
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 14777–14794
November 4-9, 2025 ©2025 Association for Computational Linguistics

STARE at the Structure: Steering ICL Exemplar Selection with Structural
Alignment

Jiaqian Li1 Qisheng Hu1 Jing Li2 Wenya Wang1

1Nanyang Technological University, Singapore
2Harbin Institute of Technology, Shenzhen, China

m210055@e.ntu.edu.sg

Abstract

In-Context Learning (ICL) has become a pow-
erful paradigm that enables LLMs to perform a
wide range of tasks without task-specific fine-
tuning. However, the effectiveness of ICL heav-
ily depends on the quality of exemplar selec-
tion. In particular, for structured prediction
tasks such as semantic parsing, existing ICL
selection strategies often overlook structural
alignment, leading to suboptimal performance
and poor generalization. To address this is-
sue, we propose a novel two-stage exemplar se-
lection strategy that achieves a strong balance
between efficiency, generalizability, and perfor-
mance. First, we fine-tune a BERT-based re-
triever using structure-aware supervision, guid-
ing it to select exemplars that are both seman-
tically relevant and structurally aligned. Then,
we enhance the retriever with a plug-in mod-
ule, which amplifies syntactically meaningful
information in the hidden representations. This
plug-in is model-agnostic, requires minimal
overhead, and can be seamlessly integrated into
existing pipelines. Experiments on four bench-
marks spanning three semantic parsing tasks
demonstrate that our method consistently out-
performs existing baselines with multiple re-
cent LLMs as inference-time models1.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable few-shot capabilities by leveraging in-
context learning (ICL) to perform a new task with-
out parameter updates (Brown et al., 2020). De-
spite its effectiveness, prior work has shown that
ICL performance is highly sensitive to the choice
of exemplars (Liu et al., 2022; Rubin et al., 2022;
Li and Qiu, 2023; Li et al., 2025b). Therefore, how
to select meaningful exemplars becomes an active
research area.

1Code is released at https://github.com/Lijiaqian1/
ICL-STARE.git

Figure 1: Comparison between semantic-only and
structure-aware similarity based one-shot prompting
with Llama-3-8B.

Exemplar selection methods can be broadly cate-
gorized into two aspects: proxy-task-based (Rubin
et al., 2022; Shi et al., 2022; Li et al., 2023; Ye et al.,
2023) and similarity-based approaches (Das et al.,
2021; Hu et al., 2022; An et al., 2023). Proxy-task-
based methods extensively query a proxy LLM
to evaluate exemplar effectiveness. While effec-
tive, they tend to be computationally expensive and
often lack generalizability across different mod-
els. Similarity-based methods, by contrast, rely on
embedding-based metrics to select exemplars that
closely match the query instance. However, they
typically neglect essential structural information
required for precise compositional generalization.

As a result, existing strategies are suboptimal for
structure-intensive tasks such as semantic parsing,
which involves translating natural language utter-
ances into structured, machine-executable forms,
such as logical queries or database commands
(Zelle and Mooney, 1996). These tasks require
not only semantic coherence but also precise struc-
tural compatibility between exemplars and queries,

14777

https://github.com/Lijiaqian1/ICL-STARE.git
https://github.com/Lijiaqian1/ICL-STARE.git

as illustrated in Figure 1.
Meanwhile, many existing exemplar selection

methods implicitly rely on the assumption that the
model’s learned representations are sufficient for
assessing exemplar utility. However, recent inter-
pretability studies suggest that LLM hidden states
often encode richer, task-relevant signals than what
is directly expressed in their outputs, revealing a
gap between internal model knowledge and observ-
able behavior (Wang et al., 2020; Kadavath et al.,
2022; Burns et al., 2024).

To address these gaps, we propose STructure-
Aware Retrieval of Exemplars (STARE), a retrieval
framework designed for semantic parsing under
the ICL paradigm. The framework comprises two
key components: 1) a structure-aware retriever that
jointly captures both semantic and structural char-
acteristics, and 2) a lightweight plug-in module,
Middle-Layer Injection (MLI), that enhances hid-
den representations with syntactically informative
directions. MLI uses linguistic probes and singu-
lar value decomposition to identify and amplify
syntactic and structural properties in intermediate
layers, thereby enhancing the quality of exemplar
retrieval. Additionally, the modular design of MLI
allows it to be integrated with existing few-shot
retrievers, which enables it to enhance semantic
parsing performance across diverse scenarios.

To the best of our knowledge, few prior meth-
ods for semantic parsing under ICL explicitly in-
corporate linguistic structure into the retriever’s
representations to guide exemplar selection. Ex-
perimental results on four diverse semantic parsing
benchmarks demonstrate that STARE consistently
outperforms existing proxy-based and similarity-
based methods, while maintaining lower training
costs and exhibiting strong generalizability.

Our contributions can be summarized as follows:

• We propose STARE, a structure-aware exem-
plar selection framework for semantic parsing
that integrates both semantic and structural
criteria.

• We introduce Middle-Layer Injection (MLI),
a lightweight, modular, and model-agnostic
technique to enhance hidden representations
for improved retrieval.

• The modular design of MLI allows easy in-
tegration with diverse retrieval frameworks,
thereby improving the generalizability across
tasks and models.

• Extensive experiments across four bench-
marks demonstrate strong performance with
lower training costs compared to proxy-task-
based methods.

2 Related Work

ICL for Semantic Parsing Early work on se-
mantic parsing with pre-trained models relied
on encoder-decoder architectures augmented with
schema-aware modules or constrained decoding
to ensure well-formed outputs (Lin et al., 2020;
Scholak et al., 2021; Qi et al., 2022). With the
advent of stronger models, ICL-based methods
emerged. Shin et al. (2021) showed that few-shot
prompting with controlled rephrasings could guide
models toward canonical forms before parsing,
while Pasupat et al. (2021) introduced retrieval-
augmented ICL. Later, Shin and Van Durme (2022)
demonstrated that instruction-tuned models can
perform direct mappings from natural language to
structured forms, shifting the research focus toward
improving exemplar selection within ICL setups.

Exemplar Selection for ICL Exemplar selection
for ICL generally falls into two categories: unsu-
pervised similarity-based and supervised learning-
based methods. Unsupervised methods rely on pre-
defined similarity metrics or static retrieval mod-
els without task-specific supervision. Common
approaches used BM25 or sentence encoders like
SBERT to compute semantic similarity between
queries and candidate exemplars (Liu et al., 2022;
Agrawal et al., 2023). Skill-KNN enhanced this by
extracting task-relevant features to identify skill-
overlapping exemplars (An et al., 2023). TST
(Poesia et al., 2022) used the tree edit distance
to determine similarities between the query and the
candidates for code generation. Wu et al. (2023)
proposed a self-adaptive selection framework min-
imizing entropy under the MDL principle. Super-
vised methods use explicit training signals. Some
defined task-specific metrics such as logical-form
alignment (Das et al., 2021), slot transitions (Hu
et al., 2022), or sparse SQL keyword encoding
(Nan et al., 2023). Others trained retrievers with
proxy LLM feedback: Efficient Prompt Retrieval
(EPR) used binary labels (Rubin et al., 2022), while
Unified Demonstration Retriever (UDR) incorpo-
rated ranking and hard negative mining (Li et al.,
2023). Ye et al. (2023) modeled exemplar selec-
tion as subset selection via Determinantal Point
Processes (DPPs).

14778

Figure 2: Overview of our proposed framework STARE. The backbone retriever is trained via contrastive learning
using semantic and structural similarity signals. The MLI module injects linguistic directions into intermediate
hidden states to enhance syntactic awareness.

Probing and Representation Intervention
Probing is a common technique in LLM in-
terpretability that trains diagnostic classifiers
on hidden states to identify encoded linguistic
properties and analyze their effects on generation
(Adi et al., 2017; Conneau et al., 2018; Liu
et al., 2019). A more advanced form, causal
probing, intervenes in hidden representations to
create counterfactuals and assess causal influence
(Elazar et al., 2021; Ravfogel et al., 2021). While
initially designed for analysis, such techniques
have increasingly been repurposed to steer model
behavior. Interventions on hidden states can affect
grammatical agreement (Tucker et al., 2021),
reduce bias (Levy et al., 2023), enable semantic
manipulations via vector arithmetic (Subramani
et al., 2022), and even internalize multimodal
ICL (Li et al., 2025a). Li et al. (2024) introduced
Inference-Time Intervention (ITI), which adjusts
attention head activations to promote truthful
generation. These findings underscore the potential
of hidden-state interventions as a powerful tool for
behavior control.

