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Abstract

Multilingual large language models (LLMs)
often exhibit factual inconsistencies across
languages, usually with better performance
in factual recall tasks in high-resource lan-
guages than in other languages. The causes
of these failures, however, remain poorly un-
derstood. Using mechanistic analysis tech-
niques, we uncover the underlying pipeline
that LLMs employ, which involves using the
English-centric factual recall mechanism to
process multilingual queries and then translat-
ing English answers back into the target lan-
guage. We identify two primary sources of
error: insufficient engagement of the reliable
English-centric mechanism for factual recall,
and incorrect translation from English back
into the target language for the final answer.
To address these vulnerabilities, we introduce
two vector interventions, both independent of
languages and datasets, to redirect the model
toward better internal paths for higher factual
consistency. Our interventions combined in-
crease the recall accuracy by over 35 percent
for the lowest-performing language. Our find-
ings demonstrate how mechanistic insights can
be used to unlock latent multilingual capabili-
ties in LLMs.1

1 Introduction

Large language models (LLMs) are becoming in-
creasingly multilingual, yet they still demonstrate
great language inequalities across various tasks.
One issue concerning the reliability of multilingual
LLMs is the cross-lingual factual inconsistency
(Qi et al., 2023): even though a question like “What
is the main religion in Thailand?” has only
one correct answer, posing it to the same model in
different languages can yield conflicting responses.
This raises concerns about the reliability of mul-
tilingual LLMs given their higher untruthfulness

*Equal contribution.
1Our data and code can be accessed here.

rate when handling non-English inputs (Deng et al.,
2023; Yong et al., 2023; Liu et al., 2025).

Recent interpretability works suggest that mul-
tilingual LLMs “think” in their predominant pre-
training languages, most often English in the in-
termediate layers (Wendler et al., 2024; Wu et al.,
2024). Follow-up work (Dumas et al., 2024; Schut
et al., 2025) shows that concept and language sig-
nals are represented independently. For example,
Tang et al. (2024) and Zhao et al. (2024) observe
neurons in the early and late layers in charge of
controlling language specificities in the model.

In the context of factual recall, previous studies
have mainly focused on English monolingual mod-
els (Geva et al., 2023; Meng et al., 2022; Chughtai
et al., 2024), breaking down how facts are stored
and retrieved. Fierro et al. (2025) and Wang et al.
(2025) further investigate the process for multilin-
gual models and confirm that intermediate retrieval
steps are close to English and answer formation in
later layers are language-specific.

These studies together provide converging evi-
dence that across layers, LLMs process inputs in
language-specific space, move and solve the task
in English-centric concept space, and move back
to language-specific output space. However, no
existing study has functionally linked these stages
into a unified mechanism, nor systematically con-
nected them to specific failure modes underlying
cross-lingual factual inconsistencies. To address
the gap, we make the following contributions:

1. Characterizing the multilingual fact recall
pipeline: In Section 2, we integrate and ex-
tend the results from prior work and propose
a single hypothesized pipeline that is consis-
tent with model behavior and intervention.
Our analysis shows that factual information
is first retrieved in English using intermedi-
ate English-centric mechanisms, followed by
translation into the target language in later
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model layers.

2. Error analysis of multilingual inconsisten-
cies: By comparing correct and incorrect fac-
tual recall instances, we identify two key fail-
ure points: (1) the model generates incorrect
language-specific answers despite forming
correct intermediate English answers, and (2)
the model fails to generate correct intermedi-
ate English answers in the first place (§2).

3. Targeted interventions for error mitigation:
Based on these failure modes, we introduce
two language and dataset-independent vector
interventions. First, in Section 3, we lever-
age the representation difference between re-
call and translation tasks to promote accurate
translation of correct intermediate English an-
swers. For the second, in Section 4, we de-
rive a general in-context learning signal to
enhance the English-centric recall stage.

4. Improvement in end-to-end factual recall:
We show that combining both interventions
leads to substantial improvements in factual
recall—boosting accuracy by up to 37.6 per-
centage points in the lowest-performing lan-
guage and achieving an average gain of 19.04
points across all evaluated languages, and out-
performing baselines such as explicit transla-
tion on held out tasks.

Together, our work highlights how LLMs can
falter when handling information in multilingual
contexts. By offering mechanistic insights into
the processing pipeline, we identify promising op-
portunities for targeted interventions that can both
uncover latent capabilities and enable more modu-
lar control of LLM behaviors.

2 Multilingual Factual Recall Pipeline

Factual Recall Datasets Similar to previous
works (Geva et al., 2023; Fierro et al., 2025; Wang
et al., 2025), we represent each fact as a (subject,
relation, answer) triple. The subject and rela-
tion are embedded in a natural language prompt,
which is taken by the model as input; the model
is expected to generate the answer as the next to-
ken. For example, the input for the fact triplet
(Thailand, main religion, Buddhism) is
“The main religion in Thailand is”, where
the model should predict “Buddhism”. To study
the recall mechanism at scale, we curate a factual
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Figure 1: Hypothesized pipeline for multilingual fac-
tual recall. In this work, we focus on (1) the late-layer
conversion highlighted in green on the right (§3) and
(2) the English-centric factual-recall mechanism high-
lighted in yellow (adapted from Geva et al. (2023) and
see details in §4.)

dataset containing 2,862 validated2 triples that rep-
resent parallel facts across six languages (English,
Chinese, Japanese, Korean, French, and Spanish).
These languages are chosen to capture similarities
and differences across diverse language families
and writing scripts. Our dataset spans ten distinct
relation types, including country languages, cur-
rencies, religions, and musicians’ instruments, en-
compassing facts related to various geographical
regions (See dataset details in Appendix B).

Characterizing Multilingual Factual Recall
We use the logit lens (Nostalgebraist, 2020) to un-
derstand how models arrive at the final answer dur-
ing the factual recall process. Logit lens decodes
the intermediate representations of an LM into to-
kens and has been widely used as a window to un-
derstand the internal processing pipeline (Merullo
et al., 2023; Wendler et al., 2024; Wu et al., 2024;
Schut et al., 2025; Zhang et al., 2024; Wang et al.,
2025). Specifically, we take the latent represen-
tation of each layer at the last token position and
project it onto the vocabulary space by multiplying
the unembedding matrix. Then, after applying the
softmax function, we obtain the probability distri-
bution for the next token prediction. This can be
thought of as a “print statement” to see how the
model is computing its final prediction across each
intermediate layer of the forward pass.

As previous works have pointed out (Wendler
et al., 2024; Zhao et al., 2024; Schut et al., 2025),

2Each triple is manually validated to ensure it is correct.
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Figure 2: The bottom bar summarizes model performance on multilingual factual recall across languages. The
figures above display average rank changes of answers by layer using Logit Lens with Japanese prompts. The left
shows rank changes across correct instances. The middle and right show incorrect ones, which can be broken down
to cases where intermediate English answers are right or wrong respectively.

if the model primarily performs factual recall in
English, we would expect the English answer to
emerge as the top-ranked predicted token in the
middle layers before the answer in the target lan-
guage appears. In contrast, if the model operates in
the target language or an interlingua, we would see
either the target language as top-ranked throughout
layers or no consistent pattern of language domi-
nance. From Figure 2 (left), when applying logit
lens to Llama-3.2-3B (Grattafiori et al., 2024) for
the correct factual recall instances (21.3% of all
examples), we observe that the rank of the cor-
rect English answers (green) starts to decrease first
around layer 10. At layer 21 in particular, the
English answer is ranked as the top prediction on
average, but from this point onward, the rank of the
target language answer keeps decreasing and takes
over at the very last layers. These observations sug-
gest that, the model conducts factual knowledge
retrieval in an “English-centric” concept space and
only produces target language in the final decod-
ing stages, supporting the hypothesized pipeline in
Figure 1.

