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Abstract

The evolution of pre-trained large language
models (LLMs) has significantly transformed
natural language processing. However, these
advancements pose challenges, particularly
the unintended memorization of training data,
which raises ethical and privacy concerns.
While prior research has largely focused on mit-
igating memorization or extracting memorized
information, the deliberate control of memo-
rization has been underexplored. This study
addresses this gap by introducing a novel and
unified gradient-based weight pruning frame-
work to freely control memorization rates in
LLMs. Our method enables fine-grained con-
trol over pruning parameters, allowing models
to suppress or enhance memorization based on
application-specific requirements. Experimen-
tal results demonstrate that our approach effec-
tively balances the trade-offs between memo-
rization and generalization, with an increase of
up to 89.3% in Fractional ER suppression and
40.9% in Exact ER amplification compared to
the original models.

1 Introduction

The rapid advancement of large language models
(LLMs; Devlin, 2018; Radford et al., 2019b; Raffel
et al., 2020) has revolutionized the field of nat-
ural language processing, enabling them to gen-
erate high-quality text, solve complex tasks, and
even emulate human-like reasoning (Yang et al.,
2022; Goyal et al., 2022; Celikyilmaz et al., 2020).
However, a significant challenge is memorization,
where LLMs retain sensitive details from their train-
ing data even without overfitting (Radford et al.,
2019a). This raises ethical concerns, such as data
leakage and privacy violations.

The phenomenon of memorization in LLMs has
motivated many researchers to tackle this issue.
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Figure 1: An abstract comparison of methods of regu-
lating memorization.

Previous studies suggest that a key factor that in-
fluences memorization is model capacity (Chen
et al., 2024; Wei et al., 2024; Carlini et al., 2022).
Larger models, while exhibiting superior general-
ization capabilities, are often prone to memorizing
more training data. This suggests that controlling
model capacity could be a direct lever for control-
ling memorization.

Among the various techniques for modulating
model capacity, pruning has emerged as a clas-
sic yet effective approach. Despite its potential,
the relationship between pruning and memoriza-
tion remains underexplored. Traditional pruning
techniques primarily aim to improve inference effi-
ciency or reduce computational requirements. The
memorization behavior of LLMs receives limited
attention in the context of pruning, with only Gupta
et al. (2025) briefly explores the effectiveness of
pruning in reducing memorization.

In addition, efforts to address memorization in
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LLM have focused mainly on minimizing suscep-
tibility (i.e. defense) or exploiting memorization
(i.e. attack) (Ozdayi et al. (2023); Kassem et al.
(2024); Dong et al. (2024); Hans et al. (2024)).
To the best of our knowledge, no prior work
has explored deliberately increasing memorization
rates. Although counterintuitive, there are scenar-
ios where an increase in memorization rate could
be highly beneficial for internal high-fidelity knowl-
edge. For example, in tasks such as Encryption and
In-context Learning(Stevens and Su, 2023;Golchin
et al., 2024), it is often desirable for the model to
recall and reproduce information with high fidelity
and precision.

To address these gaps, our work investigates
gradient-based weight pruning as a targeted mech-
anism to control the memorization rate in LLMs.
By leveraging gradient information, we identify
and prune weights that contribute minimally to the
training objectives while still retaining sufficient ca-
pacity for essential tasks. Crucially, this approach
provides a unified framework for controlling the
memorization rate—enabling both suppression and
amplification—based on task requirements. This
adaptability allows LLMs to be aligned with di-
verse use cases, from enhancing privacy to preserv-
ing important task-specific details.

Our contributions are summarized as follows:

* We propose a unified framework leverag-
ing gradient-based weight pruning to regu-
larize memorization in LLMs. The frame-
work is adaptable to diverse architectures and
datasets.

* We design a flexible mechanism to adjust
the pruning target, providing fine-grained
control over memorization rates, allowing
both suppression and amplification tailored
to application-specific requirements.

* We perform comprehensive experiments to
validate the efficacy of our approach. Results
show that our method can significantly sup-
press or amplify memorization while preserv-
ing overall model performance.

2 Related Works

LLM Memorization. Memorization in large lan-
guage models (LLMs) was first highlighted by Car-
lini et al. (2021), who demonstrated that attackers
could extract training data by generating random
prefixes to prompt the target model. Memorization

in LL.Ms poses significant ethical and practical con-
cerns. For example, Karamolegkou et al. (2023)
highlighted the potential for copyright violations
involving proprietary materials. Zhou et al. (2024)
demonstrates the possibility of entity-level extrac-
tion from the generation. Moreover, researchers
reported that confidential source code from Sam-
sung, shared with LLMs from OpenAl, was later
exposed to other users due to memorization (Mau-
ran, 2023).

Several factors have been identified as critical to
influencing memorization in LLMs. Carlini et al.
(2022) demonstrated that model capacity, repetition
in the training dataset, and context length are key
contributors to memorization. Similarly, Chen et al.
(2024) found that model size, complement size,
and context size play a significant role in shaping
memorization patterns.

To investigate and address memorization, re-
searchers have proposed various attack and de-
fense strategies. For instance, Kassem et al. (2024)
introduces an additional attacker LLM to propel
the victim LLM. Ozdayi et al. (2023) leverages
soft-prompts techniques and designs prompt train-
ing strategies for both attack and defense settings.
Dong et al. (2024) leverages self-distillation and de-
signs a deliberate imagination mechanism to guide
LLMs to unlearn training data. Gupta et al. (2025)
proves that pruning is a powerful tool regarding
reducing memorization.

