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Abstract

Large language models (LLMs) based on the
Transformer architecture usually have their con-
text length limited due to the high training
cost. Recent advancements extend the con-
text window by adjusting the scaling factors
of RoPE and fine-tuning. However, subop-
timal initialization of these factors results in
increased fine-tuning costs and reduced per-
formance at target length. To address these
challenges, we propose a novel RoPE-based
fine-tuning framework that diverges from con-
ventional scaling factors search. Specifically,
we present a Divide-and-Conquer Incremental
Search (DCIS) algorithm that strategically de-
termines the better scaling factors. Further fine-
tuning with the identified scaling factors effec-
tively extends the context window of LLMs.
Empirical results demonstrate that our method-
ology not only mitigates performance decay
at extended target lengths but also allows the
model to fine-tune on short contexts and gen-
eralize to long contexts, thereby reducing the
cost of fine-tuning. The scaling factors ob-
tained through DCIS can even perform effec-
tively without fine-tuning. Further analysis of
the search space reveals that DCIS achieves
twice the search efficiency compared to other
methods. We also examine the impact of the
non-strictly increasing scaling factors utilized
in DCIS and evaluate the general capabilities
of LLMs across various context lengths.

1 Introduction

Transformer (Vaswani et al., 2017) has emerged
as the preferred architecture for large language
models due to its scaling capability (Brown et al.,
2020; Achiam et al., 2023). However, the inherent
quadratic complexity of self-attention necessitates
limiting the context window during pre-training,
exemplified by the 4096-token limit in Llama2
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Figure 1: The Llama2-7B model is expanded to 64k
context window. We test the PPL using 10 Proof-pile
samples with a minimum length of 128k tokens. Fine-
tuning is performed using the default method described
in Section 5. “-64k/16k” indicates that fine-tuning on a
64k/16k length generalizes to a target length of 64k.

(Touvron et al., 2023). When models encounter
sequences beyond this limit during inference, a sig-
nificant loss in performance occurs (Press et al.,
2022; Yang et al., 2025; Guo et al., 2023). To
extend the operational context window of LLMs,
previous studies have explored a wide variety of
methods, such as sequence truncation (Rae et al.,
2020a; Dai et al., 2019; Wu et al., 2022) and sparse
sequencing (Han et al., 2023; Ding et al., 2023;
Xiao et al., 2024b), though these methods often
result in the loss of critical contextual information.

Recent advances in positional encoding tech-
niques have facilitated length generalization ca-
pabilities in LLMs, evolving from the initial si-
nusoidal positional encodings of Transformers
to learnable and relative positional encodings
(Gehring et al., 2017; Shaw et al., 2018; Sun et al.,
2024). The introduction of Rotary Position Embed-
ding (RoPE) (Su et al., 2024) has catalyzed a new
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wave of research that aims to increase the extrap-
olation length of LLMs by modifying the rotation
frequency of the embedding dimensions through
scaling factors (Peng et al., 2024), complemented
by simultaneous fine-tuning to sustain long-context
performance.

However, due to the quadratic complexity of
self-attention and the increased number of inter-
mediate activations cached during fine-tuning for
long sequences (Shen et al., 2023; Pan et al., 2025),
direct fine-tuning on target lengths (Peng et al.,
2024) leads to significantly high memory consump-
tion and long time as the target sequence length
increases. While fine-tuning on short contexts to
generalize to target lengths (Chen et al., 2024) is
more efficient, traditional approaches (Chen et al.,
2023) often suffer from a significant performance
drop (Chen et al., 2024; Ding et al., 2024) at the
target length due to their limited generalization
capability. As shown in Figures 1 and 3, these ex-
isting methods fail to achieve satisfactory results in
perplexity (PPL) and passkey performance metrics
at target lengths.

To address these challenges, we explore better
scaling factors to unlock the potential of LLMs
for length generalization. We propose a novel
RoPE-based fine-tuning framework that departs
from traditional approaches of linearly increasing
scaling factors (Peng et al., 2024; Ding et al., 2024).
Instead, our framework introduces a Divide-and-
Conquer Incremental Search (DCIS) algorithm,
leveraging a principle of refinement from broad to
specific, to efficiently determine the better scaling
factors through continuous target-length inference.
The non-strictly increasing nature of DCIS expands
the search space considerably. The scaling factors
identified via DCIS are then utilized for fine-tuning,
significantly extending the model’s context window
to the target length.