But what happens in the remaining 78.7% of
cases where the model fails to produce the correct
target-language answer? We further investigate the
failure cases by applying the logit lens to the in-
correct outputs. As shown in Figure 2 (middle),
for the first type, in 21.7% of the error cases, the
model successfully produces intermediate English
answers around layer 21 but the target-specific
answer never becomes a top-ranked prediction.
The second case is the remaining 78.3% instances
(right), where the model is unable to retrieve the
correct English answer therefore neither English
or the target-language answer is top-ranked. We
hypothesize that the first failure could result from

insufficient late-stage translation where the second
one is due to an underutilized English-centric recall
mechanism.

We present this integrated hypothesized pipeline
as intuition and motivation for subsequent work.
In the next two sections, we further validate the
pipeline by investigating potential causes of the
failure points: does the model activate subop-
timal components when processing non-English
prompts, leading to translation and recall failures?
We then propose targeted interventions to encour-
age correct translation (§3) and recall (§4) in order
to mitigate these issues. See Section 7 for fur-
ther discussion of this pipeline and the questions it
leaves open.

3 Fixing Incorrect Translation Errors

Above, we see that 21.7% of errors appear to be
due to bad translation–i.e., the model “knows” the
answer in English yet outputs the wrong answer
in the target language. In this section, we first in-
vestigate the pathway used to do internal language
translation, and find that it is not the same as the
pathway the model uses when prompted to trans-
late directly (§3.1). We then show that leveraging
the model’s translation pathway leads to significant
performance increases (§3.3).

3.1 Translation Mechanism is Insufficiently
Used

As shown in Section 2, we notice that the model
successfully produces intermediate English an-
swers around layer 21, but fails to translate the
answer back to the correct input-language answer.
To test whether the problem stems from an overall
poor translation ability, we explicitly prompt the
model to translate the expected answer into the
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target language directly.
We construct a parallel translation dataset

aligned with the original factual recall examples.
For each instance, we use the expected English an-
swer to create a prompt for explicit translation (e.g.
Please translate this word into Spanish.
Word: mammal, Translation:), and expect the
model’s answer to be the same as the factual recall
target answer (e.g. mamífero). The model can
reach 56.1 accuracy on this translation task (See
Appendix Figure 7 for more details) compared to
21.3 accuracy when being prompted for factual
recall. This observation suggests that the model is
capable of translating tokens to target languages ac-
curately when being explicitly prompted, yet such
capabilities are not fully leveraged in the factual
recall context.

Motivated by this finding, we investigate
whether there is a difference between the compo-
nents used for explicit translation prompts and the
components used to translate in the context of fact
recall. (We henceforth refer to this latter translation
process as conversion when necessary to differen-
tiate the two processes.) We conduct logit lens
analysis and activation patching (Vig et al., 2020)
using TransformerLens (Nanda and Bloom, 2022)
on both tasks and observe a similar structural be-
havior in factual recall and explicit translation: the
English answer token is shifted to the final posi-
tion by around layer 17, and translating to input-
language answer is predominantly handled by the
MLP layers 22–27 (see Figure 8, Appendix D.2).
However, a closer inspection of neuron activation
patterns reveals a crucial difference: although both
tasks leverage layers 22–27, the cosine similarity
between their MLP activations averages only 0.5
across layers (Figure 3 (a)). This indicates partial
but not full overlap — the same layers are active,
but the internal translation pathways differ.

Neuron similarity shows that the model is not
engaging the most effective translation neurons un-
less explicitly prompted. However, can we extract
a general signal to steer the model toward activat-
ing these components during factual recall? At
layers 21–25, the last-token representation in both
tasks encodes the same intermediate English an-
swer, but only the explicit translation task moves
toward a more accurate non-English representation.
This suggests that, at the intermediate layer where
English answers can be decoded, the representa-
tion carries not just shared semantic content but
also a distinct task signal—one that activates differ-

ent downstream pathways for fact-recall language
conversion vs. explicit translation.

3.2 Translation Difference Vector

Drawing from the difference-in-means concept
editing approaches (Marks and Tegmark, 2024a;
Belrose, 2023; Arditi et al., 2024), we hypothe-
size that the difference between the model’s mean
residual stream activations when processing fact-
recall versus translation prompts can be used to
nudge the model to activate a better translation
route. Specifically, for each layer ℓ ∈ L where
L = {21, 22, 23, 24, 25, 26, 27}, we first compute
the mean activation h̄

(ℓ)
C for all fact-recall prompts

pC ∈ C and h̄
(ℓ)
T for all translation prompts pT ∈ T

as follows3:

h̄
(ℓ)
C =

1

|C|
∑

pC∈C
h(ℓ)pC h̄

(ℓ)
T =

1

|T |
∑

pT ∈T
h(ℓ)pT

(1)
We define the translation difference vector at layer
ℓ as ∆(ℓ) = h̄

(ℓ)
T − h̄

(ℓ)
C . To intervene, we add ∆(ℓ)

to the residual stream of a multilingual fact-recall
input at layer ℓ at the final token position4.

3.3 Effect of Translation Vector Intervention

To determine the most effective point of interven-
tion, we evaluate translation difference vectors ex-
tracted from each of the layers 21 through 27. By
testing each on a held-out validation set5, we find
that intervening at layer 21 yields the largest im-
provement in this stage’s average performance (Ap-
pendix D.2.2). We report both component- and
task-level effects of this intervention on the test
set.

As shown in Figure 3(a), following the interven-
tion, the cosine similarity between neuron activa-
tions during fact recall language conversion and
those during explicit translation increases. This
suggests on the component-level, the model’s in-
ternal behavior during multilingual fact-recall is
being steered to more resemble that of the transla-
tion task. To evaluate performance improvement,

3Note that both h̄
(ℓ)
C and h̄

(ℓ)
T are computed across relation

datasets and languages. We also experiment with language-
specific translation vectors, computed by averaging activations
over translation prompts within each language, which yields
comparable performance to the language-agnostic vector.

4The intervention is computed using the residual stream
value before layer processing and reinserted at the same point.

5We split our data into train-val-test subsets according to
a 40-10-50 ratio (exact sizes = 962, 287, 1495 respectively).
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（a) （b) （c)

Figure 3: Effect of Translation Vector Intervention: (a) Neuron cosine similarity comparison between the recall
task and translation task in late layers. (b) The rate comparison of correct final answers given correct intermediate
English answers. (c) Recall task accuracy breakdown per language on the test set.

we measure the conversion correctness rate, de-
fined by the proportion of cases where the model
correctly produces the final answer, conditioned
on identifying the correct intermediate English an-
swer. Figure 3(b) shows that the intervention raises
the average conversion correctness across all lan-
guages to an average of 67.74%. Compared to
the original 39.56% conversion correctness, this in-
tervention has significantly recovered the model’s
translation capability across different languages.

This improvement at the conversion stage leads
to a corresponding increase in factual recall accu-
racy across all languages, as shown in Figure 3(c).
We observe that the intervention has more signif-
icant impacts on language with non-Latin scripts
(i.e. Chinese, Japanese and Korean) and modest
impacts on French and Spanish, given their higher
conversion rate prior to the intervention.

The translation vector intervention supports the
previous intuition about why translation failures
occur: These failures are not due to a lack of trans-
lation capability; rather, when given a non-English
prompt, the model lacks a signal to sufficiently in-
tegrate the optimal translation components in its
fact-recall process. By injecting a single, general-
purpose translation signal, we can recover much of
the lost performance.

4 Fixing Incorrect English Recall Errors

Previously, we show that applying the translation
difference vector intervention effectively corrects
the conversion stage error illustrated in Figure 2(b).
However, as shown in Figure 2(c), a different class
of failure arises earlier: when given multilingual
prompts, the model fails to retrieve the correct En-
glish answer, resulting in an incorrect final output
even with better translation in late layers.

In this section, we investigate the middle recall
stage (Figure 1(b)) and identify that the English-

centric factual recall pathway (Figure 1) is under-
utilized in multilingual settings. We then introduce
another vector-based intervention derived from in-
context learning to improve the English-centric
recall mechanism for multilingual factual recall.

