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Abstract

Selecting high-quality data can improve the
pretraining efficiency of large language models
(LLMs). Existing methods generally rely on
heuristic techniques or single quality signals,
limiting their ability to evaluate data quality
comprehensively. In this work, we propose
FIRE, a flexible and scalable framework for
integrating multiple data quality raters, which
allows for a comprehensive assessment of data
quality across various dimensions. FIRE aligns
multiple quality signals into a unified space,
and integrates diverse data quality raters to pro-
vide a comprehensive quality signal for each
data point. Further, we introduce a progressive
data selection scheme based on FIRE that it-
eratively refines the selection of high-quality
data points. Extensive experiments show that
FIRE outperforms other data selection methods
and significantly boosts pretrained model per-
formance across a wide range of downstream
tasks, while requiring less than 37.5% tokens
needed by the Random baseline to reach the
target performance.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable performance by utilizing large-scale
Transformers to pretrain on trillions of tokens.
However, due to the constraints imposed by scal-
ing laws (Kaplan et al., 2020), LLMs are quickly
nearing their capacity and data limits. As a result,
efforts to improve LLM performance have increas-
ingly concentrated on optimizing the quality of
pretraining data.

Numerous studies indicate that effective data se-
lection can significantly enhance the convergence
speed and generalization capability of LLMs (En-
gstrom et al., 2024; Wettig et al., 2024; Gao et al.,
2025). Traditional methods predominantly rely on
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Figure 1: Downstream accuracy with respect to pretrain-
ing tokens for Random, FIRE, and FIRE Progressive.

heuristic techniques, such as rule-based filtering
(Rae et al., 2021; Raffel et al., 2020), deduplica-
tion (Abbas et al., 2023; Tirumala et al., 2024),
and assessing proximity to high-quality corpora
(Xie et al., 2023). Additionally, some work has
focused on improving the evaluation of pretrain-
ing data quality by querying authoritative LLMs to
determine whether the texts meet specific criteria
(Wettig et al., 2024; Sachdeva et al., 2024).

Intuitively, assessing the quality of a text in-
volves analyzing it across multiple dimensions.
Nevertheless, the methods mentioned above evalu-
ate data quality based on individual aspects, lacking
a comprehensive assessment of the data’s overall
quality. Building on this limitation, the success of
querying LLMs (Sachdeva et al., 2024) has inspired
the straightforward idea of merging various quality
rating criteria into a single prompt to collect com-
prehensive quality signals from authoritative LLMs.
However, experimental findings show that this ap-
proach considerably weakens the performance of
LLMs, as the excessive number of rules makes it
challenging for LLMs to follow (further details can
be found in Appendix E.2). The challenge of adher-
ing to multiple rules underscores the necessity for
a more sophisticated strategy to integrate various
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quality signals effectively.
In this paper, we propose FIRE, a Flexible and

scalable framework for Integrating multiple data
quality Raters, designed to enable Effective pre-
training of LLMs. Initially, we introduce an align-
ment method to tackle the issue of inconsistent
ratings from multiple raters. This method involves
ranking the data based on the scores from the orig-
inal raters and then partitioning it into quantiles.
We assess the probability that the data within each
quantile is of higher quality (win rate) compared
to a reference subset, using this probability as the
aligned rating. By fitting a win-rate-quantile curve
for each rater, we effectively map the ratings from
multiple raters into a unified rating space. Subse-
quently, to derive a comprehensive signal repre-
senting the overall data quality, we integrate the
aligned ratings of multiple raters, considering both
the intrinsic reliability and orthogonality of the
raters. Further, we introduce a progressive data
selection scheme based on FIRE that iteratively
refines the selection of high-quality data points,
balancing computational complexity with the re-
finement of orthogonality.

Extensive experiments demonstrate that by ap-
plying integrated ratings from multiple raters, our
method achieves superior results across a variety
of downstream tasks. Figure 1 illustrates that FIRE
significantly enhances the pretrained model. We
summarize our main contributions as follows:

(1) We propose FIRE, a flexible and scalable
framework for integrating multiple data quality
raters. FIRE aligns ratings from multiple raters
into a unified space and integrates them to provide
a comprehensive quality signal for each data point.

(2) We introduce a progressive data selection
scheme based on FIRE that iteratively refines the
selection of high-quality data points. It achieves
a balance between computational complexity and
the refinement of orthogonality.

(3) Extensive experiments demonstrate that
FIRE enhances the pretrained model’s performance
by an average of 2.9%, while requiring less than
37.5% of the training data needed by the Random
baseline to reach the target performance.

2 FIRE: Flexible Integration of Quality
Ratings

2.1 Overview of the Method

We propose FIRE, a method that flexibly integrates
multiple raters to comprehensively evaluate data

quality. It involves two key processes: (a) Rating
Alignment and (b) Rater Integration. Figure 2
illustrates the overall framework of FIRE. Many
off-the-shelf raters exist in practice. To be inte-
grated by FIRE, a rater must provide a scalar score
for each data point and be empirically validated for
effectiveness.

First, we propose an alignment method to map
ratings from multiple raters into a unified rating
space. Specifically, we involve the probability that
the data in each quantile is of higher quality (win
rate) compared to a reference subset as the aligned
rating. By fitting a win-rate-quantile curve for each
rater, we effectively map the ratings from multiple
raters into a unified rating space. It’s worth noting
that the alignment process allows us to quantify
the intrinsic reliability of each rater, defined by the
win rate of the best data subset selected by the rater
relative to the reference subset, thereby reflecting
the rater’s performance.

We then integrate the aligned ratings of multi-
ple raters, considering both the intrinsic reliability
and orthogonality of the raters. We construct an or-
thogonality graph and calculate centrality through
PageRank(Page et al., 1999) to quantify the inde-
pendence among raters. The integrated rating is
given by:

I(x) = A(x)T (o⊙ γ) (1)

where A(x) ∈ Rn is the vector of aligned ratings
for data point x from n raters, γ ∈ Rn is the vec-
tor of intrinsic reliability scores, o ∈ Rn denotes
the overall orthogonality scores, and ⊙ represents
the element-wise (Hadamard) product. The result
I(x) ∈ R is a scalar that reflects the final integrated
quality score of the data point.

2.2 Rating Alignment

Aligning ratings from multiple data quality raters
is crucial for achieving a credible integrated rater.
This process involves standardizing ratings to a
consistent scale and eliminating the significant dif-
ferences in raters’ high-quality thresholds, which
are the score thresholds that distinguish data con-
tributing positively to pretraining. Appendix C.1
offers further analysis on the importance of rating
alignment.

Given a pretraining dataset Dt and multiple
raters R1, R2, . . . , Rn, we propose a method to
consolidate these ratings into a unified rating space:
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Figure 2: Overview of the proposed FIRE framework, which consists of two main components: (a) Rating
Alignment, which maps scores from different quality raters into a unified rating space using win-rate estimation
against a reference subset; (b) Rater Integration, which combines aligned ratings by weighting them with both the
intrinsic reliability (γ) and orthogonality (o) of each rater.

