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Abstract

Language transfer is an important topic of re-
search in second language acquisition and com-
putational linguistics. The availability of suit-
able learner corpora is paramount for the study
of second language acquisition (SLA) and lan-
guage transfer. However, curating learner cor-
pora is a challenging endeavor as high quality
learner data is rarely publicly available. This
results in only a few such corpora available
to the community. To address this important
gap, in this paper we present LENS, a novel
English learner corpus with longitudinal data
which enables researchers to investigate lan-
guage learning over time. LENS contains 687
instances written by speakers of 15 different
L1s. We use LENS two perform two important
tasks at the intersection of SLA and Computa-
tional Linguistics: (1) Native Language Iden-
tification (NLI); and (2) an evaluation of large
language models as a tool for high-precision,
semi-automated annotation of L1 interference
features.!

1 Introduction

A language learner’s native language (L1, or first
language) often influences fluency, grammatical
patterns, and vocabulary usage in their second lan-
guage (L2) (Ortega, 2014; Gass et al., 2020). This
influence can result in L2 production containing
distinctive linguistic features that often differs from
native speakers’ production.

These features have been the focus of research in
Second Language Acquisition (SLA) and Computa-
tional Linguistics (CL), particularly through the use
of learner corpora. These corpora enable the sys-
tematic analysis of language learner production and
support key tasks, including automated proficiency
assessment (Yannakoudakis et al., 2011; Vajjala
and Rama, 2018) and Native Language Identifica-
tion (NLI) (Malmasi et al., 2016). NLI involves

"https://github.com/p-acharya/LENSCorpus

automatically identifying a learner’s L1 based on
linguistic patterns in their L2 writing or speech. An
important part of NLI research focuses on devel-
oping machine learning (ML) models for spoken
language, analyzing features such as pronuncia-
tion, stress, and prosodic patterns (Krishna et al.,
2019). Multiple studies have also addressed text-
based NLI, which leverages written features, in-
cluding word choice, syntax, and spelling, to make
predictions about an individual’s native language
(Goswami et al., 2024).

Text-based NLI has a wide range of applica-
tions, including author profiling, forensics, spam
and phishing detection, and various educational
uses (Malmasi et al., 2017). Apart from a few no-
table exceptions (Ng and Markov, 2025; Goswami
et al., 2025), however, the task has received limited
attention in recent years. This paper investigates
the use of NLI to identify authors’ native languages
in student essays. Each student essay is analyzed
for various error types to explore potential correla-
tions between the student’s L1 and the types and
frequencies of errors produced. We demonstrate
how NLI can be used not only to automatically
identify an author’s L1, but also to contribute to
research SLA.

The contributions of our work are the following:

1. We introduce the Longitudinal English Non-
native Speaker (LENS) corpus. LENS is a
novel corpus of L2 writing with longitudinal
data, designed for a range of applications in CL
and SLA.

2. We describe the first linguistically-informed
LLM-based study of features of L1-to-L2 trans-
fer on longitudinal data.

3. We present a series of NLI experiments using
this corpus and evaluate the performance of
models ranging from traditional classifiers, such
as SVMs, to state-of-the-art large language mod-
els (LLMs), including GPT-4.
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2 Related Work

2.1 SLA and Error Taxonomies

A substantial body of SLA research has docu-
mented systematic learner errors often attributed
to L1 interference (Richards, 1971; Odlin, 1989).
While large learner corpora, such as the Cam-
bridge Learner Corpus (Nicholls, 2003) and NU-
CLE (Dahlmeier et al., 2013), include valuable
metadata about each writer’s L1, they do not typi-
cally annotate individual errors for cross-linguistic
influence. Instead, error frameworks tend to focus
on the nature of the error by classifying its locus
(lexis, syntax, morphology) and the type of surface
modification required (e.g., omission, addition, sub-
stitution), rather than investigating why it emerged
(Diaz-Negrillo and Ferndndez-Dominguez, 2006).

2.2  Grammatical Error Correction and LLMs

Recent advancements in learner writing analysis
have been driven by the emergence of LLMs. One
major line of research focuses on Grammatical Er-
ror Correction (GEC), where models like GPT-4
are prompted to correct errors (Song et al., 2024;
Kobayashi et al., 2024; Loem et al., 2023; Fang
et al., 2023). In a parallel line of research, LLMs
have been used for holistic assessment, such as
replicating TOEFL11 essay scores (Mizumoto and
Eguchi, 2023) or predicting CEFR proficiency lev-
els (Benedetto et al., 2024). However, common
to both of these approaches is a focus on the out-
put — either a corrected text or an overall score —
rather than the diagnostic process in the context of
a learner’s L1. These models primarily answer "Is
this correct?" or "How good is this?", but are not
designed to explain why a specific error was made.

Recent research has attempted to go beyond
grammatical error correction by considering L1
influences in academic writing. Zomer and
Frankenberg-Garcia 2021 proposed a pre-trained
encoder-decoder model designed to improve re-
search writing by adapting corrections to the
writer’s L1 background. Their approach recognizes
that L1 influences writing style and errors, offer-
ing targeted corrections based on linguistic transfer
effects. However, the study primarily focuses on
enhancing research writing rather than systemati-
cally analyzing or categorizing L1 interference at
a linguistic level, and the model does not explic-
itly attribute errors to specific sources of transfer,
such as phonological, orthographic, or syntactic
influences from the L1.

2.3 Computational SLA Modeling

While our work focuses on the analysis of learner-
produced text, another branch of Computational
Second Language Acquisition (SLA) modeling
aims to simulate the cognitive processes of learn-
ing. A study by Settles et al. (2018), for example,
used large-scale data from a language-learning ap-
plication to create statistical "half-life regression”
models that predict memory decay for vocabulary
items. Their model incorporates the learner’s L1
background as a predictive feature, learning distinct
forgetting curves for learners from different native
languages. More recently, Stearns et al. (2024)
have focused on evaluating the cognitive plausi-
bility of "artificial learners" (neural networks) by
testing their ability to generalize linguistic rules to
unseen contexts.

The findings from these process-oriented mod-
els suggest that L1 background can be a factor in
learning trajectories. Our research contributes not
by modeling the learner’s internal cognitive state,
but by providing a corpus of learner output with
fine-grained annotations of L1 interference. Such a
dataset provides observable, micro-level linguistic
data that may help explain the macro-level predic-
tive effect of the L1 feature in cognitive models
like those of Settles et al. (2018).