Previous studies have focused on reducing or

exploiting memorization. In contrast, our work ex-
plores a novel perspective: bidirectionally control-
ling the memorization rate, enabling task-specific
adjustments that address both privacy concerns and
performance optimization.
Pruning. Pruning is a technique widely adopted to
decreases inference latency and enables resource-
constrained deployment (LeCun et al., 1989; Has-
sibi et al., 1993; Hoefler et al., 2021; Gao et al.,
2023; Wu et al., 2024; Gao et al., 2024b). Prun-
ing methods are typically categorized into struc-
tural pruning, which targets entire layers or blocks,
and weight pruning, which operates on individual
weights (Cheng et al., 2024).

Various pruning techniques have been explored
within the realm of LLMs. One foundational ap-
proach is magnitude-based pruning (Han et al.,
2015), which eliminates weights with magni-
tudes below a predefined threshold. Building
on this, recent research has focused on layer-
wise weight pruning for LLMs. For instance,
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SparseGPT (Frantar and Alistarh, 2023) formu-
lates a local layer-wise reconstruction problem and
prunes with weight update. Similarly, Wanda (Sun
et al., 2023) adopts a computationally efficient
magnitude-pruning approach that leverages input
activations. In addition to weight pruning, struc-
tural pruning techniques have also gained traction.
LLM Pruner (Ma et al., 2023) removes noncritical
coupled structures based on gradient information
while adhering to generalization constraints.

Although previous methods have achieved suc-
cess in improving model efficiency, their interac-
tion with memorization behaviors remains unclear.
Our work leverages weight pruning with targeted
regularization to manipulate model capacity, en-
abling fine-grained control over memorization.

Localization-based methods. Recent studies have
explored localization-based methods that aim to
suppress memorization. These methods first iden-
tify the most influential neurons or weights, and
then apply targeted interventions to erase this infor-
mation. For example, DEPN (Wu et al., 2023) intro-
duces a detect-and-edit framework that leverages
gradient attribution to locate “privacy neurons” in
feed-forward layers and suppresses memorization
by deactivating them. Similarly, EMSO (Zhang
et al., 2025) proposes an entropy maximization ob-
jective combined with a contrastive gradient met-
ric to localize influential weights and selectively
update them, thereby erasing memorization while
preserving general model utility.

While both our approach and these localization-
based methods leverage gradients to identify influ-
ential parameters, their fundamental mechanisms
differ significantly. Localization-based methods
modify a small subset of existing components.
In contrast, our framework permanently removes

weights to create a sparser subnetwork. This allows
for a more direct manipulation of model capacity.
Furthermore, whereas localization methods are pri-
marily designed for erasure, our pruning frame-
work offers both suppression and amplification of
memorization.

3 Method

To control the memorization rates of large lan-
guage models, we propose a gradient-based weight
pruning framework. This is motivated by the ob-
servation that memorization in LLMs is a holis-
tic property, requiring a complete forward pass
to accurately assess it. Existing weight pruning
methods, such as SparseGPT and wanda, evalu-
ate individual weights on a layer-by-layer basis,
excelling in efficiency but falling short when it
comes to directly analyzing memorization. In con-
trast, our approach introduces trainable masks to
the parameters of the model. An overall pipeline
of our method is shown in Figure 2. By leveraging
gradient information derived from memorization-
specific data, these masks enable precise identifi-
cation of weights that significantly contribute to
memorization. This fine-grained control provides
a more effective mechanism for addressing limi-
tations in existing approaches while maintaining
flexibility and adaptability.

3.1 Preliminaries and Objective

We first formulate a generalized framework for
model pruning and then define a memorization-
aware optimization problem based on it.

We consider model pruning as an optimization
problem with a generic objective function L(-),
defined for a model f : x — y parameterized
by W. To control model sparsity, we introduce
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a binary weight mask g; € R”*W for the i-th
linear layer, which activates or deactivates specific
neurons in the corresponding layers. Let r denote
the desired sparsity ratio. The pruning problem is
formally expressed as:

Irgn L(f(x;W,0),y)

L H W
S.t. Z Z Zglij —rP =0, 9i;; € {Oa 1}7
=1

i=1 j=1

(1
Here, g;,; denotes the entries of g; € RAXW g
represents the learnable parameters governing gy,
P is the total number of weight parameters across
all linear layers, L is the number of decoder lay-
ers in LLM, and H and W denotes the height and
width of the weight matrices for each linear layer re-
spectively. Since LLMs are composed of linear lay-
ers, we then focus on pruning all key/value/query
projections and output projections of attention mod-
ules, as well as the feedforward layers in each trans-
former block.

To solve (1) using gradient-based optimization,
we apply Lagrangian relaxation to transform the
constrained problem into an unconstrained formu-
lation with a sparsity-regularization term:

min F(O) = Lem + AsRs )

where the first term L, represents a standard loss
function for LLMs, namely causal language mod-
eling (CLM) loss, R stands for the specific regu-
larization function detailed in Section 3.3, and A\
is the corresponding coefficient.

To explicitly regularize memorization during
training, we extend the objective function with
an additional regularization term that accounts for
model performance on memorization-specific tasks.
Specifically, we evaluate the CLM loss on the mem-
orization dataset. This is based on the idea that
memorization can be conceptualized as a specific
form of generation capability. The resulting opti-
mization problem is expressed as:

mein F(O) = Lem + AsRs + AR 3)

where R,, is the specific regularization function
discussed in Sections 3.4 and 3.5. )\, is a hyperpa-
rameter that balances the trade-off between model
generalization and memorization control. The new
term \,, R,, explicitly encourages or suppresses
memorization behavior, depending on the task re-
quirements. To achieve this, we further design spe-

cific regularization functions tailored to the desired
effect in the following sections.

3.2 Generating Binary Mask

We leverage a stochastic gate function, where bi-
nary masks are sampled probabilistically based on
the value of . This stochastic approach expands
the search space, allowing the model to explore a
broader range of potential weight configurations
during training. A more detailed formulation is
demonstrated in Appendix A.

