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Abstract

Multimodal Large Language Models (MLLMs)
have shown promise in visual-textual reasoning,
with Multimodal Chain-of-Thought (MCoT)
prompting significantly enhancing interpretabil-
ity. However, existing MCoT methods rely
on rationale-rich datasets and largely focus on
inter-object reasoning, overlooking the intra-
object understanding crucial for image clas-
sification. To address this gap, we propose
WISE, a Weak-supervIsion-guided Step-by-
step Explanation method that augments any
image classification dataset with MCoTs by
reformulating the concept-based representa-
tions from Concept Bottleneck Models (CBMs)
into concise, interpretable reasoning chains
under weak supervision. Experiments across
ten datasets show that our generated MCoTs
not only improve interpretability by 37% but
also lead to gains in classification accuracy
when used to fine-tune MLLMs1. Our work
bridges concept-based interpretability and gen-
erative MCoT reasoning, providing a gener-
alizable framework for enhancing MLLMs in
fine-grained visual understanding.

1 Introduction

Deep Learning (DL) models have achieved remark-
able performance, powering applications in vari-
ous domains. However, DL architectures are in-
herently "black-box" which often result in limited
interpretability of the underlying decision-making
processes (Papernot et al., 2017). Thus, an increas-
ing amount of attention has been directed toward
developing DL models that are either inherently in-
terpretable, or capable of producing explicit chains
of reasoning that reveal their conclusions.

In the realm of generative DL, very recent Multi-
modal Large Language Models (MLLMs) have be-
come a powerful paradigm for joint visual-textual

†Corresponding authors.
1Data and codes are available on: https://github.com/

yiwenJG/WISE-MCoT

Figure 1: Exhaustive concept sets and the intrinsic lin-
ear combination in CBMs hinder their direct transforma-
tion into CoT. Our method addresses these challenges
through a weak-supervision-guided reformulation of the
bottleneck layer into concise textual rationales.

processing and importantly introducing reasoning
(Liu et al., 2023) to decision-making. To enhance
their interpretability, recent work has proposed
Multimodal Chain-of-Thought (MCoT) reasoning
(Zhang et al., 2024b), which simulates human-like
step-by-step inference by breaking down complex
problems into sequential, interpretable reasoning
steps. This has proved to improve interpretability
via reasoning, which ultimately enhances the per-
formance on multimodal tasks (Chen et al., 2024).

Datasets with rationales are essential for elicit-
ing MCoT reasoning in MLLMs. However, they
are typically constructed through costly human an-
notations or automatic generation via prompting
LLMs, both of which pose challenges in ensuring
high data quality. Existing MCoT datasets, such as
CoMT (Cheng et al., 2025), primarily target com-
plex inter-object reasoning, and none to date focus
on image classification tasks involving intra-object
understanding. However, prior work (Zhang et al.,
2024a) has shown that integrating classification-
focused data into MLLMs training, even without
MCoT supervision, can enhance higher-level visual
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capabilities such as visual question answering and
reasoning, highlighting classification as a founda-
tion for multimodal reasoning. Since many MCoT
approaches (Chen et al., 2023) begin by detecting
objects in the image, classification naturally con-
tributes to reasoning accuracy. However, the prob-
lem of generating high-quality natural language
MCoT tailored to image classification through au-
tomated methods remains largely unexplored.

Parallel to recent efforts in generative DL, re-
search on discriminative models has predomi-
nantly relied on concept-based analysis (Kim et al.,
2018), exemplified by Concept Bottleneck Models
(CBMs) (Koh et al., 2020), to enhance interpretabil-
ity (Mehta et al., 2025). CBMs aim to associate
each neuron with a human-understandable concept.
In image classification, they map visual represen-
tations to a set of textual concepts, from which
predictions are derived via a linear combination
of concept scores. CBMs also offer intervenabil-
ity: Within a human-in-the-loop framework (Yan
et al., 2023b), humans can alter predictions by ad-
justing wrongly activated concepts, enabling direct
control over model behavior (Koh et al., 2020). Re-
cent CBM work has pushed the paradigm forward
by enabling fully automated language grounding.
(Oikarinen et al., 2023; Yang et al., 2023; Yan et al.,
2023a), which prompts pre-trained Large Language
Models (LLMs) with category names to generate
candidate concepts, selects representative ones to
construct a concept bank, and employs multimodal
models such as CLIP (Radford et al., 2021) to align
images and concepts via image-text scoring, form-
ing a Concept Bottleneck Layer (CBL).

Inspired by the success of CBMs in interpretable
image classification, we pose a natural question:
Can the CBL be reformulated as MCoT to facil-
itate the training of MLLMs? A naive approach
that directly transforms concepts into natural lan-
guage is not feasible due to the extensive set of
possible concepts and the importance of their order-
ing (Figure 1). Addressing this question requires
overcoming two key challenges: (1) Selecting ap-
propriate concepts to serve as components of the
MCoT. Unlike CBMs, which score and combine
all concepts during inference, generative models
cannot feasibly incorporate such exhaustive repre-
sentations. For instance, the CUB dataset (Wah
et al., 2011) contains 312 annotated bird attributes,
making it impractical to reflect all CBM neurons in
a single rationale; (2) Organizing the selected con-
cepts into coherent reasoning chains that align with

human cognitive patterns. In CBMs, each concept
may contribute positively or negatively to a pre-
diction, supporting or refuting specific categories.
Moreover, concepts vary in their contribution to
the final decision. These aspects must be carefully
modeled to construct effective MCoTs.