We conduct a comprehensive evaluation of DCIS
on Llama2-7B, Llama3-8B and Mistral-7B-v0.1 us-
ing PPL and Passkey. Experimental results demon-
strate that DCIS effectively mitigates the perfor-
mance degradation of models at target context
lengths.

Our contributions can be summarized as follows:

• We propose a novel framework involving
a Divide-and-Conquer Incremental Search
(DCIS) algorithm for scaling factor search,
followed by fine-tuning to extend the context
window of LLMs.

• Extensive experiments demonstrate that DCIS
overcomes the challenge of performance
degradation at target lengths and exhibits
strong generalization ability, leading to fur-
ther reductions in fine-tuning costs. In addi-
tion, DCIS leads to substantial performance
improvements even without fine-tuning.

• We conduct an in-depth analysis of DCIS, en-
compassing the impact of scaling factor ini-
tialization, the search space of DCIS, the role
of Adaptive Scaling Factors (ASF), the effect
of DCIS on general ability, sensitivity analysis
of introduced hyperparameters, and scalability
validation of the overall framework, demon-
strating the method’s effectiveness, efficiency,
and robustness.

2 Related Work

Positional Embedding Scaling. Recent advance-
ments in positional embedding scaling, particularly
involving Rotary Positional Embedding (RoPE),
have significantly improved the capability of LLMs
to manage extended context windows. Notable
methods such as PI (Chen et al., 2023), CodeLlama
(Rozière et al., 2023) and YaRN (Peng et al., 2024)
manually adjust scaling factors, whereas CLEX
(Chen et al., 2024) optimizes rotation frequencies
through training. LongRoPE (Ding et al., 2024)
employs a search mechanism to fine-tune scaling
factors, enhancing the model’s extrapolation abili-
ties. While these approaches demonstrate improved
performance through better scaling factors utiliza-
tion, they are still hindered by high fine-tuning
costs and notable performance declines at target
lengths, issues that our proposed method addresses
more efficiently.

Sequence Compression. Models leverag-
ing RoPE have shown intrinsic capabilities for
length extrapolation even without fine-tuning. Ap-
proaches like ReRoPE (Su, 2023) and Self-Extend
(Jin et al., 2024) extend sequence lengths by com-
pressing sequence indices, although they necessi-
tate double attention computations, raising com-
putational demands and limiting extrapolation po-
tential. In contrast, our approach facilitates unre-
stricted extension of the model’s context length
through standard inference process, eliminating the
need for repeated attention mechanisms.

Chunking/Sparse Attention. Investigative ef-
forts have revealed that models predominantly
focus on information at the sequence extremes
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(Liu et al., 2024), suggesting that removing mid-
sequence data while preserving initial and proxi-
mate tokens minimally impacts overall information
integrity (Han et al., 2023; Xiao et al., 2024b). Al-
ternative strategies involve segmenting sequences
into chunks corresponding to pre-training lengths
and employing external memory modules for stor-
ing and recalling past contexts during current chunk
inference (Rae et al., 2020a; Dai et al., 2019; Wu
et al., 2022). While these methods enable some
degree of length extension, they inherently sacri-
fice a portion of the contextual data. Our method,
however, maintains the integrity of the entire text,
thereby maximizing the utility of the available con-
text information.

3 Preliminary

This section elucidates the principles underpinning
our approach and delineates the problem concern-
ing positional embedding scaling, with a focus
on enhancing the Rotary Positional Embedding
(RoPE) (Su et al., 2024) technique widely adopted
in LLMs.

3.1 Rotary Position Embedding
RoPE has garnered significant attention in the
realm of LLMs due to its robust performance and
superior extrapolation effectiveness. Consider a se-
quence of embedding vectors x1,x2, . . . ,xL ∈ Rd,
where L represents the length of the input sequence
and d denotes the dimensionality of the hidden
states for each head. Let m indicate the position
index. RoPE incorporates positional information
into the embedding vectors through a rotational
transformation defined as follows:

f{Q,K}(xm,m,Θ) = Rd
Θ,mW{Q,K}xm, (1)

where WQ and WK denote the weights matrices
of theTransformer. Rd

Θ,m is the rotation matrix
parameterized by Θ = {θi = 10000−2(i−1)/d, i ∈
[1, 2, . . . , d/2]}:

Rd
Θ,m =

([
cosmθi −sinmθi
sinmθi cosmθi

])
,

for i = 1, 2, . . . , ⌊d/2⌋.
(2)

This transformation ensures that the relative posi-
tional information |m− n| is implicitly encoded in
the attention scores:

QT
mKn = (Rd

Θ,mWQxm)T (Rd
Θ,nWKxn)

= xTWQR
d
Θ,n−mWKxn.