Since sampling discrete binary masks is inher-
ently non-differentiable, we adopt the Gumbel-
Softmax trick (Jang et al., 2016) to sample soft
masks from 6, then with Straight-Through Estima-
tor (STE; Bengio et al., 2013) to binarize these
masks. In our case of generating binary masks,
the Gumbel-Softmax trick simplifies into Gumbel-
Sigmoid. Accordingly, the soft mask is sampled
through:

<log 0; + gi)
m; =0
T “

g = —log(—log(u)),u ~ U(0,1)

where 7 > 0 is the temperature parameter that
controls the softness of the output, o denotes the
sigmoid function.

3.3 Optimization of Sparsity

To achieve the desired sparsity, the sparsity regular-
ization term should converge to near zero to meet
the constraint during the early stages of training and
remain minimal for the rest of the training process.
This strategy allows for better exploration of the
trade-offs between memorization and generaliza-
tion under the target sparsity constraint. Building
on prior research that demonstrated the advantages
of global sparsity optimization, we calculate the
loss over the global sparsity ratio, which is defined
as,

Py
Ry=log(| 2 —(1-n)l+1) 6

where P, indicates the number of remaining
weights or, equivalently, the number of activated
gates. This global setting allows the optimization
to focus on pruning the most memorization-related
weights across the entire model, considering these
weights may not spread uniformly in every layer.
Rather than directly regularizing the absolute
number of activated weights, we focus on the spar-
sity ratio. This choice is motivated by the sheer
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scale of parameters in LLLMs, where even minor
deviations from the desired sparsity ratio can result
in significant differences in absolute weight counts.
While regularizing the sparsity ratio does introduce
certain limitations, these can be effectively miti-
gated by adjusting the coefficient ;.

3.4 Regularization for Increasing Memo Rate

As discussed in Section 3.2, we treat memorization
as a specific form of a generation task. Increasing
the memorization rate of a model entails improving
its generation accuracy on memorization-specific
data.

Building on the optimization problem described
in Section 3.2, we incorporate the CLM loss of
the model on a memorization dataset as an addi-
tional regularization term to increase memorization
during weight pruning. The revised optimization
objective is expressed as:

mgn F©O)=L(f(ze;W,0),y:) + AsRs
+ Amﬁ(f(zm» W, @)7 ym)

(6)

where z., x,, denotes calibration data and mem-
orization data respectively, \,, regulates the im-
pact of the memorization-specific regularization
term. The calibration data is a training set used to
maintain generalization ability of the model during
pruning, while memorization data evaluate the per-
formance of the model on memorization-specific
tasks.

Notably, when increasing the memorization rate,
the optimization goals for the calibration dataset
and the memorization dataset align, as both aim to
minimize the CLM loss. This observation implies
that, in principle, a single dataset could suffice for
optimizing both objectives. However, to ensure
robust generalization and precise control over the
model’s memorization capabilities, we use distinct
datasets for calibration and memorization tasks.

3.5 Regularization for Decreasing Memo Rate

In contrast to increasing the memorization rate, de-
creasing it requires raising the CLM loss on the
memorization dataset. A straightforward approach
might involve directly subtracting the memoriza-
tion regularization term from the total loss. How-
ever, this could be ineffective because it creates
an unbounded optimization objective, amplifying
gradient sensitivity through the division effect of
the log function in CLM loss. Consequently, it will

disrupt pruning mask updates and risk degradation
of the model’s generation ability.

Instead, we are inspired by recent advancements
in machine unlearning (Yao et al., 2023; Halimi
et al., 2022; Yao et al., 2024), where gradient as-
cent techniques are used to "forget" specific data
points from the model. By increasing the CLM
loss on memorization data with unlearning meth-
ods, the model effectively learns to unmemorize
these patterns, thereby reducing its dependence on
memorized information. To ensure stability and
control over the extent of memorization reduction,
we adopt the concept of learning threshold from
Ozdayi et al. (2023) and introduce a two-step opti-
mization process, executed sequentially per itera-
tion to avoid conflicts between objectives:

Step 1: Minimize the pruning loss, which in-
cludes the calibration loss and sparsity regular-
ization.

In@in G(@) = E(f(l'a W, @)7 yc) + As R
(7

Step 2: Optimize the memorization loss R, to
meet learning threshold ¢, ensuring controlled re-
duction of memorization rate.

By setting an appropriate threshold ¢, this pro-
cess allows us to find a trade-off between the over-
all performance of the model and memorization
reduction, rather than assuming perfect separabil-

ity.
4 Experiment

4.1 Experiment Setting

Chosen models. Investigating memorization re-
quires the target models to be open-sourced regard-
ing both model and training data. We selected two
representative families of large language models:
GPT-Neo (125M, 1.3B, 2.7B) (Black et al., 2021)
and Pythia (410M, 1.4B, 2.8B) (Biderman et al.,
2023). GPT-Neo and Pythia are pretrained on the
Pile dataset (Gao et al., 2020a).

Datasets. We used two types of training datasets:
Calibration data for stabilizing generalization abil-
ity of the model during pruning, and memorization
data for evaluating the memorization ability of the
model. For calibration, we sampled 45,000 sen-
tences from C4 training set (Raffel et al., 2020)
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and concatenated them to match the model’s con-
text length, separated by a special SEP token. We
evaluated the model’s loss and perplexity on the
held-out WikiText (Merity et al., 2016) validation
set. For memorization, we extracted training data
of GPT-Neo and Pythia with the Language Model
Extraction Benchmark dataset (Google-research,
2022). This dataset is a curated subset of the Pile,
containing 15,000 sequences sampled specifically
for studying memorization behaviors. We split this
dataset into 14,000 samples for training and the
remaining 1,000 for testing.