Motivated by the principle of weak-to-strong
generalization (Burns et al., 2024), we propose
a novel Weak-supervIsion-guided Step-by-step
Explanation method (WISE) for automatic MCoT
generation. It reformulates the CBL as concept-
driven natural language reasoning. Specifically, we
use CLIP to score images against a concept bank
and utilize CBMs for concept annotation. Lever-
aging the prior distribution between categories and
concepts, we apply decision tree (Breiman et al.,
1984) to construct Prior Trees. To capture instance-
level variation and reflect the human tendency to or-
ganize concepts sequentially, we further design two
instance-specific trees: an Affirmation Tree and an
Elimination Tree. These trees are then combined
and transformed into MCoTs. Finally, we fine-tune
MLLMs using a curriculum learning strategy. Ex-
periments across ten image classification datasets
show that our method improves the interpretabil-
ity of MLLMs by 37% and enhances classification
accuracy, despite being guided by models that are
more lightweight than billion-parameter MLLMs.

Furthermore, our generated MCoTs align with
human reasoning patterns and directly address the
two previously identified challenges: by incorpo-
rating both discriminativeness and visual salience,
they focus on a small set of critical concepts for
decision-making; they also capture concept typical-
ity and reflect both affirmative and counterfactual
reasoning strategies. Overall, our main contribu-
tions are as follows:
• To the best of our knowledge, we are the

first to bridge the previously separate paradigms of
CBMs and MCoTs by proposing WISE, a weak-
supervision-guided method that reformulates CBM
representations into natural language MCoTs.
• Our method transforms any image classifica-

tion dataset with category labels into an MCoT-
augmented version, producing rationales that re-
flect human reasoning by integrating category typi-
cality, instance-level distinctiveness, and both sup-
portive and counterfactual evidence.
• We conduct experiments on ten image classifi-

cation datasets, showing that our generated MCoTs
improve the interpretability of MLLMs by 37%
while also enhancing classification accuracy.
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2 Related Work

Concept Bottleneck Models. CBMs (Koh et al.,
2020) are a prominent approach for designing inher-
ently interpretable DL models, as detailed by Zhou
et al. (2018) and Losch et al. (2019). CBMs incor-
porate a concept bottleneck layer preceding the fi-
nal fully connected layer, where each neuron repre-
sents a human-interpretable concept. Yüksekgönül
et al. (2023) and Oikarinen et al. (2023) proposed
data-efficient methods to convert any DL models
into CBMs without training from scratch. CLIP-
based CBMs (Jiang et al., 2025; Shang et al., 2024;
Oikarinen et al., 2023; Yang et al., 2023; Yan et al.,
2023a) have leveraged vision-language alignment
learned during pre-training (Radford et al., 2021) to
eliminate the need for concept-level manual annota-
tion, enabling automatic concept bank construction
via LLMs and achieving competitive performance
with "black-box" models. Recent studies such as
Concept Agent (Jiang et al., 2025) and LM4CV
(Yan et al., 2023a) explores concise concept banks
to reduce redundancy, but the intrinsic CBM archi-
tecture, the linear combination of individual con-
cept scores, limits their direct use in CoT reasoning
for MLLMs. Crucially, our method dynamically
selects concepts for reasoning on a per-image basis,
instead of relying on a predefined, fixed set.
MCoT Reasoning for MLLM. Multimodal Chain-
of-Thought (MCoT) extends the Chain-of-Thought
(CoT) paradigm (Wei et al., 2022) to MLLMs, aim-
ing to enhance their ability to perform stepwise
reasoning across diverse input modalities. CoT im-
proves both transparency and accuracy by decom-
posing complex problems into intermediate steps
(Zhang et al., 2024b). In explainable image clas-
sification, MCoT incorporates visual inputs while
generating rationales in natural language. To better
structure the reasoning process, various topologies
such as trees (Yao et al., 2023) and graphs (Besta
et al., 2024) have been explored, enabling richer
semantic composition and flexible backtracking.
Prompt-based methods enable MLLMs to produce
rationales at inference time via crafted instructions
or in-context examples, requiring no additional
training (Luo et al., 2025; Zheng et al., 2024; Gao
et al., 2024). In contrast, learning-based methods
(Zhang et al., 2024b) fine-tune MLLMs on anno-
tated rationale data, making them more effective at
implicitly acquiring reasoning patterns. Although
several MCoT datasets are available (Chen et al.,
2023), they primarily target reasoning over inter-

object relations or rudimentary knowledge. To date,
there remains a lack of rationale-annotated datasets
tailored to image classification that emphasize in-
trinsic properties of individual objects.
Weak-to-Strong Interpretability. Weak-to-strong
generalization (Burns et al., 2024) is a paradigm for
eliciting the latent capabilities of powerful models
through supervision provided by weaker models.
Building on this idea, we explore whether weak su-
pervision, including CBM (Koh et al., 2020), CLIP
(Radford et al., 2021), Decision Tree (Breiman
et al., 1984), Linear Regression (Hastie et al.,
2009), and Bayesian Learning (Bayes, 1958), can
elicit interpretable MCoT reasoning from MLLMs.
Among these, decision trees play a central role, re-
cursively splitting the feature space based on input
attributes to form a tree-like structure (Costa and
Pedreira, 2023) where internal nodes represent de-
cision rules and leaf nodes correspond to outcomes.
This transparent structure enables intuitive inter-
pretation of the decision-making process and has
been extensively studied for applications in critical
domains such as healthcare (Jiang et al., 2023).

3 Methodology

3.1 Problem Formulation

Given a dataset D = (xi, yi)
K
i=1, where xi ∈ X de-

notes an image and yi ∈ Y is one of N predefined
categories, and a concept set C = c1, c2, . . . , cM
provided by humans or LLMs as the semantic ba-
sis for interpretation, the objective is to automat-
ically generate textual rationales R to guide the
fine-tuning of MLLMs on D.

