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Abstract

Recently,the rapid development of multilingual
social media platforms (SNS) exacerbates mul-
tilinguality challenges in SNS content anomaly
detection due to data islands and linguistic im-
balance. While federated learning (FL) and
parameter-efficient fine-tuning (PEFT) offer
potential solutions in most cases, when every
client is multilingual, existing solutions strug-
gle with multilingual heterogeneity: 1) entan-
gled language-specific knowledge during aggre-
gation, 2) noise from minority languages, and
3) unstable cross-platform collaboration. Based
on the asymmetric nature of LoRA, we propose
MuLA-F, a multilingual Federated LoRA intro-
ducing SVD-based language-specific disentan-
glement of LoRA blocks and a local orthogo-
nal tuning strategy. Evaluations across 3 SNS
content anomaly detection tasks demonstrate
MuLA-F’s superiority in multilingual perfor-
mance while reducing multilingual knowledge
conflicts and communication rounds.

1 Introduction

As social media platforms (SNS) proliferate in re-
cent years, coupled with escalating global unrest
and instability, anomalous content (Geissler et al.,
2023; Houston et al., 2015; Savage et al., 2014)
spreads with alarming speed and magnitude across
a vast network of vulnerable social media users
(Chen et al., 2013; Mossie and Wang, 2020).

How can we safeguard the online ecosystem
from the toxic contamination of fake news, hate
speech, and other harmful content (Röttger et al.,
2021; Wu et al., 2019)? How can we ensure
that distant cries— e.g. those under crisis or de-
pressions—are not drowned out amidst the noise
(Zhang et al., 2019; Alam et al., 2021)? In response
to these pressing concerns, academia has consis-
tently pursued advancements in developing more
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Figure 1: An illustration of addressing multilingual SNS
content anomaly detection using Federated Learning.

effective content anomaly detectors (Aïmeur et al.,
2023; Alam et al., 2021) for SNS online content.
More recently, with the surge in applications of
large language models (LLMs), numerous inno-
vative works (Lei et al., 2025; Nan et al., 2024)
based on Parameter-Efficient Fine-Tuning (PEFT)
are proposed, achieving notable breakthroughs in
SNS content anomaly detection.

However, as SNS continue to decentralize and
show their inherent transcultural nature, and as user
interest in cross-border communication grows, indi-
viduals speaking various native languages are flock-
ing to popular or trending platforms (Kim et al.,
2014). The influx of users speaking different native
languages sparks a profound increase in linguis-
tic diversity online. Consequently, SNS content
anomaly detectors are now contending with the
multilingual curse (Pfeiffer et al., 2022). Specifi-
cally, for a single data holder (e.g., an SNS oper-
ator’s data storage center or an edged device), the
dominant language among its users often prevails
in usage proportion, while the data available in
minority languages are insufficient to support the
multilingual local training necessary for an effec-
tive detector against the abnormal content in these
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minor languages (Guo et al., 2024c; Weller et al.,
2022). As a result, detectors trained locally (i.e.
by a single SNS) could struggle to detect content
anomaly in posts in minor languages—e.g. the
APP “Little Red Note” fails to effectively filter out
toxic remarks (even in English) posted by TikTok
refugees (Press, 2025).

Confronted with this challenge and the heavy
costs of acquiring multilingual in-domain anno-
tated data (Wang et al., 2022), we argue that the
growing multilingual user base gives rise to data is-
lands in SNS content anomaly detection—the issue
that lies at the heart of this paper’s focus.

Empirically, previous studies tackle similar chal-
lenges by leveraging federated learning (FL) tech-
niques, enabling the multilingual collaborative
training of local models with multilingual or mono-
lingual local datasets across diverse organizations
and data sources. From a theoretical perspective,
FL can effectively mitigate these challenges (Wang
et al., 2022; Zhao et al., 2024). This is because,
from a global standpoint, if data holders can col-
laborate, the completeness of multilingual data can
be significantly enhanced (Yang et al., 2023), as
each major language community gravitates toward
its preferred SNS. Consequently, each widely-used
language is dominantly prevalent on a certain num-
ber of SNS platforms (Khalil et al., 2024). Tech-
nically, assuming that local data is complete and
FL is unnecessary, as mentioned above, applying
LLMs as the backbone for detectors and introduc-
ing LoRA-PEFT (Hu et al.) emerges as a SOTA
solution that effectively balances performance and
cost (Yin et al., 2024; Wang et al., 2023a). More-
over, for FL-suited scenarios, recent strides in fed-
erated low-rank adaptation (FedLoRA) (Cho et al.,
2024; Bai et al., 2024; Wu et al., 2024) make it pos-
sible to treat LLM-based detectors as local model
backbones, i.e., only integrate additional modules
for LoRA-PEFT in federated communication. As
such, FedLoRA stands out as the most promising
and compelling technical routine for us.

Nevertheless, despite recent studies (Guo et al.,
2024c,b), significant technical challenges still per-
sist for multilingual SNS content anomaly detec-
tion on social media—mainly regarding server-side
operations and local weight uploading—which are
outlined as follows:

(1-a): The nature of multilingual content detec-
tion, i.e. language gap based on multilingualism,
is a kind of severe, threatening data heterogeneity
(Huang et al., 2021; Tan et al., 2022).

(1-b): Since the language composition of each
multilingual client is only a subset of the global
language set, alleviating the multilingual curse and
balancing the local detector’s performance across
the languages in the subset necessitates that the
domain adaptation knowledge for each language
be not only effective but also explicitly disen-
tangled on the server-side (it can also be specu-
lated that local knowledge should be also multilin-
gually disentangled after local training). Moreover,
the language-specific knowledge should not suffer
from (catastrophic) forgetting and multilingual con-
flicts (Koohpayegani et al.; Xu et al., 2024) during
aggregation and server-to-client distribution.

(2-a): Due to the severely imbalanced propor-
tions of languages in local training data, after each
local round, a local LoRA could contain mixed
domain adaptation knowledge which shows vary-
ing degrees of effectiveness for various languages
that appear in the corresponding client. Existing
works (Khalil et al., 2024; Wang et al., 2022; Guo
et al., 2024c) often treat it as a contribution to the
client’s primary language and then upload it. Un-
fortunately, it shows obvious drawbacks. First, the
knowledge for local minority languages inevitably
introduces noise into the primary language. Sec-
ond, the contributions of minority languages are
often overlooked. Specifically, if a local minority
language never plays the role of primary language
in a certain number of other clients, they will be ex-
cessively edged in federated collaboration. The cur-
rent solution—aggregating the entire local weights
into the part of global weight corresponding to the
minority language—will introduce overwhelming
noise. Thus, better countermeasures are needed

(2-b): In our task scenario, FL across SNS or
users’ data storage units always faces strict data-
security legislation (Wen et al., 2023) and lower
willingness to cooperate (compared to other fields,
e.g. Medical) (Wu et al., 2022). Thus, the number
of federated rounds also becomes a critical concern
for participants in our task.

In light of this, to address these concerns, we
propose MuLA-F. On the client-side of MuLA-F,
we perform SVD on the local LoRA blocks and
apply Diff-eRank (Wei et al., 2024) as the met-
ric to identify the top-k most contributing feature
subspaces for each language appeared in the local
dataset. The selected feature subspaces are then
reconstructed into the format of LoRA to achieve
multilingual disentanglement of the local weights.
Inspired by a previous theoretical work (Zhu et al.)
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Figure 2: A client-side architecture overview of MuLA-F. We assume the local language composition is jp and zh.

which highlights the asymmetry between A and
B in LoRA, i.e. A specializing in feature ex-
traction while B specializes in feature transforma-
tion, we argue that multilingualism could influ-
ence client-side feature extraction by introducing
data heterogeneity, while downstream SNS content
anomaly detection is still a task with commonali-
ties across languages (Yang et al., 2023; Demen-
tieva and Panchenko, 2021; Xu et al., 2024). In
light of this, we build multiple language centers
on the server, perform language-specific federated
aggregation regarding the uploaded A-matrices to
achieve global disentanglement, and aggregate B-
matrices globally for the downstream task. Mean-
while, in terms of local training, inspired by O-
LoRA (Wang et al., 2023b), we leverage exist-
ing parameters in language centers to facilitate
real-time orthogonalization of the locally recon-
structed A-matrices to prevent catastrophic forget-
ting and knowledge conflicts between languages.
Finally, after broadcasting the global B-matrices
to the clients, based on each client’s language com-
position, we customize the A-matrices with the
language-specific A-matrices for this client, and
then distribute them to it, ensuring the performance
of the local detectors while economizing the num-
ber of federated rounds.

Experiments on three multilingual SNS content
anomaly detection tasks demonstrate that MuLA-F
significantly outperforms existing baselines.

2 Related Work

Since the proposal of LoRA (Hu et al.), several
studies have explored incorporating LoRA into Fed-
erated Model Finetuning. For example, a study

(Babakniya et al.) utilizes SVD combined with
Federated Learning to initialize the LoRA blocks
on local clients effectively. Additionally, (Zhang
et al., 2024) integrates LoRA-based local updates
with FedAvg for model aggregation. (Sun et al.)
proposes a method to enhance LoRA’s performance
in Federated Learning settings; (Yan et al., 2024)
addresses data heterogeneity by performing SVD
on pretrained model weights, and (Qin et al.) re-
duces communication costs using zeroth-order op-
timization. FLoRA (Wang et al.) introduces
stacking aggregation to alleviate data heterogeneity.
FlexLoRA (Bai et al., 2024) introduces global SVD
to allocate global knowledge across heterogeneous
clients. The general problem formulation of Fed-
LoRAs can be found in Appendix C.4. Recently,
FedEx-LoRA (Singhal et al., 2025) improves the
robustness of FedLoRA’s global aggregation by
appending a residual error term to the pretrained
weight matrix. FRLoRA (Yan et al.) addresses
both intrinsic rank limitations and client drift by
performing global updates in a higher-rank space
and reinitializing local adapters with singular vec-
tors of pretrained weights.ECLoRA (Ning et al.,
2025) accommodate client-submited LoRAs with
higher rank heterogeneity by combining random-
ized SVD with error compensation.FLAME (Le
et al., 2025) proposes to leverage a sparse MoE to
enable resource-adaptive fine-tuning while preserv-
ing full-rank for global LoRA.