Baseline. We compared our method against three
state-of-the-art pruning baselines commonly used
for large language models: magnitude pruning
(Han et al., 2015), a straightforward yet effective
approach in which weights are discarded based
on their magnitudes; SparseGPT (Frantar and Alis-
tarh, 2023), a second-order pruning method solving
a layer-wise reconstruction problem; and Wanda
(Sun et al., 2023), a computationally efficient layer-
wise pruning method leveraging activation out-
comes without any retraining. We also choose
CSP (Ozdayi et al., 2023) as a baseline to com-
pare against the effect of memorization mitigation.
Implementation. All main experiments were
conducted with 30% pruning sparsity. We used
AdamW optimizer with weight decay = 0.001 and
cosine annealing scheduler. Learning threshold ¢ is
set to different values for each kind of model. For
more details, refer to Appendix E.

4.2 Main Results

We present the evaluation results of our proposed
method in Tables 1 and 2 for the family of GPT-Neo
and Pythia, respectively. Following Ozdayi et al.
(2023) and Wang et al. (2024), we use Fractional
Extraction Rate (Fractional ER) and Exact Extrac-
tion Rate (Exact ER) as the main metric for evalu-
ating memorization. Exact ER measures the pro-
portion of the outputs where the model reproduces
the exact suffix from training data, and Fractional
ER measures the average proportion of matching
tokens between generated output and the actual
suffix, normalized over token length.

Performance on Pruning. Our method consis-
tently performs either equally or better than the
other pruning baselines. This is mainly due to the
use of global gradient information and its ability to
adjust pruning configurations. Specifically, for the
GPT-Neo family, our method provides a notable
boost in generation ability, improving performance

by 39.4%, 14.1% and 30.4%, respectively. These
results demonstrate the effectiveness of our pruning
approach, laying a solid foundation for the subse-
quent memorization regularization task.
Performance on Memorization. We evaluated the
performance of our method in regularizing mem-
orization with various settings. Since the three
baseline pruning methods lack dedicated mecha-
nisms to control memorization, their memorization
rates are passively affected by pruning, showing
the tendency to keep a certain amount of training
data. For instance, pruning GPT-Neo-2.7B with
Wanda reserves 65.9% of the Fractional ER and
41.9% of the Exact ER.

In comparison, the proposed methods work effi-
ciently in their respective setting. For the case of
increasing the memorization rate, our method can
maximize the growth of the model’s memorization,
or even exceed the original model’s memorization
rate, while basically retaining the original perfor-
mance of the model. For the GPT-Neo family, we
level the memorization rate on an average of 20.0%
for Fractional ER and 40.9% for Exact ER, and
for the Pythia family, the corresponding increase is
11.7% and 31.8%.

Moreover, our method can also largely suppress

the output of the training content in decreasing
setting. For instance, we can reach a nearly 100%
reduction in Exact ER and 89.4% reduction in Frac-
tional ER based on the learning threshold ¢. Com-
pared with the CSP method for suppressing memo-
rization, our method works well for both GPT-Neo
and Pythia families with an superior performance.
Furthermore, our approach ensures that the model’s
performance on memorized data stays around the
learning threshold ¢, demonstrating its effective-
ness in controlling memorization.
Extra Analysis. Besides the above analysis on
the effectiveness of our methods, several additional
observations are worth noting. First of all, an inter-
esting phenomenon is that our method, even when
no explicit memorization regularization is applied,
can achieve a significant reduction in memoriza-
tion rate, compared to the other three baselines. We
attribute this to the increase in the generalization
ability of the model after pruning using our method.
Considering that memorization affects the general-
ization ability of the model, it is likely that if the
generalization ability is strengthened, the problem
of memorization can be mitigated accordingly.

Moreover, we observe a trend in the model per-
formance under different memorization settings.

15147



Table 1: Results on GPT-Neo Family with 30% sparsity

Model Method WikiText Evaluation Memorization Evaluation
Test Loss Test PPL Fractional ER Exact ER Test Loss Test PPL
Origin 7.219 1364.782 0.349 0.172 2.078 7.989
Magnitude 9.813 18260.582 0.053 0.000 4.531 92.875
SparseGPT 7.688 2180.915 0.118 0.000 2.578 13.172
GPT-Neo Wanda 7.469 1752.415 0.097 0.000 2.719 15.161
125M
CSP (down) | 7.963 2871.701 0.084 0.003 3.155 23.447
Ours (no memo) 4.313 74.627 0.060 0.000 3.422 30.627
Ours (up) 4.438 84.563 0.485 0.289 2.406 11.092
Ours (down) 4.375 79.440 0.024 0.000 6.594 730.515
Origin 4.656 105.241 0.637 0.451 1.273 3.573
Magnitude 5.656 286.074 0.149 0.003 2.156 8.639
SparseGPT 4.656 105.241 0.391 0.145 1.484 4.412
GPT-Neo Wanda 4.844 126.945 0.397 0.154 1.531 4.624
1.3B
CSP (down) | 6.556 703.190 0.166 0.012 2.560 12.938
Ours (no memo) 3.453 31.599 0.115 0.001 2.531 12.569
Ours (up) 3.563 35.251 0.729 0.603 1.852 6.370
Ours (down) 3.406 30.152 0.083 0.000 2.703 14.926
Origin 5.344 209.296 0.685 0.498 1.133 3.104
Magnitude 6.031 416.235 0.144 0.004 2.078 7.989
SparseGPT 5.281 196.615 0.477 0.230 1.289 3.629
GPT-Neo Wanda 5.531 252.459 0.452 0.209 1.344 3.833
2.7B
CSP (down) | 6.288 538.141 0.133 0.007 2.422 11.270
Ours (no memo) 3.469 32.097 0.104 0.000 2.625 13.805
Ours (up) 3.578 35.806 0.732 0.610 2.078 7.989
Ours (down) 3.422 30.627 0.082 0.000 2.671 14.467
WikiText Evaluation Memorization Evaluation Memorization Rate
3.9-
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Figure 3: Ablation study of sparsity ratio on GPT-Neo-1.3B

Specifically, when the memorization rate is in-
creased, the pruned model using our method typ-
ically exhibits slightly worse performance on the
WikiText task compared to other cases. This ob-
servation aligns with the conclusion that increasing
memorization negatively impacts the model’s gen-
eralization performance, further highlighting the
trade-off between memorization control and gener-
alization ability.