3 Method

In this section, we introduce the overall methodol-
ogy of our proposed framework, STructure-Aware
Retrieval of Exemplars (STARE). The overview
of STARE is illustrated in Figure 2. We begin by
formulating the task in Section 3.1. Section 3.2
describes the backbone component of our frame-

work, a finetuned retriever that jointly models se-
mantic and structural similarity. Section 3.3 then
introduces Middle-Layer Injection (MLI), a mod-
ule that enhances the retriever’s syntactic sensitivity
by modifying internal representations.

3.1 Task Formulation

ICL enables LLMs to perform semantic pars-
ing by conditioning on a set of exemplars E =
{(xi, yi)}ki=1, where each xi is an input query and
yi its corresponding gold parse. Given a test input
xtest, the model predicts an output ŷtest by maximiz-
ing the conditional probability:

ŷtest = argmax
y

P (y | xtest, E ; θ), (1)

where θ denotes the frozen model parameters.
Since ICL performance is sensitive to the exemplar
set E , our goal is to optimize its selection.

We aim to construct an effective retriever ϕ that
captures both semantic similarity and structural
alignment. For each test query xtest and candidate
xi from the training set Dtrain, we compute embed-
dings ϕ(xtest), ϕ(xi) ∈ Rd, and select the top-k
exemplars based on cosine similarity:

E = TopK
(
cos(ϕ(xtest), ϕ(xi))

)
. (2)

3.2 Structure-Aware Retriever

In semantic parsing, both semantic context and
structural form carry useful signals for exemplar
selection. Semantically related exemplars help

14779

an LLM recall the appropriate domain knowledge
and surface realizations of a parse, whereas struc-
tural correspondence provides the most direct guid-
ance for generating a correct and executable output.
Consequently, a two-stage strategy is adopted to
construct contrastive pairs for retriever training: a
coarse semantic bucketing step first collects a high-
recall pool of candidates semantically relevant to
the anchor exemplar, followed by an evaluation
to distinguish structurally aligned exemplars from
misaligned ones within the pool.

3.2.1 Semantic Bucketing

We compute semantic similarity between parsed
outputs rather than input utterances, as logical
forms and SQL queries more directly reflect compo-
sitional meaning. Since conventional off-the-shelf
encoders are poorly suited to formal representa-
tions, a hashing-based strategy is adopted to group
parses into semantically similar candidate pools.

In practice, each parse x is converted into a
set of discrete features (e.g., normalized tokens,
keywords, argument labels), denoted as F (x),
from which compact MinHash sketches (Broder,
1997) are generated, providing efficient and order-
invariant approximations of Jaccard similarity.
These signatures are stored in a Locality-Sensitive
Hashing (LSH) index that enables sublinear re-
trieval of high-similarity candidates by hashing into
multiple overlapping buckets. At query time, the
anchor parse’s signature is looked up in the LSH in-
dex to retrieve all parses with high approximate Jac-
card similarity, avoiding exhaustive comparisons
against the entire training set.

The LSH index is parameterized by a similarity
threshold τ , which defines the target Jaccard simi-
larity above which two parses are likely to collide
in at least one bucket. Concretely, given a training
instance’s semantic parse p and its corresponding
feature set F (p), we aim to retrieve q such that

Jaccard(F (p), F (q)) =
|F (p) ∩ F (q)|
|F (p) ∪ F (q)| ≥ τ.

(3)

This yields a high-recall candidate pool Cp =
{q|Jaccard(F (p), F (q)) ≥ τ} for each parse p that
is much smaller than the full dataset, and serves as
a strong base for contrastive pair construction in
the next stage.

3.2.2 Structure-Based Pair Filtering
Building on the candidate pool, contrastive pairs
are next extracted by measuring structural corre-
spondence between parses. The goal is to quan-
tify how closely two compositional representations
align in their tree topology.

To this end, each semantic parse is converted into
a labeled tree and the normalized Zhang–Shasha
tree edit distance (TED) (Zhang and Shasha, 1989)
is computed. The way to construct tree structure
for semantic parses is detailed in Appendix C.

Formally, let T (p) and T (q) be the trees for
parses p and q. We compute TED(T (p), T (q)) us-
ing unit edit costs. This distance is then normalized
and converted into a similarity score:

simstruct(p, q) = 1− TED(T (p), T (q))

max
(
|T (p)|, |T (q)|

) ∈ [0, 1]

(4)
Higher values indicate closer structural alignment.

For each anchor p with its corresponding can-
didate pool Cp, the candidate with the highest
simstruct to the anchor is designated as the posi-
tive example, while the least structurally similar
candidates within the pool are selected as hard neg-
atives. Additional negatives are randomly sampled
from outside the candidate pool. This allows a
combination of structure-aware positives and pro-
gressively challenging negatives for the contrastive
pairs collected.

3.2.3 Training
With the structure-aware contrastive pairs, a BERT
is fine-tuned as the exemplar retriever. The model
is optimized to bring structurally aligned exem-
plar–query pairs closer in the representation space,
while pushing apart structurally divergent or seman-
tically irrelevant ones. We adopt a contrastive learn-
ing objective based on the InfoNCE loss (van den
Oord et al., 2019), where each anchor is paired with
one positive and multiple negatives. Sentence-level
representations are obtained via mean pooling over
the final hidden states of the encoder.

3.3 Middle-Layer Injection (MLI)
Recent studies have shown that certain knowledge
and properties tend to be attenuated or forgotten
as representations progress through deeper layers
(Wallat et al., 2021). This raises a critical challenge
in exemplar retrieval: while the retriever is fine-
tuned using contrastive learning to align with a pre-
defined similarity metric, it is not guaranteed that

14780

the final-layer representations optimally encode the
most informative signals for exemplar selection.

Probing techniques offer a diagnostic tool for
uncovering what features are encoded in interme-
diate representations, typically by training linear
classifiers to predict certain properties from hidden
states (Tenney et al., 2019; Hewitt and Manning,
2019). Prior work has explored using probing to
identify task-relevant directions in the latent space,
for example, directions associated with truthfulness
or gender sensitivity. By intervening along these
directions, either reinforcing or suppressing them,
researchers have been able to increase a model’s
likelihood of generating truthful responses or re-
duce biased behavior (Levy et al., 2023; Li et al.,
2024).

Inspired by this, we introduce Middle-Layer In-
jection (MLI), a method that intervenes in the in-
ternal representations of the retriever to amplify
task-relevant linguistic abstractions, as illustrated
in Figure 3. In the absence of ground-truth utility
labels for exemplars, we instead extract directions
in the model’s latent space corresponding to well-
established linguistic properties and inject these
directions into intermediate layers. By enhancing
the retriever’s internal encoding of syntactic distinc-
tions, MLI improves the alignment between latent
representations and linguistic structure, ultimately
leading to more effective exemplar selection.

Concretely, we focus on three widely studied lin-
guistic properties: 1) Part-of-Speech (POS) Tags,
which identify the syntactic category of each token
(e.g., noun, verb), 2) Dependency Labels (DEPS),
which define grammatical relationships between
words (e.g., subject, object), and 3) Phrase Types
(PT), which describe constituent structures (e.g.,
noun phrase, verb phrase). These properties are
chosen because they span fine-grained lexical roles
(POS), functional relations (DEPS), and higher-
order syntactic structure (PT). Together, they reflect
multiple levels of compositional meaning in natural
language, making them particularly suitable for en-
hancing representations used in semantic parsing.

To extract directional signals, auxiliary datasets
annotated with the relevant labels are leveraged
to train linear probes (logistic regression classi-
fiers) on hidden representations at a chosen layer
N . Denote the representation for token w at
layer N as hN ∈ Rd, a linear probe ftask for
task ∈ {POS,DEPS,PT} is obtained by minimiz-
ing L(y, ŷ), where ŷ = ftask(hN) = WtaskhN
and y is the ground-truth label for token w. L is

What is the weather

like in Charlotte

Encoder N+1

Encoder N

 ...

