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Abstract

Identifying/retrieving relevant statutes and
prior cases/precedents for a given legal situ-
ation are common tasks exercised by law prac-
titioners. Researchers to date have addressed
the two tasks independently, thus developing
completely different datasets and models for
each task; however, both retrieval tasks are in-
herently related, e.g., similar cases tend to cite
similar statutes (due to similar factual situation).
In this paper, we address this gap. We propose
IL-PCSR (Indian Legal corpus for Prior Case
and Statute Retrieval), which is a unique corpus
that provides a common testbed for developing
models for both the tasks (Statute Retrieval
and Precedent Retrieval) that can exploit the
dependence between the two. We experiment
extensively with several baseline models on the
tasks, including lexical models, semantic mod-
els and ensemble based on GNNs. Further, to
exploit the dependence between the two tasks,
we develop an LLM-based re-ranking approach
that gives the best performance.

1 Introduction

In the legal domain, laws (statutes) and prior
cases are considered to be the fundamental sources
of knowledge that guide principles of jurisdic-
tion (Joshi et al., 2023). In practice, a legal practi-
tioner when faced with a legal case, typically uses
their experience and knowledge to identify prior
precedents and applicable statutes in the given sit-
uation. This process is time-consuming, and the
problem worsens with the growing number of le-
gal cases in populous countries like India (Malik
et al., 2021). Hence, there is an imminent need to
automate the process to make it more efficient.
Two tasks have been proposed independently in
this regard: Legal Statute Retrieval (LSR) – that
aims to identify/retrieve statutes that are applicable
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in a given query case (Paul et al., 2024), and Prior
Case Retrieval (PCR) – that aims to identify/re-
trieve relevant prior cases/precedents that should
be cited by the given query case (Joshi et al., 2023).
Traditionally, the two tasks have been modeled sep-
arately leading to creation of different corpora and
models for each of them. However, both tasks are
inherently connected in real legal practice. In In-
dia, as well as in many other countries, case law
is treated as a primary source of law supplement-
ing statutes, regulations, and constitutional provi-
sions (Manupatra, 2025). For example, a legal case
would typically cite another prior legal case if they
share similar factual situation, and consequently
both would be citing similar statutes. For computa-
tional models to exploit such connections, a corpus
which combines both the tasks is required. We
address this gap by making the following contribu-
tions:
• In this paper, we propose IL-PCSR (Indian Legal

Corpus for Prior Case and Statute Retrieval), a
large corpus of query cases along with a candi-
date pool of prior cases and statutes in English
for the Indian legal domain. To the best of our
knowledge, we are first to develop such a corpus
having both prior cases and statutes for the same
set of queries.

• We perform extensive experiments with a vari-
ety of models for each task, including lexical
models (e.g., BM-25) and semantic models (e.g.,
transformer-based models and GNNs). Further,
we experiment with an ensemble of semantic and
lexical models, which improves performance in
both tasks.

• To test our intuition about inherent dependencies
between the two tasks, we develop two meth-
ods: (i) joint prediction model for both tasks via
multi-task learning model based on GNNs; (ii) a
unique pipeline based approach comprising of
an ensemble model that acts as a retriever, and
an LLM as a re-ranker that performs tasks in a
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sequential order. The pipeline-based approach
(in either order LSR → PCR or PCR → LSR)
gives better performance than lexical/semantic
models on each task separately as well as the
joint multi-task model.

• In-depth analyses on the corpus and experiments
brings out some interesting observations, for ex-
ample, lexical methods perform well in one task
(PCR) while semantic methods perform well in
the other (LSR). This may be due to differences
in candidate types. Statutes are short, techni-
cal, and abstract, while precedents are longer
and linguistically closer to the query, potentially
explaining the better performance of the lexical-
semantic ensemble model. We release IL-PCSR
and developed models under open-source license
via Hugging Face 1 and GitHub 2.

2 Related Work

LSR and PCR are fundamental tasks in legal docu-
ment processing and several research works have
been done in this area, for example, techniques
based on n-grams (Salton and Buckley, 1988; Zeng
et al., 2007), doc embeddings (Le and Mikolov,
2014), transformers (Vold and Conrad, 2021) and
others (Salton et al., 1975; Robertson et al., 2009;
Liu et al., 2023; Hofmann et al., 2013; Wang et al.,
2018; Ma et al., 2022). Various works have been
done for identifying legal statutes (Wang et al.,
2018, 2019; Chalkidis et al., 2019; Zhong et al.,
2018; Wu et al., 2023; Paul et al., 2024). Sim-
ilarly, various works have focused on prior case
retrieval (Rabelo et al., 2022b; Joshi et al., 2023;
Tang et al., 2024b,c; Qin et al., 2024; Bhattacharya
et al., 2020; Ma et al., 2021a, 2024). More details
regarding related work are provided in App. A.
To our knowledge, the two tasks have only been
addressed separately. We present the first parallel
corpus enabling models to leverage their interde-
pendence.

3 IL-PCSR Corpus and Tasks

Our corpus consists of three components:
(i) Statute Candidate Pool: 936 Statutes – Ar-
ticles/Sections of law from 92 Central (Federal)
Acts of Government of India; (ii) Precedent Can-
didate Pool: 3,183 Prior Cases from the Supreme
Court of India (SCI) and state-level High Courts of

1https://huggingface.co/datasets/
Exploration-Lab/IL-PCSR

2https://github.com/Exploration-Lab/IL-PCSR

Qry Stat Prec

#Docs 6271 936 3183
Avg. #words 3383 650 7485
Avg. citations per query - 2.69 3.87
Avg. no. of times being cited - 25.97 5.3
#Candidates with zero frequency - 19 93
#Held-out candidates - 20 88

Table 1: Salient statistics of IL-PCSR

India (HCI); (iii) Query Set: 6,271 Case Judgment
documents from SCI and HCI.

Dataset Construction: We compiled 20K pub-
licly available English case judgments from In-
dianKanoon (www.indiankanoon.org), a popular
legal search engine in India, via its API. All docu-
ments are in English (the official language) and
publicly accessible. The corpus comprises fre-
quently cited Supreme Court and High Court deci-
sions from 1950–2019, providing broad temporal
and jurisdictional coverage (see App. B for full
construction pipeline).

Final dataset (IL-PCSR): We obtain a pool of 936
statutes, precedent pool of 3,183 cases, and a query
set of 6,271 queries. The query set is randomly
divided into train/validation/test splits in the ratio
of 8:1:1. The judgments cover 13 broad legal areas,
such as, Labour & Employment, Income Tax, Motor
Vehicle accidents, and so on (full distribution in
Table 5, App. B). Our dataset includes candidates
never cited by any query, as well as others cited
only in the test set but not in the train set (held-out
candidates) to reflect real-world settings (statistics
in Table 1, more details in App. B).

Anonymization and Masking of Citations: We
masked statute and precedent citations in query
documents to prevent models from associating
the queries with the statute and case titles.
We also anonymized person names via InLegal-
NER (Kalamkar et al., 2022a) to avoid ethnic/reli-
gious bias (details in App. B). Identified spans were
replaced with placeholders ([SECTION], [ACT],
[PRECEDENT], [ENTITY]). Manual checks on
10 random documents confirmed that over 98% of
citations were effectively masked.

Comparison with other Corpora: To the best of
our knowledge, IL-PCSR is the first dataset en-
abling parallel identification of both relevant
statutes and precedents for the same query. Ta-
ble 2 compares it with prior datasets. Existing LSR
datasets, especially in English, typically cover lim-
ited statute sets, e.g., ECHR2021 (Chalkidis et al.,
2021) includes European Court of Human Rights
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Dataset Jurisdiction Query Type #Queries #Statutes Avg. Stat
citations

#Precedents Avg. Prec
citations

ECHR2021 EU Case facts 11478 66 1.78 - -
FLA-CJO China Case facts 60k 321 3.81 - -
CAIL’18 China Case facts 2.6M 183 1.09 - -
CAIL-Long China Case facts 229K 574 5.77 - -
ILSI India Case facts 66K 100 3.78 - -
COLIEE’24 Task 3 Japan Law Questions 554 746 1.27 - -

COLIEE’24 Task 1 Canada Case Judgment 1678 - - 5529 4.10
LeCard China Case Judgment 107 - - 100 10.33
CAIL’19-SCM China Case Judgment 8964 - - 2 per query 1.0
IL-PCR India Case Judgment 1182 - - 7070 6.8

IL-PCSR (ours) India Case Judgment 6271 936 2.69 3183 3.87

Table 2: Comparison of IL-PCSR with other LSR and PCR datasets.