Task-wise Performance. We also evaluate
the downstream impact using the Im-evaluation-
harness benchmark(Gao et al., 2024a) to illustrate
the harmlessness of our pruning method on original
generation tasks. Results on Pythia-1.3B show that
our method maintains competitive performance
across a variety of reasoning and comprehension
tasks, with minimal degradation compared to the
original model and clear advantages over existing

pruning baselines. Full task-wise results and com-
parisons are reported in Appendix B.2.

Training Efficiency. Due to the global mask train-
ing procedure, our pruning method is more compu-
tationally expensive compared to layer-wise prun-
ing methods like SparseGPT and Wanda. To quan-
tify this, our method takes nearly one and a half
hours to train on GPT-Neo-125M compared to
layer-wise pruning within 5 minutes. However,
these baselines are not designed for memorization
control and are significantly less effective. Besides,
compared to CSP, which is a strong memorization
suppression baseline, our method performs better,
while the cost of CSP is on par with our method.

4.3 Ablation Study

Various Sparsity. To better understand the impact
of sparsity on memorization, we conduct an abla-
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Table 2: Results on Pythia Family with 30% sparsity

WikiText Evaluation

Memorization Evaluation

Model Method
Test Loss Test PPL Fractional ER Exact ER Test Loss Test PPL
Origin 3.516 33.637 0.456 0.227 1.523 4.588
Magnitude 4.563 95.823 0.047 0.000 3.172 23.852
SparseGPT 4.125 61.868 0.066 0.001 2.578 13.172
Pythia Wanda 3.891 48.941 0.143 0.010 2.125 8.373
410M
CSP (down) | 7.083 1191.223 0.493 0.258 3.035 20.809
Ours (no memo) 3.625 37.525 0.134 0.007 2.625 13.805
Ours (up) 3.734 41.862 0.604 0.392 1.953 7.051
Ours (down) 3.719 41.213 0.057 0.000 3.047 21.049
Origin 3.156 23.482 0.655 0.402 1.148 3.153
Magnitude 3.594 36.370 0.144 0.007 2.125 8.373
SparseGPT 3.250 25.790 0.305 0.060 1.477 4.378
Pythia Wanda 3.250 25.790 0.367 0.128 1.375 3.955
1.4B
CSP (down) | 6.399 601.291 0.678 0.415 2.531 12.568
Ours (no memo) 3.266 26.196 0.148 0.015 2.688 14.695
Ours (up) 3.250 25.790 0.695 0.481 1.930 6.887
Ours (down) 3.281 26.609 0.057 0.000 3.188 24.228
Origin 3.000 20.086 0.738 0.494 1.016 2.761
Magnitude 3.297 27.028 0.169 0.026 1.984 7.274
SparseGPT 3.078 21.718 0.410 0.162 1.242 3.463
Pythia Wanda 3.063 21.381 0.483 0.215 1.172 3.228
2.8B
CSP (down) | 6.196 490.748 0.746 0.501 2.476 11.893
Ours (no memo) 3.141 23.118 0.102 0.003 2.844 17.180
Ours (up) 3.047 21.718 0.714 0.510 1.812 6.126
Ours (down) 3.141 23.118 0.074 0.000 2.703 14.926
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Figure 4: Ablation study of learning threshold on GPT-Neo-1.3B

tion study on the GPT-Neo-1.3B model, ranging
from 20% to 50%. The results are presented in
Figure 3.

As pruning inevitably leads to increased test loss
and decreased memorization rates, it is hard to ob-
serve changes in memorization when applying sup-
pression. Our primary focus here is on the behavior
of the model under our amplification setting. As
shown in Figure 3, both Fractional ER and Exact
ER metrics exhibit a consistent decreasing trend
as sparsity increases. For example, Fractional ER
declines from 0.740 at 20% sparsity to 0.688 at
50%, and Exact ER drops from 0.615 to 0.544 over
the same range.

On one hand, these results demonstrate the ef-
fectiveness of our approach in maximizing mem-
orization rate across different sparsity levels. On

the other hand, it also indicates that higher sparsity
mitigates memorization to some degree, as fewer
parameters are available to encode memorized in-
formation. However, the relatively modest decrease
suggests that memorization behavior in large lan-
guage models is more complex and resilient than
initially anticipated.

Impact of Unlearning Threshold. In the unlearn-
ing setting, we introduce a learning threshold ¢
from previous work (Ozdayi et al., 2023) to con-
trol the extent of memorization suppression. We
further conduct experiments on the GPT-Neo-1.3B
model, testing various threshold values to evaluate
its influence. The results are presented in Figure 4.

Our analysis reveals that as ¢ is incrementally
raised above the baseline loss observed on the mem-
orization dataset, there is a consistent reduction in
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both Fractional ER and Exact ER metrics, which
shows an increasingly potent suppression effect as
t increases. However, it is important to note that
when ¢ is set significantly higher than the calibra-
tion loss of the model, the losses on both general-
ization and memorization data converge toward ¢.
This suggests that overly aggressive suppression
can unintentionally impair the overall ability to gen-
erate coherent outputs. This challenge in balancing
memorization and generation will be revisited in
Appendix C.