 ...

Auxiliary Task

The cat chased

the mouse...

Reps.

space

Apply injection

at layer N

probing

Encoder 1

Main Task

Figure 3: Illustration of Middle-Layer Injection (MLI).
The vectors WA, WB , and WC are rows of the probe
weight matrix W . u⃗prop is the principal direction ex-
tracted from W via SVD.

the cross-entropy loss function. After training, we
denote Ŵtask ∈ Rk×d as the final weight matrix
of the classifier, where k is the number of labels.

Singular Value Decomposition (SVD) is then
performed on Ŵtask: Ŵtask = UΣV ⊤. The first
right singular vector V1 from V is selected as the
dominant direction uprop encoding the linguistic
property: uprop = V1.

To amplify this information in the model, the
direction uprop is injected at the N -th layer of the
retriever by adjusting each token’s hidden represen-
tation h:

h′ = h+ λuprop (5)

where λ controls the intensity of the injection.
The injection layer N , augmentation task (POS,

DEPS, or PT), and intensity λ are hyperparameters.
The best configuration is selected by evaluating dif-
ferent combinations on a development set, ensuring
that the enhancement provides tangible benefits to
retrieval performance.

4 Experiments

4.1 Tasks
Our method is evaluated across four semantic pars-
ing tasks, which span from intent and slot fill-
ing (MTop (Li et al., 2021)), task-oriented dia-

14781

Method MTOP SMCalFlow TreeDST
Llama3 4o-mini DS-V3 Llama3 4o-mini DS-V3 Llama3 4o-mini DS-V3

BM25 60.6 55.0 72.2 82.6 70.9 61.9 58.1 42.2 34.4
BERT 60.5 53.3 73.9 82.0 73.2 61.9 60.1 45.4 33.9
MLSM 63.6 56.9 73.3 83.0 74.5 61.0 58.1 41.9 33.5
EPR 67.0 58.3 73.3 82.9 73.5 63.5 60.3 45.5 36.1
CEIL 68.3 58.8 75.7 84.3 73.8 63.7 60.8 44.7 35.9
STARE 69.5 59.4 78.8 86.9 74.8 61.9 62.1 45.5 37.1

Table 1: Exact Match accuracy on MTop, SMCalFlow and TreeDST across different exemplar retrievers and
inference models.

Method 3.5-turbo 4o-mini DS-V3
EX EM EX EM EX EM

Zero Shot 71.2 12.1 73.0 19.1 77.0 11.7
Random 73.8 38.6 74.6 50.1 81.7 60.4
BERT 75.5 54.4 74.2 58.4 82.3 70.5
EPR 73.4 48.4 74.7 55.9 82.5 67.0
CEIL 75.9 42.0 74.8 50.4 82.4 66.4
TST 75.1 41.3 75.0 52.4 82.7 70.9
MLSM 75.3 41.6 75.2 59.9 83.4 69.4
Skill-KNN (cons.) 76.3 42.6 75.4 50.3 82.5 66.3
Skill-KNN (dist.) 76.8 43.0 72.9 49.1 82.2 63.2
Similarity-Div. 75.1 42.8 76.2 51.0 82.7 65.3
STARE 77.0 60.3 76.9 65.4 84.5 74.0

Table 2: Execution (EX) and Exact Match (EM) ac-
curacy on the Spider dataset across different exemplar
retrievers and inference models.

logue parsing (SMCalFlow (Andreas et al., 2020),
TreeDST (Cheng et al., 2021)) and text-to-SQL
(Spider(Yu et al., 2018)). Following standard prac-
tice, the training sets of these datasets are used as
exemplar banks. Appendix A provides an overview
of data splits and examples along with detailed
dataset descriptions.

4.2 Baselines

Our method is compared against five recent ex-
emplar selection baselines: Efficient Prompt Re-
triever (EPR) (Rubin et al., 2022), Compositional
Exemplars for In-context Learning (CEIL) (Ye
et al., 2023), Multi-level Similarity Maximization
(MLSM) (Liu et al., 2024), Skill-KNN (An et al.,
2023), and Similarity-Diversity (Nan et al., 2023).

EPR and CEIL utilize proxy tasks that incorpo-
rate LLM feedback to assess the utility of exem-
plars. MLSM aggregates similarity signals across
BERT layers as expert representations. Skill-KNN
and Similarity-Diversity are tailored for text-to-
SQL tasks. In addition, unsupervised retrieval base-
lines such as BM25 and BERT-based dense retriev-
ers are included. Detailed descriptions and imple-
mentation details are provided in Appendix B.

4.3 Experimental Settings

Backbone Retriever A BERT encoder2 is fine-
tuned with InfoNCE loss (temperature 0.07) for at
most three epochs using AdamW. For each anchor,
we construct one positive pair, three hard negative
pairs, and two random negative pairs.

Middle-Layer Injection For the auxiliary
datasets, we use the English Universal Dependen-
cies (UD) Treebank (McDonald et al., 2013) for
part-of-speech (POS) and syntactic dependency
(DEPS) labels, and the Penn Treebank (Marcus
et al., 1993) for constituency parsing (Phrase Type,
PT) labels. To mitigate overfitting, fine-grained
labels are merged into broader categories; the
final label sets are summarized in Table 6 in Ap-
pendix D. The selected properties and intensities
under different settings are listed in Appendix I.

Inference LLMs For MTop, SMCalFlow, and
TreeDST, Llama3-8B (Grattafiori et al., 2024),
GPT-4o-mini (OpenAI, 2024), and DeepSeek-V3
(DeepSeek-AI et al., 2025) are used as inference
models. For Spider, the same setting is used except
that Llama3-8B is replaced with GPT-3.5-turbo
(OpenAI, 2023). Detailed settings are provided in
Appendix E.

Prompt Construction Following existing work,
we use 20 exemplars for MTop, 5 for SMCalFlow,
10 for TreeDST, and 5 for Spider, ordered by as-
cending similarity to the test query. The prompts
used for Spider incorporate schema linking in the
format proposed by Nan et al. (2023), and adopt
the system prompt from Lee et al. (2025). Full
prompt templates and examples are provided in
Appendix H.

Evaluation Exact Match (EM) is reported for
all tasks, while Execution Accuracy (EX) is addi-

2https://huggingface.co/bert-base-uncased

14782

https://huggingface.co/bert-base-uncased

tionally reported for Spider, following the official
evaluation script3.

5 Results

5.1 Main Results

We report the main ICL performance of our pro-
posed framework STARE across the four seman-
tic parsing benchmarks. Results for MTop, SM-
CalFlow, and TreeDST are summarized in Table 1,
while Table 2 presents Execution accuracy (EX)
and Exact Match (EM) on the Spider dataset. Sup-
plementary results are provided in Appendix F.

Our method STARE consistently outperforms
all baselines, including proxy-task-based methods
such as EPR and CEIL, except on SMCalFlow un-
der DeepSeek-V3. On average, STARE yields a
1.35% gain over the strongest competing baseline
across the first three tasks. On Spider, STARE
achieves the best EX and EM across all inference
models, improving over the best baseline by 0.9%
(EX) and 5.0% (EM).

In contrast to EPR and CEIL, which depend on
intensive LLM interactions to derive training su-
pervision, STARE avoids reliance on the inference
model during training. This not only improves effi-
ciency, but also mitigates overfitting to biases intro-
duced by the proxy model, which can compromise
generalization to stronger inference models.

5.2 MLI as a Plug-in

To assess the contribution of Middle-Layer Injec-
tion (MLI) within our STARE framework, we first
compare STARE with and without MLI to isolate
the effect of linguistic augmentation. Furthermore,
to examine the generalizability of MLI beyond
our framework, MLI is applied as a plug-in mod-
ule to two representative baselines: an unsuper-
vised BERT retriever and the supervised Efficient
Prompt Retriever (EPR). Results are shown in Ta-
ble 3 (MTop, SMCalFlow, TreeDST) and Table 4
(Spider). MLI configuration details determined
based on development set are listed in Appendix I.
Empirical results show that Spider benefits more
from lexical cues (POS), whereas tasks such as SM-
CalFlow and TreeDST gain more from structural
cues (DEPS, PT). This observation is consistent
with our design rationale, which emphasizes the
inclusion of complementary syntactic properties to

3https://github.com/taoyds/
test-suite-sql-eval.

better accommodate the diverse requirements of
different semantic parsing tasks.