Step 1: Sample reference subset. Uniformly
sample a subset Dr from the pretraining data Dt. It
is worth noting that the data quality distributions of
Dr and Dt are consistent. This consistency allows
us to use Dr as a representative reference set: if a
subset of data is of higher quality than data in Dr,
it can be considered to exceed the typical quality
of Dt, and vice versa.

Step 2: Sort and partition data. Sort Dt ac-
cording to Ri, and partition the sorted data into k
intervals.

Step 3: Compare and calculate win rates. Ran-
domly sample a subset Dij from each interval, en-
suring that |Dij | = |Dr|. Use GPT-4o (Islam and
Moushi, 2024) to evaluate how the Dij samples
impact pretraining in comparison to the reference
dataset Dr. Then, calculate the win rate wij for
each interval j:

wij =
|{x ∈ Dij | GPT-4o: x > y, y ∼ Dr}|

|Dij |
(2)

where Dij signifies the subset sampled from the
j-th rating interval for rater Ri. The win rate wij

is the proportion of samples x in Dij that GPT-4o
determines have higher quality than the comparison
sample y fromDr. Calculating win rates relative to
Dr makes ratings from multiple raters comparable.
Moreover, since we sample only 1,000 data points
per interval for comparison, the computational cost

of this process remains low. The prompt for GPT-
4o is detailed in Appendix C.2. We demonstrate the
reliability of using GPT-4o for quality comparison
in Appendix C.3.

Step 4: Fitting a win-rate-percentile function.
Employ wij as the aligned rating for the midpoint
of j-th rating interval of Ri, denoted by (pj , wij).
Construct a continuous win rate-percentile function
from these coordinates using polynomial spline
interpolation (detailed in Appendix C.4).

For any data point, we can find the aligned rat-
ing from a specific rater by applying the rater’s
win-rate-percentile function to its original rating
and percentile. We apply the alignment method to
the ratings of 4 raters on the SlimPajama dataset.
The win rates in different percentiles and the fitted
functions are provided in Appendix C.5. It is worth
noting that since wi0 represents the win rate of the
best data subset selected by rater i relative to the
reference subset, it reflects the performance of rater
i to a certain extent. Therefore, we can use wi0 as
the intrinsic reliability of rater i, i.e., γi = Wi0.

2.3 Rater Integration

Suppose for raters R1, R2, . . . , Rn, each rater cor-
responds to a standard basis vector v1,v2, . . . ,vn

in the quality space. The integrated quality vector
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q(x) of data point x can be expressed as:

q(x) =
n∑

j=1

γjAj(x)vj (3)

where γj denotes the intrinsic reliability of rater j,
Ak(x) denotes the rating for data point x from rater
Rk after alignment. Ideally, if v1,v2, . . . ,vn form
an orthogonal basis, it is reasonable to measure the
overall quality of the data using the L1 norm of
q(x), as it represents the sum of the scores of data
point x across various orthogonal quality dimen-
sions. However, v1,v2, . . . ,vn are not necessarily
completely independent. There may be raters Ri

and Rj with a correlation coefficient ρ > 0 and
directly adding the corresponding aligned ratings
would increase the weight of a particular quality
dimension. To mitigate this issue, we define O(i, j)
to quantify the orthogonality of two raters i and j
(the formalization of O(i, j) can be found in Ap-
pendix C.6). For a rater Ri, we apply the sum of
its orthogonality with all other raters to weight its
rating. If a rater is highly correlated with others,
we use a lower orthogonality to penalize. So the
integrated rating for data point x can expressed as

I(x) =
n∑

j=1

γjojAj(x) (4)

where oj =
∑n

k=1
k ̸=j

O(j, k) is a quantification of the

overall orthogonality Rj with other raters.
Inspired by Equation (4), we find that integra-

tion of ratings weighted by orthogonality can be
formalized to the centrality problem of graph the-
ory. Formally, we define orthogonality graph of a
rater as follows:
Definition 1 (Orthogonality Graph). An orthogo-
nality graph is a complete graph where the vertices
Vi represent the raters Ri. The weight of the edge
between two vertices is the orthogonality O(i, j)
between the two raters.

Based on Definition 1, we provide the following
theorem:
Theorem 1. The overall orthogonality oi of a rater
Ri with other raters can be quantified as weighted
degree centrality of the corresponding vertex Vi in
the orthogonality graph.

We give Theorem 1’s proof in Appendix B. Let
o = [o1, o2, . . . , on]

T denote the overall orthogo-
nality vector, where oi represents the overall or-
thogonality of rater Ri. Define M as the adja-
cency matrix of the orthogonality graph, such that

Mij = O(i, j). Additionally, let 1 be the all-ones
vector. We can then derive the following:

o(0) = M1 (5)

Considering that in a multi-rater setting, the in-
dependence of Ri might be affected by the orthog-
onality between different raters Rj and Rk, we pro-
pose an iterative formula, analogous to PageRank
(Page et al., 1999):

o(k+1) = dMo(k) + (1− d)1 (6)

where d is the damping factor and k denotes the k-
th iteration. In PageRank, node centrality depends
on edge weights. Since FIRE defines edge weights
via orthogonality, the resulting scores reflect each
node’s overall independence. Since the introduc-
tion of the damping factor aims to address the rank
sinks problem, which is not present in our graph,
we find it reasonable to set d = 1. Assuming the
number of iterations is α, and normalizing the final
result, our final formula becomes:

oα = Mαo(0) (7)

o =
oα
∥oα∥2

(8)

where ∥ · ∥2 denotes the Euclidean Norm. In this
paper we set α = 50 since oα tends to stabilize
after 50 iterations. The justification for employing
Equation (7) and (8) to quantify the overall orthog-
onality is provided by Theorem 3 in Appendix B.1

Final version of the integrated rating for data
point x can be expressed as:

I(x) = A(x)T (o⊙ γ) (9)

where A(x) = [A1(x), A2(x), . . . , An(x)]
T is the

vector of aligned ratings for data point x from all
raters, o is the overall orthogonality vector, γ =
[γ1, γ2, . . . , γn]

T represents the intrinsic reliability
vector, and ⊙ denotes the Hadamard product.

3 Progressive Data Selection via FIRE

The most intuitive data selection method involves
ranking the integrated ratings based on FIRE for
the pretraining dataset, and then selecting the top k
highest-rated data points. Nonetheless, our analysis
shows that after ranking Dt based on the integrated

1When there’s a complete correlation among some Raters,
the orthogonality drops to zero. In such a case, we don’t
proceed with the rater integration and consider these multiple
raters as one.
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Algorithm 1 Progressive Data Selection Scheme

1: Input: The entire dataset Dt; Decay factor
η; Initial number of parts n; Part multiplica-
tion factor β; Maximum number of parts nmax;
Desired dataset size k

2: Output: Ds: Selected data subset
3: Calculate and sort integrated ratings for Dt

4: Reduce the data to η% of its original size using
decay factor η

5: while size of Dt ≥ k do
6: Divide the data into n parts based on the

quantiles of the integrated ratings
7: for each part Pi do
8: Calculate the overall orthogonality in Pi

9: Derive refined integrated ratings SPi

10: end for
11: Sort the data based on the new integrated

ratings SPi

12: Select the top η% data according to SPi

13: n← min(n× β, nmax)
14: end while
15: Ds← top k elements from Dt

ratings, there is a change in the overall orthogo-
nality o calculated from data subsets in different
quantiles (Figure 10). The phenomenon arises be-
cause the top data better reflects the quality em-
phasized by the raters, while the tail data often
contains more noise and low-quality information,
leading to changed orthogonality among the raters.
To refine the data selection process and mitigate the
coarseness introduced by computing orthogonality
on the entire dataset, we propose a progressive data
selection scheme based on FIRE.

