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Abstract

Large Language Models (LLMs) have demon-
strated inherent calibration capabilities, where
predicted probabilities align well with correct-
ness, despite prior findings that deep neural net-
works are often overconfident. Recent studies
have linked this behavior to specific compo-
nents in the final layer, such as entropy neu-
rons and the unembedding matrix’s null space.
In this work, we provide a complementary
perspective by investigating how calibration
evolves throughout the network’s depth. An-
alyzing multiple open-weight models on the
MMLU benchmark, we uncover a distinct confi-
dence correction phase in the upper/later layers,
where model confidence is actively recalibrated
after decision certainty has been reached. Fur-
thermore, we identify a low-dimensional cali-
bration direction in the residual stream whose
perturbation significantly improves calibration
metrics (ECE and MCE) without harming ac-
curacy. Our findings suggest that calibration
is a distributed phenomenon, shaped through-
out the network’s forward pass, not just in its
final projection, providing new insights into
how confidence-regulating mechanisms oper-
ate within LLMs.

1 Introduction

Large Language Models (LLMs) have demon-
strated strong generalization across a wide vari-
ety of tasks (Devlin et al., 2019; Radford et al.,
2019; Brown et al., 2020), yet it is challenging
to understand how they manage and express un-
certainty. Understanding the internal mechanisms
by which LLMs regulate confidence is becoming
increasingly important, especially as these mod-
els are deployed in settings where overconfidence
can be costly. Model calibration, the alignment
between a model’s confidence and its accuracy,
has emerged as a key axis for interpreting model
behavior. Although deep neural networks have
historically been found to be miscalibrated or over-
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Figure 1: The figure shows performance (Accuracy)
along with model calibration scores (ECE and MCE)
of the phi-2 model on the MMLU Humanities dataset.
We observe that the model performance remains near-
random (25%, 4-options) for initial layers and starts to
rise from layer 22 and saturates at layer 26, with minor
changes in the 26-31 layers. However, the ECE and
MCE scores first rise (layers 25-28) and then decline
(layers 28-31), highlighting the model calibration chang-
ing in the later layers.

confident (Guo et al., 2017), recent empirical stud-
ies suggest that LLMs exhibit surprisingly well-
calibrated behavior across multiple tasks (Kadavath
et al., 2022; Achiam et al., 2023; Plaut et al., 2024).
This has sparked growing interest in uncovering
architectural or representational mechanisms that
support/cause calibration in LLMs.
Recent investigations have made notable progress
in this direction. For instance, entropy neurons
in the final layers have been shown to adjust the
uncertainty of model predictions while minimally
affecting the output distribution (Stolfo et al., 2024;
Gurnee et al., 2024). These neurons modulate the
entropy of the output distribution by operating in
the null space of the unembedding matrix, effec-
tively influencing confidence without altering accu-
racy. Such findings provide compelling evidence
that calibration is an active, structured process, and
that LLMs contain specialized components for reg-
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Figure 2: The figure provides an overview of the performed study. The Residual stream signals from each of the
layers are projected back to the vocabulary space using the unembedding matrix. The obtained predictions are
inspected for accuracy and model calibration scores (ECE/MCE). The models show a sudden peak arising in the
middle layers, after which the performance remains saturated. Interestingly, the model goes into a calibration
correction phase where the ECE first rises and then reduces, while maintaining the same accuracy, i.e. going from a
poorly calibrated predictions to calibrated predictions (shown as reliability diagrams, also see Figure 12).

ulating confidence.
In this work, we build on this line of research
by exploring whether such mechanisms are also
present within the intermediate layers of the model.
Specifically, we investigate how calibration evolves
across the full depth of transformer-based language
models. While prior work has illuminated the
role of final-layer structures, the calibration dy-
namics of earlier layers remain less well under-
stood. We examine multiple popular open-weight
models (Phi-2 (Javaheripi et al., 2023), LLaMA-3
(Grattafiori et al., 2024), LlaMa-2 (Touvron et al.,
2023), Mistral-7B (Jiang et al., 2023)), on multiple
real-world benchmarks (see App. C) with a spe-
cial focus on the MMLU benchmark (Hendrycks
et al., 2021), inspecting the confidence and predic-
tion behavior across layers via the residual stream
(Elhage et al., 2021). Our analysis reveals that cali-
bration is not restricted to the model’s final stages.
Instead, we find that LLMs undergo a clear confi-
dence correction phase in their later layers, where
confidence is actively adjusted, even after predic-
tion accuracy has stabilized. Further, we identify
a low-dimensional direction in the residual stream
that is consistently aligned with changes in model
confidence. Perturbing this direction improves cal-
ibration metrics (ECE and MCE) without degrad-
ing accuracy, weakly suggesting the existence of a
meaningful calibration subspace distributed across
layers. In a nutshell, we make the following contri-
butions:

• We provide a layerwise analysis of calibration dy-
namics in transformer-based LLMs, showing that
confidence is not simply correlated with accuracy
but evolves through a distinct confidence correc-
tion phase, where models become temporarily
overconfident before self-adjusting in later layers.
(see Figure 2 for an overview and Figure 1 for
calibration changing across later layers.)

• We identify a “calibration direction” in the resid-
ual stream that governs confidence modulation,
and demonstrate that small perturbations along
this direction improve calibration metrics (ECE
and MCE) without sacrificing accuracy. (see
Figure 5 and App. Figure 21 for generalization
across datasets)

• We provide a complementary perspective to ex-
isting work on final-layer calibration mecha-
nisms by revealing distributed calibration behav-
ior across the network’s depth, especially in in-
termediate layers that have received limited at-
tention in prior studies.

In summary, our findings contribute to a more com-
plete picture of how calibration is implemented
within LLMs. Rather than being an isolated prop-
erty of the final output layer, calibration appears
to be a dynamic and distributed process. We hope
this perspective encourages further work toward in-
terpretable and controllable confidence modulation
in language models. Our code is publicly accessi-
ble at https://github.com/Exploration-Lab/
LLM-Calibration-Mechanism.
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2 Related Work