Our Contribution In contrast to these ap-
proaches, our work is, to our knowledge, the first to
use LLMs paired with human oversight for explicit
L1 interference analysis. We require the model to
identify whether an error stems from L1 interfer-
ence and at what level (e.g., syntax, morphology)
and justify the label with concrete linguistic fea-
tures from the learner’s native language. By in-
tegrating SLA insights, we generate fine-grained
annotations that capture L1 influence. This struc-
tured, L1-aware output goes beyond standard GEC
tasks, helping to bridge the gap between automatic
correction and the emphasis on deeper linguistic
analysis in SLA research.

2.4 Native Language Identification

NLI operates on the assumption that a learner’s na-
tive language shapes the acquisition and production
of a second language, a phenomenon referred to
as cross-linguistic influence or language transfer
(Krashen, 1981; Ellis, 2015). Language transfer
results in L1 features manifesting in L2 produc-
tion, allowing computational models to recognize
patterns shared by speakers of the same .1 when
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L1 Information Annotations

Dataset L1 Languages Size (words) | L1 Metadata L1-Annotated Errors | Fine-Grained Errors Longitudinal
Cambridge Learner Corpus (CLC) | 80+ 16M v X v X
NUCLE (CoNLL-2014) — 1.22M X X v X
FCE Corpus 16 (EU/Asia) 532K X X v X
ICNALE 10 (E/SE Asia) 4.02M v ¥ v X
TOEFL11 11 421M v X v X
EFCAMDAT 9 83.5M ¥ X v v
BEA-2019 (W&I+LOCNESS) — 715K X X v X
LONGDALE — 780K v X X v
LENS Arabic, Chinese, Vietnamese 175K v v v v
(+12 others)

Table 1: Comparison of LENS with widely used SLA learner corpora. Sources: CLC (Nicholls, 2003), NUCLE
(Dahlmeier et al., 2013), FCE (Yannakoudakis et al., 2011), ICNALE (Ishikawa, 2023), TOEFL11 (Blanchard et al.,
2013), EFCAMDAT (Geertzen et al., 2014), BEA-2019 (Bryant et al., 2019), LONGDALE (Meunier, 2016). v/ =

present; X = absent; ? = partial/indirect.

communicating in a given L2. Text-based NLI has
a number of important applications, such as serv-
ing as a corpus-driven approach for SLA (Jarvis
and Crossley, 2012) and enabling the development
of effective L2 teaching materials and computer-
aided language learning (CALL) software. Ad-
ditionally, NLI has been shown to improve NLP
systems when dealing with texts from non-native
speakers, contributing to tasks like author profiling,
forensics, spam and phishing detection (Malmasi
etal., 2017).

As evidenced by a recent survey (Goswami et al.,
2024), traditional statistical models such as Sup-
port Vector Machines (SVMs) trained on n-grams
as features have historically delivered the best per-
formance for text-based NLI (Gebre et al., 2013;
Goutte and Léger, 2017; Zampieri et al., 2017).
A few recent studies (Lotfi et al., 2020; Uluslu
and Schneider, 2022; Zhang and Salle, 2023; Ng
and Markov, 2025), however, have shown that fine-
tuned LLMs such as GPT-4 deliver state-of-the-art
performance for English NLI. In this paper, we test
multiple approaches on this corpus, capturing the
full breadth of the available toolkit from including
SVM ensembles all the way to the recently released
GPT-4o.

3 The LENS Corpus

Collection context LENS was gathered from
an introductory academic-writing course taken by
international post-graduate students at a U.S. R1
university between 2022 and 2024.Learners pro-
duced three assignment types (short answers, long
essays, and group reflections) based on their univer-
sity and U.S. acculturation experiences, submitting
work electronically via the learning-management
system.

Learner profile Students self-reported their L1
and country of origin upon enrollment; no partic-
ipant listed multiple L1s. All had demonstrated
advanced English proficiency (IELTS > 7) and
were enrolled in Master’s programs. The full cor-
pus contains a total of 687 essays from 15 L1s.?
Because many L1s are represented by only one or
two learners, all analyses in this paper focus on the
three languages with at least three writers: Arabic,
Chinese, and Vietnamese.

Corpus Composition and Per-L1 Breakdown
LENS includes a subset comprising texts from
Arabic, Chinese, and Vietnamese learners. Table 2
presents the overall size of the subset analyzed in
this paper, including the per-L.1 breakdown, which
details the number of learners, documents, tokens,
median document length, mean submissions per
learner, and the median number of weeks between
first and last submission (a proxy for longitudinal
depth).

Note that the three cohorts differ in how often
they submitted short versus long tasks (Table 2).
A detailed breakdown of the corpus’s longitudi-
nal properties, including submission statistics per
cohort, can be found in Appendix Table 12.

Positioning among existing learner corpora Ta-
ble 1 contrasts LENS with the most frequently used
English-learner resources®. As shown in Table 1,
while LENS is smaller in token count than large-
scale resources like NUCLE, its unique contribu-
tion lies in being the first corpus, to our knowledge,
to combine four key features: fine-grained error la-
bels, explicit L1 transfer annotations, detailed per-

The full list of L1s is in Appendix Table 11.

3For a comprehensive, community-maintained list of
learner corpora, see the University of Louvain’s "Learner Cor-
pora Around the World" reference table (Centre for English
Corpus Linguistics (CECL), 2024).
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L1 Learners Docs Tokens Median Entries Span(wks) Count Proportion
tok/doc  per learner Long Short Long Short
Arabic 35 345 63,090 79 9.86 10 158 187 047  0.53
Chinese 18 133 28,835 88 7.39 4 69 64 0.50 0.50
Vietnamese 4 47 12,471 199 11.75 11.9 35 12 0.70  0.30
Total 57 525 104,396 - - - 262 263 - -

Table 2: Corpus subset composition and per-L1 breakdown, including the total number of documents, tokens,
learners, and document types analyzed in this paper. A full breakdown of the corpus composition can be found in

Appendix D, Table 11.

learner metadata, and multiple submissions over
time."