4.1 English Factual Recall Components are
Insufficiently Activated

Based on prior work and our logit lens analysis,
generating intermediate English answers suggests
that the model might internally rely on a similar
factual recall mechanism used for English prompts.
We analyze the recall stage at a finer granularity:
for both English and non-English prompts, we look
at substages of the recall pipeline to understand
whether non-English cases share the same mecha-
nism and where inconsistencies may arise. For En-
glish factual recall, one of the critical substages in
early-middle layers is relation propagation (Geva
et al., 2023), which refers to the phenomenon that
relation tokens get propagated to the final token
position for final answer extraction. For exam-
ple, as illustrated in Figure 1(b), given the prompt
“The official religion in Thailand is”,
the relation token “religion” should appear as
the top-ranked decoded prediction at the last token
position at intermediate layers. After the subse-
quent answer extraction event, the answer token
“Buddhism” then replaces the relation token as the
top-ranked prediction. To track this behavior, we
further use the logit lens as a diagnostic tool to
quantify the rate of relation propagation and an-
swer extraction across layers.

First, for the relation propagation substage, we
compute the rate of relation propagation as the
proportion of examples in which English relation
token (or equivalent6) appears as the top-ranked

6We account for cases where the relation expressed in the
prompt spans multiple tokens and include synonymous forms.
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（a) （b) （c)

Figure 4: Effect of Recall Vector Intervention: (a) Intervention significantly improves the relation propagation
substep (around layer 16). (b) English answer correctness: the intervention allows for more correct predictions of
non-English final answers. (c) Task accuracy breakdown for all languages.

prediction at the final token position. Comparing
English and non-English prompts, we find that the
relation information propagates at similar layers
but English prompts have significantly higher rates.
As shown in Figure 4(a), at layer 16, relation to-
kens reach the final position in 43.30% of English
prompts (purple line), compared to only 32.65%
for multilingual prompts (yellow line). This dis-
crepancy suggests that multilingual prompts trigger
the relation propagation as English prompts, yet
not as sufficiently.

Subsequently, we measure the answer extraction
rate, defined as the percentage of instances across
layers where the model’s top-ranked decoded token
transitions to the correct English answer, indicating
successful answer extraction. In Fig. 4(b), we see a
consistent increase beginning at layer 15 and peak-
ing at layer 21 for both English and non-English
prompts. However, there exists a substantial gap
where English prompts achieve significantly higher
rates compared to non-English ones.

While English factual recall prompts can more
successfully activate the internal factual recall
mechanism, propagating the relation token and
then querying for extraction, the model sometimes
fails to follow this path effectively when given
non-English prompts. This comparison between
English and non-English suggests that the recall
inconsistencies result from earlier task recognition
and relation token identification stages.

4.2 Recall Task Vector

Where and how can we provide a stronger signal
to sufficiently activate the English-centric recall
substages for multilingual cases? Prior work has
highlighted the importance of in-context learning
(ICL) for task recognition. In particular, Sia et al.

Implementation details are provided in B.1 and B.2.

(2024) argues that in-context learning helps with
identifying the task rather than learning it. Con-
sistent with this view, in Figure 4(a) and (b), we
observe that given five-shot non-English ICL ex-
amples, both relation propagation and answer ex-
traction significantly improve and become more
aligned to the English rates (green line).

Beyond explicit ICL examples, function vec-
tors (Todd et al., 2024) and task vectors (Hendel
et al., 2023) extracted from ICL can be injected
into zero-shot runs to achieve comparable perfor-
mance to ICL. Can we similarly derive a signal
that helps to better activate intermediate English
recall mechanisms under multilingual settings?

We construct a recall vector that aims to capture
a general activation signal associated with English
factual recall. Using all training instances with 5-
shot ICL examples (see examples in Appendix E.6),
we compute the average hidden activation h̄ℓ at the
final token position, extracted at a specific layer
ℓ. We inject this averaged vector into the model’s
residual stream at layer ℓ and then evaluate the
test set. Different from prior work, this vector is
extracted and applied for samples across different
tasks (different relation-datasets and languages),
so the vector is a task-independent signal that mo-
tivates a general recall behavior.7

4.3 Effect of Recall Vectors

To identify the optimal recall vector, we use the
same train-val-test split strategy as in 3.3 and com-
pute a set of candidate intervention vectors for
each intervention layer ℓ ∈ [L] and scaling fac-
tor i8 (which controls the intensity of the injected

7We also extract vectors specific to each relation-dataset
and test their effect. We find that dataset-specific vectors have
comparable performance with the independent ones.

8We experiment with scaling factors ranging from 1 to 5
because higher values reduce answer quality.
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signal). This results in |I| × L candidate vectors.
Each candidate is evaluated on the validation set to
assess its effectiveness in improving the model’s
factual recall, specifically by measuring gains in
intermediate English answer accuracy and relation
propagation. The most effective vector is selected
based on its ability to increase English answer cor-
rectness. As shown in Appendix E.6, the optimal
configuration corresponds to layer ℓ = 3 with a
scaling factor of i = 2.

Using the best configuration, we observe that
this dataset-independent recall vector triggers more
relation propagation than ICL examples (Fig-
ure 4(a) red line), resulting in a significant boost
of successful extraction in (Figure 4(a), red line).
At the component level, we observe that after the
intervention, the attention heads most important
for English fact recall become more active during
multilingual factual recall processing (Appendix
Figure 15,16). Furthermore, when decoding from
the output vectors of attention modules, more cor-
rect English answers are directly outputted (Ap-
pendix Figure 13). These component-level change
support our hypothesis that previous multilingual
failures stem directly from insufficient engagement
of these English factual recall components, and the
general recall vector intervention delivers an effec-
tive signal in re-engaging the internal processing
of the English factual recall mechanism, leading to
better overall answer retrieval across all languages
(Figure 4(c)).

It’s surprising that we are able to extract and ap-
ply a task-independent and language-independent
recall vector to improve general zero-shot perfor-
mance across ten diverse relations and five lan-
guages. This contrasts with previous studies on
function and task vectors (Todd et al., 2024; Hen-
del et al., 2023), which focus on vectors tailored to
specific tasks (e.g., retrieving a country’s capital).
Understanding how to extract such a generalizable
signal requires further investigation, as it offers
new insights into the granularity of the information
these vectors encode.

5 Intervention Effects

In Figure 5 (a), we compare the intervention effects
of the translation vector, the recall vector, and their
combination. For Chinese, Japanese, and French,
we find that the combined intervention yields the

highest final accuracy.9

We additionally compare our intervention to
two non-mechanistic baselines. First, “translate-
recall-translate” is a multi-step prompting strategy
in which we query the model with three prompts
sequentially: explicitly instructs the model to trans-
late the question into English, conduct the task in
English, and then translate the response back to
the target language (Huang et al., 2023; Shi et al.,
2022). For each example, we pass intermediate
outputs from one step to the next and use the fi-
nal output for evaluation. Second, we compare
against fine-tuning, where we fine-tune the model
on all training sets across languages and relations
for 30 epochs and report the performance on the
best checkpoint.10

Our results in Figure 5 (b) demonstrate that our
intervention consistently outperforms the translate-
recall-translate baseline (detailed analysis in Ap-
pendix G). While finetuning achieves higher over-
all accuracy, our approach remains competitive,
particularly for languages in non-Latin scripts.
This finding suggests that our training-free inter-
vention improves upon prompting methods and,
with performance comparable to finetuning, high-
lights its potential for robust cross-lingual knowl-
edge retrieval without the need for additional train-
ing resources.