(3)

3.2 Frequency Scaling

Frequency Scaling. Despite RoPE’s effective-
ness in incorporating positional information, the
model’s capacity to handle sequences exceeding
pre-training lengths remains limited, primarily due
to inadequate training of low-frequency dimensions
(LocalLLaMA, 2023) within the conventional con-
text window size L. To address this, several scaling
methods have been proposed to adjust RoPE’s rota-
tion frequency. We denote Rd

Θ,m succinctly as:

[(
cos

(
m

λiβi

)
, sin

(
m

λiβi

))
, i ∈

[
0,

d− 2

2

]]
,

(4)

where βi = 100002i/d represents the base fre-
quency, and λi are the scaling factors for each
frequency dimension.

Scaling Factors Methods. Both NTK-aware
approach (LocalLLaMA, 2023) and YaRN (Peng
et al., 2024) apply theories from the Neural Tan-
gent Kernel (NTK) and suggest varying the scaling
factors λi based on the dimension’s training need,
achieving better performance with less fine-tuning
data. LongRoPE (Ding et al., 2024), on the other
hand, utilizes a search-based method to identify
better scaling factors λi, employing an evolution-
ary search algorithm for initial short text search
(128k/256k) and fine-tuning, and search again at
the target length (2M). This method facilitates up
to a significant increase in processing length com-
pared to the baseline, highlighting the potential of
scaling adjustments in extending model capacities.

4 Methodology

Although existing methods demonstrate general-
ization capabilities, they require significant fine-
tuning data and suffer from marked performance
degradation at extended target lengths. To address
these challenges, we propose Divide-and-Conquer
Incremental Search (DCIS) algorithm for length
exploration. Figure 2 illustrates our framework,
beginning with an exploratory search phase using
the Perplexity (PPL) metric as a guide, followed
by fine-tuning using the identified scaling factors
to effectively extend the model’s contextual mod-
eling. In this section, we introduce our framework
(Section 4.1), followed by a detailed description of
the DCIS algorithm (Section 4.2).
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Figure 2: Diagram of the proposed DCIS framework. We illustrate the search procedure when d = 16, with 3
incremental values selected for each processing step. Since the scaling factors are divided into high-frequency and
low-frequency parts, we will initially process them in two segments. First, DCIS searches the scaling factors (i.e.,
λ4 − λ7) for the last 4 positions and gets 3 incremental values (i.e., vi) within the range [l0, r0]. It then computes
the PPL (i.e., pi) for each incremental value. Finally, it selects the best incremental value with the lowest PPL
to update these 4 scaling factors. As the input sequence is divided into two segments, DCIS processes the first 4
scaling factors in the first segment in the same manner. At the second layer, DCIS processes 2 scaling factors at a
time, and at the third layer, it processes 1 scaling factor at a time, so on so forth. Finally, the process ends with the
obtained scaling factors from the search.

4.1 Framework

Searching Scaling Factors during Inference. Re-
cent research (Wu et al., 2025) reveals that specific
retrieval heads contain long-form textual informa-
tion, suggesting the intrinsic capacity of LLMs to
process extended texts. To exploit this potential
within LLMs, our framework first involves search-
ing for optimal scaling factors during the prelim-
inary inference phase. More specifically, our ap-
proach encourages the model to autonomously se-
lect suitable scaling factors through low-cost infer-
ence, thereby enhancing its extrapolation capability
with low-cost training.

Fine-Tuning with Searched Factors. Directly
applying the searched scaling factors to the orig-
inal LLMs leads to suboptimal performance, in-
dicating a lack of sufficient adaptation within the
LLMs (Ding et al., 2024). Following YaRN, our
framework further involves a fine-tuning phase
with searched scaling factors. Due to our advanced
search algorithm (Section 4.2), better scaling fac-
tors are searched and initialized, thereby further
reducing the number of fine-tuning steps.