Experimental results across MTop, SMCalFlow,
and TreeDST show that MLI enhances STARE
performance under all three inference LLMs, with
an average improvement of 2.2%. The only ex-
ception is SMCalFlow when using DeepSeek-V3,
where performance slightly declines. On the Spider
dataset, MLI provides an average gain of 0.7% in
execution accuracy and 3.3% in exact match.

Notably, MLI also improves retrieval perfor-
mance when integrated with both BERT and EPR
retrievers. In some cases, MLI enables a non-fine-
tuned BERT retriever to achieve performance com-
parable to fully supervised retrievers, for example,
on SMCalFlow with Llama3-8B and TreeDST with
GPT-4o-mini. On the Spider dataset, MLI achieves
up to an 8.7% boost in exact match when combined
with EPR under GPT-3.5-turbo.

These results underscore MLI’s versatility as a
modular plug-in. It can be applied to both unsu-
pervised and supervised retrievers and is especially
useful in low-resource scenarios where retriever
training is infeasible.

6 Ablation Study

To investigate how the choice of injection layer,
the augmented linguistic property, and the augmen-
tation intensity λ affect performance, a series of
ablation studies are conducted by systematically
varying these factors and analyzing their impact.

Injection Layer Injecting MLI into all 12 BERT
layers is computationally costly and often redun-
dant due to high inter-layer similarity from resid-
ual connections. To reduce overhead, we draw on
BERTology findings that different layers capture
distinct linguistic patterns: lower layers (1–4) en-
code lexical features, middle layers (5–9) capture
syntax, and upper layers (10–12) model semantics
and task-specific abstractions (Ethayarajh, 2019;
Tenney et al., 2019; Jawahar et al., 2019). Based
on this, Layers 4, 8, and 12 are pre-selected as
injection candidates.

For each layer, we apply property-specific injec-
tions (POS, DEPS, PT) across a range of intensity
values (λ = 1, 2, 3, 4, 5), and record the maximum
performance gain. Figure 5 shows the results on
MTop using DeepSeek-V3.

The injection at Layer 8 consistently achieves the
highest gains across all properties. We attribute this
to its intermediary position, allowing injected sig-

14783

https://github.com/taoyds/test-suite-sql-eval
https://github.com/taoyds/test-suite-sql-eval

Method MTOP SMCalFlow TreeDST
Llama3 4o-mini DS-V3 Llama3 4o-mini DS-V3 Llama3 4o-mini DS-V3

STARE (w/o MLI) 67.8 57.5 74.5 84.3 71.6 63.0 61.0 43.8 36.2
STARE 69.5 59.4 78.8 86.9 74.8 61.9 62.1 45.5 37.1
∆ (MLI Gain) +1.7 +1.9 +4.3 +2.6 +3.2 -1.1 +1.1 +1.7 +0.9
BERT 60.5 53.3 73.9 82.0 73.2 61.9 60.1 45.4 33.9
BERT + MLI 64.4 58.7 76.2 87.5 73.9 62.2 61.6 46.1 35.7
∆ (MLI Gain) +3.9 +5.4 +2.3 +5.5 +0.7 +0.3 +1.5 +0.7 +1.8
EPR 67.0 58.3 73.3 82.9 73.5 63.5 60.3 45.5 36.1
EPR + MLI 67.4 60.6 75.7 86.3 75.2 62.5 60.6 46.3 40.0
∆ (MLI Gain) +0.4 +2.3 +2.4 +3.4 +1.7 -1.0 +0.3 +0.8 +3.9

Table 3: Effect of MLI on Exact Match accuracy across different exemplar retrievers and inference models on MTop,
SMCalFlow and TreeDST.

Figure 4: ICL performance on the dev sets of MTop, SMCalFlow, and TreeDST (reported as Exact Match accuracy),
and Spider (reported as Execution accuracy), under varying MLI injection intensities λ for each linguistic property,
using DeepSeek-V3 as the inference model.

Method 3.5-turbo 4o-mini DS-V3
EX EM EX EM EX EM

STARE (w/o MLI) 76.5 57.0 76.8 60.7 83.0 72.1
STARE 77.0 60.3 76.9 65.4 84.5 74.0
∆ (MLI Gain) +0.5 +3.3 +0.1 +4.7 +1.5 +1.9
BERT 75.5 54.4 74.2 58.4 82.3 70.5
BERT + MLI 75.6 56.3 74.3 61.1 83.9 72.0
∆ (MLI Gain) +0.1 +1.9 +0.1 +2.7 +1.6 +1.5
EPR 73.4 48.4 74.7 55.9 82.5 67.0
EPR + MLI 76.6 57.1 75.5 60.7 83.8 73.0
∆ (MLI Gain) +3.2 +8.7 +0.8 +4.8 +1.3 +6.0

Table 4: Effect of MLI on Execution (EX) and Exact
Match (EM) accuracy across different exemplar retriev-
ers and inference models on the Spider dataset.

nals to propagate effectively while still benefiting
from well-encoded linguistic features. In contrast,
early injection may dilute the signal, and late in-
jection may limit downstream utilization. Further
analysis of the injection layer ablation is presented
in Appendix G.

MLI Configurations To determine the most ef-
fective linguistic property for injection and the op-
timal intensity λ, controlled experiments are con-
ducted on the development set. For each of the
three properties (POS, DEPS, and PT), we sweep

Figure 5: Effect of applying MLI at different injection
layers on MTop performance, using DeepSeek-V3 as
the inference model.

over a range of λ values and observe the resulting
ICL performance. Figure 4 illustrates this tuning
process when DeepSeek-V3 is used as the infer-
ence model4. The dashed line represents the per-
formance of our backbone retriever without MLI.
Typically, we observe that the characteristic trend
of contributing properties is an initial increase fol-

4For optimal presentation, we omit results for those λ
falling out of the range in the figure

14784

lowed by a decline as λ grows. We select the con-
figuration that achieves the highest development
performance for each task and apply it in test-time
evaluation.

The observed trend indicates that there is an opti-
mal injection strength. A small λ may fail to mean-
ingfully influence the representation, while overly
aggressive injection risks disrupting the structural
integrity of the latent space.

7 Conclusion

We present Structure-Aware Retrieval of Exem-
plars (STARE), a novel framework for in-context
learning exemplar retrieval for semantic parsing.
STARE combines a backbone retriever based
on semantic hashing and dependency tree rep-
resentations with a modular enhancement strat-
egy, Middle-Layer Injection (MLI). MLI serves
as a lightweight yet effective augmentation mecha-
nism, which can be integrated into various retrieval
pipelines. Our method achieves state-of-the-art per-
formance across multiple semantic parsing bench-
marks, while maintaining low training costs and
demonstrating strong generalizability.

Limitations

Our Middle-Layer Injection (MLI) method as-
sumes a linear mechanism of injecting linguistic
properties, treating each direction independently
in the hidden space. This simplification may over-
look potential nonlinear interactions, such as those
between part-of-speech tags and syntactic depen-
dencies, which may be important in certain retrieval
scenarios and warrant further investigation in fu-
ture work. In addition, our evaluation focuses
solely on exemplar selection, without compar-
isons to reasoning-centric methods such as chain-
of-thought prompting or to fine-tuning-based ap-
proaches, which may limit the scope of our current
analysis to retrieval-specific settings.

Acknowledgments

This research is supported by the Ministry of Ed-
ucation, Singapore, under its Academic Research
Fund Tier 1 (#023618-00001, RG99/23), and the
NTU Start-Up Grant (#023284-00001), Singapore.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi,

and Yoav Goldberg. 2017. Fine-grained analysis

of sentence embeddings using auxiliary prediction
tasks.

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke
Zettlemoyer, and Marjan Ghazvininejad. 2023. In-
context examples selection for machine translation.
In Findings of the Association for Computational
Linguistics: ACL 2023.

Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen,
Nanning Zheng, Weizhu Chen, and Jian-Guang Lou.
2023. Skill-based few-shot selection for in-context
learning. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing.

Jacob Andreas, John Bufe, David Burkett, Charles Chen,
Josh Clausman, and Jean et al. Crawford. 2020. Task-
oriented dialogue as dataflow synthesis. Transactions
of the Association for Computational Linguistics, 8.