Interestingly, the learning threshold ¢ also offers

flexibility in amplification settings due to its opti-
mization target. By lowering ¢ below the original
loss on the memorization dataset, it becomes pos-
sible to amplify the memorization. These findings
demonstrate the dual role of the learning thresh-
old ¢ as a critical hyperparameter. While it effec-
tively controls the degree of suppression, careful
calibration is necessary to balance memorization
suppression with the preservation of generalization
capabilities.
Training Strategy We investigate how training
strategies affect the performance of our pruning
method. Our results indicate that using smaller
batch sizes can achieve comparable performance to
large batch sizes while being more computationally
economical. Furthermore, prolonged training over
multiple epochs tends to harm generalization due to
overfitting on parameter redundancy. We find that
one-pass training over a sufficiently large dataset is
preferable. More detailed results and analysis are
provided in Appendix B.1.

5 Conclusion

In this work, we explored the interplay between
model pruning and memorization in LLMs, intro-
ducing a novel approach to control memorization
rates using gradient-based weight pruning. Memo-
rization in LLMs, while often regarded as a liability
due to privacy and ethical concerns, can also serve
as a valuable feature in specific applications, such
as knowledge retention in domain-specific tasks.
Our study presents a flexible framework that en-
ables both the suppression and amplification of
memorization by simply adjusting the pruning tar-
get to select parameters based on gradient informa-
tion.

Through extensive experiments on open-source
LLMs, including GPT-Neo and Pythia families,
we demonstrated the effectiveness of our method

across multiple model scales. By incorporating tai-
lored regularization terms, we were able to achieve
precise control over memorization rates while pre-
serving or even enhancing generalization perfor-
mance. Moreover, our comparative analysis against
state-of-the-art pruning baselines highlighted the
superior adaptability and efficiency of our approach
in controlling memorization rate for LLMs.

Limitations

Despite the effectiveness of our proposed gradient-
based weight pruning framework on controlling
memorization rate, several limitations remain.

First, while the combination of Gumbel-Softmax
sampling and STE allows for the generation of bi-
nary pruning masks with gradient flow, the reliance
on stochastic methods may introduce inherent vari-
ability. This can lead to suboptimal convergence
in certain scenarios, particularly when the model
is sensitive to slight perturbations in the sparsity
pattern. As a result, the method may require care-
ful tuning of hyperparameters and learning rates,
such as the temperature in Gumbel-Softmax and
the sparsity loss coefficient Ag, to ensure stability
and optimal performance.

Second, considering the property of memoriza-
tion, some weights simultaneously contribute to
both memorization and generalization. This over-
lap can complicate the optimization process, as the
removal of such weights might inadvertently de-
grade overall model quality. The trade-off between
memorization and generalization needs a curated
selection in learning threshold to have an ideal out-
come.

Finally, the computational overhead of training
with stochastic gates, such as Gumbel-Softmax
sampling, is higher than that of deterministic meth-
ods like layer-wise pruning. This increased cost
may pose challenges for scaling the framework to
much larger language models.

Ethics Statement

This work explores the use of gradient-based prun-
ing to control memorization in LLMs. While our
method offers a novel mechanism to either sup-
press or enhance memorization, we acknowledge
the ethical implications that arise from both as-
pects. Reducing memorization can contribute to
mitigating privacy risks, such as the unintended
leakage of sensitive or copyrighted training data.
This has positive implications for deploying LLMs
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in privacy-sensitive domains and aligning with data
protection standards.

Conversely, our method also enables the
amplification of memorization, which—if mis-
used—could potentially increase the risk of repro-
ducing proprietary or confidential content. We em-
phasize that our proposed framework is intended
for controlled and responsible usage and should
not be employed to intentionally extract or repli-
cate private data.

We conducted our research without access to any
personally identifiable or confidential information,
and all experiments were performed on publicly
available datasets. We encourage future work to
further examine the balance between utility and
safety in LLM memorization and to adopt appropri-
ate safeguards when applying similar techniques.
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A  Model Details

We construct pruning masks with discrete binary
gates to achieve global gradient control (Li et al.,
2022; Gao et al., 2020b). The basic formulation of
a discrete gate can be defined as:

M®={;

where 0 € [0, 1] is a learnable parameter.

This deterministic formulation provides a simple
and direct mechanism for pruning. However, it in-
troduces several critical limitations. Most notably,
it does not account for weights that may appear
inconsequential for general language generation
but play a pivotal role in the model’s memorization
capability. Relying solely on deterministic binary
gates often leads to suboptimal pruning masks, un-
dermining the intended balance between sparsity
and functionality.

To overcome these shortcomings, we extend the
discrete gate function into a stochastic framework,
allowing for greater flexibility and adaptability.
In this approach, we need to maintain gradient
flow during optimization while generating effec-
tive pruning masks. A straightforward method to

if 0 € [0.5,1],

9
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achieve this involves applying a Straight-Through
Estimator (STE) after Bernoulli sampling from the
gate parameter §. While STE enables gradient-
based learning of discrete masks, it often struggles
to generate high-quality masks for LLMs, espe-
cially when more nuanced control over sparsity
and memorization is required.

To address these challenges, we adopt a more
robust sampling technique, which is Gumbel-
Softmax sampling. This method not only provides
a differentiable approximation of discrete gates but
also enhances the expressiveness of the mask gen-
eration process. By leveraging Gumbel-Softmax,
we achieve a balance between flexibility and pre-
cision, enabling the pruning mechanism to effec-
tively target weights that are critical for controlling
memorization while preserving the model’s core
capabilities. However, Gumbel-Softmax alone gen-
erates soft masks, even when the temperature is set
to a low level, which is insufficient for our task. We
require complete binary masks to represent the acti-
vation or deactivation of weight parameters. Thus,
we incorporate STE to harden the soft masks pro-
duced by Gumbel-Softmax. This combination al-
lows us to retain gradient flow during optimization
while ensuring the binary nature of the final masks.