We formulate this as modeling the joint distri-
bution P (Y, R | X , Q), where Q denotes a task-
specific prompt (e.g., Identify the species of the
bird in the image). The rationales R are MCoTs
constrained to reflect a subset of the concept set,
i.e., Info(R) ⊆ C, with |Info(R)| ≪ M , enabling
concise and faithful concept-driven reasoning. Y ,
R and Q are represented as a sequence of language
tokens in MLLMs.

3.2 Concept Scoring for Visual Salience

Humans tend to prioritize visually salient features
as key cues for inference when recognizing ob-
jects. Motivated by this observation, we initiate
rationale generation using Visual-Language Mod-
els (VLMs), such as CLIP (Radford et al., 2021).
CLIP consists of two encoders: an image encoder
I : X → Rd and a text encoder T : C → Rd,
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which project images and textual concepts into a
shared d-dimensional embedding space. The con-
cept score between an input image xi and a concept
cm is calculated using cosine similarity:

s(xi, cm) = I(xi) · T (cm) (1)

This score quantifies the degree of cross-modal
alignment and reflects the visual salience of con-
cept cm in image xi. To obtain concept-class align-
ment weights, we treat the concept score vector
s(xi) ∈ RM as a concept bottleneck layer and
apply a softmax classifier trained with label super-
vision. This allows us to learn a weight vector
wyn ∈ RM for each class yn, where each dimen-
sion reflects the relative importance and polarity
(positive or negative) of a concept for that class:

P (yn | xi) =
exp(w⊤

yns(xi) + bn)∑N
j=1 exp(w

⊤
yjs(xi) + bj)

(2)

Here, wyn and bn denote the weight vector and bias
term for class yn. Finally, for an image xi labeled
as yn, we derive the binary annotation for each
concept cm based on the sign of its contribution to
the predicted class. Let zi,m ∈ {0, 1} denote the
annotation of concept cm in xi:

zi,m =

{
1, if s(xi, cm) ·wcm

yn > 0

0, if s(xi, cm) ·wcm
yn ≤ 0

(3)

For datasets which possess the ground-truth con-
cept labels, the binary annotation step is not re-
quired. We then apply logistic regression, super-
vised by these labels, to map concept scores to
probabilities, denoted as Pi,m and determine a per-
concept threshold optimized for macro F1 score.
Concept instances with probabilities below the
threshold, even if they are true positives, are re-
labeled as negative. This refinement retains only
the most visually salient concepts.

3.3 Category Typicality Tree Modeling
During object recognition, humans often rely on
stereotypical impressions associated with imag-
ined categories. From a Bayesian perspective, this
corresponds to a prior probability (Bayes, 1958),
specifically the category-to-concept prior denoted
as P (cm | yn) in our setting. To model this prior
knowledge, we compute the prior distribution for
each category–concept pair as follows:

P (cm | yn) =
1

|Dyn |
∑

i∈Dyn

Pi,m (4)

Here, Dyn = {i | yi = yn} denotes the set of
training instances labeled with class yn. This com-
putation yields a prior matrix P ∈ RN×M , where
each entry [P]n,m represents the prior strength link-
ing class yn and concept cm. We use this matrix to
build a category-specific decision tree for each yn.

Prior Tree. The objective of the tree modeling
is to discover the shortest decision path that distin-
guishes yn from the remaining classes, which are
treated as negative samples. To this end, we iden-
tify the most salient concepts for yn by filtering
the concept dimensions with [P]n,m > 0.5. These
selected concepts serve as input features for the
decision tree algorithm, which recursively select
the concept that yields the highest information gain
according to Gini impurity (Breiman et al., 1984)
at each node. The resulting decision path for class
yn is denoted as:

Tp(yn) = {c1, c2, . . . , cp} (5)

where Tp(yn) is an ordered sequence of concepts
forming the decision path, and p denotes its length.

3.4 Instance Distinctiveness Tree Modeling
While stereotypical impressions reflect the proto-
typical characteristics of a category, individual in-
stances often exhibit distinctive features, i.e., de-
viations from the prototype. Such variations are
essential for human reasoning. We capture this
distinctiveness by also formulating a tree-based
learning framework. We posit that human reason-
ing often follows a two-step process to account for
variations and organization of multiple concepts:
(1) it begins with affirmation, supporting a hypoth-
esis based on observed concepts, and (2) when
evidence is insufficient, it proceeds to elimination,
ruling out confounding options based on absent
concepts. To reflect this strategy, we decompose
our tree construction into two sequential stages.

Affirmation Tree. This tree builds upon the
Prior Tree and focuses exclusively on positive con-
cepts supporting the target class. For a given in-
stance (xi, yn), we begin by identifying the subset
of prior concepts that are both part of the category-
level decision path Tp(yn) and observed in xi. We
denote this instance-specific subpath as:

T +
p (xi, yn) = {c ∈ Tp(yn) | zi,c = 1} (6)

We then retrieve a set of hard negative instances
from D—instances not labeled as yn but sharing
the same set of activated prior concepts T +

p (xi, yn).
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Since these instances cannot be distinguished from
xi using the Prior Tree alone, additional instance-
specific concepts are needed to further support.