4.2 Divide-and-Conquer Incremental Search

We elaborate our Divide-and-Conquer Incremen-
tal Search (DCIS) algorithm, which integrates the

divide-and-conquer strategy to efficiently approxi-
mate better scaling factors. Beyond Figure 2, Al-
gorithm 1 presents the detailed procedure of DCIS.
We also demonstrate that the search space of DCIS
is half that of conventional search methods, in Sec-
tion 6.1.

Algorithmic Strategy. The scaling factors se-
quence, designated as [λ0, λ1, · · · , λd/2−1] (as for-
mulated in Eq. 4), is methodically processed using
a divide-and-conquer strategy. Specifically, we di-
vide the sequence into a set of segments, and focus
on one segment (as highlighted in red in Figure
2) at a time while maintaining the others constant.
For each segment, we adopt an incremental search
strategy, where a new sequence of scaling factors
is generated by adding a predetermined value from
a set range to the current sequence. The most effec-
tive increment is then selected based on the lowest
perplexity (PPL), which is also used to narrow the
range for subsequent searches in the divided sub-
segments. This iterative process, shown during the
first iteration for d = 16 with three values eval-
uated at each segment in Figure 2, incrementally
refines the scaling factors.

As shown in Algorithm 1, the scaling factors
are divided into high-frequency and low-frequency
components. Hence we initially process them in
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two segments, with each segment handling N =
head_dim/2 scaling factors. In each iteration, the
Segment function is first employed to obtain the
current segment Seg that needs to be processed:

Seg = [(λi, λi+1, · · · , λi+N−1), (5)

where i = d−N × j, j ∈ [1, d/N ]].

Subsequently, the GetIncrementalValues function
is used to uniformly extract C incremental values
from the range of the current segment:

Values[k] = [Rj,l + step × k], (6)

where step =
(Rj,r −Rj,l)

(C − 1)
, k ∈ [0, C − 1].

The ComputePPL function is then utilized to add
these incremental values to the current scaling fac-
tors, yielding new scaling factors and thereby cal-
culating PPLs:

PPLs(pk) = ComputePPL(Seg + vk). (7)

Finally, the PPLs are used to update the scaling
factors and the range of values for the next iteration.
Specifically, the incremental value with the lowest
PPL is used to update the scaling factors, while the
lowest C/3 PPL incremental values are set as the
range for the next iteration:

PPLs, Values = sort((pk, vk))

FSeg = Seg + v′1,

R2×j−1 = R2×j = [l, r], (8)

where l = min(v′1, v
′
2, · · · , v′C/3),

r = max(v′1, v
′
2, · · · , v′C/3).

This process continues until the scaling factors of
the last segment are returned as the result of this
search.

Optimizations Incorporated. Based on em-
pirical insights, several optimizations have been
incorporated into the DCIS algorithm:

1. Initial Scaling Factors: Drawing from the suc-
cess of YaRN (Peng et al., 2024), its scaling
factors are used as starting points from which
our search begins.

2. Priority to High-Dimensional Scaling Factors:
Inspired by the NTK-aware approach (Local-
LLaMA, 2023), which suggests that higher
dimensions might require more extensive in-
terpolation, our algorithm prioritizes these di-
mensions for updates, thereby speeding up the
convergence to better scaling factors.

Algorithm 1 DCIS
Input: The target LLM, input samples X, initial scaling fac-
tors F, initial range R, the number of increments processed
each time C, the number of dimensions for each head d.
1: N=d/2;
2: while N>=1 do
3: for Seg=Segment(N ) do
4: Values=GetIncrementalValues(R);
5: PPLs=ComputePPL(LLM, X, F, Seg, Values);
6: F, R = update (F, R, PPLs);
7: end for
8: N=N/2;
9: end while

10: Return the searched scaling factors F;

3. Discarding Non-Guiding Increments: Incre-
ments resulting in a PPL greater than 100 are
considered ineffective and are thus excluded
from the search to maintain focus on poten-
tially successful modifications.

4. Avoiding Local Optima: To prevent falling
into local optima, when updating the range
for the next layer of values, in addition to us-
ing the top C/3 PPL incremental values, we
also expand the upper and lower bounds out-
ward by one step. Here, one step is defined as
the difference between adjacent incremental
values.