Understanding and regulating uncertainty in neural
networks has long been a foundational challenge
in machine learning. Early studies revealed that
modern deep networks tend to be overconfident
and poorly calibrated (Guo et al., 2017), prompt-
ing the development of theoretical frameworks for
uncertainty estimation, including Bayesian approx-
imations and dropout-based techniques (Gal, 2016).
While much of this work focused on vision models
or shallow classifiers, recent attention has shifted
toward calibration in LLMs, where the stakes of
miscalibrated predictions can be higher. Several
recent studies have revealed that LLMs, despite
their size and complexity, often exhibit surprisingly
strong calibration properties. Kadavath et al. (2022)
and Achiam et al. (2023) showed that LLM token-
level probabilities correlate well with accuracy,
suggesting an emergent form of self-knowledge.
This idea has been extended by Yin et al. (2023)
and Xiong et al. (2024), who further investigated
how well LLMs can express and act on their un-
certainty in downstream tasks. However, Kapoor
et al. (2024) cautioned that such behavior may not
generalize without explicit training signals, rais-
ing questions about when and how such calibration
arises. A complementary line of work has sought
to uncover the mechanisms underlying these behav-
iors. Notably, Stolfo et al. (2024) identified final-
layer “confidence regulation neurons” that influ-
ence the entropy of the model’s output distribution
without significantly changing its predictions. Sim-
ilarly, Cancedda (2024) explored how the spectral
properties of the unembedding matrix contribute
to calibration, emphasizing the importance of low-
energy directions previously overlooked. Other
studies like Sharma et al. (2024) demonstrated that
a large fraction of the unembedding space is re-
dundant and can be compressed without perfor-
mance loss, which may affect how uncertainty is
encoded. These findings suggest that LLMs use
sophisticated mechanisms at their output layers to
regulate confidence. However, most prior analy-
sis have centered exclusively on final-layer phe-
nomena, entropy neurons, attention patterns, and
projection bottlenecks, while neglecting how confi-
dence emerges and evolves across the depth of the
network. Tools like the Logit Lens (nostalgebraist,
2020) and residual stream analyses (Elhage et al.,
2021) have made it possible to study intermedi-
ate representations, but their use in the context of

calibration remains limited.
In parallel, some recent work has explored prompt-
ing strategies and fine-tuning methods for improv-
ing confidence estimation in LLMs (Tian et al.,
2023), while broader surveys (Geng et al., 2024;
Gawlikowski et al., 2023) have documented a wide
variety of calibration techniques, from temperature
scaling to Bayesian ensembling. Yet, these meth-
ods often treat the model as a black box, providing
little insight into the internal computations shaping
confidence.
In contrast, our work provides a mechanistic, layer-
wise perspective on calibration, complementing
prior studies by tracking how uncertainty evolves
throughout the forward pass. We identify a confi-
dence correction phase in the later layers and a cali-
bration direction in the residual stream, demonstrat-
ing that confidence is explicitly modulated across
depth, not just at the output.

3 Background

In this section, we review essential background on
transformer-based language modeling and model
calibration. We focus on aspects most relevant
to our study, which include token-level prediction
in decoder-only transformers and how calibration
metrics quantify model uncertainty.
Transformer-based Language Modeling:
Transformer-based language models (LMs) are
typically trained to predict the next token in a
sequence, modeling the conditional probability
distribution P (xt | x1, . . . , xt−1) over a vocab-
ulary V (Modern language models commonly
use vocabularies of size |V| ≥ 50,000 (Radford
et al., 2019; Liu et al., 2019).) These models
are implemented as deep neural networks param-
eterized by θ, denoted Mθ, and trained in an
autoregressive fashion. Given a token sequence
x = [x1, . . . , xt−1] ∈ Vt−1, the model outputs a
vector of logits zt ∈ R|V|, where each component
corresponds to the unnormalized log-probability of
a vocabulary token. Applying the softmax function
to zt yields the probability distribution over the
next token. Internally, decoder-only models consist
of a stack of transformer blocks fθ1 , fθ2 , . . . , fθL ,
which process the input sequence via self-attention
and feedforward layers. These blocks operate
on and update a shared residual stream, with
skip connections facilitating gradient flow and
information propagation (Elhage et al., 2021).
At each layer, token representations are refined
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until the final hidden state is projected to the
vocabulary space. We focus on the representation
corresponding to the last input token xt−1, as this
token is typically responsible for generating the
next-token prediction. The final residual vector
for this token is first normalized by a LayerNorm
module, then projected to the vocabulary space via
a learned weight matrix WU ∈ R|V|×dmodel , often
referred to as the unembedding matrix (Elhage
et al., 2021).
Layer Normalization (LayerNorm) (Ba et al.,
2016) plays a critical role in stabilizing training
and enhancing convergence in transformer models.
Given an input vector zt ∈ Rdmodel , LayerNorm
transforms it as:

LayerNorm(zt) =
zt − µzt√
Var(zt) + ϵ

⊙ γ + β

Here, µzt and Var(zt) denote the mean and vari-
ance of the vector components, and γ,β ∈ Rdmodel

are learned scale and shift parameters. This op-
eration standardizes the input and enables better
gradient flow across layers.
Model Calibration: In machine learning mod-
els calibration refers to the alignment between a
model’s predicted confidence and the actual like-
lihood of being correct. A model is said to be
well-calibrated, if across many predictions, to-
kens predicted with a given probability p are cor-
rect approximately p fraction of the time. For-
mally, for a given input prompt x = [x1, . . . , xt−1],
let y = xt denote the true next token, and let
ŷ = argmaxv∈V PMθ

(v | x) be the model’s pre-
dicted token. The model’s confidence is given
by p = PMθ

(ŷ | x), while its accuracy is de-
fined as a = I(ŷ = y), where I is the indica-
tor function. To assess calibration over a dataset
D = {(x(i), y(i))}Ni=1, predictions are grouped into
M bins {Bm}Mm=1 based on their confidence scores
(e.g., into intervals such as [0.0, 0.1), [0.1, 0.2),
etc.). For each bin Bm, we define:

conf(Bm) =
1

|Bm|
∑

i∈Bm

p(i),

acc(Bm) =
1

|Bm|
∑

i∈Bm

a(i),

where p(i) and a(i) are the confidence and accuracy
for the i-th prediction. The Expected Calibration
Error (ECE) aggregates the absolute difference be-
tween confidence and accuracy over bins, weighted

by the number of samples per bin:

ECE =
M∑

m=1

|Bm|
N
|acc(Bm)− conf(Bm)| .

A related metric, the Maximum Calibration Error
(MCE), captures the worst-case bin-level deviation
between accuracy and confidence:

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)| .

Both metrics are minimized (i.e., equal to zero)
when the model is perfectly calibrated. For a com-
prehensive treatment of calibration techniques in
language models, please refer to Pavlovic (2025).
Reliability Diagrams: To visualize model calibra-
tion, we use reliability diagrams (Guo et al., 2017)
(see App. Fig 12), which plot predicted confidence
against empirical accuracy for different confidence
intervals. In a perfectly calibrated model, the points
lie on the diagonal y = x, indicating that predicted
probabilities align with observed correctness. Devi-
ations below the diagonal suggest overconfidence,
while points above the diagonal indicate undercon-
fidence. Reliability diagrams provide an intuitive,
qualitative assessment of how model confidence
corresponds to actual performance.

