.91 27.94 27.82 25.08
3km_3h 27.77 26.58 26.44 26.57 24.59
3km_4h 25.69 24.56 24.36 24.51 23.77
4km_2h 28.93 27.60 27.63 27.80 24.93
4km_3h 27.36 26.07 25.91 26.21 24.22
4km_4h 25.58 24.53 24.15 24.56 23.69
5km_2h 28.39 27.17 27.26 27.22 24.27
5km_3h 26.50 25.15 25.20 25.33 24.07
5km_4h 25.23 24.02 23.94 24.15 23.33

Table 8: MAE for different text information categories.

Category No_text Event_info Public Traffic TST

2km_2h 40.22 38.37 38.69 37.74 35.23
2km_3h 38.97 37.10 37.33 36.63 36.12
2km_4h 37.17 35.76 35.54 34.92 35.13
3km_2h 40.83 39.12 39.15 39.00 36.29
3km_3h 39.33 37.64 37.44 37.64 36.07
3km_4h 37.88 36.22 35.91 36.15 35.56
4km_2h 40.48 38.62 38.66 38.90 36.00
4km_3h 39.04 37.21 37.00 37.40 35.82
4km_4h 38.03 36.42 35.97 36.51 35.74
5km_2h 40.21 38.48 38.60 38.56 36.09
5km_3h 38.76 36.83 36.90 37.06 35.79
5km_4h 37.36 35.57 35.47 35.76 35.29

Table 9: RMSE for different text information categories.

E Efficiency Analysis

To evaluate the computational efficiency and prac-
tical applicability of our proposed model, we
compare its inference time against several high-
performing spatiotemporal methods, with results
shown in Table 10.

Model Inference Time (s) Parameters

GWNET-GLA 0.0717 374K
GWNET-GBA 0.0259 344K
DCRNN-GLA 0.2152 373K
DCRNN-GBA 0.1395 373K
DSTAGNN-GLA 0.2352 66.3M
DSTAGNN-GBA 0.0906 26.9M
Ours-GLA 0.2864 3.1MOurs-GBA 0.2297

Table 10: Model Efficiency comparison. We compare
our model with high-performance spatiotemporal mod-
els that capture both spatial and temporal dimensions.
Baseline model times reflect inference for a large re-
gion at a single time point, whereas ’Ours’ indicates
inference per time step for affected sensors near a single
venue. ’Parameters’ is the number of learnable parame-
ters. K: 103, M: 106. GLA: Greater Los Angeles Area,
GBA: Greater Bay Area.

When examining these computational speeds,
it is essential to acknowledge the distinct oper-
ational scopes: baseline spatiotemporal models
typically generate predictions for an entire large-
scale region at a single time point, whereas our
model’s reported inference time refers to process-
ing data per time step for affected sensors specif-
ically around a single venue. Despite handling
multimodal inputs including pre-computed embed-
dings from broader regional spatiotemporal mod-
els along with event-specific textual features, our
model demonstrates competitive inference speed.
The observed processing time supports minute-
level responsiveness, confirming its suitability for
real-world dynamic mobility forecasting applica-
tions. It also operates with considerably fewer
trainable parameters than the complex spatiotem-
poral model DSTAGNN. Furthermore, the data
pre-processing stage is highly economical. The av-
erage one-time text analysis for a single event day
using the Qwen3 API costs approximately $0.016.

F Pre-defined Spatiotemporal Keywords

Table 14 lists the pre-defined spatial and temporal
keywords employed in our quantitative analysis in
RQ4.
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Methods