This unique combination enables research ques-
tions that have been difficult to pursue with pre-
vious datasets, such as modeling the trajectory of
cross-linguistic influence throughout an academic
term (§4) or leveraging L1-aware error signals for
few-shot native-language identification (§6).

Examples and splits Table 4 shows anonymized
excerpts of each assignment type, while Table 3
gives the training, development, and test split used
in our experiments.

L1 | Train Dev Test | Total
Arabic 275 35 35 345
Chinese 107 13 13 133
Vietnamese 37 5 5 47
Total ‘ 419 53 53 ‘ 525

Table 3: Document counts in the train/dev/test split.

4 Error Annotations

SLA-Grounded Annotation Scheme We draw
on established research in Second Language Acqui-
sition (SLA) to develop an annotation framework
for learner errors, organized into five domains: or-
thographic, lexical, morphological, grammatical,
and L1 interference. Each domain is further sub-
divided into more fine-grained categories, which
can be found in full in Appendix A. Importantly,
some errors, particularly those involving L1 inter-
ference, may be classified under multiple domains.
For instance, when a Vietnamese L1 learner pro-
duces experiment instead of experience, the error
constitutes both a lexical error (inappropriate word
choice) and an instance of L1 interference, given
that the Vietnamese word th nghim may translate
into either experiment or experience. The cate-
gories in our taxonomy were designed to reflect
well-documented SLA phenomena, and all man-
ually validated errors in our corpus fall within at

least one of these domains.

Our framework is informed by contrastive anal-
ysis research in SLA, which highlights the influ-
ence of L1 transfer on L2 acquisition (Saeed Al-
Sobhi, 2019). It also draws on earlier error cod-
ing schemes, such as those proposed by (de Haan,
2000) and (?). While our categories are broadly
aligned with those of de Haan, sharing the prin-
ciple that errors may belong to multiple classes,
Nicholls’ scheme was ultimately too fine-grained
for our purposes, as it prioritizes the nature of the
correction over the underlying source of the error.

Following Liideling and Hirschmann (2015), we
recognize that the goal of error annotation is not to
establish a universal tagset for the field, but to de-
sign a taxonomy tailored to the specific phenomena
under investigation. We use a broader categoriza-
tion for L1 errors, with the expectation that the
key mistake will be specified in the L1 interfer-
ence explanation string, rather than introducing an
excessive number of categories. This approach re-
mains grounded in SLA principles, maintaining
both theoretical and pedagogical relevance.

Using LLMs for L1-Based Annotation Our key
methodological contribution is leveraging LLMs to
generate SLA-informed annotations at scale, sig-

nificantly reducing the labor-intensive nature of

traditional error annotation 4.

Conventional annotation processes require thou-
sands of expert-annotator hours to construct large
corpora, with estimates suggesting that annotating
one million words could take 2,000-5,000 hours°.

In contrast, our approach harnesses a prompt-

*All experiments were conducted using the gpt-40-2024-
08-06 model version accessed between Dec 11th 2024 and Jan
7th 2025, with a temperature setting of 0.7.

SFor context, manually annotating a corpus of this
scale—similar to NUCLE (Dahlmeier et al., 2013)—at an
estimated rate of 500 words per hour would require extensive
expert labor. This estimate accounts for multiple annotation
passes, as is standard in error correction corpora, and is de-
rived from previous annotation efforts (Dahlmeier et al., 2013;
Ng et al.,, 2014).
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Assignment Type | Question

Student Answer

Short Why are we asking you about the “type | To know about what I get benefit from it.
of learning” that is happening at UNI-
VERSITY?

Long Dissertation Paper — Write about your | After few hours fly, two plant transfer finely I got to the
experience at UNIVERSITY. destination. . .

Group Describe what you have learned from | The first, take away is that I can talk with me from
the group project. the language activity is that most people have a perfect

specking skill. . .

Table 4: Anonymized examples of the three assignment types.

driven LLM to systematically classify errors, in-
tegrating SLA insights to provide structured, L1-
aware annotations at scale. The prompt (see Ap-
pendix A) guides the model to:

* Identify each error’s subcategory (orthographic,
morphological, lexical, grammatical, etc.).

* Flag L1 interference when observed, referencing
specific native-language forms (e.g., a Spanish
“e+s” cluster or Arabic morphological patterns).

We then extract the exact error span. Figure la
shows examples of Chinese and Arabic L1 interfer-
ence, verified by native bilingual speakers.

"incorrect”: "in the learning aspect”,
"correct”: "in terms of learning”,
"type”: {

"L1InterferenceSubcategory.SYNTACTIC_INTERFERENCE": 1

1,
"11_interference_reason”: "Chinese syntax often uses
phrases like 'f£...JjJfl' which translates directly to 'in
the... aspect', leading to syntactic interference.",
"span_start"”: 3136,
"span_end"”: 3158

}

(a) Annotated learner errors illustrating syntactic interference
from Chinese L1, where direct translations of native construc-
tions result in non-standard English expressions.

{

"incorrect”: "attande”,

"correct”: "attend",

"type": {
"L1InterferenceSubcategory.ORTHOGRAPHIC_INTERFERENCE"
0.7,

"OrthographySubcategory.PHONETIC": 0.3

3,
"11_interference_reason”: "Arabic speakers might add extra
vowels or alter consonant sounds due to the absence of
certain English phonemes in Arabic, leading to 'attande'
instead of 'attend'.”

}

(b) Annotated learner errors illustrating orthographic inter-
ference from Arabic L1, where phonetic spelling errors arise
from the lack of vowel marking in Arabic.

Figure 1: Each entry contains the incorrect phrase, its
span, the corrected form, and an explanation of the
interference type.

4.1 Modeling Error Rate Differences Across
Assignment Types

To account for repeated submissions, we fit a
Poisson Generalized Estimating Equations (GEE)
model, which revealed that short answers exhibit
a significantly higher error rate than long essays
(B=1.24, p<0.001). A qualitative follow-up anal-
ysis suggests this disparity is driven by the type
of errors common to each format. As shown in
Table 8, short-form answers contained a higher
proportion of surface-level orthographic and mor-
phological errors, which the LLM detects reliably.
In contrast, longer essays featured more complex
syntactic and lexical choice errors, which the model
is more likely to miss. This indicates that the ob-
served error rate difference is partly an artifact of
the LLM systematically under-reporting errors in
longer submissions, a key limitation when compar-
ing error rates across texts of varying lengths. This
pattern also aligns with SLA research suggesting
that task constraints influence error types.