cases with only 66 articles. Chinese datasets rely on
China Judgment Online and usually involve more
articles, e.g., FLA-CJO (Luo et al., 2017) (321
criminal articles), CAIL2018 (Xiao et al., 2018)
(183 criminal articles), and CAIL-Long (Xiao et al.,
2021) (244 criminal, 330 civil articles). In India,
Paul et al. (2022) use 100 IPC articles for the ILSI
dataset. All these works adopt a multi-label clas-
sification setup, predicting relevance of each ar-
ticle for a query case. COLIEE (Li et al., 2024)
covers statute retrieval (short legal questions, not
real cases) for Japanese law and PCR for Canadian
Federal law. In common law jurisdictions (India,
Canada, UK), cases cited from the query case are
considered relevant. Recent datasets include ef-
forts with Indian Supreme Court cases (Joshi et al.,
2023), while for Chinese law, LeCard (Ma et al.,
2021b) and CAIL2019-SCM (Xiao et al., 2019)
have been introduced.
Tasks Formulation: Identifying the statutes and
precedents cited in a query case can both be mod-
eled as retrieval problems. Given a query q and
a set of candidates {c1, c2, . . . , cl}, where ci ∈ S
(statute pool = {s1, s2, . . . , sm}) for LSR and ci ∈
P (precedent pool = {p1, p2, . . . , pn}) for PCR. A
retrieval model M(, ., ) returns a ranked list of all
the candidates Ĉ(q) = [cq1 , cq2 , . . . , cql ] based on
their relevance to q. Here, we have M(q, cq1) ≥
M(q, cq2) ≥ . . . ≥ M(q, cql), where M(q, c) is
the score for a query-candidate pair. It is impor-
tant to note that in the legal domain, the concept of
relevance is defined more restrictively than seman-
tic similarity in general NLP. Relevance generally
depends on factual alignment (e.g., a kidnapping
case may invoke different statutes depending on
whether hurt was actually caused, or if it was in-
tended). For precedents, relevance also concerns
legal outcomes, as opposing parties often cite fac-
tually similar cases with opposite judgments.

Prior works have typically used full case judgments
as queries (Li et al., 2023b; Joshi et al., 2023),
though some restrict to fact sections (Li et al.,
2023a). We adopt full judgments, since facts are
not explicitly demarcated in Indian judgments, and
automated extraction is error-prone due to inter-
leaving of facts with other content (Bhattacharya
et al., 2023; Malik et al., 2022; Kalamkar et al.,
2022b). The gold standard precedent and statute
sets for a query q are taken as those actually cited in
q (this information is then masked from the query).
While this is standard practice (Paul et al., 2022;
Joshi et al., 2023; Li et al., 2024), some potentially
relevant candidates might not have been cited by
the legal professionals involved in that particular
case, and this brings us back to the complexity of
defining legal relevance as discussed earlier. To ex-
amine this further, we conduct an annotation study
with the help of legal experts (details in §6).

4 Methods for Legal Retrieval

As a baseline, we experimented with an array of
methods: lexical and semantic in supervised and
unsupervised settings and summary based methods.

Lexical Methods: We experimented with meth-
ods based on BM25, a strong baseline for legal
retrieval (Joshi et al., 2023)).
1) BM25: It is an unsupervised method relying on
n-gram lexical matches between the query and can-
didates to generate scores (Robertson et al., 2009).
2) SpaCy Events + BM25: Prior works have
demonstrated that both the queries and precedent
candidates tend to be long and noisy, with only
small portions of text leading to a strong match.
Joshi et al. (2023) used SpaCy (www.spacy.io) to
extract events (subject, action, object triplets) and
filtered out only the sentences containing matching
events from both queries and precedents, leading
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Figure 1: Part of the graph of a case document based on
LLM-generated events (input for Event-GNN)

to a better match.
3) LLM Events + BM25: We observed that
SpaCy tends to over-generate events and is
noisy. To address this, we employed an
LLM (gemma-7b-it: https://huggingface.
co/google/gemma-7b-it) to extract important
events (prompt in Table 6, App. C.2). We passed
definitions from the SALI ontology (Standards Ad-
vancement for the Legal Industry: https://www.
sali.org/) to guide the LLM in event genera-
tion. We found LLM events were fewer than SpaCy
events but had larger triplet elements (subjects, ac-
tions, objects as full phrases/clauses vs. one–two
words). These events were then used to filter sen-
tences for the BM25 baseline.

Semantic Methods: Semantic methods use deep-
learning models trained on the train set. For fine-
tuning, we explored two settings: (i) training sep-
arate models for each task, and (ii) a multi-task
setup performing LSR and PCR simultaneously.
1) SAILER: Li et al. (2023a) pre-trained a BERT-
based model on legal documents to generate case
reasoning and judgment from facts, then fine-tuned
it for case retrieval on COLIEE 2021 (Rabelo et al.,
2022a). We used this model for inference, with and
without additional fine-tuning on our train set.
2) Event-GNN: Inspired by Li (2023), we
used GPT-4 (gpt-4-turbo: https://platform.
openai.com/docs/models/gpt-4-turbo) to cre-
ate event triplets for ∼400 training documents,
then fine-tuned Gemma (gemma-7b-it) to gener-
ate triplets for the full corpus. Each triplet forms a
graph where subjects/objects are nodes and actions
label the edges (see Fig. 1). To reduce sparsity,

a global node (connected to every subject/object
node) represents each document and is linked to
the global node of the cases it cites. Node (en-
tity) and edge (relation) texts are encoded with
SentenceBERT (Reimers, 2019), and a 2-layer
Graph Attention Network (Tang et al., 2024a) com-
putes document-level similarity via dot product
over global nodes.
3) Para-GNN: Court case documents can be di-
vided into segments such as Facts, Arguments, and
Rulings (Malik et al., 2022), each performing a
different rhetorical role from a legal perspective.
IndianKanoon provides these labels per paragraph,
which we use directly. For each query/candidate,
we build a graph with a representative global node
(whole document) and paragraph nodes linked to it
via their rhetorical role. Texts are embedded with
SentenceBERT, and a two-layer Graph Attention
Network is applied, with dot product computed
over global nodes. For statutes, each subsection is
treated as a paragraph with role set to ‘None’.

Summary-based methods: Using full case docu-
ments as both queries and precedents causes com-
putational overhead and poses challenges for se-
mantic models (Tang et al., 2024c,a; Qin et al.,
2024; Yue et al., 2024). Full texts contain substan-
tial noise for statute and precedent retrieval, and
different text segments provide context relevant to
LSR vs. PCR. To address this, we used summariza-
tion as a pre-processing step, aimed at reducing
noise and highlighting task-specific context. We
used GPT-4o-mini (https://platform.openai.
com/docs/models/gpt-4o-mini) (prompts in
App. C.2) to generate summaries tailored to each
retrieval need. Statute texts were not summarized,
as they are typically short and structured. For prece-
dents, the LLM was asked to focus on legal rulings
and findings, which are central for citation. On
the query side, validation experiments showed that
a single summary could not capture context for
both LSR and PCR, since they rely on different
parts of the text. Hence, for each query, we cre-
ated two summaries: LSR-focused (tied to facts
and legal issues of the query) and PCR-focused
(tied to legal issues, lawyer arguments, and lower-
court findings of the query). For joint fine-tuning,
we concatenated the LSR and PCR-focused sum-
maries to create a larger summary. These prompt
design decisions were formulated in close consul-
tation with legal experts.

Paragraph-level methods: We apply unsuper-
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Figure 2: Ensemble of lexical and semantic models.
α can be tuned either via grid-search or dynamically
learned via FFN.

vised methods at the paragraph level for each
query–candidate pair, and then aggregate scores
into a document-level score. For a query q with
nq paragraphs and candidate c with mc para-
graphs, we compute an nq ×mc score matrix M .
We use two aggregation measures: (i) Max-All:
max(M), and (ii) Max-Sum:

∑nq

i=1max(Mi). We
obtain Paragraph-level scores via BM25 2-gram
and SAILER; higher-order n-grams were not at-
tempted due to computational cost. Fine-tuning
was also infeasible, as we do not have the ground-
truth information at the paragraph level.
Ensemble of Lexical and Semantic Methods:
Combining lexical and semantic features can im-
prove retrieval tasks (Bruch et al., 2023; Sumathy
et al., 2016; Mandikal and Mooney, 2024). In
the simplest form, we combine prediction scores
for a query–candidate pair (q, c) from lexical and
semantic methods, where c ∈ S for LSR, or c ∈ P
for PCR (see Fig. 2). Formally,

E(q, c) = α× Z-Norm(Σ(q, c))

+ (1− α)× Z-Norm(Λ(q, c))

where E is the ensemble, Σ the semantic method,
Λ the lexical method, and α a hyperparameter. As
model scores vary in range, we apply Z-score nor-
malization across all candidates per query. We use
BM25 5-gram as the lexical method, and Event-
GNN or Para-GNN as the semantic method. We
use the following two strategies to decide the opti-
mal value of α:
(1) Grid Search: We vary the values of α =
{0, 0.1, . . . , 0.9, 1} for each task to determine the
optimal value over the validation set.
(2) Dynamic α: In this approach, we learn the op-
timal α per query using a feed-forward network
(FFN) with sigmoid activation over the query em-

bedding from the semantic method. In joint tuning,
separate FFNs are used for LSR and PCR. Beyond
independent and multi-task setups, we also tested
a sequential transfer-learning strategy: e.g., initial-
izing the precedent model with the independently
tuned statute model, and vice versa. This yielded
task-specific models pre-trained on the other task,
leveraging cross-task transfer. For further analyses
of optimal α values, see App. D.1.
Using LLMs for re-ranking: Recently, LLMs
have shown strong results for retrieval. However,
due to the large candidate space and the long texts
of queries (and precedents in PCR), they are im-
practical as first-stage retrievers. Thus, we employ
LLMs as second-stage re-rankers. A first-stage
retriever M returns the top-k list for query q:

Ĉk(q) = [cq1 , cq2 , . . . , cqk ].