However, there is limited research on Multilin-
gual Federated PEFT (Parameter-Efficient Fine-
Tuning). FedHLT (Guo et al., 2024b) and FedLFC
(Guo et al., 2024c) have effectively utilized lan-
guage family structures for federated LoRA aggre-
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gation. Existing multilingual federated finetuning
methods (Khalil et al., 2024; Guo et al., 2024c)
mostly focus on scenarios where each client is
monolingual. The research on Federated LoRA for
multilingual clients remains largely under-explored,
which represents the primary technical challenge
that MuLA-F addresses in our task scenario.

3 Methodology

Assuming there is a federated PEFT framework
consisting of n client participants, which are de-
noted as {C1, . . . , Cn}. The local datasets of clients
are denoted as {D1, . . . ,Dn}. Before the start, the
server investigates the languages that appear in at
least one local dataset, to form the global language
set K, then assigns a “language center” to each lan-
guage. The global language set is the union of all
local language sets (the set of languages in each lo-
cal dataset), expressed as K = K1 ∪K2 ∪ . . .∪Kn.
For each pair of clients, there is likely some overlap
regarding the language composition of their corre-
sponding local datasets. From a global perspective,
for each language k ∈ K, we identify all clients
that incorporate the use of the language in their
online activities, denoted as the set Sk.

In the illustration of the client-side algorithm
(see below), we focus on the client indexed by
j. In detail, the local dataset Dj of client Cj
consists of social media text data in multiple lan-
guages sourced from the platform or distributed
storage unit, e.g. edge device, denoted by Dj =⊕

k∈Kj
Dk

j , where kj ∈ Kj is the primary lan-
guage, and the languages other than the primary
one are considered minority languages. In our set-
ting, we suppose that most of the data heterogeneity
among {D1, . . . ,Dn} can be attributed to the mul-
tilingual gap, as the nature of the downstream tasks
across different languages are highly similar.

3.1 Multilingual Disentanglement for
Client-side Language-specific Weights
Uploading of LoRA Blocks

Considering the perspective put forward by
Sutskever et al. and Wei et al. (Sutskever, 2023;
Wei et al., 2024), the significance of the weight
update in large language model training can be
described as an operation specifically designed to
eliminate redundant information within the train-
ing data. The process ensures that the representa-
tion of in-domain data for the given task scenario
becomes more regularized and structured after un-

Figure 3: An illustration of multilingual disentangle-
ment on local LoRA blocks performed by MuLA-F

dergoing additional transformations driven by the
weight updates. Hence, we propose the first hy-
pothesis: the Local LoRA blocks obtained from
multilingual local training are linear combinations
of rank-1 updates in multiple feature subspaces that
are mutually independent. Each of these updates
aids in removing redundant information and noise
in data regarding one or more languages within the
local dataset, then extracting more significant and
structured patterns and features for it.

Furthermore, according to the insightful theoreti-
cal analysis regarding Asymmetry in LoRA by Zhu
et al. (Zhu et al.), the following conclusion can be
derived, which can be represented as:

∆W = BA = ϕB ◦ φA(·), (1)

where in the conclusion, A can be described as
a feature extractor, while B acts more as task-
oriented feature transformation, i.e. uses the ex-
tracted features to create the desired output. Build-
ing on this, we further refine our hypothesis: in our
task scenario, the LoRA-based update of the back-
bone weight matrix can be reconstructed as a linear
combination of multiple A-matrices, multiplied by
a single B. In this context, the B serves the purpose
of a general feature transformation for the received
regularized and structured features (produced by
A) towards the downstream content anomaly de-
tection task. Each A, on the other hand, is bound
with a specific language and represents a feature
extractor formed by a linear combination of parts
of the rank-1 updates (as described in the first hy-
pothesis) which provide a certain contribution, e.g.,
removing redundant information and extracting ef-
fective patterns and features, to that language. In
other words, these selected rank-1 updates jointly
span the feature subspace for domain adaptation re-
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garding the textual data composed in the language,
in the given client.

Thus, specifically, given a LoRA block of Cj
obtained by a local training round, we reconstruct
it into the form of ∆W and then conduct an SVD
on the matrix, which can be written as:

SVD(BjAj) = UjΣjV
T
j , (2)

where Uj , Σj and Vj are the SVD components of
(BjAj), Uj , Vj ∈ Rd×r0 . Among them, each sin-
gular value and its corresponding singular vector
can be reconstructed as a rank-1 weight matrix up-
date. Subsequently, we introduce Diff-eRank (Wei
et al., 2024), a simple yet effective metric that, from
an information-theoretic perspective, measures the
contribution of the rank-1 weight update in remov-
ing redundant information from features of the data
and extracting more important ones, based on cal-
culating the effective-rank (Schumacher, 1995) of
the output hidden states (details can be found in
Appendix A.1). For each language appeared in the
local dataset, we compute the Diff-eRank contribu-
tion of each singular value. Taking the r-th singular
value as an example, it can be written as:

ekj, r =
1

|Dk
j |
∑

h∈Dk
j

(erank(m
l
j(h

(l−1); W svd
j, r , θ

l
j))

− erank(m
l
j(h

(l−1); θlj))),
(3)

where ml
j(·) is the l-th transformer layer to which

the LoRA block belongs, rather than the entire
model. W svd

j, r ∈ Rd×d is a rank-1 update calculated
by (Uj [r, :]Σj [r, r]Vj [r, :]

T ). h(l−1) denotes the
hidden state fed into ml

j(·). θlj denotes the rest of
the parameters in this layer (including other LoRA
blocks in ml

j(·)). Here, the principle of controlling
variables is strictly followed. Next, according to
the Diff-eRank scores, we select the top-k singu-
lar values to retain, while masking out the other
singular values (in their original positions).

Mk
j [r, r] =

{
1, ekj, r ∈ topk

({
ekj, t

}r0

t=1

)

0, otherwise
,

(4)
where Mk

j is the language-specific diagonal mask
(Every local language respectively has one). Fi-
nally, the triplets after the masking operation are
reconstructed into the (B, A) format:

Ak
j = (

√
ΣjM

k
j )V

T
j , Bc

j = Uj

√
Σj . (5)

Figure 4: Architecture Overview of the proposed MuLA-
F (Server-Side and Client-Server Communication)

Eventually,
{{

Ak
j

}
k∈Kj

, Bc
j

}
are uploaded to

the server. Note that only
{
Ak

j

}
k∈Kj

are language-

specific and uploaded as disentangled local weights
specifically for the corresponding languages.

On the server-side, we perform global aggrega-
tion on all received B-matrices to obtain general
feature transformation components for our multi-
lingual SNS content anomaly detection task, which
can be written as:

Bg =
1∑n

j=1 |Dj |
n∑

j=1

(|Dj |Bc
j ). (6)

Additionally, it is important to note that, since
the entire LLM contains multiple LoRA blocks,
we adopt a layer-wise (layer-by-layer) inference
strategy when calculating the Diff-eRank scores

3.2 Server-side Language Centers

On the server side, the server initializes a center for
each language that appears in the federated system.
In each round of client-to-server federated commu-
nication, each client sends the language-specific
reconstructed A-matrices to their corresponding
language center for aggregation, which is:

Ag, k =
1∑

j∈Sk |Dk
j |
∑

j∈Sk

(|Dk
j |Ak

j ), (7)

where Ag, k denotes the disentangled knowledge
for language-specific feature extraction from a
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global perspective. In the server-to-client commu-
nication, the server, based on the language compo-
sition of each client’s local data, selects the corre-
sponding language centers to customize the A for
that client, which can be written as:

Au
j =

1∑
k∈Kj

|Dk
j |
∑

k∈Kj

(|Dk
j |Ag, k), (8)

where (Au
j , B

g) is sent to Cj , as the fruit of our
proposed MuLA-F harvested by Cj .

3.3 Orthogonal Tuning for Local Steps
Previous studies in multilingual PLMs and con-
tinual learning demonstrate that when feature sub-
spaces of language centers overlap or conflict to
some extent (Koohpayegani et al.), catastrophic for-
getting can occur during the weight aggregation (in
Eq.8). A recent study proposes a stacking strategy
(Wang et al.) to tackle this challenge. However, it
is not reliable enough for the selective aggregation
in our method. Inspired by the finding of O-LoRA
(Wang et al., 2023b) that constraining the feature
subspaces of multiple A-matrices to be orthogo-
nal can significantly avoid knowledge conflicts and
mitigate catastrophic forgetting when aggregating
them, in the local training phase of a given multi-
lingual client Cj , we introduce an orthogonal reg-
ularization term calculated from the real-time re-
constructed A and other irrelevant language centers
into the local objective function. Specifically, in
each step, we perform a real-time low-rank approx-
imate SVD on the in-training LoRA blocks, which
can be written as:

SVDlow-rank(B̂jÂj) = ÛjΣ̂j V̂ T
j , (9)

where (B̂j , Âj) denotes the in-local-training LoRA
block. Then, consider that the first singular value
must be associated with the primary language, we
compute the orthogonal loss between its corre-
sponding singular vector and all other language
centers, which is:

La, 1orth =
∑

i2

||(V̂ T
j [1, :]

∑

k∈K, k ̸=kj

Ag, k)[1, i2]||2.