By Time By Type
2h 3h 4h 2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 28.77 39.53 26.49 37.82 25.92 37.84 30.24 41.76 27.83 39.92 27.20 39.89
PatchTST 29.94 40.89 27.54 38.31 26.05 38.97 31.42 43.12 28.90 40.38 27.33 41.01
DCRNN 28.83 39.45 27.46 39.25 27.52 39.08 30.73 42.23 29.01 42.05 28.67 41.13
AGCRN 30.07 41.73 27.35 41.45 26.00 38.32 31.10 43.43 28.46 42.60 27.47 41.32
STGCN 36.16 54.86 34.44 52.20 32.40 53.66 36.12 54.24 34.18 50.59 31.63 50.36
GWNET 29.01 38.19 27.56 37.07 24.74 35.77 28.25 40.22 28.72 38.97 25.65 37.17
ASTGCN 43.12 64.98 42.43 64.10 39.36 63.78 42.08 63.46 40.82 63.14 36.59 62.47
STGODE 35.97 54.11 33.70 51.49 31.88 51.03 35.97 54.08 33.47 51.06 31.24 49.96
DSTAGNN 29.45 40.33 28.62 39.99 28.14 39.97 31.05 43.20 29.90 42.50 28.86 41.94
Ours 25.55 35.37 25.57 35.05 24.04 35.19 25.49 35.23 25.32 36.12 23.97 35.13

Table 11: Performance comparison of baseline models using sensor data within 2 km of event locations.

Methods

By Time By Type
2h 3h 4h 2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 29.61 41.22 27.36 39.98 26.87 39.44 29.98 42.23 27.36 39.98 26.92 40.13
PatchTST 29.58 41.14 27.05 39.65 26.59 39.22 29.94 42.15 27.05 39.65 26.64 39.91
DCRNN 29.81 41.12 28.95 40.99 28.52 40.91 30.48 42.50 28.95 40.99 28.62 41.64
AGCRN 32.19 47.05 30.49 48.85 30.21 51.65 31.23 45.48 30.49 48.85 28.51 47.04
STGCN 35.53 52.30 33.16 51.42 32.42 51.04 34.93 51.49 33.16 51.42 30.91 48.07
GWNET 28.93 39.55 26.96 39.04 25.58 37.97 28.93 40.48 27.36 39.04 25.58 38.03
ASTGCN 42.09 59.46 40.35 57.29 39.37 56.16 40.59 57.91 40.35 57.29 35.86 53.16
STGODE 35.34 51.47 32.94 49.37 31.79 48.32 34.78 51.32 32.94 49.37 30.52 47.59
DSTAGNN 30.42 41.90 29.59 41.78 29.24 41.73 30.79 43.47 29.59 41.78 28.82 42.43
Ours 25.08 36.38 24.73 36.80 23.79 36.42 24.93 36.00 24.22 35.82 23.69 35.74

Table 12: Performance comparison of baseline models using sensor data within 4 km of event locations.

Methods

By Time By Type
2h 3h 4h 2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 28.40 39.85 26.41 38.84 25.98 38.40 29.06 41.23 26.75 39.84 26.24 39.24
PatchTST 28.37 39.77 26.03 38.52 25.60 38.16 29.03 41.14 26.44 39.57 25.97 39.11
DCRNN 28.81 39.97 28.12 39.98 27.77 39.99 29.81 41.74 28.64 41.15 28.04 40.83
AGCRN 30.62 44.59 28.64 45.72 28.32 47.48 30.10 43.73 27.71 43.99 27.32 44.39
STGCN 34.99 51.89 32.27 50.05 31.41 49.25 34.66 51.29 31.49 48.49 30.48 47.27
GWNET 28.02 39.25 26.29 38.03 25.12 36.84 28.39 40.21 26.50 38.76 25.23 37.36
ASTGCN 41.10 58.55 39.04 55.57 37.88 54.01 39.93 57.26 36.83 53.81 35.09 52.01
STGODE 34.81 51.06 32.09 48.04 30.78 46.52 34.51 51.13 31.53 48.24 30.09 46.79
DSTAGNN 29.41 40.72 28.74 40.74 28.46 40.78 30.12 42.68 28.78 41.90 28.23 41.59
Ours 24.40 35.74 23.37 35.55 23.34 35.08 24.27 36.09 24.07 35.79 23.33 35.29

Table 13: Performance comparison of baseline models using sensor data within 5 km of event locations.
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Category Keywords

Spatial Location, Venue, Arena, Stadium, Street,
Road, Avenue, Highway, Intersection, Dis-
trict, Zone, Area, Region, Downtown, Map,
Route, Address, Coordinates, Near, Vicin-
ity, Surrounding, Adjacent, Within, Across,
Along, Between, Entrance, Exit, Parking, Ra-
dius

Temporal Hour, Minute, Day, Week, Month, Morning,
Afternoon, Evening, Night, AM, PM, Clock,
Today, Date, Schedule, Timeline, Duration,
Period, Before, After, Early, Late, Start, End,
During, Arrival, Departure, Peak, Weekend,
Daily

Table 14: Pre-defined Spatial and Temporal Keywords.