4 Experimental Setup

In this work, we study the calibration behavior
of transformer-based language models (LLMs) by
analyzing their performance on multiple-choice
question answering (MCQA) tasks. The model
predicts the next token conditioned on the context
(input query). Our experimental setup focuses on
assessing how the input structure, query framing,
and model components impact calibration.
Task Setup: We evaluate LLMs on a task where a
query is presented in the form of a multiple-choice
question answering (MCQA) prompt. The input
consists of two primary components: 1) Query In-
formation (xquery): This contains the specific ques-
tion or context associated with a dataset instance.
2) Choice Set (xoptions): This includes the set of
answer options provided for each instance. The
number of options depends on the dataset (e.g.,
four in the case of MMLU). Specifically, given the
input structure as:

P (xt|xi<t,Mθ) = P (xt|xquery, xoptions, xϵ,Mθ)

where, xquery represents the query information (spe-
cific question or context), xoptions denotes the set
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of available answer choices (e.g., A, B, C, D), xϵ
represents the set of prompt templates used for
MCQA,Mθ = {fθ1 , fθ2 , . . . , fθL} represents the
language model with parameters θ across L lay-
ers. The model is expected to generate the correct
answer choice token as the next token in the out-
put sequence, which we evaluate for performance.
Additionally, to ensure diversity and mitigate po-
tential position biases in the answer choices, we
randomize the order of the answer options, where:

xoptions ← {A. ocorrect,B. owrong}

This formulation allows us to test the model’s abil-
ity to handle different question structures while
monitoring its confidence across various layers of
the transformer. In this work, we stick to reasoning
captured using multiple-choice question answer-
ing (MCQA)-style prompts (Robinson et al., 2023;
Joshi et al., 2024). The MCQA setup provides a
principled and constrained setting for investigating
the internal decision-making processes of LLMs
(Wiegreffe et al., 2025; Joshi et al., 2025). Un-
like open-ended or cloze-style generation, MCQA
structures the task as a selection among discrete al-
ternatives, thereby reducing confounding factors re-
lated to token frequency, length bias, and linguistic
fluency (Brown et al., 2020). This format enables
precise analysis of the transition from contextual
representation to decision, making it well-suited for
quantifying/measuring calibration changing across
intermediate representations.
The use of structured MCQA format helps in con-
sistent evaluation of model calibration across lay-
ers, as it requires the model to make a discrete
decision among a fixed set of alternatives. Un-
like open-ended generation or cloze-style comple-
tion, MCQA also has less ambiguity in output in-
terpretation by constraining the prediction space,
allowing us to more directly isolate and measure
model confidence. Moreover, the use of standard-
ized evaluation using metrics such as Expected Cal-
ibration Error (ECE) and Maximum Calibration Er-
ror (MCE) can be established in a straightforward
fashion, which is more difficult to apply in gener-
ative settings. Additionally, because the model’s
output is evaluated on a fixed set of tokens, MCQA
avoids the stochasticity introduced by sampling
strategies (e.g., temperature sampling or top-k de-
coding), which often confound confidence analysis
in generation tasks. In contrast, open-ended gener-
ation introduces several challenges for layer-wise

calibration analysis, i.e., the ambiguity of token-
level correctness, the absence of well-defined cal-
ibration metrics for full sequences, and the non-
determinism inherent in decoding strategies. For
these reasons, we specifically adopt MCQA as a
controlled and interpretable framework for under-
standing internal confidence dynamics and calibra-
tion behavior in large language models.
Datasets and Prompt Templates: For our exper-
iments, we use multiple real-world datasets (see
App. C for details) with a primary focus on the Mas-
sive Multitask Language Understanding (MMLU)
benchmark (Hendrycks et al., 2021), which spans
57 diverse subjects across STEM, humanities, so-
cial sciences, and other fields. This benchmark is
designed to evaluate general knowledge acquired
during pretraining of language models. Each ques-
tion is paired with four answer choices, and model
performance is evaluated based on the correctly
predicted choice. Notably, the nature of the answer
choices varies across MMLU categories. In some
categories (e.g., logical reasoning or high school
computer science), the choices are relatively for-
mulaic and repeat across multiple instances (e.g.,
“True”/“False”). In contrast, other categories (e.g.,
medical or legal domains) present unique, context-
dependent options for each question. This variation
introduces different levels of reasoning complex-
ity and lexical diversity, making calibration anal-
ysis more nuanced. We include a representative
prompt template in App. Figure 8. This diversity
introduces varying degrees of lexical and semantic
complexity, which we believe provides an over-
all generalization of the experimental findings re-
garding calibration that we further explore in our
experiments.
Monitoring Layer Performance: To understand
how calibration varies across layers, we take in-
spiration from the approach by Logit Lens (nos-
talgebraist, 2020), computing accuracy at different
layers of the transformer. After each transformer
block, we extract the residual stream representation
zt and project it onto the vocabulary space using
the unembedding matrix WU as follows:

logits(zt) = WU LayerNorm(zt)

We then compute the accuracy of the logits at each
layer and track the changes in performance as the
information propagates through the layers. This
helps us pinpoint which layer’s representations are
most decisive for the model’s predictions. Addi-
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tionally, we calculate the Expected Calibration Er-
ror (ECE) and Maximum Calibration Error (MCE)
at each layer to quantify the calibration at differ-
ent stages of the model. These measurements pro-
vide insight into both representational quality and
the internal emergence of confidence across depth
(model layer internals). Also see App. A.1 for
details on the residual stream computations.
Analyzing the Prediction (Unembedding and
Confidence Dynamics): To further analyze the
role of the unembedding matrix, we apply Singular
Value Decomposition (SVD) to it. The unembed-
ding matrix WU is decomposed as:

WU = UUΣUV
T
U

This decomposition helps us separate the projec-
tion of the residual stream onto the prediction space,
allowing us to study the significance of different
components of the matrix. We find that the sin-
gular values exhibit a consistent pattern, where
the initial values are large, followed by a long tail
with decreasing values. Recent research (Sharma
et al., 2024) suggests that this decomposition can
be used to improve model performance by prun-
ing less significant components, but the last few
singular values, especially those in the tail, play
a crucial role in the model’s predictions and cali-
bration (Cancedda, 2024). (also see App. Figure
13 for singular values of Unembedding Matrix in
Phi-2 and Llama-3-8B models showing null space)
Notes from Prior Work: Recent studies have
revealed intriguing structural properties of trans-
former models, particularly in their final layers. For
instance, the unembedding matrix WU often ex-
hibits a characteristic spectral pattern when decom-
posed via Singular Value Decomposition (SVD),
i.e., a handful of large singular values followed by
a long tail and a sharp drop in the final 5% of the
spectrum. Sharma et al. (2024) shows that substan-
tial portions of these component matrices can be
pruned (via SVD) without hurting, sometimes even
improving, model performance. In contrast, Can-
cedda (2024) argue that the final singular modes,
often dismissed as unimportant, in fact carry sig-
nals critical to prediction accuracy. Complement-
ing this, Stolfo et al. (2024) propose that the model
deliberately shapes this low-rank null space to reg-
ulate prediction confidence, effectively influencing
model calibration.
While these findings highlight how late-stage com-
ponents influence model confidence and calibra-

tion, less is known about the evolution of calibra-
tion within the model, especially across interme-
diate layers. Our study addresses this gap by ana-
lyzing how uncertainty and confidence emerge and
evolve throughout the model’s depth. Specifically,
we measure both predictive performance and cali-
bration metrics (ECE, MCE) layer-wise to localize
where in the transformer stack the model becomes
“confident” and how reliably that confidence re-
flects correctness. This layerwise perspective al-
lows us to identify where in the model, confidence
stabilizes and to what extent it is calibrated across
depth.