To resolve this ambiguity, we extract additional
concepts from xi that are not included in the prior
decision path Tp(yn) but are present in the instance.
These distinctive, instance-specific concepts serve
as input features for constructing the Affirmation
Tree, and their resulting decision path is denoted
as:

T +
ins(xi, yn) = {c1, c2, . . . , cins+} (7)

where cj ∈ C \ Tp(yn) and zi,cj = 1. Finally, the
Affirmation Tree path is defined as:

T +
a (xi, yn) = T +

p (xi, yn) ∥ T +
ins(xi, yn) (8)

Here, ∥ denotes path concatenation. The resulting
concepts within the path is reordered according to
their prior probabilities that reflect relative impor-
tance. In cases where the leaf node of the Affirma-
tion Tree T +

a (xi, yn) retain non-zero Gini impurity,
an Elimination Tree is constructed to further dis-
ambiguate confounding classes.

Elimination Tree. Let yc denote the set of con-
founding classes that causes non-zero Gini impurity
at the leaf node of the Affirmation Tree for the input
xi. The goal of the Elimination Tree is to exclude
these classes by leveraging concepts that are absent
in xi. Specifically, we collect negative instances
as Dyc = {i | yi ∈ yc} and identify true negative
concepts in xi as input features for decision tree
construction. The resulting decision path is defined
as:

T −
e (xi, yn) = {c1, c2, . . . , cins−} (9)

where cj ∈ C and zi,cj = 0. These concepts are
absent in xi but frequently occur in the confound-
ing classes yc, thereby complementing the insuffi-
cient evidence provided by the Affirmation Tree.
If non-zero Gini impurity persists after applying
both trees, we recommend expanding the concept
bank C, indicating that the current set of concepts
is insufficient to distinguish between categories.

3.5 Tree-Guided Rationale for MLLMs
We define the final MCoT decision path as the con-
catenation of the Affirmation Tree and the Elimina-
tion Tree for a given instance (xi, yn):

TMCoT(xi, yn) = T +
a (xi, yn) ∥ T −

e (xi, yn) (10)

The resulting chain captures both supportive and
exclusionary reasoning steps, accounting for both

category-level prototypicality and instance-level
distinctiveness. To convert this structured path into
natural language rationales, we design a template-
based generation module that verbalizes each con-
cept ck into a descriptive clause, conditioned on its
semantics and polarity. As shown in Figure 2, the
resulting clauses are then sequentially composed
into a coherent explanation that mirrors the under-
lying reasoning logic. Future work may explore
leveraging generative LLMs to polish and rephrase
the rationales. In our experiments, we retain the
template-based method to facilitate concept clause
extraction and evaluation via regular expressions.

3.6 Fine-tuning MLLMs with MCoTs

Rather than immediately fine-tuning the MLLMs to
perform concept-driven reasoning, we begin with
task adaptation to guide the model in learning how
to ground individual concepts in images. Following
the principle of curriculum learning (Bengio et al.,
2009), we adopt a two-stage fine-tuning strategy
that gradually increases task complexity.

In the first stage, we create a question-answering
dataset by templating each annotated concept into a
natural language QA pair (e.g., Q: What color are
the bird’s feathers? A: Blue), enabling the model
to associate visual features with individual con-
cepts. In the second stage, we further fine-tune the
model on the Tree-guided MCoT dataset to enable
compositional reasoning over multiple concepts.

4 Experiments

4.1 Datasets

We evaluate our method on ten fine-grained image
classification datasets across various domains and
scales, including CUB (Wah et al., 2011), SkinCon
(Daneshjou et al., 2022), LAD (Zhao et al., 2019),
Oxford-Flowers (Nilsback and Zisserman, 2008),
and Oxford-Pets (Parkhi et al., 2012). Among
these, CUB, SkinCon, and LAD offer image-level
concept annotations that enable quantitative evalu-
ation of MCoT interpretability.

CUB contains 200 bird species, with each image
annotated using 312 binary concept labels. Skin-
Con is a dermatology dataset with hierarchical skin
disease labels. Following Daneshjou et al. (2022)
and Pang et al. (2024), we construct two variants:
SkinCon (3-class), using three coarse-grained dis-
ease categories and 22 concepts that appear in at
least 50 images; and SkinCon (9-class), covering
nine fine-grained categories with all 48 concepts.
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Model Weak Supervisors MLLM (Qwen2-VL)
Dataset CLIP CBM DT NBC ZS-IO ZS-MCoT IT-IO IT-MCoT (ours)

acc. 59.30 45.94 28.65 60.30 33.21 26.89 82.40 83.69 (+1.29)
CUB

intp. - 55.62 87.79 50.51 - 55.20 - 65.03
acc. 64.71 68.42 56.97 68.42 67.18 57.89 74.61 74.61 (-)

SkinCon-3
intp. - 50.82 79.92 56.64 - 24.33 - 87.40
acc. 11.76 60.06 60.06 60.06 22.60 25.70 60.37 62.23 (+1.86)

SkinCon-9
intp. - 50.15 91.67 53.55 - 28.76 - 93.45
acc. 96.83 73.36 57.41 86.63 79.67 82.49 97.50 97.62 (+0.12)

LAD-A
intp. - 60.18 82.89 50.45 - 55.90 - 82.78
acc. 75.56 51.94 44.08 76.84 63.30 67.53 94.55 94.70 (+0.15)

LAD-E
intp. - 55.92 82.12 51.49 - 69.44 - 98.74
acc. 32.49 13.88 9.75 19.04 21.17 21.20 59.02 61.61 (+2.59)

LAD-H
intp. - 57.50 60.38 51.52 - 23.28 - 83.44
acc. 73.33 43.71 36.06 61.64 70.14 70.05 93.47 93.17 (-0.30)

LAD-F
intp. - 56.23 76.77 50.65 - 74.41 - 96.67
acc. 71.68 51.21 42.34 75.25 47.92 48.30 94.10 93.88 (-0.22)

LAD-V
intp. - 58.57 75.61 52.04 - 74.70 - 95.12
acc. 60.71 51.07 41.92 63.52 50.65 50.23 82.00 82.69 (+0.69)