Adaptive Scaling Factors (ASF). Unlike meth-
ods such as YaRN and LongRoPE, which prescribe
a strictly increasing order for scaling factors as fre-
quency decreases, our approach does not confine
the model to predetermined scaling paths. Con-
sidering the complex and often opaque internal
mechanisms of models, we posit that different di-
mensions within each head may require distinct
treatments, some might even need interpolation
despite being high-frequency components. Thus,
our framework allows for flexible scaling factors
adjustments, tailored to the specific needs of each
dimension.

5 Experiments

We conducted extensive experiments to examine
the performance of the proposed DCIS across vari-
ous metrics and conditions.

5.1 Setup
Model and Evaluation Tasks. We carried out
our experiments using the Llama2-7B (Touvron
et al., 2023), Llama3-8B (Dubey et al., 2024) and
Mistral-7B-v0.1 (Jiang et al., 2023), aiming to ex-
tend the model’s context window to 64k tokens. We
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Method Fine-tuning Inference Length
Length Data 4k 16k 28k 40k 52k 56k 60k 64k AVG

PI 32k - 3.70 2.97 2.68 7.91 44.29 75.64 122.90 187.65 ↑ 55.97
CodeLlama 16k 500B 3.95 3.11 2.79 2.67 2.61 2.58 2.56 2.55 ↓ 2.85

YaRN
64k 0.8B 3.71 3.00 2.72 2.59 2.51 2.47 2.45 2.44 ↓ 2.74
16k 0.4B 3.71 3.01 2.74 2.62 2.54 2.51 2.50 2.55 ↑ 2.77

CLEX 16k 2.5B 3.97 2.91 2.65 2.55 2.49 2.47 2.47 2.68 ↑ 2.77
LongRoPE 16k 0.4B 3.72 3.01 2.73 2.61 2.53 2.50 2.50 2.68 ↑ 2.78

DCIS (Ours)
64k 0.8B 3.71 3.00 2.71 2.58 2.49 2.46 2.44 2.42 ↓ 2.73
16k 0.4B 3.74 3.02 2.74 2.62 2.54 2.51 2.49 2.47 ↓ 2.77
4k 0.8B 3.68 2.99 2.72 2.62 2.54 2.52 2.50 2.49 ↓ 2.76

Table 1: PPL of different fine-tuning parameter configurations for various methods on Llama2-7B using the Proof-
pile dataset. Blue arrows indicate a decrease in PPL at the target length, while red arrows indicate an increase.
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Figure 3: The recall rate of passkey with different lengths. Higher values indicate better performance.

adopted YaRN’s methodology for perplexity (PPL)
evaluation, utilizing ten samples from the Proof-
pile dataset (Rae et al., 2020a) with lengths of at
least 128k tokens for assessment. Additionally,
we assessed model performance using 50 passkey
(Mohtashami and Jaggi, 2023) tests at each length.

Fine-tuning Parameters. We used Llama2-7B
as the base model. Initially, our DCIS algorithm
was employed to identify scaling factors at the tar-
get length of 64k, setting the initial range between
[−5, 5] with C = 10 incremental values per seg-
ment. Following this, we segmented the PG19
dataset (Gao et al., 2021) into 4k, 16k, and 64k
context lengths, and then performed fine-tuning
on each segment. The fine-tuning process closely
mirrors YaRN’s protocol (Peng et al., 2024) with
a learning rate of 2× 10−5. For context lengths of
{4k, 16k, 64k}, we employed total batch sizes of
{512, 64, 32}, and all models were fine-tuned for
400 steps.

Baseline. By fine-tuning with the aforemen-

tioned hyperparameters, we obtained YaRN-{16k,
64k} (Peng et al., 2024), LongRoPE-16k (Ding
et al., 2024), and our proposed DCIS-{4k, 16k,
64k} models. The CLEX-16k (Chen et al., 2024)
used the original model. Additionally, to compare
with other types of methods, we employed the In-
fLLM (Xiao et al., 2024a), which claims to support
infinitely long context windows by chunking and
storing text sequences and retrieving the top-k most
relevant chunks during inference.