5 Results and Analysis

We present our findings in three stages: 1) How
calibration evolves across layers of a transformer,
2) The role of the unembedding matrix’s low-rank
components, and 3) The discovery of a direction
in activation space that appears to regulate model
calibration.
Layerwise Calibration Dynamics: We begin by
analyzing how calibration and prediction perfor-
mance vary across transformer layers in the phi-2
model. Each transformer block modifies the resid-
ual stream, which we project into the vocabulary
space using the unembedding matrix WU (see §4).
At each layer, we compute predictive performance
(via Accuracy), Expected Calibration Error (ECE),
and Maximum Calibration Error (MCE).
Across multiple datasets, a consistent trend
emerges: accuracy begins to rise significantly from
layer 22 and stabilizes by layer 26. However, the
calibration behavior follows a different trajectory,
ECE and MCE scores increase after layer 25, peak-
ing around layer 28, before declining toward the
final layers. This suggests that even after the model
has become sufficiently accurate, it undergoes a
phase of overconfidence before recalibrating its
predictions. We refer to this as a “confidence cor-
rection phase” in the final layers.
To visualize this phenomenon, Figure 3 shows how
reliability improves across the final layers. Relia-
bility diagrams (App. Figure 12) further confirm
this trend, revealing a widening and then narrowing
gap between model confidence and accuracy. This
denotes that the residual stream in the later layers
is affected/modified in such a way that modulates
the model calibration with no/minor change in the
model performance (black line). The upper/later
layers show the presence of calibration correction

14703



0 5 10 15 20 25 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0
ECE Final (0.0585)
MCE Final (0.1104)
Accuracy Final (0.4460)

(a) MMLU STEM

0 5 10 15 20 25 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0
ECE Final (0.0846)
MCE Final (0.1850)
Accuracy Final (0.4896)

(b) MMLU Humanities

0 5 10 15 20 25 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0
ECE Final (0.0268)
MCE Final (0.1006)
Accuracy Final (0.6302)

(c) MMLU Social Science

0 5 10 15 20 25 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0
ECE Final (0.0262)
MCE Final (0.0672)
Accuracy Final (0.5867)

(d) MMLU Others

Figure 3: The figure shows performance (Accuracy) along with model calibration scores (ECE and MCE) of the
Phi-2 model on the different datasets. We observe that the model performance starts to rise from layer 22 and
saturates at layer 25/26, with minor changes in the 26-31 layers. However, the ECE and MCE scores first rise (layers
26-28) and then decline (layers 29-31), highlighting calibration changing in the later layers, with meager changes in
the model performance. The upper/later layers show the presence of calibration correction phase. Similar trends
are found for other models (Llama-3-8B Figure 15, Mistral-7B Figure 16, and Llama-2-7B Figure 17).
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Figure 4: The figure shows performance (Accuracy) along with model calibration scores (ECE and MCE) of the
phi-2 model computed by reconstructing the unembedding matrix, using only top-85%, top-90% and top-95%
singular values in (a), (b), and (c), respectively. Overall, we observe the ECE scores with minor fluctuations,
pointing towards a small contribution of lower singular values in model calibration.

phase. Similar trends are found for other models
(Llama-3-8B Figure 15, Mistral-7B Figure 16, and
Llama-2-7B Figure 17).
Effect of Unembedding Null Space: Prior work
(Cancedda, 2024; Stolfo et al., 2024) suggests that
the lower-rank (small singular value) components
of the unembedding matrix may be involved in cal-
ibration, particularly via “entropy neurons” writing
into its null space. To test this, we decompose the
unembedding matrix WU = UUΣUV

T
U and re-

construct it by discarding the smallest 5%, 10%,
and 15% of singular values:

ŴU = UU Σ
[:k]
U VT

U[:k]

where, k ∈ {85%, 90%, 95%}. This intervention
limits the influence of the null space on model
outputs. Figure 4 shows the results using these
truncated matrices. Accuracy remains largely un-

changed, indicating that most predictive capacity
lies in the dominant singular vectors. However, we
observe fluctuations in calibration metrics, espe-
cially MCE, supporting the hypothesis that the null
space plays a supporting role in calibration.

Interestingly, we find that these effects are in both
directions (increasing and decreasing calibration)
for middle layers, pointing towards no clear indica-
tion of ECE/MCE being increased when null space
is removed. Null-space sensitivity appears across
the upper layers of the network, suggesting that
calibration is mediated by distributed subspaces
throughout the model.

Discovery of a Calibration Subspace: Given the
observations above, we ask: Is there a specific
direction in representation space that the model
uses to recalibrate predictions? From layer-wise
activation traces, we identify significant represen-
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Figure 5: The figure shows performance (Accuracy) along with model calibration scores (ECE and MCE) of the
phi-2 model on the different datasets when adding the calibration direction to the residual stream. The added
calibration direction to the residual stream helps shift the calibration scores to lower values, validating the impact of
the calibration direction. Interestingly, the direction found using MMLU Humanities works well for other datasets
like MMLU Others. (Due to space constraints, we move the results on other datasets to the App. Figure 21)

tation changes starting from layer 28, precisely
when calibration begins to improve while accuracy
plateaus (also see App. Figure 20). We use a sim-
ple strategy and define the calibration direction ĉ
as the mean of the normalized differences between
successive layer outputs in the final three layers:

ĉ =
1

3
(c⃗29 + c⃗30 + c⃗31), c⃗i =

Ai −Ai−1

∥Ai −Ai−1∥

here, Ai denotes the residual stream output after
layer i. This direction captures the internal shift the
model undergoes to improve calibration, without
affecting prediction correctness. We also verify
that this calibration direction is not aligned with
the null space (low singular values) of WU , as
shown in Figure 6, indicating it arises from a dis-
tinct mechanism.
Modulating Calibration via Subspace Interven-
tion: To test the functional role of the calibration
direction, we perturb the residual stream along ĉ
during inference:

A′
i = Ai + ηĉ, η > 0

Figure 5 shows that this small intervention leads
to lower ECE and MCE scores without harming
classification accuracy. Remarkably, the effect gen-
eralizes across datasets: the direction ĉ computed
on the MMLU-Humanities split improves calibra-
tion on other MMLU subsets as well (including
other datasets like TruthfulQA, Figure 21 (d)). This
suggests the existence of a task-agnostic calibra-
tion subspace, i.e., distinct from the prediction sub-
space, that the model uses to regulate confidence.