(10)
For the other singular values, we measure the or-

thogonality of their corresponding singular vectors
with the language centers that do not contribute at
all to the current client, which is:

La, exorth =
∑

i1, i2

||(V̂ T
j [2 :, :]

∑

k∈K\Kj

Ag, k)[i1, i2]||2.

(11)

Figure 5: An illustration of our insights regarding LoRA
Asymmetry in multilingual SNS content anomaly de-
tection: language gap should be mitigated by A from
language centers, while B is a general feature transfor-
mation towards detecting the content anomaly.

Meanwhile, to ensure that B focuses on serving
as a common feature transformation, we try to unify
the feature subspaces of Bj across clients. Specif-
ically, starting from the second federated round,
before each local round begins, we perform polar
decomposition on Bg stored on the server to obtain
the rotation matrix Bg

p , which is:

SVD(Bg) = Ug
b Σ

g
bV

g
b
T
, Bg

p = Ug
b .V

g
b
T (12)

Then, the orthogonality between the global rota-
tion matrix and B̂j is added into the regularization
term to achieve our goal, which is:

Lborth = −
∑

i1, i2

||(ÛT
j B

g
p)[i1, i2]||2. (13)

Finally, the modified local training objective
which can mitigate the risk of forgetting when up-
dating the selected language centers is:

L = Ltask + α(La, 1orth + L
a, ex
orth ) + βLborth, (14)

where L denotes the local training objective of the
current client. Note that Eq. (14) is executed on the
client side. It directly provides the input variables
for Eq. (2).

See Appendix C.1, C.3, A.3 for further discus-
sion of Section 3.1, 3.3, and a theoretical insight.
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Table 1: Comprehensive evaluations on multilingual SNS content anomaly detection datasets. Metric: federated
averaged F1-Score (Fed-F1). We conduct at least 3 runs and report the averaged results (score ± std). The best
results that pass p ≤ 0.005 paired t-test are underlined (all baselines pass the paired t-test against LoRA w/o FL).

MM-COVID CONAN MD3D

Sp-1 Sp-2 Sp-1 Sp-1 Sp-2

Qwen-2.5-7B

FedAVG 87.85 ± 0.16 86.69 ± 0.31 87.52 ± 0.19 87.14 ± 0.05 84.81 ± 0.14
Vanilla 87.71 ± 0.45 86.37 ± 0.64 87.94 ± 0.27 86.92 ± 0.39 84.65 ± 0.58

FFA-LoRA 88.28 ± 0.39 86.95 ± 0.33 87.69 ± 0.26 88.57 ± 0.16 85.41 ± 0.27
FedSA 89.40 ± 0.24 87.18 ± 0.20 88.21 ± 0.15 89.86 ± 0.08 86.26 ± 0.13
FLoRA 88.56 ± 0.54 87.03 ± 0.73 88.70 ± 0.41 91.20 ± 0.60 87.31 ± 0.72

FlexLoRA 90.05 ± 0.31 87.91 ± 0.46 88.49 ± 0.31 92.61 ± 0.41 88.40 ± 0.65

FedLFC 89.74 ± 0.13 88.33 ± 0.25 88.85 ± 0.10 92.03 ± 0.13 87.55 ± 0.19
MuLA-F 91.08 ± 0.22 89.46 ± 0.28 89.67 ± 0.17 93.35 ± 0.20 89.54 ± 0.24

Qwen-2.5-14B

FedAVG 89.35 ± 0.13 87.62 ± 0.20 90.03 ± 0.16 90.57 ± 0.08 88.45 ± 0.13
Vanilla 89.58 ± 0.38 87.17 ± 0.55 89.95 ± 0.29 90.11 ± 0.44 88.69 ± 0.56

FFA-LoRA 91.22 ± 0.31 88.34 ± 0.42 90.34 ± 0.18 91.32 ± 0.22 88.90 ± 0.26
FedSA 91.85 ± 0.26 89.59 ± 0.28 90.66 ± 0.11 91.66 ± 0.10 89.63 ± 0.18
FLoRA 89.92 ± 0.39 87.99 ± 0.61 91.06 ± 0.35 93.59 ± 0.56 90.61 ± 0.75

FlexLoRA 92.09 ± 0.21 89.60 ± 0.32 90.72 ± 0.20 94.02 ± 0.34 91.05 ± 0.47

FedLFC 92.85 ± 0.09 90.11 ± 0.17 91.27 ± 0.09 92.88 ± 0.12 90.38 ± 0.14
MuLA-F 92.66 ± 0.20 91.24 ± 0.21 91.85 ± 0.12 95.25 ± 0.15 93.22 ± 0.19

4 Experiments

4.1 Experimental Setups

4.1.1 Dataset

We collect publicly available social media text
datasets, then filter and synthesize them into
three datasets for distinct Multilingual SNS Con-
tent Anomaly Detection subtasks, which are:
Fake News Detection (MM-COVID), Hate Speech
Detection (CONAN), and Depression Detection
(MD3D). Data statistics are provided in Table 2,
and more details on global dataset construction
are shown in Appendix B.1. In terms of language
composition, MD3D mainly consists of commonly
used East Asian languages, while the pre-processed
versions of MM-COVID and CONAN are predom-
inantly made up of Indo-European languages. All
clients in the client settings reported in Table 1 are
multilingual themselves. To address potential con-
cerns regarding MuLA-F’s performance on settings
with monolingual clients, we additionally set up a
client setting that includes both multilingual and
monolingual clients. The corresponding additional
results are reported in Appendix A.4. Details of
client construction can be seen in in Appendix B.2.

4.1.2 Baselines
The selected competitive FedLoRAs as baselines
except FedAVG (McMahan et al., 2017) include:
Vanilla, FFA-LoRA (Sun et al.), FedSA (Guo
et al., 2024a), FLoRA (Wang et al.), FlexLoRA
(Bai et al., 2024), FedLFC (Guo et al., 2024c).
Among them, FFA-LoRA and FedSA are simple
but theoretically solid FedLoRA baselines. FLoRA
and FlexLoRA are cutting-edge SOTA FedLoRAs.
FedLFC is a dedicated SOTA Multilingual Fed-
LoRA. Baseline introductions and implementation
details can be found in Appendix B.3 and B.4.

Due to the inclusion of multiple East Asian lan-
guages in MD3D, we choose Qwen-2.5-7B and
Qwen-2.5-14B as our base LLMs, as LLaMA-3.1-
8B and Mistral-7B do not support these languages.
Additional experimental results using LLaMA-3.1-
8B on other datasets are shown in Appendix A.5.

4.2 Comprehensive Evaluations

The results of the comprehensive evaluations
are reported in Table 1. Our findings are as follows:

(a) Across the three tasks of PEFT-based
multilingual SNS anomaly detection, our proposed
MuLA-F outperforms the best baseline methods by
an average of approximately 1.2 percentage points.
If we regard FedAVG as a reference point with no
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Figure 6: An analysis of federated communication
rounds (Metric: Fed-F1; Base model: Qwen-2.5-14B;
Dataset: (a) MD3D, (b) MM-COVID. For each method,
We report the test results up to the corresponding check-
point round in the section of comprehensive evaluation.

additional modules or modifications — effectively
a relative zero — from this perspective, the
advantage of MuLA-F will be further amplified.
(b) When the LoRA-rank is a normal value,
FLoRA lags behind other methods, with almost
no prominent local performance, especially on the
CONAN dataset with less data. One reason is that
while the stacking operation avoids introducing
cross terms BiAj as noisy, the cost is that the
global rank expands sharply, which can impair the
validity of each singular value, causing feature
subspace redundancy or multicollinearity.
(c) By effectively integrating the data resources
of each language family, FedLFC performs better
when the global data distribution is more equitable
across language families. However, when more
clients’ local language composition spans multiple
language families or some low-resource languages
are consistently not primary across the clients, its
Fed-F1 substantially decreases.
(d) The relatively low performance of FFA-LoRA
and FedSA indicates that their interpretations of
LoRA’s asymmetry are successfully challenged
by MuLA-F’s in the context of multilingual SNS
content anomaly detection.
(e) As the best-performing baseline on average,
FlexLoRA also provides disentanglement of
multilingual domain knowledge algorithmically.
However, it occurs on the server-side, relatively
late, which highlights that MuLA-F’s early
multilingual disentanglement (on the client-side)
better leverages minor language data in local
datasets, especially when there exist high data
heterogeneity and low task heterogeneity.
(f) The language-specific evaluation results
in Figure 9 further indicate that, even though

Figure 7: Ablation Study (Metric: Fed-F1; Base model:
Qwen-2.5-14B)

MuLA-F does not show a significant advantage
on primary Languages, it greatly balances the
local model’s performance for other locally minor
languages.

Additional evaluations on special client set-
ting including both multilingual and monolingual
clients are reported in Appendix A.4.