G Main Prompts

G.1 Prompts for Event Info Extractor

After acquiring metadata from the Venue Calendar
Database for the event day, the prompt given to the
Event Info Extractor is as follows:

Objective: Please analyze the following event
information and extract the key details in a
clear text format.

Required Output Structure: Please extract
and organize the following information in a
clear text format (using titles to separate each
section):
1. Event Type: Clearly define the category

of the event (such as sports event, concert,
music festival, exhibition, public activity,
etc.) and briefly explain its core features
or definition to help identify similar event
types.

2. Event Venue and Location Information:
Provide the name of the venue and its sig-
nificant features (such as capacity, facilities,
technical equipment, geographical advan-
tages or limitations), and describe the char-
acteristics of the surrounding area (such as
transportation convenience, commercial dis-
tricts, residential areas, natural landscapes,
etc.), to showcase how the venue may im-
pact the event.

3. Event Time: Provide the start time and
estimated duration; if the official duration is
not provided, reasonably estimate it based
on the typical duration for this type of event,
and explain the basis of your assumption.

4. Event Content: Summarize the main ac-

tivities, goals, and unique highlights of the
event, including key people, teams, or orga-
nizations involved, their background, fame,
or influence (such as international stars, lo-
cal celebrities, authoritative organizations,
etc.). If there are special segments (such
as fan meet-ups, opening ceremonies, etc.),
mention them.

5. Target Audience: Describe the characteris-
tics of potential participants, including age
range, interests (such as music lovers, tech-
nology enthusiasts), or professional back-
ground (such as students, professionals),
and analyze their motivation for attending
(such as entertainment, learning), along
with the proportion of the audience.

6. Event Scale or Importance: Specify if
this is a "locally focused event," "region-
ally influential activity," or "nationally ap-
pealing event," or estimate the number of
participants based on the venue’s capacity
and event type (such as "about hundreds
of participants," or "estimated thousands in
attendance"). When estimating, consider
the venue’s maximum capacity as the upper
limit, the event’s appeal (e.g., regular ac-
tivities tend to attract fewer attendees com-
pared to well-known artists or major cham-
pionships), and the reasonableness of the
estimate.

Please think step-by-step.

Output: <basic event information>

G.2 Prompts for Tweet Analyzer

Using the event information provided by the Event
Info Extractor, the agent constructs retrieval key-
words by adhering to the following prompt:

Please use the <basic event information> to
create a set of targeted Twitter search queries.
Your goal is to generate 5 distinct, logically
constructed search query strings. Each query
string must strictly adhere to the specific
structure:

(EventRelatedTermA OR
EventRelatedTermB OR ...)

AND
(LocationRelatedTermX OR
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LocationRelatedTermY OR ...)

To populate this structure:

• The ’Event-Related’ component (terms
joined by OR) should relate to the event’s
name, any common variations or nick-
names, keywords representing key activ-
ities or the primary event type, and relevant
event-specific hashtags.

• The ’Location-Related’ component
(terms joined by OR) should relate to the
venue name or nicknames, the city, and
optionally, other crucial official location
identifiers (like a distinct district or campus
name if provided and applicable) to
maximize specificity.

Please think step-by-step.

For each event, tweets are initially retrieved us-
ing five constructed queries and then deduplicated.
The retrieved tweets are subsequently analyzed by
the agent, guided by the following prompt:

Please filter the tweets related to <basic
event information> and analyze the following
batch of tweets with a focus on the follow-
ing aspects and provide a concise, structured
response:

1. Social Media Attention and Reasons:
Evaluate the attention trend and perfor-
mance of the event on social media, us-
ing descriptive language (e.g., "widely dis-
cussed," "moderate attention," or "limited
attention"), and explain the reasons (e.g.,
topic appeal, dissemination range, or time
factors).