5.2 Main Results

We assessed the PPL of our proposed model and
baseline models on the Proof-pile dataset, with
results shown in Figure 1 and Table 1. Figure 3
depicts the performance on the passkey evaluation.
Notably, models from other methods that were fine-
tuned on 16k-length and subsequently generalized
to a 64k context windows experienced a marked
increase in PPL at the target length (64k). Further-
more, these models entirely failed the passkey test
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Figure 5: Exploration of Adaptive Scaling Factor (ASF).

at the target length. In stark contrast, our approach
exhibited consistent performance across various
context lengths, including the target length, and
even outperformed other methods at shorter fine-
tuning lengths (4k). Additionally, when fine-tuned
on a 64k-length context, DCIS consistently outper-
forms YaRN on both PPL and passkey metrics.

All results underscore the significance of scal-
ing factors. DCIS identify superior scaling factors,
leading to improved performance across various
sequence lengths and demonstrating strong gener-
alization capabilities, thereby reducing the memory,
data, and time associated with model fine-tuning.
The superior initial scaling factors contribute to fur-
ther reduction in the number of fine-tuning steps.
For example, in Appendix A.1, we report our obser-
vations that our method requires fewer fine-tuning
steps to achieve comparable performance to YaRN.

5.3 DCIS without Fine-Tuning

Figure 4 illustrates the outcomes of our experi-
ments wherein inference was conducted solely by
adjusting scaling factors without fine-tuning. A
comprehensive search for scaling factors was per-
formed at target lengths of 64k and 128k, followed
by direct PPL evaluation. Figures 4a and 4b, clearly
indicate a consistent decline in our model’s PPL
values at both target lengths, in stark contrast to the

upward trends observed in other methods. Further-
more, we extended our experiments to the newly
released LLama3-8B and the different architecture,
Mistral, employing the DCIS algorithm for scaling
factors search, and evaluated the resulting models
on the PG19 (Rae et al., 2020b) test set. Figures 4c
and 4d, demonstrate that our approach consistently
achieves the lowest PPL across all settings, further
validating its broad applicability and effectiveness.

In Appendix A.2, we compare the PPL of scal-
ing factors for various methods at shorter lengths,
without fine-tuning.

6 Analysis

In this section, we delved into a comprehensive
analysis of DCIS. We began by contrasting its
search space with other search methods. Sub-
sequently, we examined the implications of non-
strictly increasing scaling factors. Furthermore, to
evaluate the model’s general ability on real-world
tasks, we employed LongBench (Bai et al., 2024)
and Open LLM Leaderboard from Hugging Face to
assess the model’s performance on long and short
contexts. Finally, we conducted an in-depth investi-
gation into the sensitivity analysis of hyperparame-
ters introduced by the DCIS method, as well as the
scalability performance of the proposed framework
across different scenarios.
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Figure 6: Recall rate under two strategies, the context length for fine-tuning is 16k.

Method Fine-tuning Categories
Length S-doc QA M-doc QA Sum Few shot Syn Code

YaRN 16k 9.38 5.13 15.85 58.25 0.33 62.25
CLEX 16k 6.93 8.30 13.63 57.68 0.69 44.06

LongRoPE 16k 9.90 5.25 16.93 59.11 0.31 61.49
InfLLM - 6.40 5.10 6.17 51.05 0.78 62.27

DCIS(Ours)
16k 7.58 3.51 16.11 59.10 0.42 62.05
4k 8.17 4.09 14.55 58.07 0.25 61.67

Table 2: Evaluation of different methods on the LongBench benchmark.

6.1 Search Space Analysis
The efficiency of our DCIS algorithm is highlighted
by comparing the search space. Specifically, our
search space is the product of the total number
of processed segments d − 2 and the number of
increments per segment C. The search space of
evolutionary search utilized by LongRoPE is the
product of the number of iterations T and the pop-
ulation size P . For example, for the Llama2-7B
model with default parameters, our search space
equates to (d− 2)×C = (128− 2)× 10 = 1260.
In contrast, the search space of evolutionary search
calculates as T × P = 40 × 64 = 2560, signify-
ing that our algorithm’s search speed is effectively
double that of evolutionary search.