The LLM G assigns a binary relevance score
G(q, cqi) ∈ {0, 1} for each candidate. For brevity,
let Ĉ := Ĉk(q). We then partition Ĉ as

Ĉ+ = {cqi | G(q, cqi) = 1},
Ĉ− = {cqi | G(q, cqi) = 0},

while preserving the original ordering from Ĉ
within both subsets. By construction, |Ĉ+| +
|Ĉ−| = k. The final re-ranked list is

C̃k(q) = [Ĉ+, Ĉ−].

This ensures that all LLM-predicted relevant candi-
dates precede the non-relevant ones. We adopt
a two-stage re-ranking approach for both tasks.
Fig. 3 shows the entire pipeline for this.
First-stage prompting: We first perform an initial
re-ranking stage where LSR and PCR are handled
independently. For statutes, given a query q, we
pass the full query text along with the names of
all top-k statutes Ŝ in a single prompt and ask the
LLM to return the relevant subset:

Ŝ+
1 = LLM(Text(q), Ŝ).

This assumes the LLM has prior knowledge of all
statutes s ∈ S, and therefore already knows their
texts. For precedents, since the LLM may not know
the precedent texts, we pass the query and each
candidate precedent p ∈ P̂ (top-k precedents) in a
pairwise fashion, asking if the pair is relevant:

G1(q, p) = LLM(Text(q),Text(p)),

P̂+
1 = {p | p ∈ P̂ , G1(q, p) = 1}.

Second-stage prompting: From the first-stage
prompting, we obtain the initial predictions Ŝ+

1
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Figure 3: Proposed two-stage LLM prompting approach

and P̂+
1 for LSR and PCR respectively. In the sec-

ond stage, we leverage the relationship between
LSR and PCR sequentially, using the output of one
task to improve the other. For LSR, we take the
positive precedents from first-stage PCR re-ranking
(P̂+

1 ) and collect all ground-truth statutes cited by
these precedents:

S(P̂+
1 ) =

⋃

p∈P̂+
1

S(p),

where S(·) denotes the mapping from any query
or precedent to its ground-truth statutes. This
ground-truth is available at test time since prece-
dents are not masked. These additional statutes are
then passed to the prompt, together with the top-k
statute list Ŝ, to obtain the second-stage predictions:

Ŝ+
2 = LLM(Text(q), Ŝ ∪ S(P̂+

1 )).

Thus, we expand the re-ranking range of the LLM
in an informed manner, exploiting the connection
between precedents and their cited statutes.
For second-stage precedent re-ranking, we use the
positive statutes Ŝ+

1 for query q (from first-stage
LSR) together with the ground-truth statutes S(p)
for each precedent p. These statute names are
passed to the prompt along with the texts of q and
p, yielding the second-stage PCR mapping:

G2(q, p) = LLM
(
Text(q), Ŝ+

1 ,

Text(p), S(p)
)
, ∀p ∈ P̂ ,

P̂+
2 = {p | p ∈ P̂ ,G2(q, p) = 1}.

The intuition is that by conditioning on statute in-
formation, the LLM can better assess the relevance
of precedents to the query in PCR. All prompts are
shown in brief in Fig. 3 (full prompts in App. C.2).

5 Experiments, Results and Analysis

The results of all experiments are presented in Ta-
ble 3 in terms of standard evaluation metrics macro-

F1@k, MAP and MRR (details in App. C.3, hyper-
parameters in App. C).

Performance over LSR: Lexical methods per-
form poorly on statute retrieval, likely due to the
abstract and technical phrasing of statutes. Even
the best lexical variant (BM25, para-wise Max-
All) achieves only 18.59% F1. In contrast, fine-
tuned semantic models show large gains, with Para-
GNN (summaries) reaching 32.85% F1—a relative
improvement of nearly 77%. This highlights the
need for deeper contextual modeling. Summaries
also help other semantic models such as SAILER,
though the gains are smaller.

Performance over PCR: In contrast to LSR, lex-
ical methods clearly dominate PCR. The best lex-
ical model (BM25, 5-gram) achieves 33.29% F1,
whereas the strongest semantic model (Para-GNN,
full doc, fine-tuned) reaches only 24.67% F1, a
relative drop of about 26%. Moreover, summaries
further reduce performance, suggesting that essen-
tial lexical cues are lost during compression. These
results indicate that PCR depends heavily on exact
lexical matches within short contextual windows,
and the long, detailed nature of queries and prece-
dents makes semantic fine-tuning less effective.

Results of Ensemble Models: Combining lexical
and semantic features consistently improves perfor-
mance for both LSR and PCR compared to individ-
ual methods. This trend holds across Event-GNN,
Para-GNN (full doc), and Para-GNN (summaries).
While the dynamic α method slightly underper-
forms grid search for Event-GNN + BM25 and
Para-GNN (full doc) + BM25, it yields clear gains
for Para-GNN (summaries) + BM25. F1 improves
from 36.17% to 38.09% for LSR, and from 36.35%
to 37.46% for PCR. These findings show that en-
semble models effectively combine the complemen-
tary strengths of lexical and semantic approaches.
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Method Setting LSR PCR
F1 MAP MRR F1 MAP MRR

Lexical Methods

Vanilla BM25 (full doc)

2-gram 13.15 14.54 32.36 24.89 32.41 47.21
4-gram 17.06 19.13 40.88 30.54 40.24 54.65
3-gram 17.80 19.39 41.74 32.21 43.44 57.52
5-gram 16.98 17.88 40.08 33.29* 43.98* 58.55*

Vanilla BM25 (para-wise) 2-gram, Max-All 18.59 21.82 44.32 27.87 38.15 52.32
2-gram, Max-Sum 14.66 16.67 35.84 26.23 35.26 49.41

Spacy events + BM25 (full
doc)

2-gram 12.65 14.48 32.08 24.91 33.02 48.22
3-gram 10.67 11.93 28.12 28.31 37.22 52.70
4-gram 10.18 10.47 26.40 28.28 35.30 50.98
5-gram 9.78 9.52 25.28 26.99 33.71 50.22

LLM events + BM25 (full
doc)

2-gram 13.08 14.47 32.49 24.55 31.78 46.10
3-gram 16.84 18.76 40.60 29.47 38.59 52.97
4-gram 17.45 18.92 41.34 32.61 42.99 57.39
5-gram 16.41 17.35 39.33 33.29 43.43 58.14

Semantic Methods

SAILER (full doc)
inference 7.15 9.31 19.40 9.94 13.90 20.49
fine-tune separately 21.69 28.62 45.73 12.64 17.93 25.85
fine-tune multi-task 20.45 25.36 41.44 11.88 17.52 24.85

SAILER (para-wise) inference, Max-All 13.11 14.70 31.49 19.37 25.71 38.84
inference, Max-Sum 5.42 6.57 16.06 11.16 16.42 24.67

SAILER (summaries) inference 5.48 7.66 16.86 10.21 14.80 22.82
fine-tune separately 23.49 31.42 50.25 15.00 20.43 27.72

Event-GNN (full doc) fine-tune separately 28.67 38.69 58.39 12.08 15.91 22.18
fine-tune multi-task 18.43 24.11 43.23 11.74 15.59 22.56

Para-GNN (full doc) fine-tune separately 20.72 28.54 46.06 24.54 33.07 45.01
fine-tune multi-task 23.74 29.79 49.84 24.67 32.88 44.17

Para-GNN (summaries) fine-tune separately 32.85* 44.03* 62.51 22.60 29.49 39.22
fine-tune multi-task 31.81 43.17 64.08* 22.69 29.25 39.19

Ensemble Methods

Event-GNN + BM25
Grid Search 33.87 45.17 67.26 34.45 43.32 58.76
Dyn. α, fine-tune separately 30.29 40.97 61.51 35.60 45.86 60.89
Dyn. α, fine-tune multi-task 25.62 31.97 57.01 35.63 45.18 60.51

Para-GNN (full doc) + BM25
Grid Search 28.10 36.14 59.57 36.93 48.62 62.83
Dyn. α, fine-tune separately 27.05 35.20 59.67 36.91 48.53 62.61
Dyn. α, fine-tune multi-task 27.01 33.57 59.00 36.57 48.18 62.14

Para-GNN (summaries) +
BM25

Grid Search 36.17 48.64 70.49 36.35 48.27 61.76
Dyn. α, fine-tune separately 38.09 50.31 70.54 37.46 48.28 61.98
Dyn. α, fine-tune multi-task 35.91 46.95 68.57 37.82 49.54 63.61
Dyn. α, fine-tune transfer
learning

39.44 52.13 73.77 38.77 50.21 63.81

LLM Re-ranking

GPT-4.1 First-stage prompt 45.29 59.73 81.02 41.54 52.80 67.16
Second-stage prompt 46.11 61.06 81.55 43.31 54.43 68.88

Table 3: Results (%) of Statute retrieval and Precedent retrieval. Metrics are macro-F1@k, MAP and MRR. Best
value for each metric in boldface. Best values before re-ranking underlined, and best values for individual methods
(not ensemble methods) marked with asterisk(*). We also calculate statistical significance of results (App. D.2).