4.2 Detecting keyboard typos

To determine whether the LLM occasionally as-
signs high-stakes labels to errors that are really
just keyboard slips, we compared the QWERTY
keyboard-distance distribution of the Typo category
with every other sub-category using Welch’s ¢-test
(Table 9)°.

The keyboard-distance analysis suggests that
the LLM is generally well-calibrated for high-
level categories (e.g., Grammatical, Lexical, L1-
Interference). However, it tends to over-label sev-
eral low-level orthographic phenomena.

In particular, consonant-doubling, consonant-
substitution, morphological, and phonetic errors

®Qur analysis is based on the heuristic of a standard QW-
ERTY layout. For a more fine-grained analysis of typing
behaviors that account for linguistic properties beyond simple
keyboard distance, see recent work such as Pacquetet (2024)
and Velentzas et al. (2024).
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often resemble typos in terms of key proximity.
Statistical analysis revealed no significant differ-
ence in mean distances for these error types when
compared to genuine typos (p > .05). This indi-
cates that many such tokens could be re-classified
as benign slips rather than systematic errors. In
contrast, errors with significantly larger mean dis-
tances than typos ([t| > 2.08, p < .05) include
grammatical, lexical, L1 interference, hyphenation
/ spacing, silent-letter / irregular, and vowel sub-
stitution / omission. These categories typically
involve changes that go beyond adjacent-key slips,
suggesting a more substantive error rather than a
mere typo. Interestingly, capitalization/punctuation
and the broader punctuation class showed smaller
average distances compared to typos (t= 2.49 and
3.11; p=.017 and .004). This pattern is consistent
with same-key mistakes, such as missed shift keys,
rather than cross-key substitutions.

These findings motivate two main adjustments:
(i) implementing a post-processing rule to down-
grade low-distance instances within borderline sub-
categories, and (ii) refining prompt engineering to
explicitly consider keyboard proximity when dis-
tinguishing between typos and more substantial
erTors.

However, we do not remove labels for errors that
resemble typos solely based on keyboard proxim-
ity. The fact that some morphological or phonetic
errors have similar distances to genuine typos does
not imply they are typographical mistakes; such er-
rors may still arise from systematic L1 interference
or language processing challenges. Therefore, we
interpret the similarity as a potential confounding
factor rather than grounds for exclusion.

4.3 Human Verification of GPT-4 Annotations

To assess the reliability of our automatically-
generated labels, we employed a two-tier human-
in-the-loop verification process. This approach
combines document-level recall checks with native-
speaker scrutiny of L1 interference claims, provid-
ing a principled estimate of annotation quality.

Verification Process All essays and error snip-
pets were presented in a web interface that allowed
span-level confirmation or correction; corrections
were stored as an additional layer in the corpus.
Disagreements were discussed in weekly meetings
to ensure consistent annotation practices. We em-
phasize that this two-stage process was designed
to provide a principled estimate of annotation qual-

ity, rather than to serve as a formal inter-annotator

agreement study, which we leave for future work.

The verification process involved two stages:

* L1-Specific Check: Two native-speaker lin-
guists (Arabic and Mandarin) independently eval-
uated 10 randomly-selected errors per language
flagged as L1 interference by GPT-4. They an-
swered the following questions:

— Q1 (Plausibility): Is this a plausible case
of L1 interference? (Yes / No + rationale).
— Q2 (Explanation): Is GPT-4’s explanation
of the interference accurate? (Yes / No +
rationale).
Native-speaker acceptance rates were 100% for
both Arabic and Mandarin.

* Document-Level Audit: A third linguist, experi-
enced in corpus annotation, audited 13% of the
essays (stratified by L1 and assignment type).
The linguist evaluated whether:

— GPT-4 correctly identified errors or missed
any errors.

— Identified errors were correctly typed (ortho-
graphic, morphological, grammatical, etc.).

— For errors labeled as L1 interference, both
the attribution and the explanation were ac-
curate.

4.4 Evaluation

Table 5 presents the precision, recall, and F1 score
for each evaluation aspect.

Metric Precision Recall F1 Score
Error Detection 0.916 0.107 0.191
Correction Agreement 0.697 0.083 0.149
Type Agreement 0.613 0.074 0.132
L1 Reason Agreement 0.837 0.038 0.072

Table 5: Overall performance metrics for LLM annota-
tions compared to human annotations.

Interpretation Our interpretation is that GPT-40
is not suitable for fully automated annotation due to
its low overall recall (11%), but is highly effective
as a first-pass annotation tool in a semi-automated
pipeline. Its high general precision (92%) means
that when the model flags an issue, it is usually cor-
rect, making it a reliable assistant for human anno-
tators. The model performs well on clear, surface-
level issues like typos and lexical interference (see
Table 10), but its true strength emerges in the more
challenging task of identifying L1 interference.
This primary challenge—the automated identi-
fication of L1 interference—is where the model’s
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high-precision, low-recall profile proves most valu-
able. While the model often misses subtle instances
of L1 transfer, its key strength is the exceptional re-
liability of the errors it does find. In our L1-specific
verification, native-speaker linguists unanimously
confirmed (100%) the plausibility of every L1 inter-
ference case flagged by the model for both Arabic
and Mandarin.

This result highlights the model’s ability to serve
as a high-confidence discovery tool for L1 transfer.
This performance profile is ideally suited for a semi-
automated workflow focused on building corpora
of L1 errors, where the model’s suggestions can be
trusted as high-quality candidates for human review.
Overall, while future improvements should target
enhancing recall to create a more comprehensive
tool, these results establish GPT-40 as an effective
specialist for the high-precision discovery of L1-
influenced errors in learner writing.

LLM
Annotator | Error NotError
Error 113 912
NotError 7 0

Table 6: Confusion matrix (correct,wrong) for error
detection between LLM and human annotator. See Ap-
pendix Figure 4 for detailed confusion matrix by error

type.