4.3 Communication Rounds

We conduct a round-by-round analysis of MuLA-
F and 4 critical baseline methods. The experi-
mental results reported in Figure 6 show that, in
terms of smoothness, FedLFC shows a more stable
convergence per round, which may be because it
does not perform complex decomposition opera-
tions. On the other hand, MuLA-F and FlexLoRA
make larger strides toward convergence in the early
rounds, although some fluctuation occurs. Despite
MuLA-F having higher local round overheads, it
surpasses the baselines within less than 40% of the
total rounds. We emphasize that, in the context of
our task, the number of federated communication
rounds is a very sensitive parameter due to factors
such as instability in multi-party cooperation in-
tentions across social media platforms. Moreover,
since each SNS participant always has sufficient
resources for local model training, the sensitivity
to local overhead is lower than in other scenarios.

4.4 Ablation Study

We create five degraded versions of MuLA-F.
Specifically, we remove the following components:
local disentanglement (directly submitting local
weights; Dg-1), global disentanglement (aggregat-
ing language centers; Dg-2), orthogonal regulariza-
tion (Dg-3), orthogonal regularization applied to
A-matrices (Dg-3-a) and to B-matrices (Dg-3-b).

Experimental results reported in Figure 7 show
that the effectiveness of language centers is sig-
nificantly enhanced when local disentanglement is
introduced. However, "language center" mecha-
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Figure 8: A vivid case study of MULA-F on MD3D.

nism alone could not directly effectively utilize the
weights submitted by multilingual clients. More-
over, the increase in the number of languages
causes higher multilingual conflict, which mani-
fests in the experimental results as a lift in the
importance of the orthogonal term.

4.5 Case Study
As shown in Figure 8, We present an interesting
case study using a Japanese post from MD3D test
set.

While FlexLoRA and FedLFC fail to capture
the depressive signal in the post. Based on our
probing of the attention layers in the base LLM, we
discovered some interesting phenomena that help
explain this phenomenon.

First, between the phrases ‘the future’ and
‘courage to rest’, MuLA-F assigns significantly
higher attention weights—over 300% of that in
FlexLoRA and in FedLFC. This suggests that
MuLA-F is capable of recognizing that, in East
Asian cultures, ambivalence toward taking a leave
(e.g., a gap year) often reflects deep anxiety about
the future—a culturally specific depression signal.
In contrast, FlexLoRA and FedLFC tend to inter-
pret this as a neutral logistical concern, failing to
capture its psychological undertones.

Second, MuLA-F also assigns higher averaged
attention scores from all other tokens to ‘I want to
rest’ and ‘I don’t have the courage’—more than
200% of that in FlexLoRA and in FedLFC. The
finding indicates that MuLA-F better understands
the “intentionally light-handed self-deprecation”
pragmatic feature in Japanese social media text. In
detail, in Japanese literary expression, this form of
mild, first-person narrative and intentionally light-
handed self-deprecation is a special kind of nega-

tive expressions, where the speaker subtly down-
plays their own bad situation or tough decisions.
But FlexLoRA and FedLFC tend to confuse this
with neutral first-person narration, thus missing the
underlying affective signal.

Third, in the segment ‘He told me he want me to
take a leave of absence’, which forms a agglutina-
tive compound verb phrase (expressing both desire
and passivity), MuLA-F demonstrates denser local
self-attention. In contrast, FedLFC tends to break
this phrase into fragmented attention spans, lead-
ing to a loss of modality/passivity cues embedded
in this kind of Japanese agglutinative compound
verb phrase, which are crucial in understanding
emotional nuance in Japanese text.

In a nutsell, for each language, MuLA-F is ca-
pable of capturing and understanding language-
specific linguistic phenomena that are characteris-
tic of social media expressions in that language,
including but not limited to narrative perspective,
self-deprecation, and cross-lingual semantic shifts.

5 Conclusion

In this paper, to address the challenging issues
faced by multilingual SNS content anomaly de-
tection, we propose MuLA-F. MuLA-F leverages
the asymmetry of LoRA, incorporating our pro-
posed SVD-based multi-level multilingual knowl-
edge disentangling and orthogonal regularization
modules. These components significantly alleviate
the multilingual curse and knowledge conflicts in
our task scenario, enabling MuLA-F to outperform
the cutting-edge FedLoRAs on multilingual clients.

Limitations

The limitations of MuLA-F are discussed as below.
Firstly, excessive constraints in feature decou-

pling may result in an overly rigid feature space,
suppressing natural relationships between lan-
guages (such as the grammatical similarities be-
tween Japanese and Chinese), thereby affecting the
model’s adaptability to new language combinations
or mixed languages. Over-decoupling may prevent
the model from capturing shared features across
languages, reducing generalization performance.
Another drawback is the high computational cost
of SVD decomposition and orthogonal constraints,
particularly in scenarios involving large-scale lan-
guage models or massive datasets, which could
significantly slow down training speed and limit
the scale of practical applications.
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Nevertheless, as demonstrated by the experi-
ments reported in Appendix A.6, we argue that
the two aforementioned drawbacks do not caused
significant negative influence in our task setting.
They are acceptable and do not undermine the sig-
nificance of MuLA-F’s advantages in comparison
to baseline methods.

References
Esma Aïmeur, Sabrine Amri, and Gilles Brassard. 2023.

Fake news, disinformation and misinformation in
social media: a review. Social Network Analysis and
Mining, 13(1):30.

Firoj Alam, Hassan Sajjad, Muhammad Imran, and
Ferda Ofli. 2021. Crisisbench: Benchmarking crisis-
related social media datasets for humanitarian infor-
mation processing. In Proceedings of the Interna-
tional AAAI conference on web and social media,
volume 15, pages 923–932.

Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H
Ezzeldin, Qingfeng Liu, Kee-Bong Song, MOSTAFA
EL-Khamy, and Salman Avestimehr. Slora: Feder-
ated parameter efficient fine-tuning of language mod-
els. In International Workshop on Federated Learn-
ing in the Age of Foundation Models in Conjunction
with NeurIPS 2023.

Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao,
and Yaliang Li. 2024. Federated fine-tuning of
large language models under heterogeneous tasks
and client resources. In The Thirty-eighth Annual
Conference on Neural Information Processing Sys-
tems.

Wei Chen, Carlos Castillo, and Laks VS Lakshmanan.
2013. Information and influence propagation in so-
cial networks. Morgan & Claypool Publishers.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi,
and Gauri Joshi. 2024. Heterogeneous lora for fed-
erated fine-tuning of on-device foundation models.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
12903–12913.

Yi-Ling Chung, Elizaveta Kuzmenko, Serra Sinem
Tekiroglu, and Marco Guerini. 2019. Conan-counter
narratives through nichesourcing: a multilingual
dataset of responses to fight online hate speech. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2819–
2829.

Daryna Dementieva and Alexander Panchenko. 2021.
Cross-lingual evidence improves monolingual fake
news detection. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: Student Research
Workshop, pages 310–320.

Dominique Geissler, Dominik Bär, Nicolas Pröllochs,
and Stefan Feuerriegel. 2023. Russian propaganda
on social media during the 2022 invasion of ukraine.
EPJ Data Science, 12(1):35.

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan,
Feifei Wang, and Liangqiong Qu. 2024a. Selec-
tive aggregation for low-rank adaptation in federated
learning. arXiv preprint arXiv:2410.01463.

Zhihan Guo, Yifei Zhang, Zhuo Zhang, Zenglin Xu,
and Irwin King. 2024b. Fedhlt: Efficient federated
low-rank adaption with hierarchical language tree for
multilingual modeling. In Companion Proceedings
of the ACM on Web Conference 2024, pages 1558–
1567.

Zhihan Guo, Yifei Zhang, Zhuo Zhang, Zenglin Xu, and
Irwin King. 2024c. Fedlfc: Towards efficient feder-
ated multilingual modeling with lora-based language
family clustering. In Findings of the Association
for Computational Linguistics: NAACL 2024, pages
1519–1528.

J Brian Houston, Joshua Hawthorne, Mildred F Per-
reault, Eun Hae Park, Marlo Goldstein Hode,
Michael R Halliwell, Sarah E Turner McGowen,
Rachel Davis, Shivani Vaid, Jonathan A McElderry,
et al. 2015. Social media and disasters: a functional
framework for social media use in disaster planning,
response, and research. Disasters, 39(1):1–22.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language
models. In International Conference on Learning
Representations.

Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang,
Jiangchuan Liu, Jian Pei, and Yong Zhang. 2021.
Personalized cross-silo federated learning on non-
iid data. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pages 7865–7873.

Samar Samir Khalil, Noha S Tawfik, and Marco Spruit.
2024. Federated learning for privacy-preserving de-
pression detection with multilingual language models
in social media posts. Patterns.

Suin Kim, Ingmar Weber, Li Wei, and Alice Oh. 2014.
Sociolinguistic analysis of twitter in multilingual so-
cieties. In Proceedings of the 25th ACM conference
on Hypertext and social media, pages 243–248.

Soroush Abbasi Koohpayegani, KL Navaneet, Parsa
Nooralinejad, Soheil Kolouri, and Hamed Pirsiavash.
Nola: Compressing lora using linear combination of
random basis. In The Twelfth International Confer-
ence on Learning Representations.

Khiem Le, Tuan Tran, Ting Hua, and Nitesh V Chawla.
2025. Flame: Towards federated fine-tuning large
language models through adaptive smoe. arXiv
preprint arXiv:2506.16600.

15263



Zhenyu Lei, Yushun Dong, Weiyu Li, Rong Ding,
Qi Wang, and Jundong Li. 2025. Harnessing large
language models for disaster management: A survey.
arXiv preprint arXiv:2501.06932.