6 Discussion

Our findings suggest that model calibration is not
merely a byproduct of prediction accuracy but a dis-
tinct representational property shaped by specific
components within the network. The emergence of
calibration improvements in the final transformer
layers, despite minimal accuracy gains, points to a
dedicated phase in the model’s forward pass where
confidence is explicitly regulated. The fact that
interventions in the residual stream using the found
direction ĉ can improve calibration without affect-
ing accuracy further supports the hypothesis that
calibration resides in a separate, manipulable sub-
space. While the identified calibration directions
show promising results within individual models
and some datasets, they are not directly found
across different architectures, and more investiga-
tions would be needed on similar lines (see §7 for
more details). This lack of generalization (of the
found calibration direction) suggests that the direc-
tions are partly model- and domain-specific, and
motivates future work to identify more universal
confidence-modulating features in these layers. We
see this work as an initial step toward uncover-
ing/understanding the mechanisms of confidence
regulation in LLMs, with future research needed
to evaluate generalization across generative tasks,
domains, and training regimes. Additionally, the
limited but non-negligible role of the unembedding
null space reinforces insights from prior work (Can-
cedda, 2024; Stolfo et al., 2024), but our layerwise
analysis shows that this effect is not isolated to the
final projection step. Rather, it is distributed, sug-
gesting a broader calibration mechanism involving
intermediate representations.
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Figure 6: The figure shows the log of eigenvalues for
each principal direction and its alignment with calibra-
tion direction ĉ, denoting the writing not only in the null
space (tail towards the right), but throughout.

Taken together, these results open up promis-
ing avenues for controllable calibration in LLMs
through geometric interventions and motivate
deeper exploration into how representations across
layers encode not just “what” the model predicts
but “how confident” it should be.
Several parallel lines of research have also investi-
gated calibration dynamics across intermediate rep-
resentations in deep neural networks, particularly
in vision tasks using architectures like ResNets (He
et al., 2015) and VGG (Simonyan and Zisserman,
2015). A recent work by Wang and Zhang (2024)
identifies a calibration bottleneck in the middle lay-
ers of vision models, using linear probes trained on
hidden representations. Their analysis reveals a U-
shaped trend across layers, i.e., model predictions
are more calibrated in the middle layers, with mis-
calibration increasing again toward the final layers,
which they attribute to overcompression of informa-
tion in the later layers. In contrast, we observe a dif-
ferent trend in the open-weight transformer-based
language models that we experimented with, where
the model’s calibration is improved/regulated in the
later/upper layers before the final predictions are
made. A noteworthy difference between the other
studies and our experimental setup is the use of
logit lens-style probing, i.e., we directly project
residual stream representations into the unembed-
ding space to analyze the model’s own prediction
distribution, without training any additional clas-
sifiers, which we believe avoids introducing su-
pervision and better reflects the model’s internal
confidence dynamics. These differences, in both
architecture (transformers (Vaswani et al., 2017) vs.
CNNs (He et al., 2015; Simonyan and Zisserman,
2015)) and methodology (unsupervised probing
(nostalgebraist, 2020) vs. trained classifiers (Be-

linkov, 2022)), highlight the need for more domain-
and architecture-specific analyses when studying
calibration behavior in deep models. We believe
our findings contribute to this growing literature by
presenting an unsupervised, layerwise view of cali-
bration dynamics in large-scale language models,
which needs further investigation.

7 Conclusion and Future Directions

In this work, we conduct an investigation into how
large transformer-based language models regulate
their confidence across layers. Our analysis un-
covers a structured three-phase calibration pattern:
an initial decision formation phase, a subsequent
phase of overconfidence, and a final confidence
correction phase in the upper/later layers. Specif-
ically, in the Phi-2 model, we observe that while
accuracy plateaus beyond layer 24, calibration met-
rics such as ECE and MCE continue to fluctuate,
first worsening, then sharply improving, revealing
that model confidence is actively corrected even
after predictions have stabilized. This phenomenon
points to a dynamic internal mechanism modulat-
ing uncertainty across depth. We identify a low-
dimensional calibration direction in the residual
stream that weakly appears to underlie this correc-
tion phase. Perturbing this direction improves cali-
bration across layers without degrading accuracy,
suggesting that confidence regulation is not con-
fined to the output layer but is instead distributed
and tunable throughout the model’s forward pass.

These findings extend prior work on entropy neu-
rons by showing that confidence correction is a de-
liberate, multi-layer process, and that calibration
can emerge progressively rather than being final-
ized at the prediction head. Our work provides
some insights for probing this behavior. Practi-
cally, our results raise caution in relying on inter-
mediate layers for downstream decision-making, as
they may exhibit high accuracy but poor calibration.
However, the ability to adjust confidence post-hoc
via the calibration direction suggests new oppor-
tunities that need further investigations for early
exiting and efficient inference that maintain reli-
ability. Looking ahead, future work may explore
how these layerwise calibration mechanisms arise
during pretraining, whether similar correction dy-
namics generalize across model families and sizes,
and how these phenomena can be explicitly mod-
eled or optimized for applications requiring reliable
confidence estimates.
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Limitations

One of the primary limitations of this study is that
this work restricts its analysis to a single-token
classification setting, focusing on multiple-choice
question answering tasks. While this setup may
not reflect the full complexity of generative lan-
guage modeling, it allows for a clean and controlled
examination of model confidence and calibration
using well-established metrics such as Expected
Calibration Error (ECE) and Maximum Calibration
Error (MCE). This framing avoids the confounding
effects introduced by autoregressive decoding, en-
suring the interpretability of the results. Extending
this analysis to multi-token generation remains an
exciting direction for future work, where a deeper
understanding of calibration over token sequences
and temporal dynamics could be developed.
Our method for identifying the calibration direc-
tion in the residual stream is currently model- and
dataset-specific. Although the discovered direc-
tion in Phi-2 leads to meaningful calibration im-
provements without degrading accuracy, it does
not generalize to other models such as Mistral or
LLaMA-2. This limitation highlights interesting
differences in how confidence is regulated across
architectures and invites further investigation into
whether model-specific inductive biases or training
schemes influence the emergence of such calibra-
tion structures. Similarly, the confidence correction
phase we report is most evident in knowledge ac-
quisition tasks like MMLU, where performance sat-
urates in mid-to-late layers. In contrast, reasoning-
based datasets exhibit gradually increasing accu-
racy, making it harder to isolate calibration behav-
ior independently from prediction quality. We view
this as an opportunity to refine analysis tools that
can disentangle calibration from competence in
such settings.
Finally, while our approach to defining the cali-
bration direction is based on a simple difference
between layerwise residuals, it lays the ground-
work for richer strategies. More principled meth-
ods, such as those based on optimization, gradient
sensitivity to ECE loss, or attribution techniques,
could uncover more robust and generalizable direc-
tions. We see our current results as a strong proof
of concept that invites further methodological de-
velopment and broader application across tasks and
architectures. We believe this line of investigation
opens up a promising path toward mechanistically
understanding calibration in the coming future.