6 Related Work

As discussed in Section 1 and 2, our work builds
on prior investigations into factual recall mecha-
nisms (Geva et al., 2023; Meng et al., 2022; Hase
et al., 2023; Chughtai et al., 2024; Yao et al.,
2024) and multilingual processing in language
models (Conneau et al., 2020; Muller et al., 2021;
Wendler et al., 2024; Wu et al., 2024; Schut et al.,
2025; Chughtai et al., 2024; Fierro et al., 2025;
Zhang et al., 2024; Ferrando and Costa-jussà, 2024;
Wilie et al., 2025; Nie et al., 2025; Lim et al.,
2025). Closely related concurrent work (Wang
et al., 2025) also addresses translation failures at
the final generation stage. In contrast, our approach
(1) introduces a language-agnostic intervention that
generally activates more translation neurons in-
stead of linear mapping between languages, and
(2) additionally targets an earlier failure point in

9See Appendix F.1 for a detailed configuration and
substage-level comparison of these effects.

10We also evaluate the generalization capabilities of our
methods and baselines by holding out a subset of relations for
testing. Further details can be found in the Appendix H.
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(a) (b)

Figure 5: (a) Comparing the individual and combined effects of the translation and the recall vector. (b) Performance
comparison between our intervention and baseline methods across three random data splits.

the factual recall pipeline, offering interventions
at the intermediate "recall" stage that further vali-
date the multi-step structure of multilingual factual
retrieval.

Our intervention methods are inspired by pre-
vious works in steering vectors. They modulate
model behavior at inference time by injecting
learned vectors into intermediate activations (Sub-
ramani et al., 2022; Turner et al., 2023; Li et al.,
2023; Panickssery et al., 2023; Marks and Tegmark,
2024b; Tigges et al., 2023; Arditi et al., 2024),
Other related vector-based intervention includes
function and task vectors (Todd et al., 2024; Hen-
del et al., 2023), which focus on understanding
transformers as learning compact, concrete, and
causal vector representations of higher-level func-
tional concepts. Differently, we construct dataset-
independent and language-independent vectors to
strengthen latent pathways already present in the
model. This goal aligns with component reuse ap-
proaches (Olsson et al., 2022; Gurnee et al., 2023;
Merullo et al., 2024), though we operate at a higher
level—steering computation toward effective in-
ternal trajectories without explicitly localizing or
reactivating individual components.

7 Discussion

We describe a comprehensive pipeline which ex-
plains multilingual LLMs’ factual recall mecha-
nisms, integrating and extending findings from
previous interpretability studies on both multilin-
gual models and English factual recall. Using
mechanistic insights from this pipeline, we identify
sources of error and design targeted interventions.
The predictable effects of these interventions sup-
port our hypothesis that multilingual LLMs pro-
cess information through an English-centric con-
cept space before generating language-specific re-

sponses. Our results raise several interesting direc-
tions warranting further investigation:

Understanding Early Layers While our inter-
vention improves the propagation of English re-
lations in multilingual prompts, the precise con-
nection between the language-specific translation
stage and the subject enrichment substep in early
layers remains unexplored. Our preliminary analy-
sis reveals that non-relation tokens (approximately
13% of subject tokens) also undergo translation
to English in intermediate layers. However, the
reliability of the logit lens for early-layer analysis
is questionable (Belrose et al., 2023; Ghandehar-
ioun et al., 2024). Future research would benefit
from alternative analysis strategies that can more
faithfully reflect model behavior in early layers.

In-context learning vs. Interventions In Sec-
tion 4, our recall vectors extracted from ICL runs
demonstrate positive improvement on multilingual
factual recall tasks. However, standard 5-shot ICL
outperforms our intervention-based method. This
is expected, as ICL encodes more direct language
and task-specific information compared to our lan-
guage and task-agnostic vectors. Nevertheless, this
raises questions about the relative merits of mecha-
nistic interventions like we propose vs. more famil-
iar “black box” techniques for influencing model
behavior. Of course, providing multiple in-context
examples can often be impractical in real-world
applications–asking users to provide many fact re-
call examples in order to look up one fact would be
cumbersome. Nonetheless, as increasing progress
is made on mechanistic approaches, more work
will be needed to determine the best method for
achieving the desired end-system behavior.
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8 Conclusion

We introduce targeted vector-based interventions
that effectively reduce cross-lingual factual recall
inconsistencies, validating the multilingual LLM
processing pipeline observed in previous research.
Our work represents an initial step toward leverag-
ing mechanistic insights to direct the model toward
better internal paths to unlock its hidden potential.
Future research should look into developing auto-
mated methods to identify such weaknesses and
implement corresponding solutions, improving the
robustness of multilingual LLMs across diverse
linguistic contexts.

Limitations

Our study’s scope is limited to five non-English
languages and ten relations on a single model.
We observe consistent performance gains across
languages, with more significant improvements
seen in languages with non-Latin scripts such as
Chinese, Japanese, and Korean. Future research
should expand this investigation to more diverse
language families and syntactic structures in order
to determine how general the observed mechanism
and interventions are. Additionally, quantifying
how our findings apply to relations of varying com-
plexity or different models would provide a more
comprehensive understanding of multilingual fac-
tual recall mechanisms.

Ethical Considerations

This study investigates the mechanisms behind
multilingual factual recall in LLMs and proposes
targeted interventions to address cross-lingual fac-
tual inconsistencies. The dataset used in our ex-
periments is manually curated and thoroughly re-
viewed to ensure that it does not contain any per-
sonally identifiable information or sensitive data.
Moreover, our proposed intervention methods can
provide actionable insights on how to improve fair-
ness and reduce bias across languages in existing
multilingual LLMs. Future research is necessary to
understand the generalizability and robustness of
these methods through more comprehensive evalu-
ation across additional languages, tasks, and model
architectures.
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A Model Details

The experiments and analysis of this paper are
mainly conducted on Llama-3.2-3B (Grattafiori
et al., 2024), which consists of 28 layers and 24
attention heads per layer. To further evaluate the ro-
bustness of our findings, we replicate our analysis
on Qwen-2.5-3B (Qwen Team, 2024), which has
36 layers and 16 attention heads per layer. For de-
tailed analysis on Qwen, please refer to Section I.

B Dataset Construction

To study the factual recall mechanisms of language
models at scale, we curate a multilingual dataset
spanning ten different relations and five languages,
as detailed below.

For each relation, we use o111 to generate a
list of 50 English (subject, attribute) pairs.
We manually verify each generated triplet using
Google Search to eliminate incorrect or ambiguous
cases. We then prompt o1 to produce semantically
equivalent prompts in six languages: English, Chi-
nese, Japanese, Korean, French, and Spanish. All
translations are manually verified to ensure accu-
racy. Because we focus on factual knowledge that
holds across languages and cultures, the underly-
ing entity in each triplet remains constant; only its
surface linguistic form differs.

We explicitly instruct o1 to include facts associ-
ated with diverse geographical regions by prompt-
ing it to “make sure to include factual pairs from all
geographic regions”. This design choice allows us
to test whether language models generalize factual
knowledge across multilingual prompts, even when
the facts are not centered around English-speaking
regions. For instance, under the musician instru-
ment relation, our dataset includes prompts about
Asian musicians such as “The primary instrument
played by Joe Hisaishi is the”.

In total, our dataset comprises 2,862 verified
fact triplets across six languages. The statistics
per relation are shown in Table 1 and see prompt
templates in Table 2. Our data can be accessed
here under the CC-BY-SA 4.0 license.

B.1 Relation tokens for each dataset

The relation in the prompt may span multiple to-
kens, so we manually select the most informative
tokens for each relation, as specified in Table 3.

Relation Type Triplets per Language
Country currency 51
Country language 45
Book language 54
Animal classification 47
Object color 43
Country religion 46
Language family 50
Musician country 47
Musician instruments 45
Person university 49

Table 1: Distribution of relation types in our multilin-
gual factual dataset.