6.2 Non-Strictly Increasing Scaling Factor
Since LongRoPE utilizes strictly monotonically
increasing scaling factors, we performed ablation
studies on it to examine the effects of our proposed
ASF. Specifically, we adjusted the evolutionary
search algorithm in LongRoPE to a non-strictly
increasing one, applied it to fine-tune the model
on a 16k-length context, and subsequently gener-
alized it to a 64k context window. Figures 5 and
6 depict the experimental outcomes. Figure 5a vi-
sualizes the scaling factor distributions employed
by various methods. Notably, both DCIS and Lon-
gRoPE + ASF exhibited irregular, sawtooth-like
scaling factors, while YaRN and the original Lon-
gRoPE demonstrated more stable scaling factors.
Furthermore, as shown in Figures 5b and 6, our

[l, r] [−3, 3] [−4, 4] [−5, 5] [−6, 6] [−7, 7]

PPL 10.2 10.2 10.2 10.2 10.2

Table 3: PPL for different initial ranges [l, r] with fixed
C = 10.

C 6 8 10 12
PPL 10.4 10.2 10.2 10.2

Table 4: PPL for different C with fixed [l, r] = [−5, 5].

ASF can improve LongRoPE in terms of both PPL
and passkey scores, suggesting that imposing fewer
constraints on scaling factors may enhance model
performance.

6.3 General Ability Evaluation

In addition to the previous assessments on PPL and
passkey, employing LongBench and Open LLM
Leaderboard, we conducted a comprehensive as-
sessment of the models’ general abilities in both
long and short context scenarios. The empirical
results, as depicted in Tables 2 and 7, indicate that
there is no significant difference in performance
among the various methods, with different models
performing best on different subsets. While models
utilizing full attention generally achieved slightly
better results, InfLLM, which leverages a retrieval-
based approach, demonstrated a notable advantage
in terms of memory efficiency. These findings sug-
gest that the optimal choice of model is contingent
upon specific application requirements.
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6.4 Hyperparameter Sensitivity
The DCIS algorithm introduces two critical hyper-
parameters: the initial search range [l, r] and the
number of increments per segment C.

Our experimental observations demonstrate that
the DCIS algorithm exhibits the following char-
acteristics during execution. 1) Coarse-grained
iteration phase. In the initial iterations, the PPL
values obtained from each sampling display a U-
shaped distribution, indicating that the initial range
[l, r] already encompasses the optimal value region.
2) Fine-grained iteration phase. In subsequent re-
finement searches, PPL variations tend to stabilize,
suggesting that the algorithm has converged to the
vicinity of the optimal value.

Based on these observations, we can derive the
following theoretical analysis. 1) Initial range [l, r].
As long as this range covers the region near the
optimal value, its specific magnitude has a limited
impact on the final results, rendering the algorithm
insensitive to this parameter. 2) The number of
increments per segment C. Theoretically, larger
values are preferable. A greater sampling count im-
plies higher search precision, as denser sampling
can cover regions that sparser sampling might over-
look. However, this simultaneously increases com-
putational overhead.

To validate this theory, we employed Llama2-
7B on 16k long texts, fixing two hyperparameters
while adjusting one to compute the PPL values after
applying the DCIS algorithm. As shown in Table 3,
we fixed C = 10 and adjust the initial range [l, r],
and in Table 4, we fixed [l, r] = [5, 5] and adjust
C. The experimental results are consistent with our
analysis:

1. Parameter robustness. The DCIS algorithm
demonstrates excellent robustness to hyperpa-
rameter selection, where parameter variations
within reasonable ranges do not significantly
affect model performance.

2. Practical guidance. In practical applications,
one can select moderate initial ranges (e.g.,
[−5, 5]) and the number of increments per
segment (e.g., C = 10) to ensure both search
effectiveness and computational cost control.

3. Algorithm stability. This parameter insensi-
tive characteristic indicates that the DCIS al-
gorithm possesses favorable stability and prac-
ticality.

Metric Initial Value Value After DCIS Search
PPL 19.25 10.19

LongPPL 12.99 2.64

Table 5: Comparison of different optimization objec-
tives.

6.5 LongPPL Metric
In our framework, PPL serves primarily as the op-
timization objective function for searching scal-
ing factors. This design offers excellent flexibil-
ity, allowing for substitution with other evaluation
metrics according to specific requirements, such
as LongPPL (Fang et al., 2025). To further val-
idate the scalability of the proposed framework,
we adjusted the optimization objective from PPL
to LongPPL and conducted comparative experi-
ments based on the Llama2-7B model on 16k text
sequences.