5 Data Analysis

5.1 Tracking Student Errors Over Time

As timestamped writing submissions enable longi-
tudinal analysis at both individual and cohort levels,
we track student error patterns over time to ana-
lyze student development and learning trajectories.
To ensure comparability across time periods, we
normalize error counts against text length and as-
signment counts. This allows us to assess whether
certain error types diminish with proficiency gains
or persist, indicating deeper linguistic challenges.
Of course, the expectation for an English profi-
ciency course is that learner errors diminish over
time.

None of the observed fluctuations (e.g., rising er-
ror counts in certain months, subsequent declines)
reach statistical significance (see Appendix C).
However, the fine-grained L1-based labels reveal
that certain patterns persist—such as Arabic speak-
ers’ difficulties with vowel representation or literal
syntactic translations from Chinese—suggesting

that some cross-linguistic influences remain stable
over time rather than disappearing with increased
exposure to English (Odlin, 1989).

Our results seem to contradict our hypothesis
that error frequencies should reduce — for the 2022
cohort, for instance, error frequencies largely in-
crease from one assignment to the other until the
last assignment. For 2024, the story is somewhat
reversed. We plan to explore several possible ex-
planations for these observations. For example, it
might be the case that students do become better L.2
speakers, but their assignments also become harder,
leading to more errors. Alternatively, the first as-
signment may have been intentionally designed to
be easier, resulting in fewer errors. If we exclude
this initial task, we may actually observe a decline
in error frequencies for the 2023 and 2024 cohorts,
aligning with our original hypothesis. We plan to
explore these explanations more deeply in future
work, engaging with the instructors of the class as
well as with the students themselves.

5.2 Lexical Development

Beyond tracking general error trends, we also ex-
plore lexical development in relation to Romance
and Germanic vocabulary acquisition. Previous
studies have documented that Germanic and Ro-
mance L1 speakers tend to overuse cognates from
their respective L1s in English at lower proficiency
levels, with this reliance decreasing as proficiency
increases (Nativ et al., 2024). However, our fo-
cus dataset consists of Arabic, Chinese, and Viet-
namese L1 speakers, for whom English lacks a
strong lexical overlap with their native languages.
Analyzing how these learners acquire vocabulary
from different etymological sources represents a
novel contribution to SLA research.

In theory, we expect to see an increasing ten-
dency toward Romance-derived vocabulary as stu-
dents advance in proficiency, given that academic
and formal English draws heavily from Latin and
French (Hernandez et al., 2021). Our analysis par-
tially supports this: the 2022 cohort (see Figure 3)
shows a statistically significant rise in Latin-based
vocabulary over time (p = 0.0199). However, this
trend vanishes in the 2023 and 2024 cohorts, rais-
ing questions about how learners from non-Indo-
European backgrounds acquire academic vocabu-
lary. Differences in instructional input, cognitive
processing, or exposure to academic vocabulary
may contribute to these variations. The observed
increase in the 2022 cohort suggests that under
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Figure 3: Proportion of Germanic, Latin, and Greek-
derived vocabulary in learner writing over time (2022
cohort). The increase in Latin-based words suggests
a shift toward academic vocabulary, while Germanic
words remain dominant.

certain conditions, learners do shift more towards
Latin-derived vocabulary as they progress, high-
lighting the need for further research into the fac-
tors that influence this shift. Future studies should
examine whether these trends persist across larger
datasets and explore pedagogical interventions that
could facilitate the acquisition of academic En-
glish vocabulary for learners from diverse linguistic
backgrounds.

5.3 Further Syntactic Pattern Analysis

Syntactic analysis in NLP and SLA research has tra-
ditionally relied on head-dependent relations within
dependency trees (Constant et al., 2017). However,
these relations often fail to capture multi-word syn-
tactic units that function as a single structural unit.
This is also the issue with analyses that focus on
common Part-of-Speech n-grams.

Here, we propose to use syntactic catenae as
the unit of analysis to remedy these issues. Os-
borne et al. (2012) introduced catenae as a more
flexible syntactic representation, defining them as
any sequence of words that maintains a continuous
dominance relationship in a dependency tree. This
definition allows catenae to include non-constituent
structures and discontinuous elements that are cru-
cial for syntactic analysis.

(b) 2023 Cohort

Figure 2: Aggregated Error Trends for Different Cohorts (Top-Level Categories, Monthly). The 2022 cohort shows
a gradual increase in errors, peaking in November. The 2023 cohort exhibits higher orthographic errors throughout,
while the 2024 cohort displays a sharp peak in February before declining.
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Catenae have been used in syntactic theory to
describe verb complexes, idiomatic expressions,
and discontinuous dependencies (Osborne et al.,
2012; Imrényi, 2013). However, their application
in corpus-based computational linguistics, partic-
ularly in L2 syntactic variation analysis, remains
unexplored. We investigate whether catenae dis-
tributions exhibit L1-specific patterns in learner
writing, exploring whether different L1 groups fa-
vor certain syntactic constructions when producing
English.

We additionally conduct a supplementary inves-
tigation using POS bigrams, which capture short-
range syntactic dependencies (De Gregorio et al.,
2024). While less structurally expressive than cate-
nae, POS bigrams offer a more conventional means
of detecting syntactic variation across L.1 groups.

Methodology Using Stanza (Qi et al., 2020), we
extract catenae from dependency-parsed texts, rep-
resenting them as sequences of (dependency rela-
tion, POS tag) pairs (e.g., det-DT | comp:obj-NN
| mod-JJ). This allows for a structural analysis
independent of lexical choice. For interpretability,
we also retain corresponding lexical sequences.
To supplement the catenae analysis, we also ex-
tract POS bigrams from learner texts, identifying
adjacent POS sequences (e.g., DT NN, NN VBZ) as a
proxy for syntactic tendencies across L1 groups.

Cross-LL1 Comparison For both catenae and
POS bigrams, we compute relative frequencies and
apply TF-IDF weighting to identify structures that
were more prominent in one L1 group relative to
others. Across both analyses, we do not observe
strong L.1-specific syntactic patterns. Frequent cate-
nae were largely shared across L1 groups, with
no consistent L1-driven structural tendencies. That
said, we do observe some interesting differences
across different L1s. For example, compound noun
constructions feature more prominently in Viet-
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namese L1 texts and much less in Chinese ones,
even though one might expect the opposite due to
the extensive compounding in Chinese.