Andrei Z. Broder. 1997. On the resemblance and con-
tainment of documents. In Proceedings of the Com-
pression and Complexity of Sequences 1997, pages
21–29. IEEE Computer Society.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165.

Collin Burns, Haotian Ye, Dan Klein, and Jacob
Steinhardt. 2024. Discovering latent knowledge
in language models without supervision. Preprint,
arXiv:2212.03827.

Jianpeng Cheng, Devang Agrawal, Hector Martinez
Alonso, Shruti Bhargava, Joris Driesen, Federico
Flego, Shaona Ghosh, Dain Kaplan, Dimitri Kartsak-
lis, Lin Li, Dhivya Piraviperumal, Jason D. Williams,
Hong Yu, Diarmuid O Seaghdha, and Anders Jo-
hannsen. 2021. Conversational semantic parsing for
dialog state tracking.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew McCallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
and 181 others. 2025. Deepseek-v3 technical report.
Preprint, arXiv:2412.19437.

14785

https://arxiv.org/abs/1608.04207
https://arxiv.org/abs/1608.04207
https://arxiv.org/abs/1608.04207
https://aclanthology.org/2023.findings-acl.564/
https://aclanthology.org/2023.findings-acl.564/
https://aclanthology.org/2023.emnlp-main.831/
https://aclanthology.org/2023.emnlp-main.831/
https://aclanthology.org/2020.tacl-1.36/
https://aclanthology.org/2020.tacl-1.36/
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2212.03827
https://arxiv.org/abs/2212.03827
https://arxiv.org/abs/2010.12770
https://arxiv.org/abs/2010.12770
https://aclanthology.org/P18-1198/
https://aclanthology.org/P18-1198/
https://aclanthology.org/P18-1198/
https://aclanthology.org/2021.emnlp-main.755/
https://aclanthology.org/2021.emnlp-main.755/
https://aclanthology.org/2021.emnlp-main.755/
https://arxiv.org/abs/2412.19437

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of
the Association for Computational Linguistics, 9.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP).

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu,
Noah A. Smith, and Mari Ostendorf. 2022. In-
context learning for few-shot dialogue state tracking.
In Findings of the Association for Computational
Linguistics: EMNLP 2022.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, and Ethan Perez et al. 2022.
Language models (mostly) know what they know.
Preprint, arXiv:2207.05221.

Jimin Lee, Ingeol Baek, Byeongjeong Kim, and Hwan-
hee Lee. 2025. Safe-sql: Self-augmented in-context
learning with fine-grained example selection for text-
to-sql. Preprint, arXiv:2502.11438.

Tal Levy, Omer Goldman, and Reut Tsarfaty. 2023.
Is probing all you need? indicator tasks as an al-
ternative to probing embedding spaces. Preprint,
arXiv:2310.15905.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2024. Inference-time
intervention: Eliciting truthful answers from a lan-
guage model. Preprint, arXiv:2306.03341.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei
Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang, and
Xipeng Qiu. 2023. Unified demonstration retriever
for in-context learning. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics.

Xiaonan Li and Xipeng Qiu. 2023. Finding support
examples for in-context learning. In Findings of the
Association for Computational Linguistics: EMNLP
2023.

Yanshu Li, Yi Cao, Hongyang He, Qisen Cheng, Xiang
Fu, Xi Xiao, Tianyang Wang, and Ruixiang Tang.
2025a. M2iv: Towards efficient and fine-grained
multimodal in-context learning via representation en-
gineering. Preprint, arXiv:2504.04633.

Yanshu Li, Tian Yun, Jianjiang Yang, Pinyuan Feng,
Jinfa Huang, and Ruixiang Tang. 2025b. Taco:
Enhancing multimodal in-context learning via task
mapping-guided sequence configuration. arXiv
preprint arXiv:2505.17098.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-sql semantic parsing.

Hui Liu, Wenya Wang, Hao Sun, Chris Xing Tian,
Chenqi Kong, Xin Dong, and Haoliang Li. 2024.
Unraveling the mechanics of learning-based demon-
stration selection for in-context learning. Preprint,
arXiv:2406.11890.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022).

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational
Linguistics, 19(2):313–330.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, and Slav Petrov. 2013. Uni-
versal dependencies: A multilingual treebank col-
lection. In Proceedings of the 10th International
Conference on Language Resources and Evaluation
(LREC), pages 1659–1666. European Language Re-
sources Association (ELRA).

14786

https://aclanthology.org/2021.tacl-1.10/
https://aclanthology.org/2021.tacl-1.10/
https://aclanthology.org/D19-1006/
https://aclanthology.org/D19-1006/
https://aclanthology.org/D19-1006/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://aclanthology.org/2022.findings-emnlp.193/
https://aclanthology.org/2022.findings-emnlp.193/
https://aclanthology.org/P19-1356/
https://aclanthology.org/P19-1356/
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2502.11438
https://arxiv.org/abs/2502.11438
https://arxiv.org/abs/2502.11438
https://arxiv.org/abs/2310.15905
https://arxiv.org/abs/2310.15905
https://aclanthology.org/2021.eacl-main.257/
https://aclanthology.org/2021.eacl-main.257/
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://aclanthology.org/2023.acl-long.256/
https://aclanthology.org/2023.acl-long.256/
https://aclanthology.org/2023.findings-emnlp.411/
https://aclanthology.org/2023.findings-emnlp.411/
https://arxiv.org/abs/2504.04633
https://arxiv.org/abs/2504.04633
https://arxiv.org/abs/2504.04633
https://arxiv.org/abs/2012.12627
https://arxiv.org/abs/2012.12627
https://arxiv.org/abs/2406.11890
https://arxiv.org/abs/2406.11890
https://aclanthology.org/2022.deelio-1.10/
https://aclanthology.org/2022.deelio-1.10/
https://aclanthology.org/N19-1112/
https://aclanthology.org/N19-1112/
https://aclanthology.org/N19-1112/
https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/
https://aclanthology.org/L16-1262/
https://aclanthology.org/L16-1262/
https://aclanthology.org/L16-1262/

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing text-to-SQL capa-
bilities of large language models: A study on prompt
design strategies. In Findings of the Association for
Computational Linguistics: EMNLP 2023.

OpenAI. 2023. Gpt-3.5 turbo. https://platform.
openai.com/models/gpt-3.5-turbo. Accessed:
2025-05-12.

OpenAI. 2024. Gpt-4o-mini. https://platform.
openai.com/models/gpt-4o-mini. Accessed:
2025-05-12.

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. 2021.
Controllable semantic parsing via retrieval augmen-
tation. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.

Emmanouil Antonios Platanios, Adam Pauls, Subhro
Roy, Yuchen Zhang, Alexander Kyte, Alan Guo, Sam
Thomson, Jayant Krishnamurthy, Jason Wolfe, Jacob
Andreas, and Dan Klein. 2021. Value-agnostic con-
versational semantic parsing. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable code gen-
eration from pre-trained language models. Preprint,
arXiv:2201.11227.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
relational structures into pretrained Seq2Seq model
for text-to-SQL. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing.

Shauli Ravfogel, Grusha Prasad, Tal Linzen, and Yoav
Goldberg. 2021. Counterfactual interventions re-
veal the causal effect of relative clause representa-
tions on agreement prediction. In Proceedings of
the 25th Conference on Computational Natural Lan-
guage Learning.

Stephen Robertson and Hugo Zaragoza. 2009. Founda-
tions and Trends in Information Retrieval, 3(4):333–
389.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.

Peng Shi, Rui Zhang, He Bai, and Jimmy Lin.
2022. XRICL: Cross-lingual retrieval-augmented
in-context learning for cross-lingual text-to-SQL se-
mantic parsing. In Findings of the Association for
Computational Linguistics: EMNLP 2022.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing.

Richard Shin and Benjamin Van Durme. 2022. Few-
shot semantic parsing with language models trained
on code. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies.

Nishant Subramani, Nivedita Suresh, and Matthew Pe-
ters. 2022. Extracting latent steering vectors from
pretrained language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline.