Joint multi-task fine-tuning does not outperform
separate fine-tuning. PCR gains are marginal,
while LSR performance drops (38.09% → 35.91%
F1). This is possibly due to task interference,
a well-documented issue in multi-task learning
where conflicting gradient signals across even re-

lated tasks degrade performance (Mueller et al.,
2022; Ni et al., 2023). In our case, LSR needs
robust semantic features, whereas PCR depends
more on lexical overlaps. These divergent retrieval
signals create interference under joint optimization,
making it difficult for a shared model to specialize
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Figure 4: Performance in terms of F1(%) compared to frequency of candidates. On the X-axis, the candidates are
sorted from left to right according to frequency and divided into groups (most frequent group-1, most rare group-4).

in both. In contrast, transfer learning (LSR → PCR
or PCR → LSR) decouples representation learning
from task specialization. Pre-training on one task
provides a useful legal inductive bias, while subse-
quent fine-tuning adapts to the target task without
interference. This gives the best ensemble results,
with 39.44% F1 (LSR) and 38.77% F1 (PCR), rep-
resenting +20% and +16% improvements over the
strongest standalone models (Para-GNN with sum-
maries for LSR, BM25 5-gram for PCR). Thus,
LSR and PCR tasks despite being interdependent,
suffer from task interference during joint training;
using sequential transfer avoids this, improving
over both independent and joint training.

Re-ranking with LLMs: We build on the best
ensemble model by re-ranking the top-20 statutes
and top-10 precedents using gpt-4.1 (https://
platform.openai.com/docs/models/gpt-4.1).
In the first stage, LSR and PCR are re-ranked
independently. The LLM delivers substantial
improvements over the ensemble baseline, raising
F1 from 39.44% to 45.29% for LSR and from
38.77% to 41.54% for PCR highlighting stronger
legal language understanding. In the second stage,
outputs from one task are provided as additional
inputs to the other (i.e., LSR1 → PCR2 and
PCR1 → LSR2). This cross-task conditioning
further boosts performance, yielding 46.11% F1
for LSR (+1.8% over stage 1) and 43.31% F1
for PCR (+4.3% over stage 1). These additional
gains directly reflect the interdependence between
statutes and precedents, as improvements in one
task propagate to the other. Thus, LLM re-ranking
achieves state-of-the-art results for both tasks,
reaffirming the intuition that improvements in one
task enhance the other.
Effect of candidate frequency on LLM re-
ranking: To further analyze re-ranking behavior,
we examine performance with respect to candi-

date frequency. All candidates are sorted in de-
scending order of frequency and divided into four
groups (Group-1 most frequent, Group-4 rarest),
and macro-F1 is computed for each (Fig. 4).
For LSR (Fig. 4a), first-stage prompting substan-
tially improves over the ensemble across Groups 1–
3, demonstrating stronger performance on frequent
and moderately frequent statutes. Stage-2 prompt-
ing further expands the re-ranking range by in-
corporating statutes cited by re-ranked precedents,
which is particularly beneficial for Group-2 and
Group-4, showing that cross-task signals help cover
rarer statutes more effectively.
For PCR (Fig. 4b), first-stage prompting again pro-
vides consistent improvements across all groups.
Stage-2 prompting gives the largest additional
gains for Group-2, while maintaining stable perfor-
mance for rarer precedents (Groups 3 and 4). This
indicates that cross-task conditioning reinforces re-
trieval for moderately frequent precedents, while
preserving robustness on the long tail.
LLM prompting is effective across frequency
ranges, with Stage-2 re-ranking particularly valu-
able for mitigating weaknesses in mid- and low-
frequency candidates, thereby reinforcing the cross-
task dependency between LSR and PCR (more de-
tails in App. C.2).

Key Findings: Our experiments yield two primary
findings. First, ensembles of lexical and seman-
tic models consistently outperform individual ap-
proaches, with Para-GNN (summaries) + BM25
under dynamic α fine-tuning giving the strongest
first-stage retrieval results. Transfer learning be-
tween LSR and PCR also proves effective, although
multi-task training does not provide comparable
gains. Second, LLM-based re-ranking achieves the
best overall performance, with Stage-2 prompting—
where outputs of one task condition the other—
providing additional gains and directly exploit-
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Method Setting LSR PCR
Cited Cited + Annot. Cited Cited + Annot.

Ensemble Methods

Para-GNN (summaries) + BM25
Dyn. α, ft. separately 43.27 51.78 42.19 47.02
Dyn. α, ft. multi-task 38.90 46.90 42.55 45.21
Dyn. α, ft. transfer learning 43.22 51.22 42.41 45.11

LLM Re-ranking

GPT-4.1 First-stage prompt 47.06 56.72 45.33 46.88
GPT-4.1 Second-stage prompt 47.77 57.72 46.93 47.63

Table 4: Results (%) of Statute retrieval and Precedent retrieval in terms of macro-F1@k, considering only Cited
candidates vs. union of Cited and Annotated candidates as the gold-standard. Best value for each metric in boldface
and best values before re-ranking are underlined.

ing the LSR–PCR dependency. Taken together,
these results establish that LSR and PCR, though
traditionally studied in isolation, are inherently
connected tasks that can be leveraged jointly for
stronger legal retrieval. For completeness, App. F
also reports experiments on the COLIEE dataset.

6 Human Annotation Study

As discussed in § 3, using only cited candidates as
gold-standard can lead to inconsistencies, since rel-
evance judgments may vary across lawyers based
on their individual perspectives. To ground our
evaluation in practice, we conducted an annotation
study with six senior L.L.M. students from the WB
National University of Juridical Sciences (a reputed
Indian Law school), under the supervision of a se-
nior faculty member (more details regarding the
annotators in App. E). The annotators were asked
to manually perform both LSR and PCR tasks.

Annotation Setup: We randomly selected 60
queries (about 10% of the test set). Each query
was assigned to three annotators, with each anno-
tator handling 30 queries. To support retrieval, we
built a simple search tool over the candidate pools
for statutes and precedents, returning ranked lists of
candidates containing any keyword from the query.
Annotators were asked to try multiple keywords for
each query, and mark all candidates they judged rel-
evant. Thus, each query received three independent
sets of annotations for both tasks.

Salient Statistics: On average, the cited set con-
tained 4.57 statutes and 2.72 precedents per query.
In contrast, annotators identified 5.0 statutes and
5.87 precedents. This indicates that statute rel-
evance is relatively stable, with only a small in-
crease over citations, whereas precedent relevance
is highly subjective, with many more cases judged
relevant than those actually cited.

Results: We compared the performance of selected
models under two gold standards: (i) citations
only and (ii) the union of citations and annota-
tions (Table 4). As expected, scores increase across
all models under the broader gold standard, since
many top-ranked candidates judged relevant by
models were also marked relevant by annotators
even if not cited. Importantly, the relative perfor-
mance trends remain consistent across both setups.
For statutes, the stability of annotations ensures
that Stage-2 LLM re-ranking consistently outper-
forms all other methods. For precedents, the gains
over ensembles are smaller under the annotated
gold, likely because lexical-heavy ensembles ben-
efit more directly from the broader definition of
relevance. Nevertheless, Stage-2 prompting edges
ahead, showing that LLMs not only outperform en-
sembles but also preserve their advantage under
more realistic evaluation. Thus, while citations
capture only a part of the relevant set, they serve as
a sufficiently reliable proxy for system evaluation.

7 Conclusion and Future Work

We introduce IL-PCSR, the first corpus that enables
parallel retrieval of legal statutes and precedents.
Our experiments yield three central insights. First,
ensembles of lexical and semantic methods (Para-
GNN (summaries) + BM25 with dynamic α) are
the strongest first-stage retrievers. Second, multi-
task training degrades performance, while trans-
fer learning between LSR and PCR reliably im-
proves results. Third, LLM-based re-ranking, with
our two-stage cross-conditioning prompt, produces
the best overall performance and demonstrates that
LSR and PCR can enhance each other. In future, we
plan to explore re-ranking with diverse LLM fami-
lies and prompt designs. We also plan to explore
finer-grained supervision (e.g., para or rhetorical-
role level) to better capture legal relevance.
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Limitations