We should note that the large space of possible
catenae combinations and our rather sparse corpus
limit our ability to detect robust differences. The
relatively small number of speakers per L1 further
constrained cross-L1 generalizability. We main-
tain, though, that catenae are the appropriate unit
of analysis for uncovering L1-influenced syntac-
tic patterns, and leave such a larger scale analysis
encompassing more corpora for future work.

6 Native Language Identification

As a further showcase of the utility of our dataset
for other downstream tasks, we carry out multiple
NLI experiments with results presented in Table 7.
We report results in terms of accuracy and macro F1
score following the literature in this task (Goswami
et al., 2024).

Models We train multiple SVM systems using
various features such as POS n-grams of n € [1,4]
and word n-grams of n € [1,2]. We then combine
them in a majority voting ensemble (Malmasi and
Dras, 2017) and we refer to this model as SVM
Ensemble in the table. We also fine-tune multi-
ple BERT-based models on LENS namely BERT,
mBERT (Devlin et al., 2019), and RoBERTa (Liu
et al., 2019). For these, we use a learning rate of
le — 5 for all models and early stopping on our
development set. Last, we benchmark three LLMs
on LENS, namely FLAN-TS (Chung et al., 2024),
GPT-40 (Achiam et al., 2023), and the 70B pa-
rameter LLaMa 3.1 (Touvron et al., 2023). We
benchmark the three models using both zero-shot
prompting as well as task-specific fine-tuning on
the training set.

NLI Takeaways Corroborating the results re-
ported in recent studies using popular NLI datasets
like TOEFL 11 (Ng and Markov, 2025), we ob-
serve that the fine-tuned models achieve the highest
performance on LENS. All three LLMs obtain sig-
nificant performance improvement from zero-shot
prompting to task fine-tuning. The performance
of LLMs using zero-shot prompting is, in turn, in-
ferior to the performance of both SVM ensemble
and the three BERT models. This indicates that
off-the-shelf LLMs do not fare particularly well
in identifying L.1s without any specific task fine-
tuning.

Approach Models Acc. F1
Statistical
SVM Ensemble 0.75 0.73
BERT-based
roBERTa 0.79 0.75
BERT 0.77 0.72
mBERT 0.70  0.68
LLM Zero-shot
GPT 40 0.66 0.66
LLaMa3.1 041 043
FLAN T5 0.32 037
LLM Fine-tuining
GPT 40 097 0.96
LLaMa3.1 0.87 0.84
FLAN T5 0.66 0.53

Table 7: Results of different models on the LENS
dataset. LLMS require fine-tuning to outperform BERT-
based and simple statistical approaches.

7 Conclusion and Future Work

We presented the first linguistically-informed LLM-
based study of features of L1-L2 transfers on lon-
gitudinal data. We further presented a series of
NLI experiments evaluating the model of LLMs
and traditional classifiers. To achieve these goals,
we complied LENS, a first-of-its-kind corpus of
learner English. LENS stands apart from other
similar corpora due to encompassing longitudinal
data and fine-grained L1 interference annotations.
We make LENS feeling available to the research
community.

Importantly, LENS will continue expanding ev-
ery year with each incoming student cohort. As
aresult, LENS will facilitate promising research
directions in SLA research, while also presenting
opportunities for challenging setups in the develop-
ment of language learning applications.

Limitations

Our approach likely performs best for high-
resource languages, as LLMs are trained predom-
inantly on well-documented linguistic data. For
low-resource languages with limited digital pres-
ence or sparse learner corpora, the model’s abil-
ity to identify and explain L1 interference may be
weaker, leading to noisier or less reliable annota-
tions. This perhaps limits the generalizability of
our approach, but we believe that this limitation
is mitigated by the fact that most second language
learners opt to learn high-resource languages.
Additionally, while we conduct manual verifica-
tion of a subset of model-generated annotations for
the three L1s that we study in this paper, a more ex-
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tensive validation process is likely needed to ensure
consistency and reliability across diverse L1s.

A major challenge for the reproducibility of our
work is the rapid evolution of LLMs (e.g., GPT-
3.5, GPT-4), as results can depend on a specific
model version that later might become unavailable.
We chose to rely on the best currently available
model to ensure higher quality annotations for our
dataset, but future work could reproduce this effort
with open-sourced/open-weight models to explore
robustness to model variation. In addition, future
work should evaluate performance across a broader
range of linguistic backgrounds and explore strate-
gies for maintaining reproducibility despite ongo-
ing model updates.

Ethical Considerations

The dataset collected for this research had an In-
stitutional Review Board (IRB) review application
filed at the authors’ university. As the research
does not involve human participants per se, we ex-
pect the application to qualify for exemption. The
dataset was collected from writing assignments sub-
mitted by non-native English speakers enrolled in
an introductory academic writing course at the au-
thors’ university. Permission for dataset use and
sharing for non-commercial research purposes was
obtained from the appropriate university depart-
ments. These writing samples, given that they are
responses to exercise prompts, are generally non
sensitive. However, careful anonymization steps
have been taken to ensure that students cannot be
re-identified.

During the anonymization process, meta-data
that could be used to identify the student partic-
ipants was eliminated. We retained only meta-
data that was deemed non-identifiable: the student
ages, genders, and L1s. These demographics were
deemed non-identifiable on the basis that course
numbers and course years are not retained, so re-
identification of student participants should not be
possible. The texts were then passed through an
English Named Entity Recognition module’, and
all tokens that were tagged as organizations, loca-
tions, and people were replaced with a placeholder
token, following Megyesi et al. (2018). Finally,
the dataset was manually checked to ensure that
all identifying information was removed. The final
dataset does not include identifying information.

The anonymized dataset will be made available

7Stanford NLP, OntoNotes Release 5.0

to researchers for non-commercial purposes, under
a Creative Commons BY-NC-SA 4.0 license upon
publication via a GitHub repository. Access will
require agreement to terms that prohibit attempts to
re-identify individuals or use the data for purposes
beyond research.
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A  Prompt
LLM Annotation Prompt

Task: You are an expert at identifying and classifying spelling and language errors made by English learners. Your
highest priority is to identify errors that may be due to L1 (native language) interference and provide a brief but specific
explanation of how the L1 could cause such an error. Your explanation should include:

* A concrete linguistic example from the L1 (e.g., a word or phrase in the learner’s native language) or a
well-known phonological, orthographic, or syntactic feature of the L1 that contributes to the error.