This stochastic gate formulation ensures
smoother optimization and better alignment with
the goals of sparsity-aware memorization control
in LLMs, paving the way for more reliable and
adaptable model pruning strategies.

B Complementary Experimental Results

B.1 Ablation Study on Training Strategy

Our experiments reveal several intriguing phenom-
ena related to the choice of training strategies, shed-
ding light on their impact on the effectiveness of
our pruning method.

Batch size is a critical hyperparameter in stan-
dard model training, often set to large values
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to smooth gradients and accelerate convergence.
However, due to the large scale of LLMs and the
relatively high computational cost associated with
our pruning method, it is essential to explore the
performance of our method using smaller batch
sizes.

Figure 5a illustrates the optimization process
with varying batch sizes, keeping the learning rate
fixed. Despite that larger batch sizes can acceler-
ate convergence, they also require more samples
and increase computational demands. Furthermore,
the results in Figure 5b reveal that there is little
difference in the final performance across different
batch sizes. These findings suggest that using larger
batch sizes may not be an "economical” choice, as
it increases training time, computational resource
consumption, and the number of samples required.
In fact, we find that the convergence of our algo-
rithm is more closely tied to the sparsity loss coef-
ficient Ay, and the number of iterations, rather than
batch size. By finetuning A, our method can still
converge optimally even when the batch size is as
small as 1.

Another critical factor we analyzed is the num-
ber of training epochs. As shown in Figure 6, the
performance of the pruned model significantly de-
grades as the number of training epochs increases.
This degradation is primarily attributed to the large
scale of parameters in LLMs. Despite freezing
the original weights and only selecting them, the
model still suffers from overfitting when trained
for multiple epochs due to the excessive parameter
redundancy in LLMs, where prolonged training re-
duces generalization performance. To mitigate this
issue, we recommend using a larger dataset and
training the model for a single epoch rather than
training for multiple epochs with fewer samples.
By focusing on a broader range of data in a single
pass, the model can better preserve its generaliza-
tion ability while achieving the desired pruning

effects.

B.2 Task-wise performance

To comprehensively evaluate the impact of our
pruning method beyond standard loss or perplex-
ity, we conduct an in-depth task-level analysis
on Pythia-1.3B using the Im-evaluation-harness
benchmark developed by EleutherAl(Gao et al.,
2024a). This benchmark encompasses a diverse
set of language understanding tasks, including
multiple-choice question answering, commonsense
reasoning, and reading comprehension, thereby en-
abling a fine-grained inspection of the model’s gen-
eralization capabilities across different reasoning
paradigms.

As shown in Table 4, our pruned model demon-
strates consistently competitive performance across
the various tasks, exhibiting minimal degrada-
tion when compared to the unpruned baseline.
When contrasted with other pruning baselines, our
method yields significantly more favorable task-
wise outcomes. For example, while Magnitude
pruning causes a substantial drop in BoolQ perfor-
mance (from 0.632 to 0.378), our approach retains
a score above 0.63, closely matching the original
model.

In summary, this task-wise evaluation reinforces
the conclusion that our pruning strategy introduces
negligible harm to the downstream functional per-
formance of the model.

B.3 Ablation Study on Regularization Term

To disentangle the influence of sparsity regulariza-
tion and memorization regularization, we conduct
extra experiments to show their individual impact
on the final outcome. The results are presented in
Table 5, based on the memorization amplification
setting. Here, we only focus on the "Memo-only"
setting, as the other two outcomes have been pre-
sented and discussed in Section 4.1.

As expected, the final model has negligible spar-
sity (e.g., 0.003 for GPT-Neo-1.3B), while yields
the highest memorization rates, with the Fractional
ER reaching 0.770 for the 1.3B model. This out-
come clearly demonstrates the effectiveness of the
memorization regularization term when its full ca-
pacity is available. Compared with the "Both" set-
ting, it proves that our method can enforce memo-
rization even within a significantly pruned subnet-
work, though comes at the cost of a slight degrada-
tion in performance of both tasks, highlighting the
inherent trade-off between promoting memoriza-

15154



Table 3: Results on suppression with reciprocal regularization

WikiText Evaluation Memorization Evaluation
Model
Test Loss Test PPL Fractional ER Exact ER Test Loss Test PPL
GPT-Neo-125M 4.375 79.440 0.014 0.000 98.5 5.998e+42
GPT-Neo-1.3B 3.484 32.602 0.030 0.000 69.5 1.526e+30
Pythia-410M 3.641 38.116 0.054 0.000 44.25 1.650e+19
Pythia-1.4B 4.125 61.868 0.036 0.000 55.75 1.628e+24

Table 4: Results on task-wise performance from lm-evaluation-harness benchmark

Model ARC-e ARC-c BoolQ HellaSwag WinoGrande PIQA OpenBookQA Avg
Origin 0.604 0.260 0.632 0.404 0.574 0.708 0.222 0.486
Magnitude 0.529 0.253 0.378 0.365 0.539 0.678 0.190 0.419
SparseGPT 0.574 0.249 0.617 0.392 0.558 0.705 0.202 0.471
Wanda 0.590 0.250 0.618 0.396 0.548 0.697 0.204 0.472
No memo 0.585 0.245 0.641 0.404 0.548 0.709 0.224 0.479
Up 0.587 0.253 0.634 0.402 0.559 0.711 0.220 0.481
Down 0.583 0.270 0.596 0.418 0.564 0.720 0.210 0.480

tion and maintaining general language modeling
capabilities.

In summary, the sparsity regularization term is
essential for achieving model sparsity, while the
memorization regularization term is critical for con-
trolling the model’s memorization behavior. The
combination of both terms allows for a precise bal-
ance, enabling the creation of a sparse yet highly
memorizing model, which demonstrates that each
component of our proposed loss function is vital to
the final result.