In this paper, we conduct a thorough research into
the relationship between legal statutes and prece-
dents. Specifically, we have made the first attempt
(to the best of our knowledge) to solve the tasks
of LSR and PCR simultaneously from the same
query. All the prior works have either taken iso-
lated approaches to solve the two tasks, or consid-
ered statute semantics while understanding PCR,
but no work has tried to effectively solve both tasks
by utilizing the inherent relationship between them.
Our experiments have revealed that this could be a
difficult exercise, since different types of features
(lexical vs. semantic) are important for the two
different tasks. The multi-task results are counter-
intuitive, since despite the inherent relationship be-
tween statutes and precedents cited from the same
query, independently trained models fare better in
most settings. However, we do find that a sequen-
tial/pipeline approach to solving the tasks can be
beneficial for both. We observe this effect during
transfer learning at the ensemble (retriever) phase,
as well as two-stage prompting for the LLM (re-
ranker) phase. We have observed these effects only
with a specific set of models, i.e., Para-GNN (sum-
maries) + BM25 as the ensemble retriever, and
GPT-4.1 as the LLM re-ranker. More experiments
with other models and investigations are needed to
study the effects of such techniques across models
and approaches.
Certain design decisions of the dataset also merit
discussion. Our candidate pools consist of many
prominent statutes and judgments, i.e., candidates
that are frequently cited. This is a standard practice,
according to prior works (Paul et al., 2022; Joshi
et al., 2023). This strategy ensures that we are able
to cover a large number of queries, which is essen-
tial for both training and development. Although
this leads to an inherent bias towards the frequent
candidates, we ensure some diversity by consider-
ing a lot of candidates that have < 5 cited queries,
and even some candidates that have no citations
(held-out candidates).
Additionally, as discussed in §3, the concept of rel-
evance in the legal domain can be quite narrow, as
in, all prior cases similar to the query are not nec-
essarily cited. Similarly, only a particular statute
from a family of similar statutes is usually applied
based on the exact circumstances of the case. Uti-
lizing just the cited candidates as the gold-standard
can thus be restrictive, although this has been the

standard practice (Paul et al., 2022; Joshi et al.,
2023; Li et al., 2024). To address this concern, we
conducted annotation exercises with domain ex-
perts (see § 6). We observed that the annotators not
only differed from the cited gold-standard, but also
among themselves, highlighting the subjectivity of
relevance in legal retrieval. However, we observed
that most of the model trends remain similar when
considering just the cited candidates vs. union of ci-
tations and human annotations as the gold-standard,
suggesting that the set of cited candidates, overall,
can serve as an efficient proxy for the set of all
possible relevant candidates.

Ethical Considerations

In this work, we propose a system that allows for
the retrieval of both statutes and precedents given
a query case. Both these tasks are extremely cru-
cial for the legal domain, and legal professionals
regularly require technological assistance to reduce
the search space of candidate statutes/precedents.
These methods are designed to only provide rele-
vant recommendations to assist the legal profession-
als, and are not expected to be integrated directly
into the decision-making process of the judicial sys-
tem. Further, we ensured that all case documents
used in our dataset IL-PCSR are publicly available.
We also took steps to pre-process the documents by
removing entity mentions that can lead to biases in
the models.
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A Related Work

Identifying the legal statutes and relevant prior
cases given a legal fact or situation is one of
the most fundamental tasks in law. Traditionally,
researchers have used statistical and lexical ap-
proaches to solve both tasks independently. The
advent of deep learning NLP approaches has led
to renewed efforts in both tasks using advanced
architectures.

Overview of Prior Works: Traditional ap-
proaches for identifying relevant statutes and
precedents have mostly involved exploiting lexical
features such as n-grams of words (Salton and
Buckley, 1988), hand-crafted features (Zeng et al.,
2007) or embeddings from pre-trained models
like Doc2vec (Le and Mikolov, 2014). Lately,
transformer-based embedding methods have been
used for directly calculating dot product scores
between the query and statute/precedent (Vold
and Conrad, 2021). While most unsupervised ap-
proaches have utilized methods like Vector Space
Model (Salton et al., 1975) and BM25 (Robertson
et al., 2009), supervised approaches for both tasks
can broadly be divided into classification (Liu
et al., 2023; Hofmann et al., 2013) (model predicts
similarity between query and statute/precedent)
and ranking based (Wang et al., 2018; Ma et al.,
2022) (model ranks a list of statutes/precedents
based on relevance to the query) approaches.

Identifying Legal Statutes: Historically, re-
searchers have used multi-label learning
frameworks to identify relevant statutes for
a query (Wang et al., 2018, 2019; Chalkidis et al.,
2019). In many jurisdictions, identifying the
relevant statutes is considered to be a subtask of the
broader task of Legal Judgment Prediction (Zhong
et al., 2018), which could entail predicting the
legal charges and term of punishment as auxiliary
tasks. Some approaches have only considered the
text of the queries in the classification pipeline,
relying on the encoder to generate good quality
representations of the query (Chalkidis et al.,
2019). Others have incorporated the text of the
statutes as well, in generating statute-aware query
representations which are then used for classifica-
tion (Wang et al., 2018, 2019). It should be noted
that most of these approaches have worked in a
setup with limited number of statutes (< 200), and
hence the classification approach suffices. Lately,
LLMs have been used to perform the task of statute
identification (Wu et al., 2023), and these models

can utilize their superior language understanding
capabilities as well as knowledge of legal statutes
to perform relatively better in the task of statute
identification.

Identifying Prior Cases: Unlike statutes, most
prior works on prior case retrieval have modeled
the task in a ranking framework. The major chal-
lenge in this task is the fact that both the queries
and precedents are very long. Additionally, it has
been observed that the query consists of several
legal aspects, and each individual aspect leads to
matching with certain precedents that eventually
get cited (Rabelo et al., 2022b). Mostly, researchers
have tried to reduce the noise in the query text by
using event information (Joshi et al., 2023; Tang
et al., 2024b), or extracting salient portions of the
document (Qin et al., 2024). Rabelo et al. (2022b)
took a granular approach, by dividing both the
queries and precedents into paragraphs/sentences,
scoring each pair of query and precedent sentence,
and then generating aggregate scores. Other ap-
proaches have involved usage of GNNs (Tang et al.,
2024b,c), citation network structures (Bhattacharya
et al., 2020), making use of the statutes cited from
the precedent cases (not the queries) (Qin et al.,
2024), and re-ranking approaches based on some
first stage retriever like BM25 (Ma et al., 2021a).
LLMs have also been lately used to summarize the
queries and precedents (Qin et al., 2024), or per-
form query expansion based on its inherent domain
knowledge (Ma et al., 2024).

B Dataset Construction Details

This section details the construction pipeline for the
IL-PCSR dataset. As noted in § 3, we collected 20k
case judgment documents from indiankanoon.
org, a widely used legal search engine in India.

Pre-processing: The raw documents were nor-
malized through standard text-cleaning operations,
including removal of redundant punctuation and
whitespace, spelling correction, and filtering of
malformed strings. Such artifacts are common
in legal case records, as many judgments on In-
dianKanoon originate from scanned archives pro-
cessed via OCR, which often introduces typograph-
ical noise.

Query and Candidate Pool Construction: We
then derived the query set and candidate pools of
statutes and precedents through the following steps.
Detailed statistics are reported in Table 1. Note
that in our setup, training, validation, and test sets
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all share the same candidate pool.
(i) Filtering by length: We measured document
length in tokens using NLTK (Loper and Bird,
2002) tokenization. Extremely short (<5th per-
centile, ∼400 tokens) and extremely long (>95th
percentile, ∼10k tokens) cases were removed,
yielding a working corpus of ∼18k judgments.
(ii) Intermediate statute pool: From these 18k
cases, we extracted all statutes (sections/articles
from Central Government Acts) cited. To sup-
press spurious candidates, we retained only statutes
cited at least five times, producing an intermedi-
ate pool of ∼1200 statutes. A small number of
low-frequency statutes were also included to pre-
serve the long-tail distribution typical of real-world
scenarios.
(iii) Intermediate precedent pool: Likewise, we
enumerated all cited prior cases in the 18k corpus.
Precedents cited at least three times were retained,
giving an intermediate pool of ∼5k documents. As
with statutes, a subset of infrequent precedents was
deliberately retained for distributional realism.
(iv) Final query set: We then selected cases citing
at least one statute and at least two precedents from
the intermediate pools, resulting in 6,271 queries.
These were partitioned into training, development,
and test splits in an 8:1:1 ratio (5,021 / 627 / 627).
(vi) Final candidate pools: The intermediate
statute and precedent pools were refined to better
reflect frequency distributions in the final query set,
while retaining a subset of rare candidates to act as
held-out items in evaluation. The final statute pool
contains 936 statutes (19 never cited, 20 held-out)
and the final precedent pool contains 3,183 cases
(93 never cited, 88 held-out). Refer to Table 1 for a
snapshot of the salient statistics.

Anonymization and masking: To prevent models
from directly exploiting citation strings, we masked
all portions of query texts where explicit references
occurred (section numbers, Act names, or case ti-
tles). Additionally, to mitigate potential bias, all
personal names were anonymized using the Legal-
NER tool (Kalamkar et al., 2022a), which identifies
statutory references, case titles, and entity men-
tions with high reliability. Identified spans were
replaced with standardized placeholders: [SEC-
TION], [ACT], [PRECEDENT] and [ENTITY].

Distribution of Categories: Based on discussions
with legal experts, all queries, precedents, and
statutes were categorized into 13 broad legal do-
mains (Table 5). The distribution is highly skewed:

categories such as Criminal and Property & Land
Disputes dominate, whereas others like IPR and
Environmental are sparsely represented. This skew
reflects the real-world case distribution observed in
Indian courts.