Specifically, as shown in Algorithm 1, we first
calculate the integrated ratings for the data points in
Dt based on FIRE, then sort the data points, but we
don’t select them right away based on these ratings.
It is reduced to η% of its original size by select-
ing the top η% of data based on integrated ratings.
Then, the data is partitioned into n segments based
on integrated ratings’ quantiles. Orthogonality is
computed within each segment to determine refined
integrated ratings. After sorting the data according
to new ratings, it’s further reduced to η% of its
initial size. The number of segments is increased
by a factor of β, unless it reaches the maximum
threshold nmax, in which case the data is divided
into nmax segments. The iterative process of calcu-
lating orthogonality within progressively smaller
subsets continues before the subsequent reduction

leaves less than k data points for selection.

4 Experiments

4.1 Experimental setup

Setup We use SlimPajama (Soboleva et al., 2023)
as the selection pool, with a total scale of 627B.
And we employ the Llama (Touvron et al., 2023)
tokenizer to divide the entire dataset into sequences
of length 1024. During the data selection process,
we select the top portion of data with the highest
rating. For integrating different raters, we carry
out experiments based on the four single raters
of QuRating (Wettig et al., 2024): Writing Style,
Facts and Trivia, Educational Value, and Required
Expertise. For progressive data selection (FIRE
Progressive), we set η = 60, β = 20. For model
training, we train a model with 1.3B parameters
for 10,000 steps (equivalent to 20B tokens) and
a 3B model for 200B tokens, with bfloat16 for-
mat during both training and testing. The detailed
model configurations are provided in Table 6 of
Appendix D.1.

Evaluation We utilize lm-evaluation-harness
(Gao et al., 2021) to assess the models’ perfor-
mance across eight downstream tasks: ARC-E
(Clark et al., 2018), ARC-C (Clark et al., 2018),
SciQ (Welbl et al., 2017), LogiQA (Liu et al.,
2020), BoolQ (Clark et al., 2019), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020), and
WinoGrande (Sakaguchi et al., 2021). We employ
in-context learning for the evaluation, selecting
enough examples to fill the window length of 1024
tokens for each task. Standard accuracy metrics are
reported for all tasks.

Baselines In addition to comparing FIRE with
four single raters from Qurating, we also compare
it with the following methods: (1) Random: ran-
domly selecting data from the original training cor-
pus. (2) DSIR (Xie et al., 2023): utilizing impor-
tance sampling for data selection, and we chose
Wikipedia and Books as target domains. (3) Den-
sity (Sachdeva et al., 2024): using KDE to estimate
data density in the training corpus and employing
inverse sampling. (4) ASK-LLM (Sachdeva et al.,
2024): using a comprehensive prompt to label high-
quality data, and train a T5-based classifier.

Furthermore, we compare several basic rating
integration methods: (1) Comprehensive Rater: in-
tegrating multiple single rater criteria into a single
prompt to obtain annotations from GPT-4o, then
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Method ARC-E ARC-C SciQ LogiQA BoolQ HellaSw. PIQA W.G. AVG.

Baseline

Random 48.2 22.3 84.5 19.7 60.8 32.1 63.5 49.2 47.5
DSIR with Book 36.2 19.5 73.4 21.4 61.8 29.5 62.5 53.6 44.7
DSIR with Wiki 37.2 18.0 76.4 23.0 58.0 27.9 57.3 51.1 43.6
Density 47.2 20.0 81.7 20.3 61.5 31.4 66.3 51.4 47.5
ASK-LLM 52.6 24.8 80.2 22.1 62.2 28.9 59.5 50.2 47.6

Baseline
(1 Rater)

QuRating (W.S.) 47.5 21.4 81.8 21.3 61.3 31.3 62.7 52.5 47.5
QuRating (R.E.) 50.6 23.2 83.9 22.6 61.4 30.2 59.8 49.8 47.7
QuRating (F.T.) 54.1 23.0 83.5 22.0 60.9 30.4 59.5 51.7 48.1
QuRating (E.V.) 50.1 21.6 84.4 20.9 62.2 31.9 61.2 48.8 47.6

Baseline
(Integration
method,
4 Raters)

Comp. Rater 52.9 24.3 81.2 22.0 62.0 30.9 59.2 50.1 47.8
Max Criteria 54.1 22.6 83.3 22.7 61.3 30.8 59.8 48.9 47.9
Average 48.7 23.5 83.4 21.4 59.8 30.1 58.8 51.1 47.1
Mix Criteria† 49.6 22.1 83.6 25.7 61.8 29.7 58.6 50.4 47.7

Raters
Integration

FIRE (2 Raters) 55.4 24.9 83.6 21.3 60.0 31.6 60.1 50.4 48.4
FIRE (3 Raters) 58.4 25.7 85.1 23.1 59.8 32.3 61.2 51.2 49.6
FIRE (4 Raters) 59.1 26.4 86.0 21.0 61.8 32.9 59.7 52.8 50.0

FIRE (4 Raters) Prg. 59.2 27.0 86.9 23.0 60.2 33.0 62.4 51.6 50.4

Table 1: Downstream tasks results for different rating integration method. We report accuracy for each task, and the
best performances are marked in bold. For rater integration, we report the average score of all the combinations.
Detailed results can be found in the Appendix E.1. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande,
AVG. = Average, W.S. = Writing Style, R.E. = Required Expertise, F.T. = Facts and Trivia, E.V. = Educational Value,
Prg = Progressive, Comp. = Comprehensive. †: We implement the method from QuRating(Wettig et al., 2024).

training a comprehensive quality rater. (2) Max
Criteria: aligning ratings and selecting the highest
value in each dimension as the final rating. (3) Av-
erage: arithmetic mean integration of normalized
ratings from each rater. (4) Mix Criteria: we follow
QuRating(Wettig et al., 2024) to merge and dedu-
plicate the top data selected by each single rater,
followed by random sampling. These four methods
are applied to the integration of four raters. More
details can be found in Appendix D.2.

4.2 Main Results

Table 1 show our main results. We find that:

FIRE is superior to other integration methods.
FIRE demonstrates greater effectiveness than exist-
ing integration methods, while introducing minimal
additional computational cost (see Appendix D.3
for a detailed analysis of computational cost). As
shown in Table 1, Comprehensive Rater with a
multi-dimension prompt results in an average score
that is even lower than the single-dimension rater
Facts and Trivia. This suggests that GPT-4o still
falls short in assessing data quality from a broad
perspective. Both Mix Criteria and Max Criteria
are inferior to FIRE, indicating that a comprehen-
sive evaluation of FIRE is more beneficial. Aver-
age simply calculates the mean of all ratings and
the experimental results of FIRE demonstrate an

improvement over Average. To demonstrate the
robustness of FIRE, we conduct additional experi-
ments integrating other raters. Detailed results are
provided in Appendix D.4.