B.2 Selecting Relation Token Equivalents
Since relation tokens are often not proper nouns,
there can be multiple valid translations for a given
non-English relation token. To address this, we
employ a two-stage filtering and scoring process.
First, we use spaCy (AI, 2020) to lemmatize the
predicted token. Then, we use WordNet (Miller
and the Princeton WordNet Group, 1995) to com-
pute semantic similarity between the lemmatized
predicted token and the English relation token. To-
kens with zero similarity (i.e., clearly irrelevant)
are discarded. For the remaining candidates, we
prompt GPT-4o to assign a similarity score follow-
ing a procedure inspired by Schut et al. (2025).

We instruct GPT-4o to rate each candidate word
from 0 to 1 based on its semantic similarity to the
reference concepts, using the following rubrics in
Table 4. We consider a token to be an acceptable
equivalent of the English relation word if its GPT-
4o-assigned score exceeds 0.8.

11https://openai.com/o1/
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Relation Dataset Multilingual Prompt Examples

country_language 加拿大的官方语言是
The official language in Canada is
La langue officielle au Canada est l’
カナダの公用語は
캐나다의공용어는
La gente en Canadá habla

country_religion 美国的主要宗教是
The main religion practiced in United States is
La principale religion pratiquée aux États-Unis est le
アメリカ合衆国で主に信仰されている宗教は
미국에서주로믿는종교는
La religión principal practicada en Estados Unidos es el

language_family 英语所属的语系是
The language English belongs to the language family of
Anglais appartient à la famille de langues
英語が属する語族は
영어가속하는어족은
Inglés pertenece a la familia de lenguas

musician_country 路德维希·范·贝多芬出生的国家名为
The birth country of Ludwig van Beethoven is
Le pays de naissance de Ludwig van Beethoven est l’
ルートヴィヒ・ヴァン・ベートーヴェンの出身国は
루트비히반베토벤의출생국가는
El país de nacimiento de Ludwig van Beethoven es

musician_instruments 路德维希·范·贝多芬主要演奏的乐器名叫
The primary instrument played by Ludwig van Beethoven is the
L’instrument principal joué par Ludwig van Beethoven est le
ルートヴィヒ・ヴァン・ベートーヴェンが主に演奏する楽器は
루트비히반베토벤가주로연주하는악기는
El instrumento principal que toca Ludwig van Beethoven es el

object_color 香蕉的颜色是
Banana has a color of
La couleur de Banane est
バナナの色は
바나나의색깔은
El color de Banana es

person_university 村上春树就读的大学名叫
The college that Haruki Murakami attended was called
L’université où Haruki Murakami a étudié s’appelle
村上春樹が通った大学の名前は
무라카미하루키이다녔던대학의이름은
La universidad a la que asistió Haruki Murakami se llama

country_currency 巴西的官方货币是
The official currency of Brazil is called the
La monnaie officielle de Brasil s’appelle
ブラジルの公式通貨は
브라질의공식화폐는
La moneda oficial de Brésil se llama

book_language 伊利亚特最初编写时使用的语言为
The language that the Iliad was originally written in was
La langue dans laquelle L’Iliade a été écrit à l’origine était le
イーリアスが最初に書かれた言語は
그리스어가원래작성된언어는
El idioma en el que se escribió originalmente la Ilíada era el

animal_classification 大象在生物学上被分类为一种
Elephant is biologically classified as a
Éléphant est biologiquement classé comme un
象は生物学的に分類される
코끼리는생물학적으로분류된다
Elefante está clasificado biológicamente como un

Table 2: Examples of multilingual prompts for each dataset.
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Relation Dataset Multilingual Relation Words

person_university college, attended /大学,就读 /大学,通った /대학,다녔던 / universidad, asistió / université,
étudié

country_currency currency /货币 /通貨 /화폐 / moneda / monnaie

book_language language, written, original / 语言, 编写 / 言語, 書かれた / 언어, 작성된 / idioma, escrito /
langue, écrit

animal_classification classified, biologically /分类, 生物学 /分類, 生物学的 /분류,생물학적으로 / clasificado,
biológicamente / classé, biologiquement

country_language language /语言 /公用語 /공용어 / idioma / langue

country_religion religion, practiced /宗教 /宗教,信仰 /종교,믿는 / religión, practicada / religion, pratiquée

language_family language, family /语系 /語族 /어족 / lenguas, familia / langues, famille

musician_country birth, country /出生,国家 /出身,国 /출생,국가 / nacimiento, país / naissance, pays

musician_instruments instrument, played /乐器,演奏 /楽器,演奏 /악기,연주 / instrumento, toca / instrument, joué

object_color color /颜色 /色 /색깔 / color / couleur

Table 3: Relation words for each fact recall dataset.

1.0 — Exact match with the reference word
0.8–0.99 — Conceptual synonym or close paraphrase (e.g., “hue” for “color”, “dialect” for “lan-
guage”)
0.5–0.8 — Loosely related or contextually associated term (e.g., “paint” for “color”, “accent” for
“language”)
< 0.5 — Category member or specific instance of the concept (e.g., “red” for “color”, “yen” for
“currency”, “Spanish” for “language”)
< 0.2 — Unrelated or irrelevant term
Note: If a token appears to be a truncated or partial form of a meaningful word (e.g., “pigm” for
“pigment”, “forgot” for “forget”), we infer that it is likely a lemmatized form and score based on its
intended meaning.

Table 4: GPT-4o Scoring Guidelines
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C Logit Lens

C.1 Method Details

Following Nostalgebraist (2020), We project the
hidden state after each layer FFN’s operations to
vocabulary logits with the frozen un-embedding
matrix then apply a soft-max function, which al-
lows us to examine the distribution of most proba-
ble predictions the model thinks at the completion
of each layer. Inspecting these layer-by-layer "in-
termediate predictions" lets us pinpoint the layer
at which an English fact first appears and the layer
where it is translated. We will add the mathemati-
cal formula to the appendix.

C.2 Detailed Breakdown of Model Failure
Cases

In Section 2, we analyze failure cases by checking
whether the model correctly identifies the interme-
diate English answer at layer 21. Due to tokeniza-
tion, we consider the predicted token correct if it
either appears within the correct answer string or
if the correct answer is contained within the pre-
dicted token. If the model’s top-1 prediction at
that layer matches the correct English answer, we
categorize it as agnostic correct.

Importantly, this form of intermediate correct-
ness can be examined not only at layer 21 but also
across layers 20 to 27. That is, at each of these
layers, we can assess whether the model internally
“knows” the correct English answer, regardless of
the final output. Tables 5 through 12 provide a
detailed breakdown of model failures and agnostic
correctness across these layers.

Category Count (%)

Total evaluated 2385
Agnostic correct 504 (21.13%)
Agnostic incorrect 1881 (78.87%)

Final correct ∩ Agnostic correct 279 (11.70%)
Final incorrect ∩ Agnostic correct 225 (9.43%)
Final correct ∩ Agnostic incorrect 229 (9.60%)
Final incorrect ∩ Agnostic incorrect 1652 (69.27%)

Table 5: Global summary of agnostic correctness and
final prediction correctness at Layer 20.

D Fixing Translation Error

D.1 Explicit Translation Dataset Construction

We adapt our fact-recall datasets into a translation
task dataset. Specifically, we extract each [answer]

Category Count (%)

Total evaluated 2385
Agnostic correct 792 (33.21%)
Agnostic incorrect 1593 (66.79%)

Final correct ∩ Agnostic correct 385 (16.14%)
Final incorrect ∩ Agnostic correct 407 (17.06%)
Final correct ∩ Agnostic incorrect 123 (5.16%)
Final incorrect ∩ Agnostic incorrect 1470 (61.64%)

Table 6: Global summary of agnostic correctness and
final prediction correctness at Layer 21.