Mycal Tucker, Peng Qian, and Roger Levy. 2021. What
if this modified that? syntactic interventions with
counterfactual embeddings. In Findings of the Asso-
ciation for Computational Linguistics: ACL-IJCNLP
2021, pages 862–875, Online. Association for Com-
putational Linguistics.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2019.
Representation learning with contrastive predictive
coding. Preprint, arXiv:1807.03748.

Jonas Wallat, Jaspreet Singh, and Avishek Anand. 2021.
Bertnesia: Investigating the capture and forgetting of
knowledge in bert. Preprint, arXiv:2106.02902.

Chenguang Wang, Xiao Liu, and Dawn Song. 2020.
Language models are open knowledge graphs.
Preprint, arXiv:2010.11967.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2023. Self-adaptive in-context learn-
ing: An information compression perspective for in-
context example selection and ordering. Preprint,
arXiv:2212.10375.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars for
in-context learning.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing.

14787

https://aclanthology.org/2023.findings-emnlp.996/
https://aclanthology.org/2023.findings-emnlp.996/
https://aclanthology.org/2023.findings-emnlp.996/
https://platform.openai.com/models/gpt-3.5-turbo
https://platform.openai.com/models/gpt-3.5-turbo
https://platform.openai.com/models/gpt-4o-mini
https://platform.openai.com/models/gpt-4o-mini
https://aclanthology.org/2021.emnlp-main.607/
https://aclanthology.org/2021.emnlp-main.607/
https://aclanthology.org/2021.acl-long.284/
https://aclanthology.org/2021.acl-long.284/
https://arxiv.org/abs/2201.11227
https://arxiv.org/abs/2201.11227
https://aclanthology.org/2022.emnlp-main.211/
https://aclanthology.org/2022.emnlp-main.211/
https://aclanthology.org/2022.emnlp-main.211/
https://aclanthology.org/2021.conll-1.15/
https://aclanthology.org/2021.conll-1.15/
https://aclanthology.org/2021.conll-1.15/
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://aclanthology.org/2022.naacl-main.191/
https://aclanthology.org/2022.naacl-main.191/
https://aclanthology.org/2021.emnlp-main.779/
https://aclanthology.org/2021.emnlp-main.779/
https://aclanthology.org/2021.emnlp-main.779/
https://aclanthology.org/2022.findings-emnlp.384/
https://aclanthology.org/2022.findings-emnlp.384/
https://aclanthology.org/2022.findings-emnlp.384/
https://aclanthology.org/2021.emnlp-main.608/
https://aclanthology.org/2021.emnlp-main.608/
https://aclanthology.org/2022.naacl-main.396/
https://aclanthology.org/2022.naacl-main.396/
https://aclanthology.org/2022.naacl-main.396/
https://aclanthology.org/2022.findings-acl.48/
https://aclanthology.org/2022.findings-acl.48/
https://arxiv.org/abs/1905.05950
https://arxiv.org/abs/1905.05950
https://doi.org/10.18653/v1/2021.findings-acl.76
https://doi.org/10.18653/v1/2021.findings-acl.76
https://doi.org/10.18653/v1/2021.findings-acl.76
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2106.02902
https://arxiv.org/abs/2106.02902
https://arxiv.org/abs/2010.11967
https://arxiv.org/abs/2212.10375
https://arxiv.org/abs/2212.10375
https://arxiv.org/abs/2212.10375
https://arxiv.org/abs/2302.05698
https://arxiv.org/abs/2302.05698
https://aclanthology.org/D18-1425/
https://aclanthology.org/D18-1425/
https://aclanthology.org/D18-1425/

John M. Zelle and Raymond J. Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96).

K. Zhang and D. Shasha. 1989. Simple fast algorithms
for the editing distance between trees and related
problems. SIAM Journal on Computing, 18(6):1245–
1262.

A Datasets

Table 5 presents the data splits and example in-
stances for each dataset. Detailed descriptions are
provided below.

MTop MTop (Li et al., 2021) is a multilingual
task-oriented semantic parsing dataset spanning
diverse user intents and domains. We focus on
the English subset. We use the full training set
and sample 1K examples each from the original
validation and test sets to form our splits.

SMCalFlow SMCalFlow (Andreas et al., 2020)
is a conversational semantic parsing dataset seri-
alized in a LISP-style format (Lispress). Its struc-
tured representation enforces well-formedness and
supports generalization in low-data settings, mak-
ing it ideal for testing compositional generalization
in dialogue. We sample 5K/1K/1K examples from
its original training, validation and test datasets as
our splits.

TreeDST TreeDST (Cheng et al., 2021) is a task-
oriented dialogue dataset representing dialogue
states as hierarchical trees. We use its Lispress seri-
alization version (Platanios et al., 2021), which cap-
tures compositional dependencies across intents,
domains, and slots, better reflecting real-world di-
alogue complexity. We sample 5K/1K/1K exam-
ples from its original training, validation and test
datasets as our splits.

Spider Spider (Yu et al., 2018) is a large-scale
text-to-SQL dataset. It covers a wide range of do-
mains and compositional SQL structures, providing
a rigorous testbed for text-to-SQL exemplar selec-
tion methods. Its different splits do not share any
databases. Following standard practice, we evalu-
ate on the development set since the test set is not
publicly released.

B Baselines

Efficient Prompt Retriever (EPR) EPR (Rubin
et al., 2022) constructs contrastive training pairs
by applying one-shot prompting to every training
instance, using a proxy LLM to approximate ex-
emplar utility. Specifically, a simple retriever is
first used to retrieve a candidate pool, and top-K
and bottom-K candidates are selected based on
proxy model scores. A BERT-based retriever is
then fine-tuned via contrastive learning. Following
the original setup, we use GPT-Neo (2.7B) as the
proxy model. We then retrieve 15 candidates for

14788

https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082

Dataset Train/Dev/Test Example
MTop 15,567/1,000/1,000 Sentence: Whats weather forecast for tomorrow?

Parsing: [IN:GET_WEATHER [SL:DATE_TIME for tomorrow]]
SMCalFlow 50,000/1,000/1,000 Sentence: What does my schedule look like on Thursday?

Parsing: (Yield (FindEventWrapperWithDefaults
(EventOnDate (NextDOW (Thursday)) (ˆ(Event) EmptyStructConstraint))))

TreeDST 50,000/1,000/1,000 Sentence: Hi my assistant, where is the Westin hotel?
Parsing: (plan (ˆ(Hotel) Find :focus

(Hotel.location_? (ˆ(String) always)) :object (Hotel.hotelName_? (?= "Westin"))))
Spider 7,000/1,000/1,034 Sentence: How many available features are there in total?

Parsing: SELECT count(*) FROM Other_Available_Features

Table 5: Overview of datasets used for semantic parsing experiments.

each training instance using BM25, and set K = 5
for pair construction.

Compositional Exemplars for In-context Learn-
ing (CEIL) CEIL (Ye et al., 2023) builds on the
EPR framework but improves selection granular-
ity by modeling exemplar interactions. Instead of
scoring one-shot prompts individually, it adopts
Determinantal Point Processes (DPP) to select ex-
emplar subsets that jointly maximize compositional
contribution. As with EPR, we use BM25 for candi-
date pre-selection, GPT-Neo (2.7B) as the scoring
model, and score 10 randomly sampled subsets of
16 examples for each training instance.

Target Similarity Tuning (TST) TST (Poesia
et al., 2022) selects exemplars for in-context learn-
ing in code generation by ranking candidate pro-
grams with respect to the query using Tree-Edit Dis-
tance (TED). While both TST and STARE exploit
structural cues, there are key distinctions. First,
TST learns via regression to absolute TED val-
ues, whereas STARE employs a contrastive objec-
tive that only preserves relative ordering. Second,
TST requires O(N2) TED computations across all
candidate pairs, while STARE leverages semantic
bucketing (MinHash+LSH) to achieve O(N logN)
efficiency. Finally, TST was designed for earlier
models with frequent syntax errors and thus relied
on external syntax correction, whereas STARE is
tailored to modern LLMs and directly addresses
structural alignment through both explicit (con-
trastive retriever) and implicit (MLI) mechanisms,
without additional decoding modules.