FIRE outperforms the single raters and other
data selection methods. Comparing FIRE to the
individual raters, it demonstrates significant im-
provements, with an average score increase of up
to 1.9% over the best single rater and 2.9% over
random selection. From a data efficiency perspec-
tive, FIRE achieves comparable performance using
less than 37.5% of the data required by the Ran-
dom baseline. Additionally, our method outper-
forms QuRating and other data selection methods,
validating the high quality of the data selected by
FIRE.

Adding more raters can lead to better perfor-
mance. We observe that as the number of inte-
grated raters increases, the overall effect gradu-
ally improves. The average score of FIRE with
three raters surpasses that of the integration of two
raters, and further increases when four raters are
integrated. This indicates that our rater integration
method is scalable: incorporating a broader range
of raters not only provides a more comprehensive
evaluation of the samples but also allows for a bet-
ter understanding of the importance of each metric.
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Figure 3: Ablation experiments on the impact of differ-
ent rating integration strategies in FIRE.

Progressive selection further improves FIRE
After integrating progressive selection, we ob-
serve a notable improvement in the model’s perfor-
mance on downstream tasks. Compared to FIRE (4
Raters), the average score of FIRE (4 Raters) Prg.
increases by 0.4%. The most significant improve-
ment is seen in PIQA, with an absolute score boost
of 2.7%. These results validate the effectiveness
of the progressive selection method in choosing
high-quality data.

4.3 Analysis

Ablation Study We integrate four single raters,
and subsequently remove Rating Alignment
(Align.), Intrinsic Reliability (Rel.), and Orthog-
onality (Orth.), as well as remove all (directly aver-
aging on the rating post-normalization), in order to
investigate the impact of each component in FIRE.

From Figure 3, we can find that: (1) Rating
alignment is a crucial step. We note that without
rating alignment, the score drops by 3.3%, even
falling below the direct average. As we previously
detailed, the alignment allows for better compa-
rability between the ratings from different raters,
making their integration more reasonable. (2) Both
orthogonality and intrinsic reliability can further
enhance model performance, with the impact of
orthogonality being relatively significant (a drop of
2% w/o Orth.), while the improvement from Intrin-
sic Reliability is rather subtle (a drop of 0.2% w/o
Rel.) (3) The combination of all components yields
the best results. This implies that these methods of
integrating the ratings are complementary. By su-
perimposing both methods, we can achieve a rating
that more accurately reflects the actual contribution
of the sample to the pretraining.

Training Efficiency Figures 1 and 4 show how
the model’s performance on downstream tasks
evolves with the pretraining tokens. In terms of
average score, our method outperforms the random
baseline by 2.9%. From the training efficiency per-

spective, our method reduces training tokens to
achieve a certain performance level by more than
half. In addition, our method shows a significant
advantage in the ARC-E/C and SciQ tasks, con-
sistently scoring higher than the random baseline.
However, on the HellaSwag task, our method’s per-
formance is similar to the random baseline and does
not consistently surpass it. One possible explana-
tion is that HellaSwag is an especially challenging
dataset, which makes it difficult to discern perfor-
mance differences on 1.3B model.

Method FLOPS ARC-C HellaSwag AVG.

Model Size = 1.3B

Random 32.2× 1019 23.6 34.4 48.6
FIRE 16.1× 1019 26.4 32.9 50.0

Model Size = 3B

Random 377.5× 1019 26.8 49.4 54.1
FIRE 377.5× 1019 28.8 51.7 55.7

Table 2: Results on larger models and datasets.

Larger datasets and models To validate our
method on larger models and datasets, we con-
duct several additional experiments: (1) Training
a 1.3B parameter model for 40B tokens using ran-
domly sampled data; (2) Training a 3B parameter
model for 200B tokens for both random sampling
and FIRE (four raters integration). As illustrated in
Table 2, the results indicate that the FIRE method
outperforms Random with fewer training FLOPS
in the 1.3B parameter model setting. Furthermore,
in the 3B parameter model setting, FIRE exceeds
Random by an average of 1.6%, demonstrating the
robustness and scalability of our method with larger
models and training datasets.

Ablation Study for Progressive Selection We
conduct an ablation study on the partition multiplier
factor β for the FIRE Progressive approach, with
the outcomes shown in Figure 5. The results show
that for a majority of β values, FIRE Progressive
scores surpass those of FIRE and Random, sug-
gesting that the progressive selection method con-
tributes to a consistent enhancement of the FIRE
framework.

Case study We extract 1M samples from the cor-
pus and compute the pairwise Pearson correlation
of the ratings across all dimensions. As illustrated
in Figure 6, the FIRE rating exhibits a strong corre-
lation with all other ratings, confirming the effec-
tiveness of the FIRE framework in consolidating
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Figure 4: The in-context learning results with respect to pretraining tokens on four downstream tasks: ARC-E,
ARC-C, SciQ, and HellaSwag.
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Figure 6: Pearson correlation between different raters.

ratings across multiple dimensions. By employing
the FIRE framework, we can effectively select data
that exhibits high ratings across all dimensions.

Moreover, we analyze the data properties that
FIRE focuses on compared to other raters. Based
on the four dimensions in QuRating and a compre-
hensive dimension, we determine the percentage of
high-quality data selected by each rater in each di-
mension. We pick 1000 data points at random from
the top 20B data that are selected by each method.
Then we use GPT-4o to assess each dimension six

40 20 0 20 40

40

20

0

20

40

E.V.
F.T.
R.E.
W.S.
FIRE

Figure 7: Illustration of top samples rated by each
method. We use Sentence-T5 to encode each text, and
employ t-SNE to perform dimensionality reduction on
dense vectors.

Rater/Dimension W.S. R.E. F.T. E.V. Comp.

W.S. 94.0 53.5 62.9 25.6 84.1
R.E. 39.0 85.8 93.8 97.1 98.0
F.T. 46.0 97.3 88.7 42.2 98.3
E.V. 50.8 76.3 96.5 47.1 99.1
FIRE 58.2 90.5 97.3 54.1 99.5

Table 3: The percentage of high-quality data across
various dimensions, for top data selected by each rater.
Underlined scores indicate the second highest. Comp.
= Comprehensive.

times, taking the average as the final evaluation
result. Refer to the Appendix D.5 for more details.
As shown in Table 3: (1) From a comprehensive
perspective, FIRE shows the best results, as evi-
denced by our performance in downstream tasks.
(2) In terms of each dimension, FIRE consistently
achieves relatively high accuracy, demonstrating
that the data selected by this method maintains high
quality across all dimensions.