Average
intp. - 55.62 79.64 52.11 - 50.75 - 87.83

Table 1: Main results on 8 concept-annotated datasets, reporting classification accuracy (acc.) and interpretability
(intp.) for weak supervisors and MLLM. CLIP is used in a zero-shot setting. The remaining methods are CLIP-based
weak supervisors: Concept Bottleneck Model (CBM), Decision Tree (DT), and Naive Bayes Classifier (NBC). ZS-IO
and ZS-MCoT denote zero-shot input-output QA and zero-shot MCoT. IT-IO is instruction tuning without rationales;
IT-MCoT (ours) integrates MCoTs derived from weak supervision. Accuracy gains over the IT-IO baseline are
indicated in green (improvement) and red (decline). Top-1 and Top-2 interpretability scores are highlighted in blue.

LAD consists of five sub-datasets covering animals
(LAD-A), electronics (LAD-E), hairstyles (LAD-
H), fruits (LAD-F), and vehicles (LAD-V). It in-
cludes 230 categories and 359 concepts in total.
Following Jiang et al. (2025), we construct con-
cept banks for Oxford-Flowers and Oxford-Pets by
prompting GPT-4o (OpenAI et al., 2024).

4.2 Experimental Details

Weak Supervisors. We evaluate both accuracy and
interpretability of four weak supervisors, which
are used to guide MLLMs in generating MCoTs:
(1) CLIP-zero-shot (Radford et al., 2021) Serves
as a baseline to showcase the pretrained vision-
language alignment and classification capabilities
of CLIP. (2) CLIP-based CBM (Yüksekgönül
et al., 2023, Oikarinen et al., 2023, Yan et al.,
2023a) Applies logistic regression on CLIP-derived
concept scores. Interpretability is quantified by the
polarity of the product between concept weights
and scores, indicating each concept’s contribution
on the prediction. (3) CLIP-based Decision Tree
(Breiman et al., 1984) Constructs decision rules
over CLIP-annotated concepts. As the tree lacks
direct visual access, interpretability is measured by
the correctness of CLIP concept labels along deci-
sion paths. When annotations are fully accurate, the
explanation is exact. (4) CLIP-based Naive Bayes

Classifier (Bayes, 1958) Models prior and condi-
tional probabilities under a conditional indepen-
dence assumption. Concept polarity is computed
as the log-ratio between predicted and contrasting
classes, indicating directional contribution.

MLLM Baselines. We evaluate the inherent
image classification and reasoning capabilities of
MLLMs under two settings. Due to the large label
space, which makes it impractical to enumerate all
candidate labels in the prompt, we adopt an open-
set image classification setup (Zhang et al., 2024a),
providing a more challenging and realistic evalua-
tion than the closed-set setup used for weak supervi-
sors. (1) Zero-shot Input-Output The model is di-
rectly prompted to identify the object in the image
without any fine-tuning. (2) Zero-shot MCoT The
model is prompted to reason step by step. To es-
tablish a fair and informative baseline, we augment
the prompt “Let’s think step by step” (Kojima et al.,
2022) with a comprehensive set of diverse concepts,
systematically summarized from the concept bank
to guide the reasoning process. GPT-4o (OpenAI
et al., 2024) is used to quantitatively evaluate the in-
terpretability of the reasoning. To isolate the effect
of MCoTs, we further include a fine-tuning-based
baseline: (3) Instruction Tuning (w/o MCoTs),
The model is fine-tuned on question-answer pairs
without explanatory rationales.
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Figure 2: Several examples of generated rationales by WISE.

Implementation. We conduct experiments us-
ing Qwen2-VL-7B-Instruct (Wang et al., 2024) as
the target MLLM and adopt CLIP ViT-L/14 (Rad-
ford et al., 2021) as the backbone of weak supervi-
sors for most datasets, with a parameter count that
is approximately 5% of the target model. For Skin-
Con, we use MAKE (Yan et al., 2025b), pretrained
on the million-scale dermatology dataset Derm1M
(Yan et al., 2025a), as the backbone. We fine-tune
the MLLM using LoRA (Hu et al., 2022) with rank
8 for 10 epochs, employing a total batch size of 16
and a learning rate of 1 × 10−4. All experiments
are conducted on 4 NVIDIA RTX A5000 GPUs.

Evaluation Metrics. For MLLM-based meth-
ods, we report classification accuracy and the inter-
pretability. Interpretability is quantified as the pro-
portion of concept polarities in the rationales that
agree with expert-annotated binary labels, follow-
ing the standard CBM evaluation protocol. Since
our approach reasons over a subset of concepts, this
measure corresponds to concept precision.

4.3 Main Results

Table 1 presents the overall evaluation results of
our method on eight concept-annotated datasets.

Interpretability. Weak supervisors effectively
guide MLLMs to acquire concept-driven reason-
ing abilities for image classification, achieving an
average interpretability score of 87.83% across
eight datasets, which is unexpectedly 8.2% higher
than the best-performing weak supervisor (decision
trees). On only two datasets does the MLLM’s in-

terpretability fall short of its supervisor, further un-
derscoring the central role of decision trees. Com-
pared to the MLLM’s inherent zero-shot MCoT, our
approach improves interpretability by 37%, consis-
tently outperforming across all datasets.

Accuracy. Differing from most CLIP-based
CBMs, which often improve interpretability with
slight compromises in accuracy, our method
achieves both. Compared to instruction tuning us-
ing input-output pairs without MCoTs, our method
improves the average accuracy by 0.69%, with only
minor drops observed on two datasets. Notably,
when the MLLM’s inherent reasoning ability is
weak, such as on LAD-H and SkinCon-9, where
the average interpretability is only 26%, guided rea-
soning yields substantially larger improvements in
classification performance, with gains of up to 2%.
These results highlight the critical role of multi-step
reasoning in enhancing final decision-making.