Multi-level Similarity Maximization (MLSM)
MLSM (Liu et al., 2024) proposes to leverage dif-
ferent abstraction levels captured across BERT lay-
ers for exemplar selection. Redundant layers are
first filtered using CKA-based clustering, and each
selected layer acts as an expert capturing similarity
at a distinct level. For each query, MLSM aggre-

gates similarity scores from multiple layers with
learned weights, optimizing for agreement across
experts. The method is fully unsupervised and
designed to enhance task-agnostic generalization
without relying on task-specific labels.

Skill-KNN Skill-KNN (An et al., 2023) proposes
a two-stage retrieve framework for text-to-SQL in-
context learning. First, for each query, a frozen
LLM is prompted to rewrite the input into a skill-
based description that captures task-relevant fea-
tures in natural language. These rewritten skills
are then embedded with an off-the-shelf encoder,
and examples with similar skills are retrieved. To
address the sensitivity of rewriting to prompt order,
two variants are proposed: a consistency-based
variant, which aggregates multiple rewrites via
mean pooling, and a distinctiveness-based variant,
which selects based on the most distinctive match.
In our experiments, we use GPT-4o-mini to gener-
ate 5 candidate skill descriptions per input and eval-
uate both variants. We use bert-base-uncased as
the off-the-shelf encoder for embedding the skill
descriptions.

Similarity-Diversity Similarity-Diversity (Nan
et al., 2023) proposes selecting exemplars by bal-
ancing similarity and diversity among demonstra-
tions. First, candidates are filtered by retrieving
examples with similar SQL structure complexity,
using the difficulty-level categorization from the
Spider dataset. Then, to promote diversity, a sparse
encoding of the predicted SQL query is computed,
and k-means clustering is applied over the discrete
representations to select diverse exemplars. In the
original setup, an approximate SQL prediction by
baseline text-to-SQL models is used for difficulty
categorization and sparse encoding. To avoid in-
troducing noise from imperfect preliminary mod-
els, we instead use the ground-truth SQL queries
for encoding in our experiments, representing an

14789

upper-bound variant of this method.

BM25 Retriever BM25 (Robertson and
Zaragoza, 2009) is a sparse retrieval baseline
that scores exemplar candidates by computing
lexical similarity with the test query. Specifically,
it compares each candidate’s input utterance to
the test query using term frequency and inverse
document frequency, and selects the Top-K
highest-scoring candidates.

BERT Retriever The BERT retriever encodes
both exemplars and test queries using a pre-trained
BERT model and selects those with the highest co-
sine similarity in embedding space. Despite being
unsupervised, it captures richer semantic signals
than token-level matching methods like BM25, and
serves as a lightweight neural baseline for retrieval.

C Tree Construction

To enable structure-based similarity computation,
we convert each semantic parse into a labeled tree.

For MTop, SMCalFlow and TreeDST, we use a
bracket-based parser to recursively construct trees,
where each non-terminal label becomes a parent
node, and its enclosed spans are attached as chil-
dren. The resulting tree captures the hierarchical
structure of the parse.

For SQL Queries (Spider), we parse SQL queries
into Abstract Syntax Trees (ASTs) using sqlglot,
and prune them by retaining only clause-level
nodes and essential fields to form a structural skele-
ton.

In both cases, each node’s label corresponds to
its operator or clause type, and children reflect its
compositional arguments.

D Final Merged Labels of Auxiliary
Datasets

Table 6 shows the merged linguistic labels for the
three properties in the auxiliary datasets. Specifi-
cally, the POS and DEPS labels are derived from
the UD Treebank (McDonald et al., 2013), which
contains 207,230 tokens, while the PT labels are
sourced from the Penn Treebank (Marcus et al.,
1993), comprising 100,676 tokens.

E Inference Settings

For all experiments, we use greedy decoding, with
the temperature set to 0.0 to ensure determinis-
tic generation. The maximum generation length
is capped at 200 new tokens, excluding the input

Property Final Merged Labels
POS ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ,

NOUN, NUM, PART, PRON, PROPN, PUNCT,
SCONJ, SYM, VERB, X

DEPS ACL, ACL:RELCL, ADVMOD, AUX, CASE,
COMP, COMPOUND, CONJ, CSUBJ, DEP,
DET, EXPL, GOESWITH, LIST, MARK, MOD,
NMOD, NSUBJ, OBJ, OBL, ORPHAN, PUNCT,
REPARANDUM, ROOT, VOCATIVE

PT SBAR, UCP, ADVP, O, WHADVP, NAC, INTJ,
NX, CONJP, QP, SBARQ, S, ADJP, FRAG, SQ,
LST, PRT, PP, X-HLN, VP, X, WHADJP, WHPP,
NP, WHNP, SINV, PRN

Table 6: Final label sets used for linguistic probing after
merging fine-grained categories.

prompt. To ensure robustness, each experiment is
run with three different random seeds. The final re-
ported results are obtained by averaging over these
three runs.

F Supplementary Results

Table 7 to Table 10 show the supplementary exper-
imental results with Llama3.3-70B and Qwen2.5-
72B-Instruct-Turbo as inference models.

Method MTop SMCalFlow TreeDST
BERT 71.0 56.8 50.0
MLSM 71.9 57.4 49.9
EPR 72.1 61.3 55.7
STARE (w/o MLI) 72.2 59.6 53.0
STARE 73.2 61.6 57.2

Table 7: Supplementary results with Llama 3.3-70B on
MTop/SMCalFlow/TreeDST.

Method EM EX
BERT 67.0 79.5
MLSM 66.9 80.2
EPR 63.2 77.2
Skill-KNN (cons.) 60.3 78.9
Skill-KNN (dist.) 60.2 80.6
Similarity-Div. 58.4 80.4
STARE (w/o MLI) 69.5 80.9
STARE 72.7 82.1

Table 8: Supplementary results with Llama 3.3-70B on
Spider.

G Injection Layer

To explain why POS, DEPS, and PT injections ex-
hibit different effect trends across layers, we draw
insights from BERT interpretability studies and
consider each property’s representational footprint
in Transformer encoders.

POS tags are encoded early in the network. Em-
pirical probing shows that POS linear separability

14790

Method MTop SMCalFlow TreeDST
BERT 73.2 89.1 62.7
MLSM 72.1 89.9 60.8
EPR 72.2 87.9 65.1
STARE (w/o MLI) 72.6 89.6 64.1
STARE 74.6 91.2 64.8

Table 9: Supplementary results with Qwen2.5-72B-
Instruct-Turbo on MTop/SMCalFlow/TreeDST.

Method EM EX
BERT 65.6 80.8
MLSM 66.2 80.4
EPR 64.0 81.3
Skill-KNN (cons.) 62.7 81.3
Skill-KNN (dist.) 60.9 80.6
Similarity-Div. 62.0 81.5
STARE (w/o MLI) 71.2 82.1
STARE 71.4 82.8

Table 10: Supplementary results with Qwen2.5-72B-
Instruct-Turbo on Spider.

is high at Layer 4 of BERT-base (Tenney et al.,
2019), so Layer 4 offers a clear axis for lexical
separation. Nudging along this axis therefore im-
proves retrieval. Layer 8 still retains strong lexi-
cal cues while adding richer context (e.g., clause
boundaries, mid-range dependencies). Injecting the
POS direction here sharpens lexical roles further
and allows downstream layers to integrate this with
syntactic context, so the gain remains comparable
to Layer 4. Beyond Layer 10, the encoder focuses
more on sentence-level semantics and pools token
details more aggressively, so lexical perturbations
are increasingly diluted, which explains the drop at
Layer 12.

In contrast, DEPS and PT emerge only after self-
attention has aggregated sufficient context (around
Layers 6–9). Injecting a dependency- or phrase-
type direction too early pushes the representation
along a subspace that has not yet been reliably
formed, which actually adds noise. Layer 8 sits
at a stage where syntactic structure is both clear
and still flexible, so the model can amplify and
propagate the signal, yielding the largest gains. By
Layer 12, high-level semantics dominate and such
perturbations are mostly washed out, so the benefit
diminishes.

This pattern is consistent with the structural-
probe findings of Hewitt and Manning (2019),
which showed that BERT’s middle layers best en-
code syntactic structure for reconstructing gold
dependency trees. In their experiments, both the
Undirected Unlabeled Attachment Score (UUAS)
and the Spearman correlation between true and pre-

dicted parse distances peak at Layer 8, confirming
that this layer encodes syntactic geometry most
faithfully and is therefore the most effective anchor
for our DEPS and PT intervention.