Yichuan Li, Bohan Jiang, Kai Shu, and Huan Liu.
2020. Mm-covid: A multilingual and multimodal
data repository for combating covid-19 disinforma-
tion. arXiv preprint arXiv:2011.04088.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

Zewdie Mossie and Jenq-Haur Wang. 2020. Vulnerable
community identification using hate speech detection
on social media. Information Processing & Manage-
ment, 57(3):102087.

Qiong Nan, Qiang Sheng, Juan Cao, Beizhe Hu, Dand-
ing Wang, and Jintao Li. 2024. Let silence speak:
Enhancing fake news detection with generated com-
ments from large language models. In Proceedings of
the 33rd ACM International Conference on Informa-
tion and Knowledge Management, pages 1732–1742.

Wanyi Ning, Jingyu Wang, Qi Qi, Haifeng Sun, Daix-
uan Cheng, Cong Liu, Lei Zhang, Zirui Zhuang, and
Jianxin Liao. 2025. Federated fine-tuning on hetero-
geneous loras with error-compensated aggregation.
IEEE Transactions on Neural Networks and Learning
Systems.

Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James
Cross, Sebastian Riedel, and Mikel Artetxe. 2022.
Lifting the curse of multilinguality by pre-training
modular transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3479–3495.

Associated Press. 2025. Tiktok refugees are pouring to
xiaohongshu. what to know about the rednote app.

Zhen Qin, Daoyuan Chen, Bingchen Qian, Bolin Ding,
Yaliang Li, and Shuiguang Deng. Federated full-
parameter tuning of billion-sized language mod-
els with communication cost under 18 kilobytes.
In Forty-first International Conference on Machine
Learning.

Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Margetts, and Janet Pierrehumbert.
2021. Hatecheck: Functional tests for hate speech
detection models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 41–58.

David Savage, Xiuzhen Zhang, Xinghuo Yu, Pauline
Chou, and Qingmai Wang. 2014. Anomaly detection
in online social networks. Social networks, 39:62–
70.

Benjamin Schumacher. 1995. Quantum coding. Physi-
cal Review A, 51(4):2738.

Raghav Singhal, Kaustubh Ponkshe, and Praneeth
Vepakomma. 2025. Fedex-lora: Exact aggregation
for federated and efficient fine-tuning of large lan-
guage models. In Proceedings of the 63rd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1316–1336.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Im-
proving lora in privacy-preserving federated learning.
In The Twelfth International Conference on Learning
Representations.

Ilya Sutskever. 2023. Stronger compressors find more
shared structure. The Ilya’s Talk. Accessed: 2023-
10-15.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang
Yang. 2022. Towards personalized federated learning.
IEEE transactions on neural networks and learning
systems, 34(12):9587–9603.

Haoyu Wang, Handong Zhao, Yaqing Wang, Tong Yu,
Jiuxiang Gu, and Jing Gao. 2022. Fedkc: Federated
knowledge composition for multilingual natural lan-
guage understanding. In Proceedings of the ACM
Web Conference 2022, pages 1839–1850.

Neng Wang, Hongyang Yang, and Christina Dan
Wang. 2023a. Fingpt: Instruction tuning benchmark
for open-source large language models in financial
datasets. arXiv preprint arXiv:2310.04793.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong
Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuan-Jing
Huang. 2023b. Orthogonal subspace learning for lan-
guage model continual learning. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 10658–10671.

Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun,
Hongyi Wang, Lingjuan Lyu, and Ang Li. Flora:
Federated fine-tuning large language models with
heterogeneous low-rank adaptations. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Lai Wei, Zhiquan Tan, Chenghai Li, Jindong Wang,
and Weiran Huang. 2024. Diff-erank: A novel rank-
based metric for evaluating large language models.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Orion Weller, Marc Marone, Vladimir Braverman,
Dawn Lawrie, and Benjamin Van Durme. 2022. Pre-
trained models for multilingual federated learning.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1413–1421.

Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui
Cai, and Wensheng Zhang. 2023. A survey on feder-
ated learning: challenges and applications. Interna-
tional Journal of Machine Learning and Cybernetics,
14(2):513–535.

15264

https://apnews.com/article/tiktok-refugee-xiaohongshu-rednote-855692624aa52825b30afc5474af881d
https://apnews.com/article/tiktok-refugee-xiaohongshu-rednote-855692624aa52825b30afc5474af881d


Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng
Huang, and Xing Xie. 2022. Fedctr: Federated native
ad ctr prediction with cross-platform user behavior
data. ACM Transactions on Intelligent Systems and
Technology (TIST), 13(4):1–19.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing
Gao. 2024. Fedbiot: Llm local fine-tuning in feder-
ated learning without full model. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 3345–3355.

Liang Wu, Fred Morstatter, Kathleen M Carley, and
Huan Liu. 2019. Misinformation in social me-
dia: definition, manipulation, and detection. ACM
SIGKDD explorations newsletter, 21(2):80–90.

Rongwu Xu, Zehan Qi, Zhijiang Guo, Cunxiang Wang,
Hongru Wang, Yue Zhang, and Wei Xu. 2024.
Knowledge conflicts for llms: A survey. arXiv
preprint arXiv:2403.08319.

Yunlu Yan, Chun-Mei Feng, Wangmeng Zuo, Rick
Siow Mong Goh, Yong Liu, and Lei Zhu. Feder-
ated residual low-rank adaptation of large language
models. In The Thirteenth International Conference
on Learning Representations.

Yuxuan Yan, Qianqian Yang, Shunpu Tang, and Zhiguo
Shi. 2024. Federa: Efficient fine-tuning of language
models in federated learning leveraging weight de-
composition. arXiv preprint arXiv:2404.18848.

Yingguang Yang, Renyu Yang, Hao Peng, Yangyang
Li, Tong Li, Yong Liao, and Pengyuan Zhou. 2023.
Fedack: Federated adversarial contrastive knowledge
distillation for cross-lingual and cross-model social
bot detection. In Proceedings of the ACM Web Con-
ference 2023, pages 1314–1323.

Kai Yin, Chengkai Liu, Ali Mostafavi, and Xia Hu.
2024. Crisissense-llm: Instruction fine-tuned large
language model for multi-label social media text
classification in disaster informatics. arXiv preprint
arXiv:2406.15477.

Cheng Zhang, Chao Fan, Wenlin Yao, Xia Hu, and Ali
Mostafavi. 2019. Social media for intelligent public
information and warning in disasters: An interdisci-
plinary review. International Journal of Information
Management, 49:190–207.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and Yi-
ran Chen. 2024. Towards building the federatedgpt:
Federated instruction tuning. In ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6915–6919.
IEEE.

Wanru Zhao, Yihong Chen, Royson Lee, Xinchi Qiu,
Yan Gao, Hongxiang Fan, and Nicholas Donald Lane.
2024. Breaking physical and linguistic borders: Mul-
tilingual federated prompt tuning for low-resource
languages. In The Twelfth International Conference
on Learning Representations.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi,
Haitz Sáez de Ocáriz Borde, Rickard Brüel Gabriels-
son, Leshem Choshen, Marzyeh Ghassemi, Mikhail
Yurochkin, and Justin Solomon. Asymmetry in low-
rank adapters of foundation models. In Forty-first
International Conference on Machine Learning.

A Extensive Analysis

A.1 Sensitivity Analysis
In MuLA-F, two critical configuration parameters
are: the number of singular value components se-
lected for each local language after Diff-eRank
evaluation, and the coefficient α of the orthogonal
regularization term.

The experimental results shown in Figure 10
indicate that for Cj , the optimal number of se-
lected singular values should be slightly greater
than r/||Kj ||. α depends on the complexity of the
local language composition. Furthermore, the ex-
perimental results suggest that the optimal value of
the orthogonal coefficient is partially influenced by
the level of heterogeneity across languages within
the current dataset.

In this part, we also evaluate several of the most
competitive FedLoRAs with respect to their sensi-
tivity to the rank of LoRA. The experimental results
shown in Figure 11 indicate that an increase in the
global number of languages or the complexity of
local datasets indicates a higher rank required. In
contrast, FLoRA is more suitable for low-rank lo-
cal LoRA, while MuLA-F and FlexLoRA are better
suited for higher ranks.

A.2 Introduction to Diff-eRank
Diff-eRank is a novel evaluation metric for large
language models (LLMs) based on information
theory and Effective Ranks. Diff-eRank assesses
model performance by analyzing the effective rank
of hidden representations. This approach quantifies
how LLMs eliminate redundant information during
training and how LLMs make the data representa-
tions more structural for feature transformations,
offering evaluation insights regarding their internal
information processing.

Specifically, regarding the algorithm, given an
arbitrary input x, Diff-eRank calculates the hidden
representation respectively with the model before
(M0) and after (M1) the training:

h0 = M0(x), h1 = M1(x),

where h0, h1 are two-dimensional sequential hid-
den representations with the shape [seq-len, d]. Fur-
thermore, it respectively calculates the covariance
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Figure 9: Multilingual comprehensive evaluation results (Base model: Qwen-2.5-14B; Metric: Fed-F1)

Figure 10: Sensitivity analysis of Diff-eRank-selected
singulars and orthogonal tuning coefficient (Dataset:
MD3D (Sp-2), CONAN, MM-COVID (Sp-2); Base
model: Qwen-2.5-14B; Metric: Fed-F1)

matrix of h0, h1, as A0, A1. Finally, the effective
rank of each covariance matrix can be calculated
as:

erank(A) = exp

(
−

∑Q
i=1 σi∑Q

i=1 σi log σi

)
,

where σ denote the singular values of A In MuLA-
F, as for all local languages of a given client, (M0)
is consistent. Hence, we only need to rank the
values of erank(A1)

A.3 A Theoretical Insight

Although all the authors of this paper come from
a team that primarily focuses on empirical work,
we still provide an interesting theoretical insight to
enhance the soundness of MuLA-F.