Interpretability–Accuracy Trade-Off. A clear
trade-off between accuracy and interpretability is
observed among weak supervisors: models with
higher classification accuracy often exhibit lower
interpretability. In contrast, our method integrates
the strengths of all weak supervisors when con-
structing MCoTs, enabling interpretability to gener-
alize effectively from weak to strong as the MCoTs
align with human reasoning patterns. However,
when the concept-level accuracy of zero-shot rea-
soning drops to 50.75%, hallucinations tend to arise
and propagate to the final predictions, thereby caus-
ing an average performance drop of 0.4%.
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Pos Neg InCoT XCoT Bank
CUB 62.34 69.92 7 301 312

SkinCon-3 66.01 89.16 17 22 22
SkinCon-9 75.00 94.41 23 48 48

LAD-A 82.78 - 3 110 123
LAD-E 98.62 100.00 3 72 75
LAD-H 86.86 73.81 4 22 22
LAD-F 97.29 89.47 5 53 58
LAD-V 95.15 94.73 3 76 81
Average 83.01 87.36 8 88 93

Table 2: Analysis of MCoTs. Pos and Neg denote the
precision of supportive and refutational concepts of the
MLLM-generated MCoTs on the test set, respectively.
InCoT indicates the average number of concepts used
per image for reasoning, XCoT denotes the number of
unique concepts used at least once across all images,
and Bank refers to the total number of expert-defined
concepts provided for weak supervision.

Datasets w/o Concept Annotation. We further
evaluate WISE on Oxford-Pets (37 classes) and
Oxford-Flowers (102 classes), two datasets without
concept annotations. Without MCoTs, instruction
tuning achieves accuracies of 94.19% and 98.72%,
respectively. Incorporating WISE yields 93.87%
and 98.88%, indicating comparable performance.
Moreover, the case studies in Figure 2 demonstrate
that WISE substantially enhances interpretability.

4.4 MCoT Analysis

Table 2 reports the decoupled precision of positive
and negative concepts within the MCoTs on the test
dataset, representing supportive reasoning and refu-
tational elimination, respectively. In addition, the
table presents the number of concepts used in the
MCoTs and compares them with the total number
of predefined concepts in the bank, highlighting the
efficiency and dynamic selectivity of the reasoning.

Concept Contribution. The model achieves an
average precision of 83% for positive concepts and
87% for negative concepts, indicating a balanced
adoption of both reasoning strategies. These results
suggest that the MLLM integrates both supportive
and refutational reasoning without exhibiting per-
formance bias. In the relatively simple LAD-A, the
decisions can be made solely through supportive
reasoning, with no reliance on refutational cues.

Concept Efficiency. Our MCoTs require only 8
concepts on average to complete reasoning across
all datasets, consistent with the human intuition
that a small number of concepts is sufficient for
object identification. In contrast, traditional CBMs
score all 312 concepts in the concept bank to reach

Method Overall Pos-C Neg-C
Ours 65.03 62.34 69.92
- w/o Salience 32.73 32.65 48.39
- w/o Order 61.46 56.22 69.13
Captioning 49.68 49.68 -
Instance Tree 56.13 52.91 65.99
Category Tree 62.21 56.84 67.74

Table 3: Ablation studies on the CUB test set, assessing
the effects of different components and variants on the
concept-level precision (interpretability) of MCoTs.

a decision, which clearly contradicts this intuition.
Although recent efforts (Yan et al., 2023a) have
reduced this number to 32 on CUB, the inherent
scoring mechanism of CBM still leads to redun-
dancy. Notably, our method achieves accurate clas-
sification of 200 bird species using only 7 concepts.
This efficiency stems from the decision tree’s abil-
ity to capture logical dependencies among concepts.
We also observe that the SkinCon dataset requires
significantly more concepts. Manual inspection re-
veals that this is due to limitations of the concept
bank: Some diseases share identical concept pat-
terns, rendering them indistinguishable under the
current representation. Future work should con-
sider expanding the concept bank of SkinCon to
improve its coverage and discriminative capacity.

Dynamic Concept Selection. We observe that
although reasoning over a single image involves
only 8 concepts on average, the MCoTs generated
by WISE dynamically select concepts, resulting in
95% of the concept bank being used at least once.
This demonstrates a clear contrast to prior work
(Jiang et al., 2025), which relies on a fixed concept
bank and scores each concept independently.

4.5 Ablation Study
Table 3 compares the concept-level precision of the
generated MCoTs on the CUB test dataset.

Salient Concept Selection. Selecting visually
salient concepts substantially improves MLLMs’
reasoning precision. CLIP’s vision-language align-
ment scores not only compensate for weak super-
visors’ limited visual perception, but also reduce
MLLMs’ reliance on imperceptible cues.

Concept Organization. We create a variant by
shuffling the order of concepts in the generated
MCoTs, resulting in rationales that are unordered
and unstructured. This randomness increases the
learning difficulty for the model. In contrast, we in-
troduce human-aligned reasoning biases, reducing
such uncertainty and improving concept precision.

14693



Captioning as MCoT. To differentiate concept-
driven reasoning from simple image captioning, we
train MLLMs using all visual concepts present in
the image, arranged in a predefined order. Result
indicates caption-style MCoTs fail to facilitate the
acquisition of concept-level reasoning.