Finally, it is shown that Layer 4 still outperforms
Layer 12, albeit by a smaller margin, because early
layers retain fine-grained positional information
and short-range head–dependent cues that are use-
ful once amplified. Late layers, in contrast, have
already compressed many token-level distinctions
in favor of sentence-level semantics; injecting syn-
tactic signals there offers little additional discrimi-
natory power for our retriever.

Thus, the observed hierarchy naturally follows
from BERT’s progressive shift in representational
focus from lexical to syntactic and then to semantic
information as depth increases.

H Prompt Examples

H.1 Prompt Example for MTop, SMCalFlow,
TreeDST

(Same prompt template is used for MTop,
SMCalFlow and TreeDST while the following
example is instantiated with MTop)

Below are examples of converting user utterances
into MTop semantic parses:

Example 1
User: Remind me about shopping for school on
tax free weekend.
Parse: [IN:CREATE_REMINDER
[SL:PERSON_REMINDED me] [SL:TODO
shopping for school] [SL:DATE_TIME on tax
free weekend]]

Example 2
User: Remind me to bake cookies tomorrow night
for the bake sale
Parse: [IN:CREATE_REMINDER
[SL:PERSON_REMINDED me] [SL:TODO
[IN:GET_TODO [SL:TODO bake cookies]
[SL:DATE_TIME tomorrow night] [SL:TODO
the bake sale]]]]

Example 3
User: Remind me to tell Angie I am bringing the
salad for bible study on Friday
Parse: [IN:CREATE_REMINDER
[SL:PERSON_REMINDED me] [SL:TODO tell
Angie I am bringing the salad for bible study]
[SL:DATE_TIME on Friday]]

14791

. . .

Example 19
User: Remind me to make chicken dip for the
watch party tomorrow.
Parse: [IN:CREATE_REMINDER
[SL:PERSON_REMINDED me] [SL:TODO make
chicken dip for the watch party] [SL:DATE_TIME
tomorrow]]

Example 20
User: Remind me to make the cookies for the bake
sale.
Parse: [IN:CREATE_REMINDER
[SL:PERSON_REMINDED me] [SL:TODO
make the cookies for the bake sale]]

Query
User: Remind me to make bars for the picnic on
Sunday.
Parse:

H.2 Prompt Example for Spider
Below are examples of database schema and text-
to-SQL generation for Spider:

/* Given the following database schema: */
CREATE TABLE IF NOT EXISTS "flight" (
"flno" text, "origin" text, "destination"
text, "distance" text, "departure_date"
text, "arrival_date" text, "price" text,
"aid" text, PRIMARY KEY ("flno"), FOREIGN
KEY ("aid") REFERENCES "aircraft"("aid")
);
CREATE TABLE IF NOT EXISTS "aircraft" (
"aid" text, "name" text, "distance" text,
PRIMARY KEY ("aid"));
CREATE TABLE IF NOT EXISTS "employee" (
"eid" text, "name" text, "salary" text,
PRIMARY KEY ("eid"));
CREATE TABLE IF NOT EXISTS "certificate"
("eid" text, "aid" text, PRIMARY KEY
("eid"), FOREIGN KEY ("aid") REFERENCES
"aircraft"("aid"), FOREIGN KEY ("eid")
REFERENCES "employee"("eid"));

/* Answer the following: How many employ-
ees do we have? */
SQL Query: SELECT count(*) FROM employee;

/* Given the following database schema: */
CREATE TABLE IF NOT EXISTS "Activity"
("actid" text, "activity_name" text,

PRIMARY KEY ("actid"));
CREATE TABLE IF NOT EXISTS
"Participates_in" ("stuid" text, "actid"
text, FOREIGN KEY ("actid") REFERENCES
"Activity"("actid"), FOREIGN KEY
("stuid") REFERENCES "Student"("StuID")
);
CREATE TABLE IF NOT EXISTS
"Faculty_Participates_in" ("FacID"
text, "actid" text, FOREIGN KEY
("actid") REFERENCES "Activity"("actid"),
FOREIGN KEY ("FacID") REFERENCES
"Faculty"("FacID"));
CREATE TABLE IF NOT EXISTS "Student"
("StuID" text, "LName" text, "Fname"
text, "Age" text, "Sex" text, "Major"
text, "Advisor" text, "city_code" text,
PRIMARY KEY ("StuID"));
CREATE TABLE IF NOT EXISTS "Faculty" (
"FacID" text, "Lname" text, "Fname" text,
"Rank" text, "Sex" text, "Phone" text,
"Room" text, "Building" text, PRIMARY
KEY ("FacID"));

/* Answer the following: How many faculty
do we have? */
SQL Query: SELECT count(*) FROM Faculty;

. . .

/* Given the following database schema: */
CREATE TABLE IF NOT EXISTS "artist" (
"Artist_ID" text, "Name" text, "Country"
text, "Year_Join" text, "Age" text,
PRIMARY KEY ("Artist_ID"));
CREATE TABLE IF NOT EXISTS
"exhibition" ("Exhibition_ID"
text, "Year" text, "Theme" text,
"Artist_ID" text, "Ticket_Price"
text, PRIMARY KEY ("Exhibition_ID"),
FOREIGN KEY ("Artist_ID") REFERENCES
"artist"("Artist_ID"));
CREATE TABLE IF NOT EXISTS
"exhibition_record" ("Exhibition_ID"
text, "Date" text, "Attendance"
text, PRIMARY KEY ("Exhibition_ID"),
FOREIGN KEY ("Exhibition_ID") REFERENCES
"exhibition"("Exhibition_ID"));

/* Answer the following: How many artists
do we have? */
SQL Query: SELECT count(*) FROM artist;

/* Given the following database schema: */

14792

CREATE TABLE IF NOT EXISTS "stadium"
("Stadium_ID" text, "Location" text,
"Name" text, "Capacity" text, "Highest"
text, "Lowest" text, "Average" text,
PRIMARY KEY ("Stadium_ID"));
CREATE TABLE IF NOT EXISTS "singer"
("Singer_ID" text, "Name" text,
"Country" text, "Song_Name" text,
"Song_release_year" text, "Age" text,
"Is_male" text, PRIMARY KEY ("Singer_ID")
);
CREATE TABLE IF NOT EXISTS "concert"
("concert_ID" text, "concert_Name"
text, "Theme" text, "Stadium_ID" text,
"Year" text, PRIMARY KEY ("concert_ID"),
FOREIGN KEY ("Stadium_ID") REFERENCES
"stadium"("Stadium_ID"));
CREATE TABLE IF NOT EXISTS
"singer_in_concert" ("concert_ID"
text, "Singer_ID" text, PRIMARY KEY
("concert_ID"), FOREIGN KEY ("Singer_ID")
REFERENCES "singer"("Singer_ID"),
FOREIGN KEY ("concert_ID") REFERENCES
"concert"("concert_ID"));

/* Answer the following: How many singers
do we have? */
SQL Query:

I MLI Configuration

Table 11 details the MLI configurations (linguistic
property and injection intensity) applied to different
exemplar selection methods for each dataset under
various inference models. Configurations marked
with “–” indicate settings that were not evaluated.
All injections are applied at Layer 8 of the base
retriever.

14793

Inference Model Method + MLI MTOP SMCalFlow TreeDST Spider

Llama3-8B
STARE PT-5 DEPS-4 DEPS-1.5 –
BERT + MLI POS-5 PT-1.5 DEPS-1.5 –
EPR + MLI POS-6 PT-4 DEPS-4 –

GPT-3.5-turbo
STARE – – – POS-5
BERT + MLI – – – POS-5
EPR + MLI – – – POS-5

GPT-4o-mini
STARE POS-6 PT-2.5 PT-0.5 POS-5
BERT + MLI POS-5 DEPS-3 DEPS-1.5 POS-5
EPR + MLI DEPS-6 DEPS-3 DEPS-1.5 POS-5

DeepSeek-V3
STARE POS-4 PT-2 PT-3 POS-6
BERT + MLI POS-5 PT-0.5 PT-2 POS-5
EPR + MLI DEPS-6 PT-2 PT-2 POS-5

Table 11: MLI configurations (property - intensity) for each inference model across datasets. “–” indicates the
method is not evaluated for that task-model pair.

14794