In our setting, the gradient of the orthogonal loss
function forces the column vectors of vj to align
with the orthogonal space, thereby correcting the
update direction of the client’s parameters. When
this constraint aligns with the objective function
(for example, separating noise features), the con-
vergence speed will be accelerated. When the gra-
dient descent applies the orthogonal constraint, it
restricts the parameters within the set of the Stiefel

manifold (the space of orthogonal matrices), which
is written as:

V (m,n) = {W ∈ Rm×n|W TW = In},

so that it can be regarded as a non-convex opti-
mization problem, which reduces the risk of catas-
trophic forgetting. Note that at this point, V (m,n)
is defined as the set of m × n matrices that sat-
isfy the column orthogonality condition, closely
approximating the set of decomposed A-matrices
in MuLA-F. It allows the optimization problem
with orthogonal constraints to be framed within
Riemannian optimization, making its convergence
less questionable. Specifically, the gradient in the
embedding space (in Euclidean space) is calculated
as:

G = ∇W f(W ),

where f(W ) is the objective function being mini-
mized, and is then projected onto the tangent space
of the Stiefel manifold at the point W :

gradf(W ) = Projw(G) = G−W ·sym(W TG),

After that, during the optimization process, the tan-
gent vector p can be further projected back to the
manifold (similar to the Cayley transform) to main-
tain its orthogonality:

Rw(p) = (I − s

2
p)−1(I +

s

2
p)W,

where s represents the step size. If the actual step
size used during updates satisfies the Wolfe con-
ditions, then this gradient descent can converge to
a stable point within the framework of Rieman-
nian gradient descent. This means that the various
language centers are sufficiently modularized and
orthogonalized. At the same time, in addition to
reducing catastrophic forgetting, this also avoids ir-
rational update directions and updates on redundant
parameters, enhancing numerical stability.
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Figure 11: Impact of LoRA Rank across MuLA-F and three important baselines (Dataset: MD3D (Sp-2), CONAN,
MM-COVID (Sp-2); Base model: Qwen-2.5-14B; Metric: Fed-F1)

Table 2: Comprehensive evaluations on multilingual set-
tings where part of clients are monolingual (Base Model:
Qwen-2.5-7B, Metrics: Fed-F1). The best results that
pass p ≤ 0.005 paired t-test are shaded

Model MM-COVID Sp-3 MD3D Sp-3

FedAVG 89.15 ± 0.19 89.34 ± 0.32
Vanilla 89.12 ± 0.57 89.22 ± 0.83

FFA-LoRA 90.01 ± 0.36 91.67 ± 0.33
FedSA 90.27 ± 0.24 92.23 ± 0.30
FLoRA 90.12 ± 0.66 92.45 ± 0.28
FlexLoRA 90.55 ± 0.61 92.81 ± 0.50

FedLFC 90.72 ± 0.19 92.96 ± 0.24
MuLA-F 91.43 ± 0.41 93.50 ± 0.35

A.4 Evaluations on Client Settings with
Monolingual Clients.

Although the proposed MuLA-F dedicatedly tar-
gets scenarios where the clients are multilingual,
in the context of SNS content anomaly detection,
some clients might still be considered monolingual
(e.g., Yahoo, which has a highly localized user
profile). At the same time, there are also potential
concerns about whether MuLA-F still performs out-
standingly in settings where monolingual clients
are present. Therefore, it would be meaningful to
compare MuLA-F with baseline methods in mul-
tilingual scenarios where part of clients are mono-
lingual. In consideration of this, by respectively
creating an additional monolingual client for each
language involved (based on Sp-1), we create a
special client setting on MM-COVID and MD3D,
named as Sp-3 (details see in Appendix B.2). We
use the Qwen-2.5-7B model as the base model and
report the experimental results in Table 2.

The results show that there is a noticeable re-
duction in the performance advantage of MuLA-F.
The main reason for this phenomenon is, when

a client is monolingual, it implies that the client-
side multilingual disentanglement module (Para
3.1) of MuLA-F methodologically doesn’t work.
However, overall, the advantage of MuLA-F still
remains statistically significant.

A.5 Evaluations on Extra LLM Base Model

When selecting base LLMs for the main experi-
ments, we encounter a minor challenge — as the
language composition of our data is quite rich, most
of the widely-used small LLMs are not suitable
for the language composition of our multilingual
SNS anomaly detection tasks (e.g., LLaMA 3.1-
8B is only applicable to English, Spanish, German,
French, Hindi, Thai, Italian, and Portuguese; Mis-
tral is mainly suitable for English, French, German,
and Spanish). Therefore, we could only choose
qwen-2.5-7B and qwen-2.5-14B as base LLM mod-
els, as their training corpus covers all the languages
appeared in the datasets of our experiments. How-
ever, to alleviate potential concerns regarding the
singularity of base LLM selection, we conduct ad-
ditional evaluations using LLaMA-3.1-8B as the
base LLM model only on MM-COVID and CO-
NAN. The results of MuLA-F and four most com-
petitive baseline methods are reported in Table 3.

The experimental results show that the perfor-
mance advantage of MuLA-F compared to the base-
lines is still sufficiently significant. Additionally,
FlexLoRA and FedLFC remain the most compet-
itive baselines. The findings indicate that base
model selection does not affect the overall experi-
mental conclusions.

A.6 Time Overhead Analysis

The most obvious limitation of MuLA-F is that,
due to the need to perform inference on each in-
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Table 3: Comprehensive evaluations using LLaMA-3.1-8B as base model (Metrics: Fed-F1, Dataset: MM-COVID,
CONAN (LLaMA-3.1-8B does not support Chinese, Japanese and Korean appeared in MD3D)).The best results
that pass p ≤ 0.005 paired t-test are shaded

Method MM-COVID Sp-1 MM-COVID Sp-2 CONAN Sp-1

FFA-LoRA 87.72 ± 0.20 86.65 ± 0.49 86.85 ± 0.72
FedSA 88.69 ± 0.31 87.48 ± 0.65 87.21 ± 0.44
FLexLoRA 90.01 ± 0.28 87.60 ± 0.53 87.74 ± 0.46

FedLFC 89.16 ± 0.27 88.11 ± 0.61 88.09 ± 0.21
MuLA-F 90.78 ± 0.37 88.87 ± 0.48 88.93 ± 0.25

Table 4: Time overhead statistics (Base Model: Qwen-
2.5-7B; Metrics: GPU-Hour).

Model MM-COVID MD3D

FedSA 18.6 11.8
FLexLoRA 21.9 14.2
FedLFC 20.3 13.5
MuLA-F 24.4 15.7

dividual singular value as described in Section
3.1—although in a layer-by-layer manner—its time
overhead will be higher than that of other FedLo-
RAs. To evaluate this, we take Qwen-2.5-7B base
model as an example and record the time overhead
(average of Sp-1 and Sp-2 for MM-COVID and
MD3D) incurred by each method up to the check-
point round. The results are reported in Table 4.

Experimental results show that although MuLA-
F has slightly higher time overhead, the difference
compared to baseline methods is not substantial.
This is because the dominant source of the time
cost in FedLoRA still lies in the LoRA PEFT train-
ing across multiple epochs in each round. Never-
theless, as shown in Figure 6, MuLA-F requires
only about 70% of the federated communication
rounds on average, compared to the baseline meth-
ods. This indicates that, in practical SNS scenarios,
compared to others, MuLA-F’s participants can
share parameters for fewer times, thereby lower-
ing the collaboration threshold, which can also be
regarded as a compensation for the higher time
overhead.

B Experiment Details

B.1 Datasets

The detailed description of the datasets is provided
below. The global language composition statistics
and data statistics are respectively shown in Figure
12 and Table 5.

MM-COVID (Li et al., 2020): This dataset

Table 5: Global Statistics of Datasets

Dataset Train + Val Test

MM-COVID 48268 8519
CoNAN 8027 1417
MD3D 20262 3576

consists of English, Spanish, Portuguese, Hindi,
French, and Italian. Among these, English,
Spanish, and Portuguese are high-resource lan-
guages, while Italian, French, Hindi are considered
a low-resource language. Given the extreme
distribution of the original dataset, we perform
50% downsampling on the following categories:
en-real, en-fake, fr-fake, pt-fake, and es-fake.

CONAN (Chung et al., 2019): The high-
quality, manually constructed dataset includes
three languages—English, French, and Italian.
We retain all original pairs and augmented pairs.
However, for each pair, we only keep one of the
positive or negative samples. Additionally, we
discard all English-translated pairs, as they might
introduce information leakage into the samples
from other languages.

MD3D: We leverage three publicly avail-
able datasets to construct MD3D (Note that the
dataset can be also referred to as MU3D. All data
consist of social media posts):
(1) Depression detection data 1 collected from
a Korean daily-learning app, as well as from
Twitter in English, Korean, and Japanese-speaking
regions.
(2) Depression detection data collected from Weibo
(a Chinese alternative to Twitter) 2. Specifically,
we perform 50% downsampling on the user set.

1https://github.com/dxlabskku/Mental-
Health/tree/main/data

2https://github.com/aidenwang9867/Weibo-User-
Depression-Detection-Dataset

15268



Figure 12: Global language composition statistics of full datasets (%).

Since each user has multiple posts, we concatenate
the longest and most recent posts from each user
to form a representative post for that user.
(3) Posts from suspected depression patients on
Reddit 3.