Category Stats Precs Queries
Labour & Employment 36 219 316
Criminal 316 959 2240
Income Tax 134 363 683
Motor Vehicle Accidents 27 176 413
Family & Marriage 24 59 236
Property & Land Disputes 91 403 950
Contract & Commercial 77 193 400
Constitutional 153 463 283
Intellectual Property Rights 9 29 20
Consumer Protection 10 23 46
Environmental 9 23 10
Company & Corporate 40 16 83
Service Matters 10 249 586

Table 5: Distribution of Statutes, Precedents, and
Queries across various categories

C Details of Implementation &
Experimental Setup

All experiments were conducted on a single Nvidia
RTX A100 80 GB GPU. Unless otherwise noted,
all training runs used mixed precision (fp16) and
fixed random seed (42).
BM25: We implemented BM25 with n-grams
(n = 2, 3, 4, 5). Vocabulary was constructed with
min_df = 1 and max_df = 65%, and BM25 hy-
perparameters were fixed at b = 0.7 and k1 = 1.6.
BM25 was run in two variants: full-document input
and event-filtered input (SpaCy or LLM).
Event generation: We used two pipelines. The
SpaCy-based pipeline used the en-core-web-trf
model following Joshi et al. (2023). The LLM-
based pipeline leveraged the SALI ontology with
18 top-level entity types, prompting the LLM to
extract verbs/phrases as relations between enti-
ties. To control costs, we first used GPT-4-turbo
to annotate ∼400 documents, then fine-tuned
gemma-7b-it on this output. The fine-tuned
Gemma model was subsequently used to process
the entire dataset, providing GPT-level quality at
lower expense.
SAILER: We used the fine-tuned English check-
point CSHaitao/sailer-en-finetune. Para-
graphs were truncated at 512 tokens and encoded
using CLS pooling without normalization. Similar-
ity was computed via dot product.
Ensemble Methods: In the ensemble setup (Fig-
ure 2), lexical and semantic scores are combined us-
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As an Indian lawyer, your job is to understand legal documents. Right now, you’re building a detailed
knowledge graph based on information in a given legal document. It’s crucial that this graph includes all
the fact, evidences, observations from the document, so nothing important is left out. The goal is to make
legal analysis easier by focusing on the key information and skipping the obvious stuff.
Each triplet should be in the form of (h:type, r, o:type), where ’h’ stands for the head entity, ’r’ for the
relationship, and ’o’ for the tail entity. The ’type’ denotes the category of the corresponding entity.
The Entities should be non-generic and can be classified into the following categories:
- Actor / Player: A person who has a role in a legal matter (e.g., Buyer, Provider, Lawyer, Law Firm,
Expert, Employer, Employee, Buyer, Seller, Lessor, Lessee, Debtor, Creditor, Payor, Payee, Landlord,
Tenant).
- Area of Law: The practice area into which a legal matter or legal area of study falls (e.g., Criminal Law,
Real Property Law, Mergers and Acquisitions Law, Personal and Family Law, Tax and Revenue Law).
- Asset Type: Type of resource that is owned or controlled by a person, business, or economic entity
- Communication Modality: Entities’ chosen communication method (e.g., written, email, telephone,
portal), as well as time (e.g., synchronous, asynchronous).
- Currency: A standardization of money that is used, circulated, or exchanged (e.g., banknotes, coins).
- Document / Artifact: A written, drawn, presented, or memorialized representation of thought or
expression, including evidence such as recordings and other artifacts.
- Engagement Terms: Terms to define an engagement for providing legal services.
- Event: A matter’s events, as well as collections of those events (often noted as "phases").
- Forums and Venues: Organization or government entity that administers proceedings.
- Governmental Body: Administrative entities of government or state agency or appointed commission,
as a permanent or semi-permanent governmental organization that oversees or administers specific
governmental functions.
- Industry: An economic branch that produces a related set of raw materials, goods, or services (e.g.,
Agriculture Industry, Pharmaceuticals Industry).
- Legal Authorities: Documents or publications that guide legal rights and obligations (e.g., caselaw,
statutes, regulations, rules) or that can be cited as providing guidance on the law (e.g., secondary legal
authorities).
- Legal Entity: A person, company, organization, or other entity that has legal rights and obligations.
- Location: The name of a position on the Earth, usually in the context of continents, countries, and their
political subdivisions (e.g., regions, states or provinces, cities, towns, villages).
- Matter Narrative: A textual narrative of a matter’s factual and legal details.
- Objectives: Specific aims, goals, arguments, plans, intentions, designs, purposes, schemes, etc. that are
constructed by a party in a legal matter, and the legal or other professional frameworks that support their
execution.
- Service: The legal work performed, usually by a Legal Services Provider, in the course of a legal matter.
- Status: The state or condition of a proceeding, legal element, or legal matter (e.g., open, closed,
canceled, expired).
The Relationships r between these entities must be represented by meaningful verbs/actions and its
properties like cause purpose manner etc .
Remember to conduct entity disambiguation, consolidating different phrases or acronyms that refer to
the same entity. Simplify each entity of the triplet to be no more than three or four words.
Include triplets that are implicitly inferred from the document’s context but not explicitly stated, in order
to ensure the graph is both connected and dense.

Table 6: Prompt used for LLM events
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ing the weighting parameter α. α was either tuned
via grid search in [0, 1], or dynamically estimated
from query embeddings using a feed-forward net-
work with sigmoid activation.
LLM Re-ranking: For LLM re-ranking, we used
GPT-4.1, selecting top-k = 20 statutes and top-
k = 10 precedents from first-stage retrieval for
re-ranking. All LLM prompts were executed with
deterministic decoding (temperature = 0), with-
out explicit max token or stop constraints.

C.1 Fine-tuning Setup
All fine-tuning experiments used a cross-entropy
loss in a contrastive learning setup. Each query
was paired with one positive candidate and BM25
hard negatives. In-batch negatives were also used,
ensuring each positive candidate appeared at least
once during training. Training was performed with
AdamW optimizer (weight_decay = 1e−2), lin-
ear decay schedule with warmup (10% of total
steps), and evaluation at the end of each epoch.
Early stopping was not used; instead, all check-
points were evaluated and the best dev F1 was se-
lected.
Gemma (event generation): Batch size 4, learn-
ing rate 2 × 10−4, 10 epochs, trained with PEFT
using 4-bit quantization via bitsandbytes. LoRA
parameters: r = 8, α = 16. Inference used batch
size 1 and greedy decoding.
SAILER: Batch size 4, one positive and three neg-
atives per query, 20 epochs, peak learning rate
5× 10−6.
GNN-based methods: Both Event-GNN and Para-
GNN used two-layer Graph Attention Networks
with dropout of 0.1, Node and edge embeddings
were initialized with SentenceBERT (Reimers,
2019). Training used batch size 32, one positive
and 999 negatives per query, 100 epochs, peak
learning rate 1× 10−4.

C.2 Prompts for LLMs
We utilized different LLMs at three distinct stages
of experiments. We used a teacher-student LLM
setup (using GPT-4 and Gemma) for generating
events, and GPT-4o-mini for generating summaries.
Here, the LLMs are used as a pre-processor. Apart
from these, we use GPT-4.1 for the direct retrieval
task using a re-ranking framework.
Event generation: We used the SALI ontology
with 18 top-level entity types, prompting the LLM
to extract verbs/phrases as relations between enti-
ties. Some of these entities include ‘actor’, ‘asset

type’, ‘legal authorities’ and so on (full details in
Table 6).

Summary generation: To reduce noise and com-
putational cost, we used GPT-4o-mini for retrieval-
oriented summarization, as discussed in § 4. For
precedents, prompts targeted the legal findings
and rulings that justify their citation (Table 7). For
queries, two separate prompts were used: (i) an
LSR-oriented prompt focusing on facts and legal
issues (Table 8); and (ii) a PCR-oriented prompt
focusing on arguments, reasoning, and lower court
findings (Table 9). This dual setup reflects that
statute and precedent retrieval rely on different con-
textual signals.

LLM Re-ranking: For LLM-based re-ranking
(see § 4), prompts differed by task: For LSR, a
single prompt (Table 13) was used for both stages,
with Stage 2 extending the candidate pool using
statutes cited by Stage 1 precedents. PCR involved
two separate prompts. Stage 1 (Table 14) asked
the LLM to predict whether a masked query cites a
given precedent. Stage 2 (Table 15) added statute
information from both query and precedent, allow-
ing the LLM to exploit cross-task dependencies.

C.3 Evaluation Metrics

We use macro-F1@k scores for evaluation. We
follow the same evaluation scheme as followed by
Joshi et al. (2023), wherein the scores for a particu-
lar method are calculated for all k ∈ {1, 2, . . . , 10}
for the validation set, and the best k is chosen for
evaluation on the test set for that particular method.
Apart from F1, we also report the Mean Aver-
age Precision (MAP) and Mean Reciprocal Rank
(MRR) scores for all models. We also perform sta-
tistical significance testing with the paired T-test
over the best performing results (see Table 12).

C.4 Compute Costs

Table 10 summarizes the compute requirements
of all experiments. For free models, we report GPU
memory (GB) and wall-clock time; for API calls,
costs are reported in USD. Training costs are given
per epoch, while inference is total runtime. This
breakdown highlights the trade-offs across lexical
baselines (minimal compute), GNN-based methods
(moderate GPU use), and LLM-based pipelines
(higher API cost but superior performance).
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Summarize the key points from a provided case document that contributed to the final judgment. These
summaries will later be used to identify the reasons why this case might be cited as a precedent. Please
process the given legal precedent and focus on the following instructions:
Objective: Identify and extract the key legal findings, principles, or rules established in this precedent
that could serve as the basis for its citation in other judgments.
Structure: Each key points should be phrased in a concise and neutral manner.Avoid including case-
specific details (e.g., names, dates, or specific statutes cited). Ensure the summaries comprehensively
capture the reasons, enabling effective matching with those from the queries.
Focus Areas: Prioritize the sections where legal principles are established, clarified, or interpreted,
focusing on the parts likely to be cited as precedents.