* A short discussion of how that L1 feature leads the learner to produce the erroneous English form.

If there is no L1 interference, classify the error into one of the following categories: orthographic (including typos),
lexical, morphological, or grammatical.

Steps to follow for each erroneous word:
1. Determine if L1 interference is involved.

* If yes, select the appropriate L1 interference subcategory and provide a "11_interference_reason” that:

— Identifies the specific L1 feature (e.g., a Spanish prefix rule, an Arabic root pattern, a Japanese
phonological constraint).

— Explains how that feature maps to the incorrect English form.

* If no, classify under other subcategories: orthographic (including typos), lexical, morphological, or
grammatical.

2. Return the errors in the order they appear in the text.

Error Categories and Descriptions

1. Orthography Subcategories

* Phonetic Errors
— Definition: Words spelled purely by sound, ignoring English orthographic norms.
— Examples:
% fone — phone
* nife — knife
* Vowel Substitution and Omission
— Definition: Substituting or omitting vowels incorrectly.
— Examples:
% hop — hope
% beter — better
* Silent Letters and Irregular Spelling
— Definition: Ignoring or mishandling silent letters or irregular spelling patterns.
— Examples:
* clim — climb
* Writting — writing
* Consonant Substitution Errors
— Definition: Replacing one consonant with another.
— Examples:
* shose — chose
* joke — yoke
* Hyphenation, Compound Words, and Spacing Errors
— Definition: Errors in spacing or hyphenation of compound words.
— Examples:
* infact — in fact
* some where — somewhere

2. Lexical Subcategories

* Homophone Confusion
— Definition: Mixing up words that sound alike but differ in spelling and meaning.
— Examples:
* their — there
* peace — piece
* Lexical Errors
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— Definition: Errors involving incorrect word choice due to misunderstanding of meaning.
— Examples:

* among — below

% borrow — lend
» Phonological Confusion
— Definition: Errors where words are confused due to phonological similarities, often involving metathe-
sis, substitution of similar phonemes, or confusion between near-homophones.
— Examples:

# aboard — abroad (Metathesis: reversed phonemes)
* form — from (Transposition of adjacent sounds)
# claps — class (Substitution of "p" for "s")

3. Morphological Subcategories

* Morphemic Errors with Affixes

— Definition: Incorrect handling of prefixes or suffixes.
— Examples:

* beautifull — beautiful
% hoping — hopping
* Overgeneralization of Spelling Rules

— Definition: Applying English morphological or spelling rules too broadly.
— Examples:

* buyed — bought
* goed — went

4. L1 Interference Subcategories

¢ Orthographic Interference

— Definition: Applying L1 spelling conventions to English.
— Examples:

* esplendid — splendid (Spanish: adding "e" before "s" clusters)

% colur — colour (British vs. American orthography confusion)
* Lexical Interference

— Definition: Using L1-based lexical forms or cognates in English.
— Examples:

% telefon — telephone (Spanish or German influence)
* faciliter — facilitate (French influence)
* Grammatical Interference

— Definition: Applying L1 grammatical patterns to English.
— Examples:

* She has 24 years — She is 24 years old (Spanish: "Ella tiene 24 afios")

* He doesn’t know nothing — He doesn’t know anything (Negative concord in some L1s)
* Syntactic Interference

— Definition: Applying L1 syntactic structures to English.
— Examples:

x He to the store goes — He goes to the store (German word order influence)
* Beautiful is she — She is beautiful (Japanese syntax influence)

5. Grammatical Subcategories
e Grammatical Errors

— Definition: Errors in grammar, syntax, word order, or agreement.
— Examples:

% She go yesterday — She went yesterday
« He like apples — He likes apples

Categories and Subcategories:
We define a hierarchical categorization system using Python enums for clarity and consistency:

from enum import Enum

class OrthographySubcategory(Enum) :
PHONETIC = "Phonetic Errors”

VOWEL_SUBSTITUTION_OMISSION = "Vowel Substitution and Omission”
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SILENT_LETTERS_IRREGULAR = "Silent Letters and Irregular Spelling”
CONSONANT_SUBSTITUTION = "Consonant Substitution Errors”
HYPHENATION_SPACING = "Hyphenation, Compound Words, and Spacing Errors”
CONSONANT_DOUBLING = "Consonant Doubling and Dropping”
CAPITALIZATION_PUNCTUATION = "Capitalization and Punctuation Errors”
TYPO = "Typo”

class LexicalSubcategory(Enum):
HOMOPHONE_CONFUSION = "Homophone Confusion”
LEXICAL = "Lexical Errors”
PHONOLOGICAL_CONFUSION = "Phonological Confusion”

class MorphologicalSubcategory(Enum):
MORPHEMIC_AFFIX = "Morphemic Errors with Affixes”
OVERGENERALIZATION = "Overgeneralization of Spelling Rules”
CONSONANT_DOUBLING = "Morphological Consonant Doubling and Dropping”

class L1InterferenceSubcategory(Enum):
ORTHOGRAPHIC_INTERFERENCE = "Orthographic Interference”
LEXICAL_INTERFERENCE = "Lexical Interference”
GRAMMATICAL_INTERFERENCE = "Grammatical Interference”
SYNTACTIC_INTERFERENCE = "Syntactic Interference”

class GrammaticalSubcategory(Enum):
GRAMMATICAL = "Grammatical Errors”

Probabilities:

e For each error, provide a "type" field as an object where keys are the enum names (e.g.,
"OrthographySubcategory.PHONETIC") and values are probabilities (floats).

* Probabilities must sum to 1.0 for that error.
If L1 Interference is detected:

* Include "11_interference_reason” explaining how the L1 caused the error.
Output Format:
Return a JSON array of objects. Each object should contain:

e "incorrect": the misspelled or erroneous word.
e "correct”: the correct form.
* "type": adictionary of {error_type: probability} where probabilities sum to 1.0.

e "11_interference_reason": a string if L1 Interference applies.

Format strictly as JSON, with no additional commentary.

Few-Shot Examples:
Example Input:

L1: Spanish

Text: After the long fly and waiting two hours, I saw a plant arrive, which I thought was the right one because it
looked so esplendid even though I felt beter knowing I had finally gotten there. The clim was tough, but I buyed
a ticket, carrying my childs with rain, my friend said he’d shose a seat for me, but infact issues we had. im sad.