Category Count (%)

Total evaluated 2385
Agnostic correct 867 (36.35%)
Agnostic incorrect 1518 (63.65%)

Final correct ∩ Agnostic correct 407 (17.06%)
Final incorrect ∩ Agnostic correct 460 (19.29%)
Final correct ∩ Agnostic incorrect 101 (4.23%)
Final incorrect ∩ Agnostic incorrect 1417 (59.41%)

Table 7: Global summary of agnostic correctness and
final prediction correctness at Layer 22.

from all fact-recall samples and format them into
this prompt: “Please translate this word into Chi-
nese. Word:[answer], Translation:”. For example,
for the answer “mammal” from the animal clas-
sification dataset, we create a translation variant
prompt: Please translate this word into Spanish.
Word: ‘mammal’, Translation:’, and expect the
correct answer to be “mamífero”.

D.2 Comparison between Translation and
Conversion on Component-Level

We apply logit lens analysis on our parallel trans-
lation dataset and observe overlapping layer us-
age between translation and fact-recall conversion.
Specifically, when the model is prompted to trans-
late a word from English into another language,
the English word is first shifted to the final token
position by layer 17, and the translation process
begins around layers happens from layer 17 and
lasts until layer 25 (Appendix Figure 8).

To further investigate whether the same model
components are involved, we conduct activation
patching (Vig et al., 2020) using Transformer-
Lens (Nanda and Bloom, 2022). We find that, in
both translation and fact-recall conversion, MLP
neurons in the later layers are most critical.

Specifically for activation patching, we create
corrupted and clean parallel samples to activation
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Category Count (%)

Total evaluated 2385
Agnostic correct 845 (35.43%)
Agnostic incorrect 1540 (64.57%)

Final correct ∩ Agnostic correct 400 (16.77%)
Final incorrect ∩ Agnostic correct 445 (18.66%)
Final correct ∩ Agnostic incorrect 108 (4.53%)
Final incorrect ∩ Agnostic incorrect 1432 (60.04%)

Table 8: Global summary of agnostic correctness and
final prediction correctness at Layer 23.

Category Count (%)

Total evaluated 2385
Agnostic correct 823 (34.51%)
Agnostic incorrect 1562 (65.49%)

Final correct ∩ Agnostic correct 387 (16.23%)
Final incorrect ∩ Agnostic correct 436 (18.28%)
Final correct ∩ Agnostic incorrect 121 (5.07%)
Final incorrect ∩ Agnostic incorrect 1441 (60.42%)

Table 9: Global summary of agnostic correctness and
final prediction correctness at Layer 24.

patching. For an incorrect (“corrupted”) run, we
blur the subject tokens with Gaussian noise, then
replace one layer’s activations with those from the
clean run and measure the change in the final an-
swer; a large gain marks that layer as causally
important for multilingual fact recall. To quantify
the change, we compute the Average Indirect Ef-
fect (AIE) for each component. AIE quantifies the
extent to which restoring a specific hidden state
(e.g., an attention head or MLP block) from the
clean input reduces the prediction error introduced
by a corrupted input. Specifically, for a given out-
put token o, AIE measures the fraction of the gap
between the clean and corrupted predictions that
is recovered by restoring only a single component.
Formally:

AIE =
P ∗,clean h

(ℓ)
i [o]− P ∗[o]

P [o]− P ∗[o]

where P [o] is the probability assigned to the cor-
rect output by the clean model, P ∗[o] is the proba-
bility under the corrupted input, and P ∗,clean h

(ℓ)
i [o]

is the probability when only component h(ℓ)i is re-
stored to its clean state.

We compute AIE across all correct instances
from both translation and fact-recall datasets,
patching into each attention and MLP component

Category Count (%)

Total evaluated 2385
Agnostic correct 820 (34.38%)
Agnostic incorrect 1565 (65.62%)

Final correct ∩ Agnostic correct 358 (15.01%)
Final incorrect ∩ Agnostic correct 462 (19.37%)
Final correct ∩ Agnostic incorrect 150 (6.29%)
Final incorrect ∩ Agnostic incorrect 1415 (59.33%)

Table 10: Global summary of agnostic correctness and
final prediction correctness at Layer 25.

Category Count (%)

Total evaluated 2385
Agnostic correct 1237 (51.87%)
Agnostic incorrect 1148 (48.13%)

Final correct ∩ Agnostic correct 280 (11.74%)
Final incorrect ∩ Agnostic correct 957 (40.13%)
Final correct ∩ Agnostic incorrect 228 (9.56%)
Final incorrect ∩ Agnostic incorrect 920 (38.57%)

Table 11: Global summary of agnostic correctness and
final prediction correctness at Layer 26.

across layers 22-25. As shown in Figure 9, we find
that on MLP components have an average AIE of
9.82%, while attention heads in the same position
exhibit a much lower average AIE of 2.74%. This
indicates that the late-site MLP blocks contribute
more to conversion and translation. These results
highlight that while both translation and conver-
sion tasks rely on similar regions and components
of the model. This finding aligns with prior work
showing that language-specific neurons on late-site
MLPs (Tang et al., 2024; Zhang et al., 2024) and
is also consistent with recent work by Fierro et al.
(2025), which highlights the importance of late
MLPs in the multilingual fact recall process.

D.2.1 Hyperparameter for Translation
Difference Vector

Shown in Figure 10, when we extract and perform
translation difference vector intervention on differ-
ent layers, we test the translation correctness on
the validation set and determine the best difference
vector intervention layer is layer 21.

D.2.2 Translation Vector Effect Additional
Details

Identical answers among languages For same-
script language pairs, the correct answer to many
questions can be string-identical across languages
(e.g., the capital of France is → Paris in both En-
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Category Count (%)

Total evaluated 2385
Agnostic correct 1092 (45.79%)
Agnostic incorrect 1293 (54.21%)

Final correct ∩ Agnostic correct 279 (11.70%)
Final incorrect ∩ Agnostic correct 813 (34.09%)
Final correct ∩ Agnostic incorrect 229 (9.60%)
Final incorrect ∩ Agnostic incorrect 1064 (44.61%)

Table 12: Global summary of agnostic correctness and
final prediction correctness at Layer 27.

glish and French). In our full test corpus, such
cases are uncommon: 18.45% of English↔French
examples and 18.66% of English↔Spanish exam-
ples share exactly the same gold answer. In both
pairs, fewer than one-fifth of items fall into this
potentially “trivial” category.

To confirm that our gains are not driven by these
cases, we measure conversion correctness for the
first intervention (with the same setup as in Sec-
tion 3.3) under three partitions: non-EN examples
excluding identical answers, all non-EN examples
in the test set, only identical-answer examples and
we show results in Table 13.

Our observations are (1) Effect persists when
identical-answer rows are removed. The gain is
+16.67 on the “harder” subset (no identical answer),
versus +18.29 overall. Hence, our intervention is
not merely exploiting trivial identical answers; it
still improves the translation stage. (2) Slightly
larger conversion correctness boost on the identical-
answer subset is expected: once we activate the
model’s translation pathway, these inherently eas-
ier cases benefit a bit more.

Side-effect of translation intervention. In addi-
tion to gains in final correctness, as a side effect,
we also observe an increase in agnostic correct-
ness (Table 17). Since this evaluation is conducted
on a strictly held-out test set, these improvements
are not due to data leakage. Through qualitative
analysis, we find that in many cases where agnos-
tic correctness improves, the model appears less
confused at the final token. For example, prior to
intervention, the top-1 token predicted via logit
lens is often nonsensical (e.g., “WHAT”). After
applying the intervention, the model instead gen-
erates a meaningful answer such as “mammals.”
We hypothesize that the intervention reduces con-
fusion in the later layers, allowing the model to
project more confidently into the correct answer

space. It is also possible that the intervention in-
directly reinforces the model’s tendency to map
outputs through an internal English representation
before translating into the target language, thereby
enhancing its overall consistency.
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Set description Size Orig Acc (%) Intv Acc (%) ∆ (pp)

Total set: All non-EN examples in test set 1235 49.45 67.74 +18.29
Subset: non-EN examples excluding identical answers 1145 49.23 65.90 +16.67
Subset: only identical-answer examples 90 67.93 89.38 +21.45

Table 13: Control analysis showing that intervention gains are not explained by identical cross-lingual answers.