B.2 Client Construction
Considering the generally low applicability of the
LLaMA-3 series to East Asian languages, we se-
lect Qwen-2.5-7B and Qwen-2.5-14B as the local
LLM backbones. Our hypothesis suggests that,
while there are shared commonalities, different lan-
guages have distinct characteristics, which is what
introduces data heterogeneity among clients in our
scenario.

Thus, MuLA-F differs from other existing Fed-
LoRAs that sample global datasets using a Dirich-
let distribution to create clients with heterogeneous
data. In MuLA-F’s data partitioning, for each local
dataset, the language set is a subset of the global
language set, and the elements within this subset
exhibit some degree of relatedness (in terms of
linguistic or socio-cultural background).

Overall, each client consists of 2-4 languages.
"Sp-1" refers to a dataset split with data from 5
clients, while "Sp-2" refers to a dataset split with
data from 10 clients. Note that, due to the multi-
lingualism nature, only MM-COVID and MD3D
have an Sp-2 split setting. Additionally, the data
splitting strategy varies across each dataset.

The details of client construction are listed
below:

MM-COVID: During the data splitting pro-
cess, we make every effort to ensure that languages
from the Romance language family, which are
closely related, appear together on certain clients.
For bilingual, trilingual, and quadrilingual clients,
the proportion of the primary language is set to be
greater than 60%, greater than 50%, and greater
than 40%, respectively. Among these, languages
within the Romance language family exhibit a

3https://github.com/usmaann/Depression_Severity_Dataset

high degree of affinity. The language splits are as
follows: Sp-1: (1) en-fr-it (2) pt-es-en (3) hi-en;
(4) en-es-fr-it; (5) es-pt-it-fr Sp-2: (1); (2); (3);
(4); (5); (6) en-fr-it; (7) es-pt-fr; (8) en-hi; (9)
en-es-it-fr (10) pt-es-fr-it.

CONAN: The local clients’ language com-
position is as follows: (1) en-fr; (2) fr-en; (3)
en-it; (4) it-en; (5) fr-it-en. The proportion
of the primary language for each client is be-
tween 60% and 80%. We prioritize sampling data
from clients where English is the primary language.

MD3D: We provide two client and data split
strategies, Sp-1 and Sp-2. Overall, 60% of the
clients are bilingual, while 40% are trilingual.
To simulate a realistic industry ecosystem, the
language composition of each client is as follows
(with the primary language listed first): Sp-1:
(1) jp-en; (2) kr-en; (3) zh-en; (4) en-kr-jp; (5)
zh-jp-kr. Sp-2: (1); (2); (3); (4); (5); (6) en-jp;
(7) en-kr; (8) zh-en; (9) zh-en-jp; (10) zh-en-kr.
For each bilingual client, the primary language
accounts for 60%-95% of the data; for each
trilingual client, the primary language accounts for
50%-95%. Since the amount of data for Japanese
and Korean is relatively small, prior to the data
split, we first designate 50% of the data for these
two languages to construct clients where either
Japanese or Korean is the primary language. The
remaining data is then allocated to other clients
involving these two languages according to a
Dirichlet distribution. Specifically, for clients
where Japanese or Korean is not the primary
language, we prioritize constructing clients (6) and
(7), followed by (4) and (5), then (9) and (10), and
finally others.

A similar strategy is also applied to the data
splitting for MM-COVID and CONAN.

Overall, each local dataset after data-split shows
data characteristics that can be mapped to a real-
world social media platform. For each local dataset,
we divide the data into training, valid and test sets
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Table 6: An Example of multilingual local instruction-tuning datasets for MuLA-F and FedLoRA baselines (using
"client (1)" and "client (5)" in MD3D-Sp-1 as the clients). Other multilingual examples in Chinese, Japanese and
Korean are respectively shown in Figure 13, Figure 14 and Figure 15.

Task Type Multilingual Depression Detection

Post Content Language English
Client ID 1 (MD3D-Sp-1)
Local Language Composition Japanese, English
Task Instruction You will receive a social media post written by an English user

who is at risk of depression. You must analyze whether the post
clearly shows depression or subtly suggests depressive tendencies
through word choice, phrasing, or viewpoints. Based on your
analysis, assess whether the user has depression.

Input (Post Content) When I felt the coldness from water on the skin of my temple. I
thought I would feel fear but all I felt was relief and how easy it
would have been to end my overthinking, torturing anxiety brain.
I think about everything I’ve said and done and it feels like fight
of flight all the time.

Output (Label) [“Depressed”]
Explanation for Readers The author suffers from severe anxiety and suicidal tendencies.

at a 75%/10%/15% ratio. Since each round of
local LoRA-PEFT only involves two epochs (un-
changed), we do not use the validation set to sched-
ule the local epoch.

It’s important to note that, to intuitively demon-
strate the effects of locally trained instruction-
tuning data and prompts, we provide one example
per language using the MD3D dataset. These ex-
amples can be found in Table 6, Figure 13, Figure
14, and Figure 15.

B.3 Baselines

Details of the baseline methods in this paper are
listed below.

FedAVG: The most classic baseline method,
used to demonstrate that MuLA-F indeed makes a
positive contribution.

Vanilla: Almost all FedLoRA researchers
have considered performing federated aggregation
with dual centers on the A and B matrices, which
can be written as: However, unfortunately, terms
like BiAj , without special conditions, would
introduce significant noise, making its performance
unstable compared to FedAVG. Nevertheless, this
method still needs to be mentioned and compared
in experiments.

FFA-LoRA: A simple yet SOTA FedLoRA

baseline method, with a conflicting perspective
against ours. It ignores and freezes A , only
performing FedAVG on B.

FedSA: A simple yet SOTA general Fed-
LoRA, which is a compromise between the
previous method and MuLA-F in terms of core
ideas. It acknowledges the importance of federated
aggregation for A but downplays the significance
of A on local heterogeneous datasets. The core
insight of FedSA is to use the asymmetry of LoRA
to globally aggregate A and locally personalize
B. The underlying logic for utilizing asymmetry
conflicts with the perspective of MuLA-F.

FLORA: The authors of FLoRA argue that
additive aggregation operation is the root cause
of the problem. In light of this, they modify it to
stacking A and B.

FlexLoRA: A novel FedLoRA, SOTA for
clients with heterogeneous data or resources.
FlexLoRA performs global SVD on the server
side and, based on the characteristics of local data
in terms of statistical distribution and resources,
assigns different low-rank reconstruction matrices
to each client.

FedLFC: A recent SOTA multilingual Fed-
LoRA based on language clustering. In the
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Figure 13: A Chinese example of multilingual local
instruction-tuning data for MuLA-F and FedLoRAs.

original task scenario of FedLFC, multilinguality
only exists from the server’s perspective, i.e.,
each local dataset is monolingual. FedLFC
performs multi-center aggregation on the low-rank
reconstruction matrix of each local LoRA block
based on its language family. Note that when
selecting baselines, we skip FedHLT (Guo et al.,
2024b) because FedLFC and FedHLT have a
strong theoretical relationship, with the latter being
a lower-level alternative to the former.

B.4 Implementation Details

In our experiment, for each local client, we set the
rank of LoRA to 16 and the LoRA- α to 32. In
each federated round, the local client performs two
LoRA tuning epochs, followed by disentanglement
and upload. We set the number of selected singular
values in MuLA-F as 8. For the two orthogonal-
ization coefficients, we assume that the absolute
values of α and β are equal, and then conduct a grid
search for the optimal setting from the set 0.1, 0.5,
1, 5. We also perform a grid search for the learning
rate in the range 1e-4, 5e-4, 1e-3, 5e-3. We set
the maximum federated communication round as
20, with an early-stopping patience as 5. All ex-
periments are carried out using two NVIDIA A800
80GB GPUs.

Figure 14: A Japanese example of multilingual local
instruction-tuning data for MuLA-F and FedLoRAs.

C Additional Discussions

We provide further clarification and discussion on
certain statements in the Methodology and Limita-
tion sections that may cause confusion.

C.1 Why Diff-eRANK + SVD ?
In this part, we discuss our theoretical motivation
regarding why we combine Diff-eRank and SVD
for client-side multilingual knowledge disentangle-
ment.

According to the theoretical analysis provided
by the original Diff-eRANK paper (Wei et al.,
2024), if after model weight updates (Fine-tuning),
a post’s token representations become highly struc-
tured or compressed, we can conclude that this up-
date reduces the uncertainty in the representation
space (from an information-theoretic perspective)
and removes redundant information irrelevant to
general tasks (from an empirical perspective). It
also implies that the model can more effectively ex-
tract patterns and regularities from the data. More-
over, it is well acknowledged that a weight matrix
can be reconstructed through SVD decomposition
into a linearly independent combination of several
low-rank matrix components (as does B × A ),
where each low-rank matrix can be regarded as
a feature which represents a direction/semantic
(which can also be understood as neurons). Hence,
we discover an interesting collaboration between
Diff-eRANK and SVD: Suppose a local client’s
data comprises three languages, and given the
asymmetry function of LoRA as demonstrated in
the paper "Asymmetry in low rank adapters of foun-
dation models" (Zhu et al.) (also demonstrated
in Figure 5 in our paper) the expected role of A-
Matrices in Fed-LoRA is inherently "more effective

15271



Figure 15: A Korean example of multilingual local
instruction-tuning data for MuLA-F and FedLoRAs.

extraction of patterns and regularities from data, re-
ducing uncertainty in the representation space, and
isolating general features relevant to specific tasks",
which is highly similar to the focus of Diff-eRank.
The reconstructed low-rank matrices are orthogo-
nal to each other, naturally leading one to consider,
"how much each low-rank matrix contributes from
this perspective to the local data of each language."