To assess whether FIRE selects more diverse
samples than single raters, we extract the top 1000
texts from each method and encode them using
Sentence-T5 (Ni et al., 2022). We then apply t-SNE
(Van der Maaten and Hinton, 2008) for dimension-
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ality reduction and visualize the results in Figure 7.
In the latent semantic space, samples selected by
single raters appear more clustered, while those
selected by FIRE are more broadly distributed, in-
dicating higher diversity. Combined with prior case
studies showing high quality, FIRE demonstrates a
strong balance between diversity and quality.

Computational Cost We further analyze the
computational cost (measured in FLOPs) of differ-
ent data rating and integration methods, focusing
on the overhead introduced by applying raters to the
pretraining data (excluding the main model’s pre-
training cost). As shown in Table 4, FIRE achieves
more effective integration without introducing sig-
nificant extra cost beyond the base raters. In par-
ticular, FIRE and QuRating (mix of criteria) have
similar FLOPs, both of which are several times
higher than the single-rater setting, but FIRE pro-
vides substantially better downstream performance
at comparable cost. The detailed derivation of the
computational cost is provided in Appendix D.3.

Method FLOPs

QuRating (single rater) ≈ 8.17× 1020

QuRating (mix of criteria, 4 raters) ≈ 3.26× 1021

FIRE (mix of criteria, 4 raters) ≈ 3.26× 1021

Table 4: Comparison of computational cost (FLOPs)
across different rating methods.

5 Related Works

When pretraining language models, a large amount
of text corpus is often crawled from the internet.
However, several studies (Li et al., 2023; Zhou
et al., 2024; Duan et al., 2025) suggest that high-
quality data is more beneficial to the model’s per-
formance. To select high-quality data, a common
strategy involves utilizing rules crafted by experts
(Raffel et al., 2020; Rae et al., 2021; Laurençon
et al., 2022; Computer, 2023; Penedo et al., 2024)
and removing duplicate sentences (Lee et al., 2022;
Sorscher et al., 2022; Abbas et al., 2023; Soboleva
et al., 2023; Tirumala et al., 2024). However, they
often fall short in effectively selecting high-quality
data based on semantic content. An alternative ap-
proach involves utilizing a target data source or
proxy model (Wenzek et al., 2020; Xie et al., 2023;
Marion et al., 2023; Thakkar et al., 2023; Engstrom
et al., 2024; Yu et al., 2024).

Training a classifier is a more straightforward

method (Du et al., 2022; Gururangan et al., 2022;
Zhang et al., 2024; Wettig et al., 2024; Sachdeva
et al., 2024). Du et al. (2022) implemented a logis-
tic regression binary classifier to score the data,
while some studies train more complex scorers
(Zhang et al., 2024; Sachdeva et al., 2024). Ad-
ditionally, QuRating (Wettig et al., 2024) trains
multiple raters with a finer-grained approach to ana-
lyze the contribution of data to model performance
improvement from different dimensions. Other
studies(Zhang et al., 2025b,a) explore methods to
boost pretraining efficiency by curriculum learning.

Prior methods mainly select data from a single
perspective. Although QuRating introduces mul-
tidimensional raters, it does not systematically ad-
dress their integration—a challenge our work ex-
plicitly tackles.

6 Conclusion

We propose FIRE, a flexible and scalable frame-
work that integrates multiple data quality raters
for comprehensive, multi-dimensional data assess-
ment. First, ratings from different dimensions are
aligned into a unified space. Then, orthogonality
is introduced to adjust rater weights. To handle or-
thogonality variations across rating ranks, we adopt
a progressive approach for fine-grained data selec-
tion. Experiments on the SlimPajama dataset show
that FIRE outperforms other selection methods,
substantially improving pretrained model perfor-
mance across diverse downstream tasks.

7 Limitations and Future Works

Linear assumption for orthogonality integration
We hypothesize our integration on a linear addi-
tive relation. While this assumption simplifies the
computations, it might limit our ability to capture
complex interactions between different dimensions.
Future research could explore incorporating non-
linear systems to adjust rater weights, potentially
boosting performance.

Number of raters We’ve tested our method with
four different raters and the results have been
promising. To make our integration method more
robust and reliable, future tests could include more
raters from diverse dimensions, which would ulti-
mately help us build a more resilient and versatile
rating integration system.
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A Ethical Considerations

Training large language models (LLMs) demands
a substantial amount of electrical power, resulting
in significant carbon emissions. To address this
issue, we aim to develop efficient data selection
methods that reduce the computational resources
required for model training, thereby mitigating en-
vironmental impact. Furthermore, by meticulously
curating high-quality data, we can enhance model
performance and minimize the occurrence of hal-
lucinations. This not only improves the reliability
of the models but also helps curb the spread of
fake news and misinformation, addressing critical
societal concerns.

B Proof of theorems

In this section, we present the proofs for the two
previously mentioned theorems. Theorem 2 facil-
itates the transformation of orthogonality calcu-
lations into a centrality problem within a graph.
Meanwhile, Theorem 3 rigorously demonstrates
the convergence of our framework. Specifically, it
establishes that after several iterations, the vector

o
||o||2 will assuredly converge to a fixed vector, thus
precluding divergence.

Theorem 2. The overall orthogonality oi of a rater
Ri with other raters can be quantified as weighted
degree centrality of the corresponding vertex Vi in
the orthogonality graph.

Proof. Consider that the weighted degree centrality
of vertex Vi is the sum of the weights of the edges
connecting Vi to all vertices in the set of adjacent
vertices Ai. Since the graph of orthogonality is a
complete graph, we have

C(Vi) =
∑

Vj∈Ai

O(i, j) =
n∑

j=1
j ̸=i

O(i, j)

This is consistent with the definition of the
overall orthogonality in Equation (4) of the main
text.

Theorem 3. As α → +∞, o will eventually con-
verge to a fixed unit vector.

Proof. Since the Graph of orthogonality is an undi-
rected graph, the adjacency matrix M is a sym-
metric matrix. According to the Spectral Theorem
for Symmetric Matrices, M can be diagonalized,
and all corresponding eigenvectors can form an
orthogonal basis.

Since for any i, j, O(i, j) ≥ 0, we can de-
duce that M is a non-negative matrix. Addition-
ally, since the Orthogonality Graph is a complete
graph, M is an irreducible matrix. By the Perron-
Frobenius Theorem, we obtain that:

∃λ ∈ R, λ > 0

s.t. λ = max {µ | µ ∈ σ(M)},
where σ(M) denotes the set of eigenvalues of
M. Assume M has m eigenvalues λ1, λ2, ..., λm

arranged in descending order, where λ1 > 0.
Each eigenvalue λi corresponds to the eigenvec-
tors vi1, ...,vipi , where pi is the algebraic multi-
plicity of λi. We can decompose o(0) into each
eigenvector

o(0) =

m∑

i=1

pi∑

j=1

cijvij

Therefore, we have

Mαo(0) = Mα
m∑

i=1

pi∑

j=1

cijvij

=

m∑

i=1

pi∑

j=1

cijM
αvij

=

m∑

i=1

pi∑

j=1

cijλi
αvij

= λ1
α

m∑

i=1

pi∑

j=1

cij(
λi

λ1
)αvij

Given that ∀i ̸= 1, | λi
λ1
| < 1, thus

lim
α→+∞

(
λi

λ1

)α

= 0

We obtain

o = lim
α→+∞

Mαo(0) = λ1
α

p1∑

j=1

c1jv1j

Thus

o

||o||2
=

λ1
α∑p1

j=1 c1jv1j

||λ1
α∑p1

j=1 c1jv1j ||2

=

∑p1
j=1 c1jv1j

||∑p1
j=1 c1jv1j ||2

The right-hand side of the formula is a fixed unit
vector. Therefore, the theorem is proven.
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C FIRE Analysis