2. Public Participation Willingness and
Audience Characteristics with Reasons:
Describe the strength of public willingness
to attend the event (e.g., "strong willing-
ness to participate," "some groups are in-
terested," or "willingness to participate is
unclear") and the characteristics of poten-
tial participants (e.g., age, interests, or pro-
fessional groups), and provide reasoning
(e.g., the nature of the event, convenience,
or alignment with target audiences).

3. Sentiment Distribution and Reasons:
Summarize the sentiment tendencies on

social media related to the event (e.g.,
"generally excited," "somewhat positive,"
"neutral," or "negative emotions domi-
nate") and analyze the reasons (e.g., event
highlights, controversy, or public expecta-
tions).

4. Main Discussion Topics: Extract and list
the main topics or keywords related to the
event in tweets or social media discussions
(e.g., event content, key individuals, or
points of controversy), keeping it brief.

Output: <social media analysis results>

G.3 Prompts for Mobility Analyzer
This agent processes information from the first two
agents to conduct spatiotemporal text filtering per-
tinent to traffic analysis, according to the prompt
below:

Role: You are a premier expert in California
traffic impact prediction, possessing exten-
sive professional experience and a profound
understanding of the state’s diverse cultural
fabric, unique urban road networks, and var-
ied residential patterns.

Objective: Conduct a preliminary analysis of
an event’s impact on surrounding road traffic
for a specific day.

Methodology: Please think step-by-step.
1. First, synthesize the <basic event informa-

tion>, relevant data from <recent events>,
and insights from <social media analysis
results>.

2. Second, utilize the specified <logic> to
structure your assessment.

3. Third, your analysis must explicitly con-
sider and apply your expert knowledge of
California’s unique urban characteristics
and residential behaviors.

Required Output Structure: Your report
detailing the preliminary analysis must be
formatted precisely as follows. Focus exclu-
sively on road traffic.

#Traffic conditions

• General Trend of Traffic Flow Changes:
Describe anticipated shifts in traffic vol-
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ume (e.g., percentage increase), congestion
levels (e.g., severe, moderate, light), and
specific roadways likely to be affected.

• Impact Range: Estimate the geographi-
cal extent of traffic effects (e.g., radius in
miles/km from the event, specific intersec-
tions, affected freeway segments).

• Duration: Predict the timeframe of the traf-
fic impact, including estimated start, peak
congestion, and when traffic is expected to
normalize.

• Detailed Reasoning: Provide a thorough
step-by-step explanation for your conclu-
sions regarding the traffic conditions. Di-
rectly link your predictions back to the
#Filtered event info, #Filtered public re-
actions, the specified <logic>, and your
expert knowledge of California’s traffic
dynamics and cultural patterns. Explain
why these factors lead to the predicted out-
comes.

#Filtered event info
Present the key elements from the <basic
event information> and <recent events> that
were most influential in your traffic impact
assessment. Highlight specific details (e.g.,
precise location, timing relative to peak hours,
scale of event, relevant comparisons to past
events).

#Filtered public reactions
Summarize the salient points from the <so-
cial media analysis results> that significantly
shaped your predictions. Focus on aspects
indicating potential crowd size beyond offi-
cial estimates, geographic origin of attendees,
and overall public intent to travel to the event
area.

The output should be in JSON formats:
{"filtered event info": "...",
"filtered public reactions": "...",
"traffic conditions": "..."}

Output: <filtered event info>, <filtered pub-
lic reactions>, <traffic conditions>

G.4 Prompts for Evaluator

The <logic> component consists of two parts:
<logic_global>, which outlines general screening

principles, and <logic_venue>, which provides
venue-specific guidelines. The prompt for the Eval-
uator agent to revise <logic_global> is as follows:

Objective: Analyze aggregated historical
prediction error statistics to identify systemic
weaknesses and patterns in the general infor-
mation screening logic. Propose updates to
enhance its overall accuracy and robustness
across diverse events and venues.

Input Data:
<Error_Patterns_By_Day_Of_Week>: Sta-
tistical breakdown of errors by weekday.
<Error_Patterns_By_Time_Of_Day>: Sta-
tistical breakdown of errors by specific time
slots.
<Error_Patterns_By_Event_Type>: Statis-
tics on which types of events most fre-
quently exhibit high prediction errors.