Example Output:
L
{
"incorrect”: "plant”,
"correct”: "plane”,
"type": {

"OrthographySubcategory.PHONETIC": 0.8,
"OrthographySubcategory.CONSONANT_SUBSTITUTION": 0.2
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}!
{

"incorrect”: "esplendid”,

"correct”: "splendid"”,

"type": {
"L1InterferenceSubcategory.ORTHOGRAPHIC_INTERFERENCE": 0.7,
"OrthographySubcategory.PHONETIC": @.3

}’

"11_interference_reason"”: "Spanish speakers often add an 'e' before 's' clusters due to L1

orthographic habits.”
}’

: e

Note: This is a truncated example. The full prompt can be found in the GitHub repository.
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B Error Annotation Analysis

Table 8: Proportional Breakdown of All Error Subcategories by Assignment Length.

Legend: Orthography , LI Interference , Lexical

, Morphological , Grammatical .

Error Type Long Short
Orthography: Capitalization/Punctuation 0.0940 0.2134
Orthography: Consonant Doubling 0.0084  0.0310
Orthography: Consonant Substitution 0.0528 0.0534
Orthography: Hyphenation/Spacing 0.0382 0.0484
Orthography: Phonetic 0.0734  0.0720
Orthography: Punctuation 0.0015  0.0000
Orthography: Silent Letters/Irregular 0.0405 0.0658
Orthography: Typo 0.0222 0.0273
Orthography: Vowel Substitution/Omission  0.0849 0.1439
L1 Interference: Grammatical Interference 0.0245 0.0323
L1 Interference: Lexical Interference 0.0138 0.0062
L1 Interference: Orthographic Interference 0.0222  0.0571
L1 Interference: Syntactic Interference 0.0206 0.0062
Lexical: Homophone Confusion 0.0122 0.0199
Lexical: Lexical 0.1361 0.0596
Lexical: Phonological Confusion 0.0214  0.0149
Grammatical: Grammatical 0.3127 0.1315
Morphological: Morphemic Affix 0.0107 0.0099
Morphological: Overgeneralization 0.0099 0.0074
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Confusion Matrix: Linguist vs LLM by Error Type

NoError - 2 3 2 0 0 3 0 300
{ ‘Orthography - 1 0 0 0 0 0 0
{'Grammatical 219 9 2 1 0 1 1 250
{'Llinterference - 23 0 11 0 0 0 0
{'Lexical - 51 0 0 11 1 0 0 200
% {'Orthography - 98 0 0 0 0 30 0
S
j=2 s
£ {“Grammatical - 1 0 0 0 0 0 0 150
{'Grammatical 15 11 1 3 3 0
- 100
{'Llinterference - 50 2 1 2 0 1 0
{‘Lexical - 27 0 0 2 0 0 0
-50
{'Morphological - 3 0 0 0 0 0 0
{'Orthography - 126 0 0 1 0 2 0
i ' ' ' ' ' ' -0
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Figure 4: Confusion matrix of error type agreement between linguist and LLM.
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C Error Trends by L1 and Year

In this section, we present the aggregated error trends for each L1 group across different years. Each plot
shows the distribution of top-level error categories normalized by text length.

Error Categories
mm OrthographySubcategory mmm MorphologicalSubcategory ~ = LlinterferenceSubcategory
mmm GrammaticalSubcategory ~ W LexicalSubcategory

Aggregated Erro Trends for L1 Arabic in 2022 (Top Level Cotegories) Trends for L1 Arabic Tends for L1: Arabic in

(a) Arabic L1 (2022) (b) Arabic L1 (2023) (c) Arabic L1 (2024)

(d) Chinese L1 (2022) (e) Chinese L1 (2023) (f) Chinese L1 (2024)

Nomalzed Err Count (pr word

Nomalzed Err Count (pr wordl

000 000

(g) Vietnamese L1 (2022) (h) Vietnamese L1 (2023) (i) Vietnamese L1 (2024)

Figure 5: Aggregated error trends by L1 and year. Each subfigure represents a different L1-year combination.
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D Corpus Composition

L1 Learners Docs Tokens Med. Entries Span(wks) Count Proportion
tok/doc  per learner Long Short Long Short

Arabic 35 345 63090 80.0 9.83 10.00 121 224 0.35 0.65
Azerbaijani 2 12 1934 113.0 6.00 5.00 5 7 042  0.58
Bengali 1 3 1990 415.0 3.00 4.00 3 0 1.00  0.00
Chinese 18 133 28678 86.5 7.33 4.00 58 75 0.43 0.57
Dari 2 26 12118 332.0 13.00 9.86 26 0 1.00  0.00
French 1 19 9139 393.0 17.00 13.86 19 0 1.00  0.00
Indonesian 1 8 820 89.0 8.00 11.00 1 7 0.13 0.87
Korean 1 14 1933 140.0 13.00 9.00 8 6 0.62 0.38
Kyrgyz 1 3 339 83.0 3.00 2.00 1 2 0.33 0.67
Portuguese 1 3 1301 281.0 3.00 4.00 3 0 1.00  0.00
Russian 1 19 12024 490.0 19.00 13.86 19 0 1.00  0.00
Sindhi 1 17 9611 567.0 13.00 13.86 15 2 0.87 0.13
Telugu 2 36 19493 416.5 18.00 13.86 35 1 0.97 0.03
Urdu 1 2 384 192.0 2.00 0.29 2 0 1.00  0.00
Vietnamese 4 47 12471 199 11.75 11.9 35 12 0.70  0.30
Total 72 687 175325 - - - - - - -

Table 11: Corpus composition and per-L1 breakdown, including the total number of documents, tokens, learners,
and document types analyzed in this paper. Long and short categorization of the documents for this table was based
on the median document length, which differs from the median document length of the subset.

Cohort Year Num. Assignments Num. Students Avg. Missing

2022 19 28 10.79
2023 12 22 4.05
2024 13 38 8.26

Table 12: Longitudinal properties of the corpus, showing student engagement and data points per cohort. "Avg.
Missing" refers to the average number of missing assignments per student. All subjects in a given cohort did the
same writing assignment.
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