C.1 Analysis of the necessity of rating
alignment

Multiple raters may employ different scales and
criteria for assessing data quality, which can cause
substantial problems if their ratings are integrated
without appropriate standardization. For example,
some raters may prioritize grammatical accuracy
using a numerical scale, while others might assess
semantic relevance using a percentage scale. More-
over, the rating thresholds distinguishing data that
positively contribute to pretraining can significantly
differ among raters. Without rating alignment, the
integrated ratings can be misleading, inaccurately
reflecting the actual quality of the data point. The
subsequent examples and analyses underscore the
importance of rating alignment for a reasonable
data quality evaluation:

• Different Scales. Suppose we have Rater A,
who assesses data quality on a 1 to 10 scale
based on grammatical accuracy, and Rater B,
who evaluates semantic relevance on a 0% to
100% scale. Let’s say a particular data point
receives an 8 from Rater A and 85% from
Rater B. If we naively average these ratings,
we get: 8+85

2 = 46.5. This score does not
genuinely reflect the data quality as the scales
used are inherently different. Hence, it is cru-
cial to standardize the ratings onto a common
scale to facilitate meaningful comparisons.

• Different Quality Thresholds. Even with rat-
ings standardized to a common scale, we face
the problem of varying quality thresholds dis-
tinguishing data that positively contribute to
pretraining. For example, Rater A may deem
ratings above 5 as high-quality, whereas Rater
B may view ratings above 80% as high-quality.
Suppose we standardize both ratings to a 0-
1 scale, turning an 8 from Rater A into 0.8
and 85% from Rater B into 0.85. Despite this
standardization, direct comparison of the two
raters’ scores remains impractical due to their
differing threshold values for differentiating
data quality.

C.2 Prompt for GPT-4o to compare data
quality

Prompt for GPT-4o to compare data quality

Compare two text excerpts and choose the
text which contain more informative

signal for pretraining a large−language
model.

An informative datapoint should be well−
formatted, contain some usable knowledge
of the world, and strictly NOT have any

harmful, racist, sexist, etc. content.
Aspects that should NOT influence your
judgement:
1. The length of the text
2. The order in which the texts are
presented

Note that the texts are cut off, so you have
to infer their contexts. The texts might
have similar quality, but you should still
make a relative judgement and choose the
label of the preferred text.

[Option A]
... {text a} ...
[Option B]
... {text b} ...

Now you have to choose between either A
or B. Respond only with a single word.

C.3 Reliability Analysis of GPT-4o

QuRating(Wettig et al., 2024) points out that GPT
is more effective at comparing the relative quality
between two data samples than performing abso-
lute quality evaluation. To further assess the reli-
ability of GPT-4o, we use QuRating (Educational
Value) as a case study and conduct a win-rate eval-
uation involving human experts. Specifically, we
compare the win rates assigned by human annota-
tors and GPT-4o across different rating percentiles,
with results presented in descending order of per-
centile rating in Table 5. The two sets of win rates
exhibit a Pearson correlation of 0.99, indicating
strong agreement and suggesting that GPT-4o does
not introduce significant bias in the annotation pro-
cess. This high consistency supports the reliability
of using GPT-4o for quality assessment. Further-
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more, GPT-4o is used only to estimate win rates
between rater-selected samples and random sub-
sets, rather than to assign absolute scores, which
further reduces bias.

C.4 Polynomial spline interpolation for
win-rate-percentile function

To obtain the aligned rating for each data point,
we consider the win rate wij of rater i in the j-th
rating interval as the rating of the midpoint of that
interval, denoted by coordinates (pj , wij). We then
complete the rater’s win-rate-percentile function
using polynomial spline interpolation to derive a
continuous and smooth win-rate-percentile func-
tion. The polynomial spline interpolation function
S(p) is defined as follows:

S(p) =ak(p− pk)
n + bk(p− pk)

n−1 + · · ·
+ yk(p− pk)

2 + zk(p− pk) + dk,

pk ≤ p < pk+1

(10)
where p denotes the percentile, pk and pk+1 are
the boundaries of the k-th interval, n is the degree
of the polynomial, and ak, bk, · · ·, yk, zk, and dk
are the coefficients determined through the spline
interpolation process.

C.5 Ratings distribution illustration

Figure 8 shows the win rates of samples in different
percentile intervals and the fitted Rating-Percentile
curves for 4 raters. The original ratings provided
by the four raters exhibit significant differences, as
illustrated in Figure 4 of QuRating(Wettig et al.,
2024). The alignment introduces a random sub-
set for comparison, which makes the ratings from
different raters comparable, mapping the ratings
into a similar range. This forms the foundation for
the subsequent weighted integration of the raters,
which explains the poor performance without align-
ment. However, even after alignment, there are still
noticeable differences in the rating distributions
of different raters. For instance, in Figure 8a and
8c, there are significant differences in the win rate
of the first quartile and the middle section of the
curve.

C.6 Formalization of Orthogonality.

Empirical determination of the boundary condi-
tions. For convenience and without losing ratio-
nality, we use the initial version of the integrated

(a) Writing Style (b) Required Expertise

(c) Facts and Trivia (d) Educational Value

Figure 8: The win rates of samples in different per-
centile intervals and the fitted Rating-Percentile curves
for 4 raters.

rating calculation formula (without PageRank op-
timization) to determine the boundary values of
orthogonality. The integrated rating of data point i
can be expressed as

I(i) =
n∑

j=1

γjojAj(i)

where oj =
∑n

k=1
k ̸=j

O(j, k) is a quantification of the

overall orthogonality Rj with other raters. We ig-
nore the impact of raters’ reliability and set γj = 1.
By substituting the definition of the overall orthog-
onality, we obtain

I(i) =
n∑

j=1




n∑

k=1
k ̸=j

O(j, k)


Aj(i)

=
1

2

n∑

j=1

n∑

k=1
k ̸=j

O(j, k) (Aj (i) +Ak (i))

(11)

The final expression, after rearrangement, can be
seen as pairwise addition of raters, with their in-
tegrated ratings weighted by the orthogonality of
the two raters. When two raters are perfectly cor-
related, it means their ratings are identical across
all data points. In this scenario, the information
provided by one rater is entirely redundant with
respect to the other. Therefore, the orthogonality
between these raters should be set to 0, indicating
no additional information is gained by consider-
ing both ratings. Conversely, when two raters are
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Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

GPT-4o 0.773 0.705 0.625 0.600 0.545 0.513 0.480 0.425 0.340 0.273
Human Expert 0.797 0.698 0.657 0.616 0.533 0.501 0.469 0.433 0.317 0.300

Table 5: Win-rate comparison between GPT-4o and human experts for QuRating (Educational Value) across different
rating percentiles.

perfectly orthogonal, it signifies that their ratings
are completely independent of each other. Each
rater offers unique and complementary perspec-
tives, leading to a comprehensive evaluation when
combined. In such cases, the orthogonality should
be set to 0.5, reflecting that each rater contributes
equally distinct information to the overall rating.