Variant Tree Construction. We design two tree
variants: category-specific and instance-specific.
The former builds one tree per category, ignoring
individual variability, whereas the latter relies on
instance-level feature saliency, neglecting cross-
category regularities. Consequently, both methods
suffer reduced precision due to their lack of shared
structure and sensitivity to individual differences.

5 Discussion

We demonstrated the efficiency and dynamic nature
of concept selection in Section 4.4. Beyond these
observations, WISE offers two notable advantages:

Stepwise Transparent Reasoning. Guided by
decision trees, WISE generates MCoTs by select-
ing the most discriminative concept at each step
based on information gain, progressively isolat-
ing the target class from negatives. Each selection
explicitly conveys three elements to enhance trans-
parency: (1) the rationale for the choice, (2) the
negative classes excluded by this step, and (3) the
remaining negatives contributing to non-zero Gini
impurity. This stepwise process naturally aligns
with the autoregressive behavior of MLLMs.

Quantified Sufficiency. Reasoning continues
until a leaf node is reached, where the sufficiency
of the reasoning chain is evaluated. A zero Gini
impurity indicates complete reasoning, whereas
a non-zero impurity (when no further splits are
possible) reveals gaps in the current concept bank.

Overall, WISE achieves more efficient and con-
cise concept usage than CLIP-based CBMs such as
LM4CV (Yan et al., 2023a) and neural-symbolic
reasoning methods like Deep Concept Reasoner
(DCR) (Barbiero et al., 2023), while offering dis-
tinctive advantages. Unlike DCR’s permutation-
invariant logical rules, WISE adopts a human-
aligned reasoning paradigm that preserves the
uniqueness of the generated MCoTs.

6 Future Work

Beyond enabling interpretable image classification
with MLLMs, our work lays the foundation for
more efficient human-in-the-loop frameworks (Yan
et al., 2023b). Concept-based models allow human

intervention at the concept level, providing direct
control over model behavior (Koh et al., 2020). By
generating the minimal set of concepts needed for
explanation, our method significantly improves in-
tervention efficiency. This property is particularly
valuable in domains such as clinical image diagno-
sis, where rapid and precise feedback is critical.

In addition, we introduce a new class of in-
struction data designed to promote intra-object
understanding during MLLM pretraining. This
resource can support the creation of large-scale
MCoT datasets for both domain-specific and gen-
eral applications. While our current experiments
focus on a single dataset, future work should ex-
plore dataset integration and scaling toward train-
ing foundation-level MLLMs (Zhang et al., 2024a).
Finally, the released MCoT dataset provides a prac-
tical benchmark for diverse vision tasks, includ-
ing hallucination evaluation and mitigation (Bai
et al., 2025), enabling systematic comparison of
hallucination-reduction strategies and advancing
reliable MLLM reasoning.

7 Conclusion

We propose WISE, a method that reformulates
the concept bottleneck layer into natural-language
MCoTs guided by weak supervision, aligning the
model’s reasoning with human thought patterns.
This method is broadly applicable to any image
classification dataset with category labels. Experi-
ments show that the generated MCoTs yield a 37%
improvement in the interpretability of MLLMs.

Limitations

A main limitation of our approach is its depen-
dence on concept banks generated by prompting
LLMs for datasets lacking predefined annotations.
The quality of the resulting MCoTs is tied to the
coverage of these banks, and insufficient concept
sets may reduce the model’s ability to distinguish
visually similar categories.

Moreover, although we reformulate image clas-
sification as a question answering task, most
datasets are designed with a fixed and limited label
space. This mismatch can introduce concept con-
flicts when integrating multiple MCoT-augmented
datasets. For example, generated rationales may
fail to eliminate distractor labels that are absent
from one dataset but present in others. These is-
sues highlight the need for comprehensive datasets
that adequately represent the target domain.

14694



References
Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He,

Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
2025. Hallucination of multimodal large language
models: A survey. Preprint, arXiv:2404.18930.

Pietro Barbiero, Gabriele Ciravegna, Francesco Gian-
nini, Mateo Espinosa Zarlenga, Lucie Charlotte Mag-
ister, Alberto Tonda, Pietro Lio, Frederic Precioso,
Mateja Jamnik, and Giuseppe Marra. 2023. Inter-
pretable neural-symbolic concept reasoning. In Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Ma-
chine Learning Research, pages 1801–1825. PMLR.

Thomas Bayes. 1958. An essay towards solving a prob-
lem in the doctrine of chances. Biometrika, 45(3-
4):296–315.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 2009, Montreal,
Quebec, Canada, June 14-18, 2009, volume 382 of
ACM International Conference Proceeding Series,
pages 41–48. ACM.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph
of thoughts: Solving elaborate problems with large
language models. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(16):17682–17690.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen,
and Charles J. Stone. 1984. Classification and Re-
gression Trees. Chapman and Hall/CRC, New York.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner,
Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan
Leike, Ilya Sutskever, and Jeffrey Wu. 2024. Weak-
to-strong generalization: Eliciting strong capabili-
ties with weak supervision. In Proceedings of the
41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning
Research, pages 4971–5012. PMLR.

Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao
Xu, and Wanxiang Che. 2024. M3CoT: A novel
benchmark for multi-domain multi-step multi-modal
chain-of-thought. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8199–8221,
Bangkok, Thailand. Association for Computational
Linguistics.

Zhenfang Chen, Qinhong Zhou, Yikang Shen, Yining
Hong, Hao Zhang, and Chuang Gan. 2023. See,
think, confirm: Interactive prompting between vision
and language models for knowledge-based visual
reasoning. Preprint, arXiv:2301.05226.