Figure 6: Language Breakdown of Answer Rank Changes Across Layers.
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Figure 7: Fact Recall and Explicit Translation Perfor-
mance Comparison on all data.

15096



Figure 8: Logit lens on translation dataset reveals that the English answer has been moved from its original position
to the last token position at around layer 15, and the translation mechanism starts happening also at layer 15 when
the translated answer slowly goes to zero-rank at the very end.

Figure 9: Average Indirect Effect of Patching Clean Component into Corrupted Runs. Left: running Activation
Patching on fact-recall examples. Right: running Activation Patching on translation examples. From layer 21 to
layer 27, MLP components exhibit more important effects.

Figure 10: Translation Correctness when intervening at
different layers.
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E Fixing Recall Errors

Figure 11: When given 5-shot ICL examples, the fact-
recall performance significantly improves for all lan-
guages.

E.1 Relation and Subject Propagation

To assess whether—and at which lay-
ers—information from the subject and relation
positions flows directly to the final token posi-
tion, we adopt the Attention Knockout method
introduced by Geva et al. (2023), with a slight
modification to how relation tokens are defined.

In the original setup, Geva et al. (2023) defines
the set of relation positions R as all tokens exclud-
ing the subject tokens and the final position. How-
ever, since we explicitly annotate relation tokens
for each prompt, we use these manually identified
indices for R instead. This refinement allows us
to more precisely target the positions responsible
for encoding the relation. A full list of relation to-
ken spans is provided in Table 3, and the observed
effect also re-validates that these are important po-
sitions that carry information that flows to the last
token position.

At each layer ℓ, we block attention from the
final token position (N ) to tokens in S (subject),
R (relation), and to itself. This intervention is
applied over a sliding window of k layers centered
at layer ℓ, and we measure the resulting change in
the model’s prediction probability to evaluate the
impact of disrupting this information flow.

We set k = 6 following the windowing strategy
in Geva et al. (2023), which corresponds to ap-
proximately one-fifth of the total number of model
layers and ensures localized but impactful abla-
tions.

Figure 12 shows the result for English and non-
English cases. The pattern is highly similar: the

attention mechanism is responsible for propagating
the relation and subject token in layers 10-20.

, english , non-english

Figure 12: English (left) and Non-English (right)
prompts: Blocking attention edges from subject and
relation tokens to the last token position causes signifi-
cant performance drops in layers 10-20, indicating that
subject and relation propagation occurs within this layer
range.

E.2 Extraction Rate

Experiment Setup Following Geva et al. (2023),
in order to evaluate whether the model extracts the
correct attribute at intermediate layers, we analyze
updates to the final token position throughout the
model. At each layer ℓ, we compute the top-1 token
update by projecting the multi-head self-attention
or MLP output at the final position to the unembed-
ding matrix. We denote t∗ = argmax(pLN ) as the
model’s final prediction and t′ = argmax(EaℓN )
as the top token from the ℓ-th layer’s update at
position N (the final token).

Geva et al. (2023) observes that in many cases,
MLP outputs are simply forwarding the extracted
answers from preceding attention layers. To avoid
overcounting those as extraction events, we define
an extraction event as the first layer ℓ at which
t′ = t∗. This ensures that we only record the
earliest point where the correct English attribute
is extracted by either the attention or the MLP
pathway.

We compute the extraction rate by measuring
the frequency of such earliest-match events at each
layer. This analysis is conducted independently for
both attention and MLP outputs to compare their
relative contributions to attribute extraction across
the model.

Figure 13 shows the result for the original cases
for English and non-English conditions, and non-
English after intervention. We observe that for the
original English case, attention modules at layer 15
are especially important. However, in non-English
cases, it seems that the attention layer 15 compo-
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nents are not extracting out the correct English ob-
ject enough. Importantly, intervention re-activates
the attention layers responsible for correct English
answer extraction.

E.3 English Fact-Recall Attention Heads for
Each Relation-Dataset

For answer extraction, Geva et al. (2023)finds
that different heads encode subject-answer map-
pings in their parameters and are specialized for
different relation queries. Furthermore, attention
heads responsible for the two processes are im-
portant and vary across relation-datasets. For
instance, through activation patching, we iden-
tify that a specific group of heads are most crit-
ical for the English book_language dataset, while
a distinct set of heads are crucial for English
animal_classification (Figure 14).

E.4 Ablation of English Fact-Recall Heads

We examine whether the model employs the same
significant model heads when given a non-English
prompt versus when given an English prompt. To
test this hypothesis, we first identify the top 5 most
important dataset-specific English attention heads
(Figure 14) by using activation patching on English
correct cases, then ablate these heads to assess their
causal role in non-English cases. In Figure 15, we
observe in non-English correct cases, we observe
significant accuracy drops, which indicates that
the model relies on the same English fact-recall
components when processing non-English queries.
However, in non-English incorrect cases, we ob-
serve minimal to no effect, which demonstrates
that the model fails to activate these critical En-
glish fact-recall pathways. A detailed per-language
breakdown of the ablation effect is in Figure 16.

Importantly, adding non-English ICL examples
and adding our dataset-independent and language-
independent vectors both reactivate these important
attention heads.

E.5 Implementation Details and
Hyperparameters for Recall Vector

To identify the optimal configurations for the recall
vector, we extract a set of candidate intervention
vectors for each intervention layer ℓ ∈ [L] and for
a range of scaling factors. Each candidate is eval-
uated on the held-out validation set to assess its
effectiveness. Specifically, we extract the candi-
date vector from the residual stream at the output

of layer ℓ and apply the intervention at the begin-
ning of the same layer during inference. Figure 17
shows that the best combination is layer 3 with a
scaling factor of 2.

E.6 Intervention Evaluation
E.6.1 5-shot ICL prompts Example
We use five-shot prompts to extract hidden rep-
resentations that induce a stronger factual recall
signal. An example in English is shown below.

What is the main religion in each country?
Q: Kazakhstan
A: Islam

Q: Afghanistan
A: Islam

Q: Mexico
A: Catholic

Q: Thailand
A: Buddhism

Q: Japan
A: Shinto

Q: South Korea
A:

E.6.2 Optimal Recall Vector Intervention
Layer and Scale

We use the validation dataset to determine the opti-
mal layer and scale for recall vector intervention.
Specifically, we test vector injection at each layer
from 0 to 5, with scales ranging from 1 to 5 in
increments of 1.
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Figure 13: Attribute extraction rate using attention and MLP modules (red and blue respectively) across layers
for three conditions (English + Original, Non-English + Original, Non-English + Intervention). Intervention
re-activates the attention layers responsible for correct English answer extraction.
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Figure 14: Distinct attention heads are responsible for each English relation-dataset.
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Figure 15: Effect of logits when ablating the top 5 most
important dataset-specific English attention heads.

15102



Figure 16: Per-Language Results: The effect of ablating important English Fact-Recall heads in incorrect agnostic
cases for each language. English fact-recall heads are not being used to contribute to the model’s top1 prediction
logits or the model’s logits on the label (row 1). The intervention reactivates these heads such that ablating these
heads after adding the intervention leads to a significant performance decrease (row 3). The intervention has the
same component-level effect as ICL prompting (row 2).

Figure 17: Final Accuracy when extracting the recall
task Vector and intervening at various layers and scales.
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F Intervention Evaluation

We perform a grid search over translation differ-
ence vectors applied at layers 21 to 26 and recall
task vectors from layers 1 to 4, each scaled by fac-
tors ranging from 1 to 4, in order to identify the
optimal hyperparameter combination. The results
are shown in Figure 18. We find that applying the
translation vector at layer 25 and the recall vector
at layer 3, both with a scaling factor of 2, yields
the highest validation final accuracy.