Table 7: Prompt used for precedent summarization

Extract legal incidents from a given judgment to understand why specific sections or articles of law were
cited. These extracted incidents will later be matched with relevant sections and articles.
Please process the given legal judgment and focus on the following instructions:
Objective: Identify and extract all legal incidents referenced in the judgment, focusing on the key facts
and legal issues of the case.
Structure: Phrase each incident concisely and neutrally. Exclude case-specific details (e.g., names, dates,
case numbers). The extracted incidents should be rich in legal reasoning and sufficiently descriptive to
enable accurate section/article matching.
Focus Areas: Capture the core facts and issues underlying the case.

Table 8: Prompt used for query summarization w.r.t. LSR

Extract reasons from a legal judgment (query) explaining why the judge cited specific precedents , to
later match these reasons with findings from the cited precedents for retrieval tasks. Please process the
given legal judgment and focus on the following instructions:
Objective: Identify and extract all the legal reasons cited in the given judgment, focusing on the legal
principles, rules, or questions of law discussed or evaluated. Exclude any specific factual context or
case-specific details.
Structure: Each reason should be phrased in a concise and neutral manner. Avoid including case-specific
details (e.g., names, dates, or specific statutes cited). Ensure the reasons are comprehensive enough to
match with similar principles from other precedents.
Focus Areas: While extracting reasons, focus only the places where the precedents and cited text is
present.

Table 9: Prompt used for query summarization w.r.t. PCR
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Experiment Cost Time

Prediction Tasks

SAILER (inference) 20 GB 5m
SAILER (fine-tuning) 80 GB 4h
SAILER (summary inference) 20 GB 2m
SAILER (summary fine-tuning) 80 GB 2h 30m
Event-GNN 30 GB 35m
Para-GNN (full doc) 64 GB 1h 20m
Para-GNN (summary) 45 GB 45m
Event-GNN + BM25, dyn. α 35 GB 40m
Para-GNN (full doc) + BM25, dyn. α 80 GB 1h 30m
Para-GNN (summary) + BM25, dyn. α 60 GB 50m

Event and Summary Generation

GPT-4 (events) 25 USD 3h
Gemma (fine-tuning) 80 GB 4h 30m
Gemma (inference) 40 GB 12h
GPT-4o-mini (summaries) 30 USD 30h

LLM Re-ranking

GPT-4.1 (LSR Stage 1) 5 USD 20m
GPT-4.1 (LSR Stage 2) 5 USD 20m
GPT-4.1 (PCR Stage 1) 70 USD 4h
GPT-4.1 (PCR Stage 2) 70 USD 4h

Table 10: Compute costs and runtime of different mod-
els. Time represents the time taken for each epoch in
the case of training experiments.

D Details of Results and Analyses

D.1 Optimal α values for ensemble models

The α term is responsible for deciding the balance
between lexical and semantic components for en-
semble methods. While this can be decided in static
fashion by performing a grid search over the dev
set, it can also be optimized dynamically (different
optimal α for each query) by fine-tuning an FFN
over the query embeddings (see § 4).

Grid Search: To better understand the weighting
between lexical and semantic components in our
ensemble models, we performed a grid search
over α = {0.0, 0.1, . . . , 1.0}, where α = 0 cor-
responds to pure BM25 and α = 1 to pure se-
mantic scoring. Figures 5 and 6 show the results
for LSR and PCR, respectively, across different se-
mantic methods (Event-GNN, Para-GNN with full
documents, and Para-GNN with summaries) and
BM25 variants (n = 2, 3, 4, 5). For LSR, we ob-
serve peak performance at high α values (typically
0.8–0.9), confirming that statutes benefit primar-
ily from semantic reasoning provided by GNNs,
with BM25 adding complementary lexical ground-
ing. In contrast, PCR peaks at moderately high
α values (0.7–0.8) and deteriorates sharply near
α = 1, highlighting the greater role of lexical over-

lap in precedent retrieval. Importantly, in both
tasks, the best results are never achieved at the ex-
tremes—ensembles consistently outperform either
component alone.

Method LSR α PCR α
Independent fine-tuning 0.84 0.16
Multi-task fine-tuning 0.94 0.79
Transfer learning 0.85 0.81

Table 11: Average α values learned by the dynamic
weighting method for statutes (LSR) and precedents
(PCR).

Dynamic α tuning: Table 11 compares the ob-
servations from grid search with the dynamic α
method. For LSR, the learned weights (0.84–0.94)
align closely with grid-search optima, confirming
the semantic-heavy nature of statute retrieval. For
PCR, multi-task and transfer setups converge to
values near the grid-search peaks (around 0.8),
while independent fine-tuning collapses to a much
lower α (∼0.16), effectively over-weighting BM25.
This explains why independent tuning lags behind,
whereas transfer learning provides the most sta-
ble balance between semantic and lexical evidence.
Overall, these findings reinforce the task asymme-
try: LSR depends more on semantics, PCR more on
lexical precision, and ensembles are most effective
when this balance is explicitly optimized.

D.2 Statistical Significance Testing

To confirm the reliability of our improvements, we
performed paired t-tests on macro-F1 scores for the
strongest ensemble and LLM-based models. We
compared three ensemble variants of Para-GNN
(summaries) + BM25 with dynamic α fine-tuning:
(i) fine-tuned separately (En-Sep), (ii) fine-tuned
in a multi-task setup (En-MT), and (iii) fine-tuned
with transfer learning (En-TL), along with the two
prompting stages of GPT-4.1 re-ranking (GPT-S1
and GPT-S2). The resulting p-values are reported
in Table 12.

Method 1 Method 2 LSR p-val PCR p-val

En-Sep En-MT 6.8e-4 5e-1
En-Sep En-TL 4.3e-4 8e-2
En-MT En-TL 8.4e-8 9.1e-3
En-Sep GPT-S1 4.6e-32 6.1e-7
En-MT GPT-S1 5.3e-34 1.2e-10
En-TL GPT-S1 1.5e-29 2.2e-8
GPT-S1 GPT-S2 1.8e-3 3.2e-3

Table 12: p-values from paired t-tests over macro-F1
scores for LSR and PCR among top-performing models.
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(a) LSR on Event-GNN + BM25
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(b) LSR on Para-GNN + BM25

0.0 0.2 0.4 0.6 0.8 1.0

15

20

25

30

35

F1
 (p

er
ce

nt
ag

e)

2-gram 3-gram 4-gram 5-gram

(c) LSR on Para-GNN (summaries) +
BM25

Figure 5: Grid Search F1(%) of the ensemble methods for LSR task. Each figure shows the plot of performance vs.
different α values when combining different models with BM25.

0.0 0.2 0.4 0.6 0.8 1.0

15

20

25

30

35

F1
 (p

er
ce

nt
ag

e)

2-gram 3-gram 4-gram 5-gram

(a) PCR on Event-GNN + BM25
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(b) PCR on Para-GNN + BM25
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(c) PCR on Para-GNN (summaries) +
BM25

Figure 6: Grid Search F1(%) of the ensemble methods for PCR task. Each figure shows the plot of performance vs.
different α values when combining different models with BM25.

Within the ensemble family, transfer learning (En-
TL) consistently yields significant gains over both
separate and multi-task fine-tuning, reinforcing
its effectiveness for leveraging cross-task knowl-
edge. More importantly, GPT-S1 significantly out-
performs all ensemble variants by large margins
(p ≪ 0.01), establishing LLM re-ranking as clearly
superior to traditional ensembles. Finally, the im-
provements of GPT-S2 over GPT-S1 are themselves
statistically significant for both LSR and PCR, un-
derscoring the benefit of incorporating cross-task
dependencies in the second-stage prompt.

D.3 Analyzing the effect of candidate
frequencies and text lengths

We analyzed how the performance of the best mod-
els vary across candidates of different frequency
ranges in § 5 (Fig. 4). We conduct a more in-depth
analysis of the effect of candidate frequency, as
well as length of query and candidate texts in this
Section.