Zihui Cheng, Qiguang Chen, Jin Zhang, Hao Fei, Xi-
aocheng Feng, Wanxiang Che, Min Li, and Libo
Qin. 2025. CoMT: A novel benchmark for chain of
multi-modal thought on large vision-language mod-
els. Proceedings of the AAAI Conference on Artificial
Intelligence, 39(22):23678–23686.

Vinícius G. Costa and Carlos Eduardo Pedreira. 2023.
Recent advances in decision trees: An updated survey.
Artificial Intelligence Review, 56(5):4765–4800.

Roxana Daneshjou, Mert Yuksekgonul, Zhuo Ran Cai,
Roberto Novoa, and James Y Zou. 2022. SkinCon:
A skin disease dataset densely annotated by domain
experts for fine-grained debugging and analysis. In
Advances in Neural Information Processing Systems,
volume 35, pages 18157–18167. Curran Associates,
Inc.

Timin Gao, Peixian Chen, Mengdan Zhang, Chaoyou
Fu, Yunhang Shen, Yan Zhang, Shengchuan Zhang,
Xiawu Zheng, Xing Sun, Liujuan Cao, and Ron-
grong Ji. 2024. Cantor: Inspiring multimodal chain-
of-thought of mllm. In Proceedings of the 32nd
ACM International Conference on Multimedia, page
9096–9105, New York, USA. Association for Com-
puting Machinery.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
2009. The Elements of Statistical Learning, 2nd
edition. Springer, New York.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Yiwen Jiang, Deval Mehta, Wei Feng, and Zongyuan
Ge. 2025. Enhancing interpretable image classifica-
tion through LLM agents and conditional concept
bottleneck models. In Proceedings of the 63rd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12285–
12297, Vienna, Austria. Association for Computa-
tional Linguistics.

Yiwen Jiang, Hao Yu, and Xingyue Fu. 2023. Med-
ical decision tree extraction: A prompt based dual
contrastive learning method. In Health Information
Processing. Evaluation Track Papers, pages 103–116,
Singapore. Springer Nature Singapore.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J.
Cai, James Wexler, Fernanda B. Viégas, and Rory
Sayres. 2018. Interpretability beyond feature attri-
bution: Quantitative testing with concept activation
vectors (TCAV). In Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 2673–2682. PMLR.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen
Mussmann, Emma Pierson, Been Kim, and Percy

14695

https://arxiv.org/abs/2404.18930
https://arxiv.org/abs/2404.18930
https://proceedings.mlr.press/v202/barbiero23a.html
https://proceedings.mlr.press/v202/barbiero23a.html
https://doi.org/10.1093/biomet/45.3-4.296
https://doi.org/10.1093/biomet/45.3-4.296
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://proceedings.mlr.press/v235/burns24b.html
https://proceedings.mlr.press/v235/burns24b.html
https://proceedings.mlr.press/v235/burns24b.html
https://doi.org/10.18653/v1/2024.acl-long.446
https://doi.org/10.18653/v1/2024.acl-long.446
https://doi.org/10.18653/v1/2024.acl-long.446
https://arxiv.org/abs/2301.05226
https://arxiv.org/abs/2301.05226
https://arxiv.org/abs/2301.05226
https://arxiv.org/abs/2301.05226
https://doi.org/10.1609/aaai.v39i22.34538
https://doi.org/10.1609/aaai.v39i22.34538
https://doi.org/10.1609/aaai.v39i22.34538
https://doi.org/10.1007/s10462-022-10275-5
https://proceedings.neurips.cc/paper_files/paper/2022/file/7318b51b52078e3af28197e725f5068a-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7318b51b52078e3af28197e725f5068a-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7318b51b52078e3af28197e725f5068a-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.1145/3664647.3681249
https://doi.org/10.1145/3664647.3681249
https://doi.org/10.1007/978-0-387-84858-7
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2025.acl-long.600
https://doi.org/10.18653/v1/2025.acl-long.600
https://doi.org/10.18653/v1/2025.acl-long.600
https://doi.org/10.1007/978-981-99-4826-0_10
https://doi.org/10.1007/978-981-99-4826-0_10
https://doi.org/10.1007/978-981-99-4826-0_10
http://proceedings.mlr.press/v80/kim18d.html
http://proceedings.mlr.press/v80/kim18d.html
http://proceedings.mlr.press/v80/kim18d.html


Liang. 2020. Concept bottleneck models. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 5338–5348. PMLR.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. In Advances in
Neural Information Processing Systems, volume 36,
pages 34892–34916. Curran Associates, Inc.

Max Losch, Mario Fritz, and Bernt Schiele. 2019. In-
terpretability beyond classification output: Semantic
bottleneck networks. Preprint, arXiv:1907.10882.

Xuewen Luo, Fan Ding, Yinsheng Song, Xiaofeng
Zhang, and Junnyong Loo. 2025. PKRD-CoT: A
unified chain-of-thought prompting for multi-modal
large language models in autonomous driving. In
Neural Information Processing, pages 62–76, Singa-
pore. Springer Nature Singapore.

Deval Mehta, Yiwen Jiang, Catherine Jan, Ming-
guang He, Kshitij Jadhav, and Zongyuan Ge. 2025.
Interpretable few-shot retinal disease diagnosis
with concept-guided prompting of vision-language
models. In Information Processing in Medical Imag-
ing, pages 263–277, Cham. Springer Nature Switzer-
land.

Maria-Elena Nilsback and Andrew Zisserman. 2008.
Automated flower classification over a large num-
ber of classes. In Proceedings of the Sixth Indian
Conference on Computer Vision, Graphics & Image
Processing, page 722–729, USA. IEEE Computer
Society.

Tuomas P. Oikarinen, Subhro Das, Lam M. Nguyen,
and Tsui-Wei Weng. 2023. Label-free concept bot-
tleneck models. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
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