The experimental results presented in Table 5
demonstrate that employing LongPPL as the op-
timization objective can similarly yield superior
scaling factors, with performance essentially con-
sistent with using PPL as the optimization objective.
This finding further confirms the excellent scalabil-
ity of the framework proposed in this paper under
different evaluation metrics, while also validating
the effectiveness and robustness of the method.

7 Conclusion

In this paper, we have presented DCIS, a novel and
efficient algorithm for identifying effective RoPE
scaling factors to significantly enhance LLM length
extrapolation. Our framework demonstrably miti-
gates performance degradation at extended target
lengths. Crucially, DCIS enables models fine-tuned
on shorter contexts to generalize effectively to con-
siderably longer sequences, substantially reducing
fine-tuning costs. Furthermore, the scaling factors
identified by DCIS yield improved extrapolation
performance even without any fine-tuning. Our in-
vestigation into non-strictly increasing scaling fac-
tors revealed their benefits for model performance.
Comparative analyses underscore the effectiveness,
efficiency, and robustness of DCIS, offering a prac-
tical solution for extending the operational context
window of LLMs.
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Limitations

We conducted a search for a scaling factors of 128k
on a small model, Phi-3-mini-4k-instruct (Abdin
et al., 2024), with an actual context window size
of 2k. We observe that the model’s PPL remains
around 70, with no significant decrease. Thus,
such search algorithms appear to have certain re-
quirements for the model’s inherent capabilities
and are unable to span too large a scaling factor
at once. This also demonstrates that, relative to
YaRN, which has a smaller scaling factor, the scal-
ing factors identified through search have larger
scaling factor, thereby more fully leveraging the
model’s extrapolative potential.
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A Additional Results

We present supplementary results obtained during
our experimental process in this section.

A.1 Fewer Fine-Tuning Steps
During the fine-tuning process of YaRN and DCIS,
we observed that our method, DCIS, achieved PPL
and passkey test results consistent with, or even
superior to, those of YaRN after only 100 steps of
fine-tuning, as depicted in Table 6 and Figure 7. It
is demonstrated that an initially superior scaling
factors requires fewer fine-tuning steps.

A.2 Shorter Length of PPL without
Fine-Tuning

Even at shorter lengths of 16k and 32k, our scaling
factors consistently achieved the lowest PPL, as
illustrated in Figure 8.

A.3 Benchmarks
As shown in Table 7 of the Open LLM Leader-
board, there is no clear superiority among different
methods. Furthermore, the models with extended
context windows do not exhibit significant perfor-
mance degradation on short texts compared to their
original counterparts.
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Method
Fine-tuning Evaluation Context Window Size

Steps 4k 8k 16k 24k 32k 40k 48k 56k 64k

YaRN
100 3.71 3.53 3.01 2.78 2.68 2.60 2.54 2.48 2.45
200 3.71 3.53 3.01 2.78 2.68 2.60 2.54 2.48 2.44
400 3.71 3.52 3.00 2.78 2.67 2.59 2.53 2.47 2.44

DCIS(Ours)
100 3.72 3.53 3.00 2.77 2.67 2.59 2.53 2.47 2.43
200 3.72 3.53 3.01 2.77 2.67 2.59 2.53 2.47 2.43
400 3.71 3.52 3.00 2.77 2.66 2.58 2.52 2.46 2.42

Table 6: Comparison of the PPL results at different numbers of steps of fine-tuning on the 64k length.

4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 44k 48k 52k 56k 60k 64k
inference length
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Figure 7: Comparison of the passkey results at different numbers of steps of fine-tuning on the 64k length.
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Figure 8: Left: 16k-length. Right: 32k-length.
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Method
Fine-tuning

ARC-c Hellaswag MMLU TruthfulQA
Length

Original - 52.6 79.0 46.4 39.0

YaRN
64k 52.8 78.8 42.1 39.0
16k 52.6 78.4 42.4 38.4

CLEX 16k 52.3 78.3 42.1 41.3

DCIS(Ours)
64k 52.3 78.4 41.8 39.2
16k 53.0 78.2 41.4 38.8
4k 52.6 78.4 43.7 38.0

Table 7: Evaluation of different methods on the benchmarks from the Hugging Face Open LLM Leaderboard
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