Orthogonality function. The most intuitive ap-
proach to determine the orthogonality between two
raters is to use the correlation coefficient between
their rating distributions on a pretraining dataset.
The orthogonality-correlation function needs to sat-
isfy two key conditions:

• Monotonicity: The stronger the correlation,
the lower the orthogonality.

• Boundary Conditions: Empirically, when
two raters are completely uncorrelated, the or-
thogonality between them is 0.5; when they
are fully correlated, the orthogonality is 0.
And the empirical value has been described
above.

In fact, we choose the orthogonality between
two raters to be 0 when they are completely cor-
related, as we want to avoid duplication issues
during rater integration. For instance, consider
three raters, where Rater 1 and Rater 2 are com-
pletely correlated (correlation coefficient of 1) and
are completely uncorrelated with Rater 3 (correla-
tion coefficient of 0). Considering only one itera-
tion, the integration result of the three raters is R =
O12(R1+R2)+O13(R1+R3)+O23(R2+R3) =
(Ol + Oh)R1 + (Ol + Oh)R2 + 2OhR3, where
Ol = O12, Oh = O13 = O23. Given that Rater 1
and Rater 2 are completely correlated, which means
R1 = R2, we obtain R = 2(Ol+Oh)R1+2OhR3.
If Ol ̸= 0, R1 will be assigned an additional weight.
However, one would naturally assume that R1 and
R3 should carry the same weight when they are
completely uncorrelated.

Considering the scenario where the correlation
coefficients among all raters are zero, the calcula-
tion of orthogonality would completely degenerate

to zero. Therefore, in such extreme cases, we treat
all perfectly correlated raters as a single rater and
do not proceed with orthogonality-related integra-
tion.

Based on the conditions, we explored three func-
tional forms that satisfy the criteria: a linear func-
tion, a Gaussian function, and a symmetrically pro-
cessed Gaussian function. The three functional
forms explored for orthogonality are as follows:

(1) Linear Function:

OL(i, j) =
1

2
· (1− |r(i, j)|) (12)

(2) Gaussian Function:

OG(i, j) = exp

(
−r(i, j)2

2c2

)
− 1

2
(13)

(3) Symmetrically Processed Gaussian Func-
tion:

OS.G(i, j) =

(
3

2
− |r(i, j)|

)
−exp

(
−r(i, j)2

2c2

)

(14)
where r(i, j) represents the correlation measure be-
tween raters i and j. Specifically, it is quantified
using the Pearson correlation coefficient between
the score distributions of the two raters over a com-
mon dataset. In both Gaussian-based functions, the
constant c =

√
1

2 ln 2 is determined by the bound-
ary conditions. Figure 9 illustrates the 3 forms of
orthogonality functions with respect to correlation
coefficient.

It’s worth noting that the experiments in Ap-
pendix E.3 demonstrate that the symmetrically pro-
cessed gaussian function exhibits the best perfor-
mance. Therefore, in the main experiments of
this paper, we use the symmetrically processed
gaussian function, i.e., Equation (14). Addition-
ally, when integrating the ratings from two raters,
their weights based on orthogonality are the same.
Therefore, we only use the intrinsic reliability of
the raters to weight their ratings.
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Figure 9: Trends of 3 forms of orthogonality functions
with the change in the correlation coefficient.

Hyperparameter Value Hyperparameter Value

Attention heads 16 Precision bfloat16

Layers 24 Vocab size 32,000

Hidden size 2048 Window length 1024

Intermediate size 5504 Tied embedding False

Position embedding ROPE Activation SwiGLU

Table 6: The hyperparameters of model structure.

C.7 Orthogonality-Percentile curve

Figure 10 shows the orthogonality calculated based
on data subsets from different quantiles. It is evi-
dent that the orthogonality calculated from data in
different quantiles varies.

D Experimental Details

D.1 Model and training

We train a model with 1.3B parameters similar to
the Llama architecture, the model structure is de-
tailed in the Table 6. We train the language model
from scratch and randomly initialize the model
parameters. We set the batch size to 2048 and
the learning rate to 5e-4, using a cosine learning
schedule. To accelerate the training and inference
processes, we use the bfloat16 format during both
training and testing. The training is based on the
Megatron framework and utilizes flash attention.
The entire model is trained on 16 A100 GPUs for
a total of 10,000 steps. For FIRE orthogonality
calculation, we use the symmetrically processed
gaussian function.

D.2 Integration Baselines

We compare our rating integration method with
other baseline methods. Here we give more details
about the baselines.

Figure 10: Trends of orthogonality functions with the
change in percentile of different pairs of raters.

Prompts for Comprehensive Rater

Compare two text excerpts and choose the
text which

1. has a more polished and beautiful
writing style.
2. contains more facts and trivia. Prefer
specific facts and obscure trivia over more
common knowledge.
3. requires greater expertise and
prerequisite knowledge to understand it.
4. has more educational value, e.g., it
includes clear explanations, step−by−step
reasoning, or questions and answers.
Aspects that should NOT influence your
judgement:
1. Which language the text is written in
2. The length of the text
3. The order in which the texts are
presented

Note that the texts are cut off, so you have
to infer their contexts. The texts might
have similar quality, but you should still
make a relative judgement and choose the
label of the preferred text.

[Option A]
{text1}
[Option B]
{text2}

Now you have to choose between either A
or B. Respond only with a single word.
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Comprehensive Rater Following QuRating
(Wettig et al., 2024), we collect pairwise com-
parison data and train a reward model based on
Sheared-Llama 1.3B (Xia et al., 2023). We merge
all the evaluation criteria into a single prompt to
guide GPT-4o comparison. Above is an illustration
of the prompt.

Mix Criteria We utilize each rater to select the
top 20B tokens, which are then merged and dupli-
cates removed. Following this, we randomly pick
out another 20B tokens from this merged set. As
each sample only requires to excel in one rater’s
evaluation to be considered for selection, this ap-
proach emphasizes the dimension in which the sam-
ple performs best amongst all dimensions.

Max Criteria Once the scores are aligned, we
directly select the dimension with the highest rat-
ing to represent the integration result. This method
is analogous to performing max-pooling across all
dimensions, straightforwardly highlighting the di-
mension within the sample that has the highest
rating.

Average For multi-rater integration, the most
straightforward approach is to assume that each
rater contributes equally to the overall quality of
the data. Accordingly, we normalize the ratings
provided by each rater for the samples. Follow-
ing normalization, the average of these ratings is
computed to obtain the final integrated rating.