Additionally, previous works on lifting the mul-
tilingual curse, such as the paper "Lifting the curse
of multilinguality by pre-training modular trans-
formers", have already provided clear empirical
conclusions: Despite the overlap and conflict be-
tween domain adaptation knowledge across vari-
ous languages, they can be disentangled during the
PEFT process through modularization (and the re-
constructed low-rank matrices are themselves in an
overly disentangled state). Thus, in this client, a
logically sound reasoning is that the knowledge as-
sociated with each language can be approximated
as a combination of several selected reconstructed
low-rank matrices, to simulate an appropriate level
of disentanglement. This selection, as mentioned,
is aptly handled by Diff-eRank in our task scenario.
For each local language, low Diff-eRank score ma-
trices can be seen as a concrete representation of
the multilingual curse.

C.2 An Illustration of "Over-Decoupling"

In the Limitation section, we express a poten-
tial concern that MuLA-F might lead to over-

Table 7: Quantitative evaluations for "over-decoupling".
(Metrics: Fed-F1.)

Method MM-COVID Sp-1 MM-COVID Sp-2

FedSA 92.47 90.44
FlexLoRA 92.09 89.60
FedLFC 92.85 90.11

MuLA-F 92.66 91.24
MuLA-F-C 93.01 91.69

decoupling across languages. In this part, we aim
to quantitatively evaluate the possible impact of
the concern. First, we’d like to give a more de-
tailed explanation of the concern. In multilingual
experimental settings, due to linguistic features and
other reasons, the affinity/differences between lan-
guages could vary. Some languages may share part
of vocabularies, grammatical structures, or exhibit
a high degree of similarity in expression patterns
(especially in a specific task scenario), thus having
many shared features. In such cases, they are more
suited to share a single language center, rather than
having separate ones.

In light of this, we conduct an additional ex-
periment to evaluate its potential impact. For the
MM-COVID dataset, we keep data in only three
languages: French, Portuguese, and Spanish, to
construct a degraded version. On this degraded
MM-COVID, we created a variant of MuLA-F,
namely MuLA-F-C, where considering the strong
affinity between Portuguese and Spanish, we build
only two language centers: one for French, and one
shared by Spanish and Portuguese. Using Qwen-
2.5-14B as the base model, our experimental results
are shown in Table 6 (FedSA uses the same lan-
guage division as MuLA-F-C, while FedLFC and
FlexLoRA are unaffected).

The experimental results reported in Table 7
show that, due to the excessive disentangling and
decoupling of the A-Matrices related to Spanish
and Portuguese, the performance of MuLA-F is
not as good as that of MuLA-F-C, which shares
this domain adaptation knowledge. Moreover, this
phenomenon is not unique to MuLA-F (e.g., also
appeared in FedSA). However, the impact is still
acceptable in our settings.

C.3 Toy Example of Diff-eRank Calculation
in MuLA-F

In this section, in order to improve the readability
of the key novelty of this paper, i.e. the multilingual
disentanglement process of MuLA-F (described
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in Section 3.1), we’d like to provide you a toy
example to more vividly illustrate it. Assume our
local dataset has four data points: two in Japanese,
one in Chinese, and one in Korean.

We examine one supposed FFN layer in MuLA-
F, defined as a 4 × 4 weight matrix. The internal
LoRA rank is 3, and we plan to keep only the top-2
most contributed rank-1 LoRA components.

In this example, we only show the applying
MuLA-F’s multilingual disentanglement to the lo-
cal Chinese data:

Given the toy 4 × 4 weight matrix in the back-
bone LLM, we denote it as W . We input the two
Chinese examples h1, h2 ∈ R4, then we have the
batch:

H =

[
h⊤1
h⊤2

]
.

Σbefore =
H ·H⊤

2
(simplified)

Before the LoRA PEFT, we only use W to con-
duct a inference on H , we have the covariance
matrix Σbefore of the hidden states.

Σbefore :

singular values =
[
4.0 1.0 1.0 1.0

]

pbefore =
[
0.571 0.143 0.143 0.143

]

eRankbefore = exp
(
H(pbefore)

)
≈ 3.17

Next, we conduct LoRA PEFT using all of the
four data examples as input. After PEFT, as r =
3; following the procedure in Line 314–[object
Object], we have:

SVD(B ×A) = U ΣV T −→

∆W = Σ1u1v
T
1 +Σ2u2v

T
2 +Σ3u3v

T
3

Here we take the first rank-1 update:

∆W1 = σ1u1v
⊤
1 .

For ∆W1, we input the examined two Chinese
examples h1, h2 ∈ R4 again to (W +∆W1). Then
we get:

Σafter =
H ·H⊤

2
.

Σafter :

singular values =
[
4.8 0.9 0.8 0.5

]

pafter =
[
0.686 0.129 0.114 0.071

]

Now, we can calculate the first Diff-eRank:

Diff-eRank-1 = 3.17− 2.61 ≈ 0.56

Next, taking the second and third rank-1 up-
dates,i.e., Σ2 · u2v⊤2 and Σ3 · u3v⊤3 , and applying
the same method, we respectively compute:

Diff-eRank-2 = 3.17− 2.40 ≈ 0.77

Diff-eRank-3 = 3.17− 1.87 ≈ 1.30

By comparison: 1.30 > 0.77 > 0.56, we have
(only for Chinese in this client):

Diff-eRank-3 > Diff-eRank-2 > Diff-eRank-1

That means the second and the third rank-1
LoRA component are selected to be submitted to
the Chinese’s global language center by this client:

Global-language-center(Chinese)

← combine
(√

Σ2 v
⊤
2 ,
√
Σ3 v

⊤
3

)

Please note that this is a highly simplified illustra-
tion meant to demonstrate the MuLA-F workflow,
and does not cover the full algorithmic details of
MuLA-F.

C.4 Motivations of Our Orthogonal PEFT
Strategy

In Para 3.3, we convert the process of "sequen-
tially aggregating weights for each language cen-
ter" into an approximated continual learning pro-
cess. Furthermore, supported by the theoretical
analysis provided by O-LoRA (Wang et al., 2023b),
MuLA-F ensures that the feature subspaces occu-
pied by each global language center are more or-
thogonal (less overlapping) to each other. Conse-
quently, the orthogonality further extends to the
language-specific reconstructed A-matrices in each
local client, thereby reducing the catastrophic for-
getting that might be caused by multilingual con-
flicts. The theoretical robustness of Orthogonal
LoRA PEFT has also been demonstrated in the
original paper of O-LoRA. For B-matrices, how-
ever, we utilize the opposite insight (as shown in
Figure 5 in our paper, a local B matrix should gen-
erally be responsible for feature transformation for
the downstream task).
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C.5 Problem Formulation of FedLoRA

We consider a federated learning setting with
n clients collaboratively finetuning a LLM base
model for a classification task (i.e. multilingual
SNS content anomaly detection in our paper). Each
client j ∈ {1, 2, . . . , n} holds a private local
dataset Dj of size |D||, which may be non-iid
across clients. To reduce communication and mem-
ory costs, FedLoRAs adopt Low-Rank Adaptation
(LoRA) for fine-tuning a shared pretrained model
fθ. Rather than updating the full model parame-
ters, in each federated round, each client learns a
pair of low-rank matrices (Aj , Bj) on the local-
side, and the local effective adaptation is given by
∆j = BjAj .

The overall goal is to collaboratively learn a
global LoRA update across clients. The most com-
mon pipeline is, following the FedAvg paradigm,
in each communication round, clients locally com-
pute ∆j based on their data and send it to the server.
The server then performs a weighted aggregation
of these updates:

∆global =
1∑n

j=1Dj

n∑

j=1

Dj ·∆j ,

and broadcasts ∆global back to all clients. Each
client then updates its local model using this ag-
gregated low-rank adaptation on top of the fixed
pretrained weights θ.

The objective is to minimize the average empiri-
cal loss over all clients:

min
∆global

1

n

n∑

j=1

E(x,y)∼Dj

[
ℓ(fθ+∆global(x), y)

]
,

while ensuring collaborative domain adaption and
preserving data privacy. In our paper, the metrics
is set as federated F1-score, which is written as:

Fed-F1 =
2 ·∑n

j=1 |Dj | · Precisionj · Recallj∑n
j=1 |Dj | · (Precisionj + Recallj)

.

Nevertheless, in many cutting-edge FedLoRA
variants, Bj and Aj are separately processed,
shaped, transformed and exchanged either on the
client-side or on the server side.

C.6 Ethics Statement

In this section, we provide a detailed discussion
of the ethical considerations involved in our work,
with a particular focus on two main aspects: the

use of A.I. assistants in the writing process and the
handling of data ethics in our experimental design.
We believe that addressing these issues explicitly is
essential to ensure transparency, uphold academic
integrity, and align with the ethical guidelines of
the research community.

With respect to the A.I. assistant, all innova-
tions and arguments presented in this paper are
entirely authored by the researchers. GPT-4o is
only employed for limited proofreading and gram-
mar checking during the writing process, which is
fully compliant with the ARR submission guide-
lines.

Regarding data ethics, both the MM-COVID
and CONAN datasets undergo thorough de-
sensitization by their original authors prior to re-
lease. For the MD3D dataset, we carefully remove
all potentially sensitive information—such as IP
addresses, usernames, and user profiles—from the
portion collected from open-source platforms. We
are confident that all our experiments strictly ad-
here to ethical policies.
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