Ethical Considerations

This paper aims to advance the field of machine
learning, focusing specifically on model calibration
and confidence regulation in transformer architec-
tures. While we do not foresee any immediate eth-
ical concerns arising from the research presented,
it is essential to recognize that the broader implica-
tions of developing more reliable models include
both positive and potentially negative societal con-
sequences. Future applications of these techniques
could affect areas such as fairness, bias mitigation,
and decision-making in systems built upon LLMs,
and it will be critical to assess and address these
issues in subsequent research and applications.
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A Additional Computation Details

A.1 Residual Stream Computations

The transformer architecture operates by reading
from and writing to a residual stream across dif-
ferent layers (Elhage et al., 2021). Each layer
applies various transformations (e.g., LayerNorm,
Multi-Head Attention, FeedForward) to the resid-
ual stream. Mathematically, the operation at each
transformer layer can be described as:

zi = fi


z0 +

i−1∑

j=1

zj




where z0 is the embedding vector from the embed-
ding matrix WE , and fi represents the function
applied by the i-th transformer block. These opera-
tions modify the residual stream, which ultimately
affects the prediction of the model. This residual
stream formulation is central to mechanistic inter-
pretability approaches, providing a lens into how
information is incrementally composed between
layers (Elhage et al., 2021).

B Prompt Templates

For all our experiments, we follow a standard
prompt template. This section provides the de-
tails of the prompt templates used in our multiple-
choice question answering (MCQA) evaluations of
autoregressive open-weight language models (e.g.,
LLaMA(-2), Phi-2). All prompts follow a unified
format to ensure consistency across tasks and mod-
els. Figure 7 presents the general template used.
Each prompt begins with an instruction directing
the model to select the correct answer from a set of
multiple-choice options. In few-shot or in-context
learning settings, this instruction is optionally fol-
lowed by a set of in-context examples. The ques-
tion is prefaced by a task-specific description, and
followed by a list of labeled answer choices (A,
B, C, etc.). The final line of the prompt contains
the prefix Answer:, which serves as the model’s re-
sponse cue. For evaluation, we extract the model’s
next-token prediction probabilities at this position
over the answer option tokens (e.g., A, B), which
we treat as the model’s predicted distribution over
choices.

Figure 8 illustrates a fully instantiated example
using a question from the MMLU dataset. The
correct answer is provided at the end of the prompt
and underlined. The colored annotations in the

figure denote fixed template components (in black)
and variable elements drawn from the dataset (in
orange and teal).

This templated format is applied uniformly
across datasets and experimental configurations,
enabling controlled comparisons of model behav-
ior across domains and prompting setups.

C Dataset Details

We evaluate model calibration and confidence dy-
namics across a diverse set of NLP benchmarks,
selected to cover a range of reasoning, linguistic,
and factual understanding capabilities. Below, we
detail each dataset used in our experiments:
MMLU (Massive Multitask Language Under-
standing) (Hendrycks et al., 2021). MMLU is a
comprehensive benchmark designed to test knowl-
edge and problem-solving ability across 57 diverse
subjects, spanning STEM, humanities, social sci-
ences, law, medicine, and more. Each instance con-
sists of a multiple-choice question with four answer
options. Unlike many standard MCQA datasets,
MMLU introduces lexical and semantic complex-
ity by using dynamically varying answer choices,
which increases the challenge for models to gen-
eralize and calibrate effectively across categories.
This benchmark is widely adopted for evaluating
pretraining quality in LLMs.
CoLA (Corpus of Linguistic Acceptability)
(Warstadt et al., 2019): CoLA is a binary classi-
fication task that requires models to judge whether
a given English sentence is grammatically accept-
able. The dataset is drawn from linguistic publica-
tions and includes a broad spectrum of syntactic
phenomena, making it a strong test of a model’s
grasp of grammatical rules. Performance is typi-
cally measured using Matthews Correlation Coef-
ficient (MCC) and accuracy, providing a nuanced
view of linguistic acceptability modeling.
COPA (Choice of Plausible Alternatives) (Gor-
don et al., 2012): COPA is a commonsense reason-
ing benchmark where the task is to select the most
plausible cause or effect given a premise. Each
instance presents two alternatives, and the model
must determine which one best explains or results
from the premise. The task challenges causal in-
ference and contextual reasoning and is part of the
SuperGLUE benchmark suite (Wang et al., 2020).
Accuracy is used as the primary evaluation metric.
Rotten Tomatoes (Pang and Lee, 2005): This
is a sentiment classification benchmark consisting
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Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: A generalised statement pertaining to the task -: question/statement
A. choice1
B. choice2
Answer: A

Figure 7: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight models , (e.g.,
llama(-3), Phi-2, etc.). The black text is the templated input for all datasets. The orange text is the input
from the datasets which contains either a review or a statement or a question. The teal text is a template comment
describing the task, which changes according to the dataset The next-token prediction probabilities of the option
IDs at the red text is used as the observed prediction distribution.

Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Mars has an atmosphere that is almost entirely carbon dioxide. Why isn’t there a
strong greenhouse effect keeping the planet warm?
A: the atmosphere on Mars is too thin to trap a significant amount of heat
B: There actually is a strong greenhouse effect and Mars would be 35oC colder than it is now
without it.
C: Mars does not have enough internal heat to drive the greenhouse effect
D: the greenhouse effect requires an ozone layer which Mars does not have
Answer: A

Figure 8: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight models (e.g.,
llama(-2), Phi-2, etc.). The black text is the templated input for all datasets. The orange text is the input
from the MMLU dataset. The next-token prediction probabilities of the option IDs at the red text are used as the
observed prediction distribution.

of short movie reviews labeled as positive or neg-
ative. Reviews are often limited to a sentence or
short paragraph, focusing on fine-grained lexical
and compositional sentiment cues. This dataset is
widely used to benchmark sentiment understand-
ing and general text classification performance in
LLMs.
TruthfulQA (Lin et al., 2022): TruthfulQA eval-
uates a model’s ability to provide factually correct
and non-deceptive answers. It includes questions
across multiple domains, such as science, health,
and politics, carefully crafted to elicit plausible but
incorrect responses from language models trained
on internet-scale data. The benchmark serves as a
diagnostic tool for hallucination and misinforma-
tion. Evaluations are conducted using truthfulness
and informativeness scores, often involving human
or model-based judgment. In this work, we specifi-
cally use a binary version of the dataset, framing
an MCQA query for quantifying calibration.

Details of all the prompt templates and the
MCQA formulations, for all the datasets used, are
provided in our codebase.

D Extended Model Evaluations

D.1 Calibration Dynamics in Mistral and
LLaMA-2 7B

To assess the generality of our findings, we evaluate
calibration behavior in two additional open-weight
transformer models: Mistral-7B and LLaMA-2-7B,
along with LLaMA-3-8B. Across all three models,
we observe an interesting pattern consistent with
Phi-2: a confidence correction phase emerges in
the later layers, characterized by stabilization of
accuracy and a sharp improvement in calibration
metrics such as Expected Calibration Error (ECE)
and Maximum Calibration Error (MCE).

This suggests that the confidence correction be-
havior is not unique to Phi-2 but may reflect a
broader inductive bias of transformer-based lan-
guage models, where model confidence is actively
adjusted after the prediction has converged. We ob-
serve this phenomenon in both Mistral and LLaMA
variants, although the sharpness and layerwise ex-
tent of the correction vary slightly across models
and tasks.
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Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Select the suitable option for the following statement -: enchanted with low-life
tragedy and liberally seasoned with emotional outbursts . . . what is sorely missing, however,
is the edge of wild, lunatic invention that we associate with cage’s best acting .
A: Negative
B: Positive
Answer: A

Figure 9: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight models , (e.g.,
llama(-3), Phi-2, etc.). The black text is the templated input for all datasets. The orange text is the input
from the Rotten Tomatoes dataset. The teal text is a template comment describing the task. The next-token
prediction probabilities of the option IDs at the red text are used as the observed prediction distribution.

Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Which of the following events (given as options A or B) is a more plausible effect
of the event -: ’The woman betrayed her friend.’?
A: Her friend sent her a greeting card.
B: Her friend cut off contact with her.
Answer: B

Figure 10: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight models , (e.g.,
llama(-3), Phi-2, etc.). The black text is the templated input for all datasets. The orange text is the input
from the COPA dataset. The teal text is a template comment describing the task. The next-token prediction
probabilities of the option IDs at the red text are used as the observed prediction distribution.

However, our interventional experiments using
a learned calibration direction, a low-dimensional
vector in the residual stream found to modulate con-
fidence in Phi-2, did not generalize well to other
models. Attempts to extract and apply similar di-
rections in Mistral-7B, LLaMA-2-7B, and LLaMA-
3-8B yielded inconsistent results and failed to pro-
duce consistent improvements in calibration met-
rics. This suggests that while the calibration phase
itself may be general, the specific encoding of
confidence control within the residual stream may
vary significantly across architectures and training
regimes.

These findings point toward a promising avenue
for future research: understanding how architec-
tural or training factors give rise to shared cali-
bration dynamics, and why certain models encode
more “steerable” calibration subspaces than others.

E Reliability Diagrams Across Layers

To visualize calibration quality across model depth,
we plot layerwise reliability diagrams for Phi-2,
Mistral-7B, and LLaMA-2-7B on representative
tasks (refer to our codebase for all the reliability

diagrams). In Phi-2, we observe a clear overcon-
fidence pattern in middle layers (see Figure 12),
followed by a significant correction in later layers,
where predicted confidence aligns more closely
with empirical accuracy. (also see ECE/MCE pat-
terns in Mistral-7B Figure 16, LLaMA-2-7B Fig-
ure 17, LLaMA-3-8B Figure 15 Phi-2 Figure 3, all
showing a common calibration correction phase
in the later/upper layers of the model where the
calibration error first increases and then decreases,
keeping the prediction accuracy intact.)

F Dataset-Level Calibration Trends

Beyond MMLU, we examine calibration behavior
across four additional datasets: CoLA, COPA, Rot-
ten Tomatoes, and TruthfulQA. For each dataset,
we compute accuracy, ECE, and MCE across trans-
former layers. (see Figure 18 and Figure 19)

In contrast to MMLU, where accuracy stabilizes
in later layers, these datasets exhibit gradual perfor-
mance improvements throughout the model depth.
This continuous gain limits our ability to isolate
a calibration correction phase, as improvements
in calibration may be confounded with accuracy
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Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Select the suitable option for the following statement -: The cat was bitten the
mouse.
A: Unacceptable
B: Acceptable
Answer: A

Figure 11: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight models , (e.g.,
llama(-3), Phi-2, etc.). The black text is the templated input for all datasets. The orange text is the input
from the CoLA dataset. The teal text is a template comment describing the task. The next-token prediction
probabilities of the option IDs at the red text are used as the observed prediction distribution.

Dataset Task Type # Samples Avg. Prompt Length (tokens) # Choices

MMLU (STEM) Subject Knowledge (STEM) 3,018 149.09 4
MMLU (Humanities) Subject Knowledge (Humanities) 4,705 535.10 4
MMLU (Social Sciences) Subject Knowledge (Soc. Sci.) 3,077 116.35 4
MMLU (Other) Subject Knowledge (Misc.) 3,242 163.32 4
CoLA Grammatical Acceptability 1,043 41.83 2
COPA Causal Commonsense Reasoning 1,000 34.89 2
Rotten Tomatoes Sentiment Classification 1,066 115.52 2
TruthfulQA (Binary) Factual Knowledge 790 159.21 2

Table 1: Dataset Overview. Summary of datasets used in our evaluation. We report the type of reasoning or
knowledge tested, number of samples used, average prompt length (in tokens), and number of answer choices.
MMLU categories are grouped based on domain.

refinement.
On CoLA and COPA, calibration remains noisy

across layers, likely due to the small size and bi-
nary structure of the tasks. On Rotten Tomatoes,
calibration improves steadily but without a sharp
correction pattern. On TruthfulQA, we observe
persistent underconfidence, with predicted proba-
bilities often falling below empirical correctness,
especially in earlier layers.

These observations highlight the complexity of
measuring calibration when models have not yet
saturated in performance.

G Interventional Experiments

To probe the functional role of calibration dynam-
ics, we identify a low-dimensional “calibration
direction” in Phi-2’s residual stream using linear
probes aligned with calibration error. We perform
targeted interventions by adding scaled versions of
this direction to intermediate residual representa-
tions.

Our experiments reveal that adding this direction
at select layers (e.g., layers 22–32, Figure 5 and
Figure 21) consistently reduces ECE and MCE
without degrading accuracy. This confirms that the
calibration signal is encoded in the residual stream

and can be modulated independently of the model’s
final decision.

However, attempts to extract and apply similar
directions in Mistral-7B and LLaMA-2-7B were
unsuccessful. These models either lacked a distinct
calibration direction or showed no calibration im-
provement upon intervention. This suggests that
confidence regulation in Phi-2 is likely facilitated
by an architectural or representational property not
shared across models.

H Future Work and Discussion

In this section, we outline several promising direc-
tions to extend and deepen our current findings on
calibration mechanisms in LLMs.

Generalizing Calibration Directions
Our current method for identifying a calibration
direction in the residual stream, based on layerwise
differences, provides useful insights but may lack
generalizability across datasets and models. Fu-
ture work can explore gradient-based approaches,
such as computing the derivative of calibration
metrics (e.g., ECE, MCE) with respect to resid-
ual activations. This could identify directions more
causally linked to calibration. Furthermore, veri-
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fying whether such directions align with low-rank
or null-space structures in the unembedding matrix
(as suggested by Cancedda, 2024) could provide a
more principled mechanistic explanation.

Model Internals and Interpretability

The calibration direction could also serve as a tool
for mechanistic interpretability. Specifically, it
would be valuable to identify neurons or compo-
nents (e.g., attention heads or MLP submodules)
that significantly contribute to confidence modula-
tion along this direction. Additionally, examining
whether calibration behavior propagates through
residual stream updates (indirect effects) may re-
veal compositional mechanisms behind calibration.

Robust Calibration Across Task Types

Our current findings are most robust in knowledge-
centric datasets like MMLU, where prediction ac-
curacy plateaus, enabling clear identification of
calibration phases. In contrast, reasoning-focused
datasets (e.g., COPA) exhibit gradual accuracy
gains across layers, making it harder to isolate
calibration-specific dynamics. Understanding how
reasoning and knowledge acquisition tasks differen-
tially affect confidence modulation is an important
avenue for future research.