F.1 Intervention Effect Comparison

Language Agn% TransAcc% Acc%
chinese 17.93 0.00 2.39
japanese 11.69 34.48 6.45
korean 18.95 40.43 10.48
french 53.60 72.39 46.40
spanish 45.98 50.49 36.16
english 56.05 81.29 61.29
non-eng 29.32 49.45 20.07

Table 14: Performance Summary (Original)

Language Agn% TransAcc% Acc%
chinese 23.11 67.24 24.70
japanese 24.15 57.89 19.49
korean 23.39 68.97 24.19
french 47.60 80.67 47.20
spanish 48.80 63.93 41.20
english 56.05 75.54 58.87
non-eng 33.52 67.74 31.50

Table 15: Performance Summary (Intervention 1: Trans-
lation Difference Vector Intervention)

Language Agn% TransAcc% Acc%
chinese 41.83 59.05 36.25
japanese 50.00 53.23 31.45
korean 43.55 56.48 29.03
french 56.40 70.92 46.00
spanish 66.40 65.66 54.00
english 68.15 89.94 72.18
non-eng 51.64 61.07 39.37

Table 16: Performance Summary (Intervention 2: Re-
call Task Vector Intervention).

Language Agn% TransAcc% Acc%
chinese 47.81 61.67 41.83
japanese 53.23 55.30 33.87
korean 47.18 52.14 29.03
french 60.00 71.33 48.40
spanish 66.00 66.06 52.80
english 64.11 79.87 63.71
non-eng 54.85 61.30 41.22

Table 17: Performance Summary (Combined interven-
tion: Translation + Recall Vectors).

G Comparison with Baseline
Experiments

To evaluate the impact of interventions on English-
centric behavior, we also measure their effect on
the original English fact-recall performance. This
is important because interventions that boost multi-
lingual performance may introduce competition
and degradation in English accuracy. The ex-
ception is the translate-recall-translate baseline,
where this comparison is not meaningful since the
prompt and generations are always translated to or
from English.

G.0.1 Translate-recall-translate Baseline
The translate-recall-translate baseline is a multi-
step prompting strategy in which we query the
model with three separate prompts sequentially:
explicitly instructs the model to translate the ques-
tion into English, then conduct the task in English,
and then translate the response back to the target
language. For each example, we pass intermedi-
ate outputs from one step to the next and use the
final output for evaluation. Specifically, to account
for the translation errors, we count the model as
getting the answer correct if one of the first five
generated tokens includes the answer token.

The reason why the translate-reason-translate
still has a poor performance in zero-shot fact-recall
is because of the accumulation of translation errors.
See example failure cases in Table 18.

G.0.2 Fine-tuning Baseline
We split our data into train-val-test subsets accord-
ing to a 40-10-50 ratio. Using 2 NVIDIA L40S
GPUs, we finetune Llama-3.2-3B on the train sub-
set for 30 epochs using the AdamW optimizer with
a learning rate of 1×10−5 and pick the best check-
point using the validation performance. All train-
ing and inference runs are conducted using the
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Figure 18: Final Accuracy for intervening using the combined vectors at different layers with different scaling
factors for the recall vector on the validation set.

transformer library12.

12https://huggingface.co/docs/transformers/
index
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Failure Type Original Prompt, at-
tribute

1. Prompt English
Translation

2. Fact-Recall An-
swer

3. Translate Answer
back to

Failed at 1: better
translation is “the
frog is classified
biologically as a” —
translating the whole
sentence introduces
syntax confusion and
leads to failures.

青蛙在生物学上被
分类为一种，两栖
动物

The frog is classified
as a biological species

, which means that it
is a group of organ-
isms that share a com-
mon ancestor and are
able to reproduce with
each other.

非常不一样的语
言。

Failed at 1: mis-
translates “the book’s
Notre-Dame de Paris
was originally written
in” — instead refers
to the cathedral’s ar-
chitecture.

巴黎圣母院最初编
写时使用的语言
为，法语

The original language
used in Notre Dame
Cathedral was

Latin. The Latin lan-
guage was the lan-
guage of the Roman
Catholic Church.

拉丁语

Failed at 2 and 3. 毛利语所属的语系
是，南岛语系

The language family
to which the Moli lan-
guage belongs is

The Moli language
family. The Moli lan-
guage is spoken in the
Moli language region.

The Moli language
family. The Moli lan-
guage is spoken in the
Moli language region.

Failed at 3: cor-
rect in steps 1 and 2
but failed to translate
the correct language-
specific answer back.

希伯来语所属的语
系是，亚非语系

The language family
to which Hebrew be-
longs is

Called Afro-Asiatic.
It is the largest
language family in
Africa and the second
largest in the Middle
East.

叫 做非 洲-亚 洲 语
族。它是非洲最大
的语言家族，中东
的第二大。

Table 18: Examples of failure cases from the translate-recall-translate baseline experiment. Green highlights correct
answers; red indicates incorrect outputs.
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H Evaluation with a different splitting
strategy

We not only evaluate the intervention’s effect on
the within-relation train-val-test split, where we
split each relation-dataset into train, val, test sub-
sets independently (Figure 5(b)), but we also eval-
uate across-relation split: we train on a subset of
relation-datasets and evaluate on held-out, unseen
relations to assess the model’s ability to general-
ize factual recall beyond previously encountered
answer types. Figure 19 shows that our interven-
tion is significantly better than translate-translate
baseline and is competitive with fine-tuning when
generalizing to new relation-datasets.

Figure 19: Intervention performance compared to base-
lines across test sets, averaged over three random seeds.
This shows splits across relation datasets, the right
shows splits within each relation-specific dataset.

I Generalization Across Languages and
Models

We evaluate the effectiveness of our proposed in-
terventions on a broader set of languages and addi-
tional model families. Our goal is to test whether
the interventions generalize (i) across languages of
varying resource levels and scripts, and (ii) across
different model architectures.

I.1 Other Languages: KLAR Dataset
To assess cross-lingual generalization, we contact
the authors of Wang et al. (2025) to obtain ac-
cess to their unreleased KLAR benchmark. KLAR
contains 2,619 parallel factual triples covering 20
factual relation types and 18 languages, many of
which are low-resource or use non-Latin scripts:
ar, ca, el, en, es, fa, fr, he, hu, ja, ko, nl, ru, tr, uk,
vi, zh.

As shown in Figure 20, applying our two
language-independent intervention vectors consis-

Figure 20: Combined-vector intervention performance
improvements on KLAR across 20 languages.

tently improves performance across 11 of 12 eval-
uated languages, including several that are low-
resource, non-Latin, and typologically distant from
English. Similarly, we observe substantial improve-
ments in Japanese and Chinese, with gains of +36.5
and +29.5 points, respectively.

I.2 Other Models
We further evaluate our interventions on Qwen-
2.5-3B, both on our dataset and on KLAR. As
shown in Figure 21, our interventions yield im-
provements for most of the languages tested and for
both models. The few observed drops (e.g., Cata-
lan on Llama, Dutch and Vietnamese on Qwen)
may be explained by the models’ limited efficiency
in those languages. Addressing these limitations,
especially for low-resource languages, remains an
important direction for future work.

J Additional Metric: Cross-lingual
Consistency Score

In addition to measuring correctness in individual
languages, we evaluate whether our interventions
improve cross-lingual consistency in model pre-
dictions. Following Jiang et al. (2020) and Wang
et al. (2025), we compute the Cross-lingual Con-
sistency (CLC) score as the fraction of examples
where both languages produce correct predictions.
This metric reveals whether interventions lead to
more coherent, simultaneously correct predictions
across languages.

As demonstrated in Figure 22, our intervention
yields consistent CLC score improvements across
both datasets, indicating enhanced cross-lingual
consistency beyond individual correctness gains.
This suggests the intervention promotes more co-
herent multilingual behavior.

15107



Figure 21: Final Accuracy for combined-vector intervention on Qwen-2.5-3B on our dataset and the KLAR dataset.

Figure 22: Final CLC for using the combined-vector intervention for Llama-3.2.3B and Qwen-2.5-3B on our and
KLAR datasets.
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