Held-out and Never-cited Candidates: To ana-
lyze robustness, we study two challenging can-
didate types: (i) held-out candidates, i.e.,
statutes/precedents cited only in the test set but
absent from train/dev, and (ii) never-cited candi-

dates, i.e., candidates that are never cited in any
query. IL-PCSR consists of 20 held-out statutes and
88 precedents. There are 19 never-cited statutes
and 93 such precedents (Table 1, App. B).
Held-out candidates: We restrict evaluation to
queries that cite at least one such candidate, and
compute F1 over this restricted set. Results are
shown in Table 16 (same notations for models as
the above Section). For LSR, En-MT achieves the
best generalization, while En-Sep lags behind. For
PCR, En-Sep performs best, but differences across
ensembles and GPT re-ranking are relatively small.
Importantly, GPT-based re-ranking does not pro-
vide additional gains here, suggesting that ensem-
bles remain highly competitive when generalizing
to unseen candidates.
Never-cited candidates: We count the number of
test queries where at least one never-cited candi-
date is ranked in the top-5 (Table 17). A higher
value indicates poorer robustness, since irrelevant
candidates should not be prioritized. Here, we find
that LSR is largely unaffected (almost no spurious
never-cited retrievals), while PCR is more sensi-
tive. Among ensembles, En-Sep shows the worst
robustness, while En-MT and En-TL reduce false
retrievals. GPT re-ranking performs comparably
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You are a smart and diligent Indian legal assistant with expertise in analyzing court judgments and
identifying cited statutory provisions.
Context:
You will be provided with:
- A masked judgment: All statute names and section numbers have been replaced with placeholders like
[ACT], [SECTION], etc. - A **list of statutory sections**: Each entry includes a unique ID, and the
name of the corresponding statute.
**Your Task:**
1. **Analyze the Masked Judgment:** - Carefully interpret the masked judgment’s legal reasoning and
context.
2. **Understand the Statutory List:** - Review the provided statute list.
3. **Determine Cited Statutes:** - Identify the statute sections that are cited in the judgment. - Return
only the relevant **IDs** of the cited statute sections.

Table 13: Prompt used for LLM Re-ranking Statutes

You are a indian legal AI assistant.
Your task is to decide whether the given precedent judgment is cited by the masked query judgment. The
query text may include masked placeholders like [PRECEDENT], [ACT], or [SECTION].
Return YES if the query judgment cites the precedent judgment, otherwise return NO.
Output Format: ’Respond with exactly one word: "YES" or "NO". ’ ’Do not include any explanation,
punctuation, or additional text.’

Table 14: Prompt used for LLM Re-ranking Precedents Stage 1

You are a indian legal AI assistant.
Your task is to decide whether the given precedent judgment is cited by the masked query judgment. The
query text may include masked placeholders like [PRECEDENT], [ACT], or [SECTION]. To assist your
decision, statute cited in both the query and precedent are provided.
Return YES if the query judgment cites the precedent judgment, otherwise return NO.
Output Format: ’Respond with exactly one word: "YES" or "NO". ’ ’Do not include any explanation,
punctuation, or additional text.’

Table 15: Prompt used for LLM Re-ranking Precedents Stage 2
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(a) LSR F1 vs. stat length
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(b) PCR F1 vs. prec length

Figure 7: Performance in terms of F1(%) compared to candidate text lengths. On the X-axis, the candidates are
sorted from left to right according to text length and divided into groups (shortest candidates group 1, longest
candidates group 4). Figure 7a shows LSR performance and Figure 7b shows PCR performance with varying
candidate (statute and precedent respectively) lengths.
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(a) LSR F1 vs. query length
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(b) PCR F1 vs. query length

Figure 8: Performance in terms of F1(%) compared to query text lengths. On the X-axis, the queries are sorted from
left to right according to text length and divided into groups (shortest candidates group 1, longest candidates group
4). Figure 7a shows LSR performance and Figure 7b shows PCR performance with varying query lengths.

Model LSR F1 PCR F1

En-Sep 33.33 64.29
En-MT 40.00 58.39
En-TL 38.67 58.04
GPT-S1 38.67 58.04
GPT-S2 38.67 58.04

Table 16: Performance (macro-F1, percentage) on held-
out candidates.

to the stronger ensembles, indicating that while
LLMs offer gains on cited candidates, they do not
exacerbate errors from never-cited ones.

Model LSR PCR

En-Sep 0 35
En-MT 3 23
En-TL 0 26
GPT-S1 1 24
GPT-S2 1 24

Table 17: Number of test queries where a never-cited
candidate appears in top-5. Lower is better.

Overall, these analyses show that while GPT-based
re-ranking provides state-of-the-art gains on cited
candidates, ensembles retain strong robustness on
both held-out and never-cited cases. LSR models
are inherently more resistant to never-cited noise,
whereas PCR models require better mechanisms to
handle such distractors.
Analyzing the effect of text lengths: We also an-
alyze the effect of text lengths on retrieval per-
formance, considering both queries and candidates.
For each case, we sort the documents by their token
length and divide them into four groups (Group-
1 containing the shortest, Group-4 containing the
longest). The grouping procedure is consistent
with the frequency-based analysis in § 5, ensur-

ing comparability across different perspectives of
candidate/query difficulty. We then evaluate perfor-
mance using the same set of methods considered in
§ 5, and report macro-F1 scores. Results are shown
in Fig. 7 for candidates and Fig. 8 for queries.
Varying Candidate Lengths: As shown in Fig. 7,
LLM re-ranking consistently outperforms ensem-
bles across candidate length groups. For LSR,
Stage-2 prompting provides the largest benefits for
shorter and medium-length statutes, while for PCR
the improvements are strongest on longer prece-
dents, where the LLM’s ability to capture nuanced
reasoning helps counteract noise in extended case
texts.
Varying Query Lengths: From Fig. 8, we ob-
serve that LLMs achieve substantial gains on short
queries in both LSR and PCR, suggesting that
they are able to compensate for missing details
through contextual reasoning. While the gains on
longer queries are smaller, they remain steady, en-
suring that LLMs maintain superiority over ensem-
ble methods across all groups.
Candidate length mainly affects how models handle
verbosity, with LLMs showing clear benefits on
long precedents and short statutes. Query length
highlights the ability of LLMs to recover missing
context, especially for shorter queries. Overall,
LLM re-ranking remains robust across both query
and candidate length variations.

E Details of the Annotation Study

As described in § 6, we conducted an annotation
study with domain experts to examine the subjec-
tivity of legal relevance. Six senior LL.M. students
(aged 24–28) carried out the annotations under the
supervision of a senior faculty member, all from
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Model Statutes Precedents
IL-PCSR COLIEE IL-PCSR COLIEE

BM25 (5-
gram)

16.98 54.49 33.29 30.61

Event-GNN 28.67 - 12.08 11.48
Para-GNN 20.72 17.64 24.54 21.24
Para-GNN
(summaries)

- 18.52

Para-GNN +
BM25

28.10 55.96 36.93 34.52

Event-GNN
+ BM25

33.87 - 34.45 34.51

Para-GNN
(summaries)
+ BM25

36.17 - 36.35 30.25

Table 18: Results of the best methods on COLIEE
datasets compared to ILPCSR. All results are in terms
of macro-F1@K. Event-GNN and summaries could
not be run for COLIEE statutes since the queries are too
small for meaningful events or summaries.

the WB National University of Juridical Sciences.
All annotators were informed of the study’s pur-
pose and provided explicit consent for the use of
their data. The annotators (Law students) agreed to
perform the annotations on pro-bono basis as they
were curious about AI technology and how it can
be improved for the Law domain. To further miti-
gate potential biases, we manually ensured that all
60 query documents were completely anonymized
prior to annotation, ensuring that no demographic
or sensitive information could influence the pro-
cess.

F Experiments on COLIEE dataset

All our observations are drawn over the IL-PCSR
dataset constructed in this work. We would like to
verify whether the above trends are also seen on
other legal datasets/jurisdictions. Since no current
dataset allows the identification of both statutes
and precedents together from the same query, we
have to work with two separate datasets for LSR
and PCR. We choose to work on the well-known
COLIEE datasets (Li et al., 2024).
LSR dataset: We use the COLIEE 2024 Task 3
(Statute Law Retrieval) dataset consisting of
746 statutes from Japanese law, and 554 queries.
Note that the queries here are typically one or two
sentences long, asking specifically about the laws.
In contrast, the queries in IL-PCSR are real-life
cases, which makes the setting more practical and
challenging. We opted for this dataset since other
existing datasets in English (ECHR2021 and ILSI)
have too less statutes (66 and 100 respectively) to
be evaluated in the retrieval setup.

PCR dataset: We use the COLIEE 2024 Task 1
(Legal Precedent Retrieval) dataset consist-
ing of 1,678 queries and 5,529 precedent candi-
dates, all of which are real-life case judgments
from Canadian Federal law. This setting is similar
to the queries in IL-PCSR.
Results: We choose some of the methods that per-
formed highly over the IL-PCSR dataset, and ap-
plied these methods on the COLIEE datasets. The
results on COLIEE vis-a-vis IL-PCSR are presented
in Table 18. The trends on the COLIEE dataset are
almost similar to what we observed for IL-PCSR.
The only difference being that, for COLIEE, even for
LSR, lexical methods such as BM25 perform the
best (whereas semantic methods outperformed lex-
ical approaches for LSR in IL-PCSR). This differ-
ence is possibly because the queries of COLIEE are
short sentences, asking directly about the statutes,
whereas for IL-PCSR the queries are real-world
long case judgments. Both for LSR and PCR, we
see improvements when using an ensemble setup
for COLIEE as well. The improvement is limited in
case of statutes, possibly because the performance
of Para-GNN is poor. This is possibly because short
queries do not have enough structure for the GNN
to exploit. For precedents, where the semantic
methods perform better, the improvement obtained
by ensembling is high. This agrees with the trend
we see on IL-PCSR (see Table 18). Finally, for both
IL-PCSR and COLIEE, in the case of PCR, we have
observed that using summaries does not perform
as well as using the full texts. We observe the same
key findings as IL-PCSR.
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