C Additional Suppression Strategy

In addition to the unlearning method for suppress-
ing memorization discussed in Section 3.5, we pro-
pose and investigate an alternative approach that
incorporates the reciprocal of the CLM loss as a
regularization term. This formulation inherently
maximizes the model’s loss on the memorization
dataset while stabilizing the training process. By
ensuring that the contribution of the memorization
term decreases as the corresponding CLM loss on
the memorization dataset increases, this strategy
creates a smoother and more bounded optimization
landscape.

The revised optimization objective is defined as:

m@in F(O©)=L(f(ze;W,0),y:) + AsRs
1 (10)
‘C(f(xma w, @)7 ym)

We implement the reciprocal regularization strat-
egy for the above models and the results are shown

+ Am

in Table 3. The results demonstrate that this ap-
proach performs well for smaller models, such
as GPT-Neo-125M, GPT-Neo-1.3B, and Pythia-
410M. These models successfully retain general-
ization capability after pruning, while achieving
extremely high loss on memorization datasets, ef-
fectively defending against extraction attacks.

However, this method often fails for larger or
more powerful models, such as Pythia-1.4B. They
exhibit degraded performance across datasets un-
der this regularization, indicating a negative impact
on their overall capabilities. Moreover, the sam-
pled masks could be extremely unstable, causing
inconsistent performance across multiple test runs.
Attempts to fine-tune hyperparameters to reduce
the weight of the regularization term yielded lim-
ited improvements.

These observations suggest that the memoriza-
tion behavior of large models is more intricately in-
tertwined with their generative capabilities. At the
parameter level, this implies that certain weights
may simultaneously contribute to both memoriza-
tion and generalization tasks, making disentangle-
ment by simply selecting weights nearly impossi-
ble in larger architectures. Therefore, learning a
trade-off through the method in Section 3.5 is a
much more realistic and effective way for mitigat-
ing memorization.

D Decomposing gate parameters

As discussed in Section 3.2, our approach utilizes
stochastic gate functions for each weight parame-
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Table 5: Ablation Study on Regularization Term

WikiText Evaluation

Memorization Evaluation

Model Method Sparsity
Test Loss Test PPL Fractional ER Exact ER Test Loss Test PPL

GPT-Neo Sparsity-only 4313 74.627 0.060 0.000 3.422 30.627 0.300
125M Memo-only 4.187 65.857 0.475 0.307 2.140 8.504 0.007
Both 4.438 84.563 0.485 0.289 2.406 11.092 0.300
GPT-Neo Sparsity-only 3.453 31.599 0.115 0.001 2.531 12.569 0.300
1.3B Memo-only 3.328 27.886 0.770 0.655 1.336 3.804 0.003
i Both 3.563 35.251 0.729 0.603 1.852 6.370 0.300
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Figure 7: Ablation study of decompose trick on GPT-Neo-2.7B

ter to generate binary masks. While effective, this
approach introduces a significant number of ad-
ditional learnable parameters, which can lead to
considerable computational overhead. This issue
becomes particularly challenging for large models,
such as Pythia-6.9B, where even a system with 8
A100 GPUs struggles to accommodate the resource
demands.

To mitigate this problem, we explore a decom-
posing strategy aimed at reducing the complexity
of the gate matrices. Specifically, we break down
each linear matrix for the gates into two low-rank
sub-matrices, a technique resembles the Low-Rank
Adaptation (LoRA) method. This decomposition
approach allows us to significantly reduce the num-
ber of parameters involved, offering a more com-
putationally efficient alternative. However, this
strategy inevitably results in a loss of fine-grained
control over the gates, as the ability to manipulate
individual gate parameters is diminished. To evalu-
ate the effectiveness of this decomposition strategy,
we conduct experiments on larger models, such as
GPT-Neo-2.7B. The results of these experiments
are presented in Figure 7.

As the dim of the decomposing matrices de-
creases, we observe a corresponding degradation
in the control over gate parameters. Specifically,
when the decomposition dimension reaches 1280,
which splits the original gate matrix into two low-
rank matrices with an equal number of parameters,
the final performance of the pruned model devi-
ates significantly from that of the unpruned model

and also the pruned model with full gate matrices.
This indicates that while the decomposition strat-
egy reduces computational overhead, it also incurs
a performance cost.

These findings suggest that further exploration is
needed to minimize the performance loss when ap-
plying the decomposition technique. Future work
could focus on optimizing the decomposition pro-
cess or integrating additional techniques to bet-
ter preserve fine-grained control while maintaining
computational efficiency.

E Experiment Details

Hyperparameters. All main experiments are con-
ducted with 30% pruning sparsity. We basically
use AdamW optimizer with weight decay = 0.001
and cosine annealing scheduler. For GPT-Neo
family, we set A\; = 160, \,;, = 1 for amplifi-
cation, A\; = 120, \,,, = 1 for suppression, and
train with learning rate = 3e-3. For Pythia fam-
ily, we set Ay = 240, \,;, = 1 for amplification,
As = 160, A, = 1 for suppression, and train with
learning rate = 2e-3. Learning threshold ¢ is de-
termined by the model scale and the loss during
training. For instance, we set t = 4.0 for GPT-Neo-
125M, t = 2.0 for GPT-Neo-1.3B, GPT-Neo-2.7B,
Pythia-410M and Pythia-1.4B, ¢ = 1.5 for Pythia-
2.8B.

Training Environment. We implement our algo-
rithm in PyTorch and use the HuggingFace Trans-
formers for loading target models and calibration
datasets. All experiments on smaller models (with
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capacities under 7B parameters) were conducted on
a system equipped with 8 NVIDIA A6000 GPUs,
each providing 48GB of memory. For experiments
involving larger models, we utilized a system with
8 NVIDIA A100 GPUs.
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