Calibration in In-Context Learning Settings

The current study is limited to zero-shot MCQA
prompts. Extending this analysis to in-context
learning (ICL) settings, such as few-shot or chain-
of-thought prompting, may reveal how calibration
dynamics change when more contextual supervi-
sion is available. However, this may prove more
fruitful for reasoning tasks than factual knowledge
tasks, where ICL often yields limited gains.

Cross-Model and Dataset Transferability

While the confidence correction phase is observed
across various models (e.g., Phi-2, LLaMA-3-8B),
the calibration direction identified in Phi-2 does
not generalize effectively to Mistral or LLaMA-
2. A more detailed investigation into whether
this lack of generalization stems from architec-
ture, training procedure, or representational dif-
ferences is needed. Moreover, it would be good
to explore whether the calibration direction can be
made dataset-agnostic by identifying consistent pat-
terns across knowledge-focused datasets like Truth-
fulQA. Some of our initial findings (see Figure 21)
point towards this direction, more investigations on

similar lines would be helpful in formalizing the
calibration direction for different models.

Recent Developments and Positioning
Several recent works provide alternative strategies
for calibration. These include post-hoc methods
based solely on generated outputs (Ulmer et al.,
2024), reward-based adjustments in RLHF (Leng
et al., 2025), and sample-consistency-based calibra-
tions (Lyu et al., 2025). In contrast, our approach
contributes a mechanistic perspective, highlighting
internal residual stream dynamics and structured
directions that actively regulate model confidence
during forward computation. This complements
post-hoc techniques by providing more grounded
explanations for how and when calibration emerges
inside large-scale models.

In summary, our findings open several com-
pelling directions for advancing both the inter-
pretability and reliability of LLMs, especially in
applications where calibrated uncertainty estimates
are crucial. Exploring these avenues can help move
toward principled architectures and training objec-
tives that foster better-calibrated models by design.
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Figure 12: Performance (Accuracy) and calibration (Reliability diagrams) across the later layers of the phi-2 model
on the MMLU STEM dataset. Each subfigure shows the reliability diagram and accuracy metrics for a different
transformer layer (20-31). The Gap in the reliability diagrams reduces in the later layers, with the dashed dark
(Accuracy) and light (Mean Confidence) verticle lines coming close in the last layer, showing the improved model
calibration.
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Figure 13: The figure shows the eigenvalues (log) of the unembedding matrix of phi-2 and Llama-3-8B. In both
models, we observe a sudden decrease in the last 5% of the singular values, indicating the formation of a null space.
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Figure 14: The figure shows performance (Accuracy) along with model calibration scores (ECE and MCE) of the
Phi-2 model on the different datasets. We observe that the model performance starts to rise from layer 22 and
saturates at layer 25/26, with minor changes in the 26-31 layers. However, the ECE and MCE scores first rise (layers
26-28) and then decline (layers 29-31), highlighting the model calibration changing in the later layers, with meager
changes in the model performance. This denotes that the residual stream in the later layers is affected/modified in
such a way that modulates the model calibration with no/minor change in the model performance (black line). The
upper/later layers showing the presence of calibration correction phase. Similar trends are found for other models
(Llama-3-8B Figure 15, Mistral-7B Figure 16, and Llama-2-7B Figure 17).
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(a) MMLU STEM
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(d) MMLU Others

Figure 15: The figure shows performance (Accuracy) along with model calibration scores (ECE and MCE) of the
Llama-3-8B model on the different datasets. We observe that the model performance starts to rise from layer 15 and
saturates at layer 17, with minor changes in the 17-31 layers. However, the ECE and MCE scores first rise (layers
25-28) and then decline (layers 28-31), highlighting the model calibration changing in the later layers, with meager
changes in the model performance. This denotes that the residual stream in the later layers is affected/modified in
such a way that modulates the model calibration with no/minor change in the model performance (black line). The
upper/later layers showing the presence of calibration correction phase.

14720



0 5 10 15 20 25 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0
ECE Final (0.0256)
MCE Final (0.0717)
Accuracy Final (0.4805)

(a) MMLU STEM
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(b) MMLU Humanities
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(d) MMLU Others

Figure 16: The figure shows performance (Accuracy) along with model calibration scores (ECE and MCE) of the
Mistral-7B model on the different datasets. We observe that the model performance starts to rise from layer 16/17
and saturates at layer 24, with minor changes in the 24-31 layers. However, the ECE and MCE scores first rise (layers
24-28) and then decline (layers 28-31), highlighting the model calibration changing in the later layers, with meager
changes in the model performance. This denotes that the residual stream in the later layers is affected/modified in
such a way that modulates the model calibration with no/minor change in the model performance (black line).
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Figure 17: The figure shows performance (Accuracy) along with model calibration scores (ECE and MCE) of the
Llama-2-7B model on the different datasets. We observe that the model performance starts to rise from layer 24 and
saturates at layer 27, with minor changes in the 27-31 layers. However, the ECE and MCE scores first rise (layers
25-27) and then decline (layers 28-31), highlighting the model calibration changing in the later layers, with meager
changes in the model performance. This denotes that the residual stream in the later layers is affected/modified in
such a way that modulates the model calibration with no/minor change in the model performance (black line).
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(b) COPA
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(c) Rotten Tomatoes
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(d) TruthfulQA

Figure 18: The figure shows performance (Accuracy) along with model calibration scores (ECE and MCE) of
the Phi-2 model on the different datasets. We observe a different trend when compared to knowledge acquisition
datasets like MMLU, where the accuracy shows a sudden shift. In contrast, here the model shows a gradual change
in accuracy, where the model performance starts to rise from layer 22 and gradually increases till layer 28, making it
difficult to study the calibration correction phase in particular.
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(d) TruthfulQA

Figure 19: The figure shows performance (Accuracy) along with model calibration scores (ECE and MCE) of the
Llama-3-8B model on the different datasets. We observe that the model performance does not show a significant
performance in CoLA (going to near random performance, as per data distribution), with similar meager performance
in other datasets like Rotten Tomatoes and TruthfulQA. We only see a performance improvement in the COPA
dataset, where again, the calibration correction phase is observed in the later layers. Overall, the poor performance
of the model on these datasets makes it difficult to quantify calibration happening across datasets.
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Sequential Differences Across All Layers

Figure 20: The figure shows the difference in residual stream, showing higher changes in the later dimensions,
which further help compute the calibration direction ĉ. We use the last three layers of the phi-2 model to compute
the calibration direction (as described in the main paper), which shows generalization across multiple datasets (see
Figure 21 where the direction computed using MMLU humanities generalizes for other datasets.)
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(a) MMLU STEM
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(d) TruthfulQA

Figure 21: The figure shows performance (Accuracy) along with model calibration scores (ECE and MCE) of
the Phi-2 model on the different datasets when the found calibration direction is added to the residual stream.
Note that though the calibration direction was found using MMLU Humanities, the found calibration direction
generalizes across multiple datasets, including the TruthfulQA, pointing towards a common direction existing in
Phi-2 architecture.
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