Instructions: Identify systemic patterns that
indicate deficiencies in our current general
information screening <logic_global>. Your
goal is to understand why these broad er-
ror trends are occurring and how to refine
the logic that filters and weighs information.
Consider: What common characteristics link
the days, times, or event types with the high-
est error rates? What types of information
might be particularly relevant or deceptive
in these high-error contexts that our general
logic isn’t capturing well? Please think step-
by-step.

Output: Updated <logic_global>

The prompt for the Evaluator agent to revise
<logic_venue> is as follows:

Objective: Analyze aggregated historical
prediction error statistics for a specific venue
to identify unique error patterns. Propose
targeted updates to create or refine a venue-
specific information screening logic.

Input Data:
<Venue_Name>: The specific venue being
analyzed.
<High_Error_Event_Profile_At_Venue>: A
statistical summary of events at this venue
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that had the most severe prediction errors.
This includes: Common event types/scales
that consistently result in high errors at this
venue. Frequently problematic time periods.
Specific locations around the venue that are
repeatedly sites of significant prediction er-
rors.

Instructions: Identify error patterns of
this venue. Your goal is to determine
how information screening logic of this
venue <logic_venue> should be refined,
considering its unique <Venue_Profile>:
What common threads link the high-error
events, times, and locations detailed in the
<High_Error_Event_Profile_At_Venue>?
How might these relate to the venue’s phys-
ical characteristics, typical event portfolio,
or surrounding environment? Please think
step-by-step.

Output: Updated <logic_venue>

The following sample demonstrates the revision
of the screening logic for improved real-world ac-
curacy:

Here is the analysis of prediction errors for
the Hollywood Bowl:

• Insufficient Pre-Event Window for Popu-
lar Concerts: Error curves clearly indicate
that the standard 1.5-hour pre-event win-
dow for anticipating traffic build-up is inad-
equate for popular weekend concerts. This
is due to attendees typically arriving much
earlier, often for pre-event activities like
picnicking. The system’s logic needs to be
triggered by a combination of event cate-
gory (e.g., pop concert), day of the week
(weekend), and indicators of high public
interest (e.g., expected attendance ratio, so-
cial media buzz).

• Inadequate Egress Time for Sold-Out
Events: For sold-out concerts, especially
considering the venue’s congested parking
and limited exit routes, the previously al-
located 45-minute post-event window for
traffic normalization is consistently proving
insufficient.

• Underestimation of Congestion on Key

Routes: Specific major access routes,
namely Highland Avenue (for ingress) and
Cahuenga Boulevard East (for both ingress
and egress), are persistently underestimated
in terms of congestion severity and duration
during these identified high-impact events.
The screening logic must more emphati-
cally flag these critical segments.

Based on these principles, the information
screening logic for this venue has been up-
dated as follows:

Updated Logic Rules:

Adjusted Ingress Window for High-
Demand Weekend Concerts:
For events identified as popular pop concerts
occurring on Fridays, Saturdays, or Sundays
with high anticipated attendance, the system
will now recognize the onset of significant
ingress traffic impact starting two hours prior
to the official event commencement. Further-
more, predicted traffic volumes within the
1.5-hour window immediately preceding the
event start time will be considered substan-
tially more intense than under previous calcu-
lations.

Extended Egress Impact Period for High-
Demand Weekend Concerts:
For the same category of popular weekend
pop concerts with high anticipated atten-
dance, the duration of significant post-event
traffic impact is now projected to persist for
at least one hour following the event’s conclu-
sion. The initial thirty minutes of this period,
in particular, will be recognized as having
an intensified level of congestion and slower
dispersion rates.

Enhanced Flagging for Critical Road Seg-
ments During High-Impact Scenarios:
When conditions indicative of a ’Popular
Weekend Pop Concert with High Anticipated
Attendance’ are met (as per the updated
ingress and egress timing logic), the screen-
ing logic will now apply special high-alert
designators to specific, historically problem-
atic road segments. Notably, Highland Av-
enue will be flagged for heightened early
ingress congestion, and Cahuenga Boulevard
East will be flagged for severe and prolonged
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congestion during both ingress and egress
phases. This ensures these critical arteries
receive priority attention in subsequent traffic
impact assessments.
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