D.3 Analysis of Computational Cost

This section analyzes the computational cost (mea-
sured in FLOPs) for various data rating and integra-
tion methods. The focus is on the cost introduced
by applying raters to the pre-training data, exclud-
ing the main model’s training cost. FIRE achieves
more effective integration without introducing sig-
nificant extra cost beyond the base raters. The
FLOPs comparison is summarized in Table 4.

The analysis includes:

1. Rater training (if applicable),

2. Rater inference over the entire dataset,

3. Additional computation for FIRE’s win-rate-
based integration.

QuRating (Single Rater). Each QuRating model
is a 1.3B-parameter transformer. It is first fine-
tuned on 500K examples (512 tokens each). The

total FLOPs for training this rater is approximately:

FLOPstrain ≈ 6 ·N · d2 · L · T ≈ 4.2× 1019

Rater inference over the entire 627B-token dataset
consumes:

FLOPsinfer ≈ 6 · 627× 109 · d2 ·L ≈ 8.13× 1020

FLOPstotal ≈ 8.17× 1020

QuRating (Mix of Criteria). Integrating four
QuRating raters (each covering a distinct aspect)
requires four forward passes across the full dataset.
Since retraining is not needed, total cost is:

FLOPsmix ≈ 4× FLOPsinfer ≈ 3.26× 1021

FIRE. FIRE uses the same four QuRating raters
as input, and hence shares the same inference cost.
In addition, it estimates the win-rate-percentile
mapping using only 20K pairwise comparisons per
rater. The additional cost of this step is negligible
compared to inference over 627B tokens.

D.4 Integration of Other Raters

FIRE has extremely high scalability: our approach
is not directly related to the specific attributes of
the raters. Therefore, as long as the raters can
provide ratings for the samples and are not com-
pletely related to each other, they can be integrated
using the FIRE method. We also attempt to in-
tegrate another raters: QuRating(Required Exper-
tise), QuRating(Facts and Trivia), DSIR-Book, and
DSIR-Wiki. Tabel 7 shows that the average perfor-
mance of FIRE, after integrating these four raters,
is better than each individual rater and the Random
baseline, indicating that our integration method is
still effective on other raters.
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Method ARC-E ARC-C SciQ LogiQA BoolQ HellaSw. PIQA W.G. AVG.

Random 48.2 22.3 84.5 19.7 60.8 32.1 63.5 49.2 47.5
DSIR with Book 36.2 19.5 73.4 21.4 61.8 29.5 62.5 53.6 44.7
DSIR with Wiki 37.2 18.0 76.4 23.0 58.0 27.9 57.3 51.1 43.6
QuRating (R.E.) 50.6 23.2 83.9 22.6 61.4 30.2 59.8 49.8 47.7
QuRating (F.T.) 54.1 23.0 83.5 22.0 60.9 30.4 59.5 51.7 48.1
FIRE 57.1 25.9 84.9 20.8 61.5 31.5 60.1 50.3 49.0

Table 7: Performance comparison by applying FIRE to integrate four raters: QuRating (Required Expertise),
QuRating (Facts and Trivia), DSIR-Book, and DSIR-Wiki.

D.5 Prompt for Multi-dimension Analysis

Prompts for GPT-4o evaluation

You are a data annotation expert. You
should judge that {condition}

Aspects that should NOT influence your
judgement:
1. Which language the text is written in
2. The length of the text
3. The order in which the texts are
presented

Note that the texts are cut off, so you have
to infer their contexts.
Here is the text:
[TEXT BEGIN]
{text}
[TEXT END]

Please follow the question order to
respond. For answer, only respond yes or
no.
Return the results for each question in the
following json format:
[{
"quesion": "Is this text has a polished and
beautiful writing style ?",
"reason": "Fill in the reason for the
judgment here",
"answer": "yes/no"
},
...]

We instruct the GPT-4o to evaluate the data se-
lected through the raters, and here we show the
prompts. For dimension, we consider four individ-
ual dimensions, the same as QuRating Wettig et al.

(2024); and a comprehensive dimension:

• Does this text have a polished and beautiful
writing style?

• Does this text contain many facts and trivia?
Prefer specific facts and obscure trivia over
more common knowledge.

• Does this text have much educational value?
E.g., it includes clear explanations, step-by-
step reasoning, or questions and answers.

• Does this text require a lot of expertise and
prerequisite knowledge to understand it?

• Does this text contain an informative signal
for pretraining a large-language model? An in-
formative data point should be well-formatted,
contain some usable knowledge of the world,
and strictly NOT have any harmful, racist, sex-
ist, etc. content.

E Further Analysis of Experiments

E.1 Results of different combinations
We present the results of different rater combi-
nations in Table 8. The average scores of FIRE
(W.S.+R.E.+F.T.) and FIRE (W.S.+R.E.+E.V.) both
surpass the results obtained from combining any
two of their individual raters. Furthermore, FIRE
(W.S.+R.E.+F.T.+E.V.) achieves even better perfor-
mance.

E.2 Prompt merge effect
We investigate whether combining multiple rules
within a single prompt can effectively meet the
evaluation standards of each rule. We randomly
selected 3,000 data points and guided GPT-4’s eval-
uation using a prompt that integrates multiple rules,
alongside conducting individual rule-guided eval-
uations and separate human annotator evaluations
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Method ARC-E ARC-C SciQ LogiQA BoolQ HellaSw. PIQA W.G. AVG.

Two Raters Integration

FIRE (W.S.+R.E.) 54.5 24.6 85.6 19.7 61.3 31.3 60.4 51.8 48.7
FIRE (W.S.+F.T.) 56.1 25.0 81.5 22.7 55.1 31.7 61.2 49.7 47.9
FIRE (R.E.+F.T.) 56.9 26.1 84.7 20.7 62.0 30.5 59.4 50.0 48.8
FIRE (W.S.+E.V.) 56.7 24.2 82.2 21.0 60.3 33.0 61.0 51.0 48.7
FIRE (R.E.+E.V.) 53.0 24.7 84.1 22.4 61.2 31.3 58.7 49.7 48.1

Three Raters Integration

FIRE (W.S.+R.E.+F.T.) 59.0 25.4 85.6 25.5 57.5 31.9 61.8 51.1 49.7
FIRE (W.S.+R.E.+E.V.) 57.8 25.9 84.5 20.6 62.0 32.7 60.5 51.3 49.4

Four Raters Integration

FIRE (W.S.+R.E.+F.T.+E.V.) 59.1 26.4 86.0 21.0 61.8 32.9 59.7 52.8 50.0

Table 8: Downstream tasks results for different rater combinations. We report accuracy for each task, and the best
performances are marked in bold. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande, AVG. = Average,
W.S. = Writing Style, R.E. = Required Expertise, F.T. = Facts and Trivia, E.V. = Educational Value

W.S. F.T. E.V. R.E.

Sing.(Human) 53.3 69.7 85.1 92.2
Sing.(GPT4) 52.1 69.7 85.5 91.8
Comp.(GPT4) 57.8 80.5 86.9 50.3

ρHuman−Sin.(GPT4) 0.81 0.85 0.86 0.77
ρHuman−Com.(GPT4) 0.72 0.64 0.72 0.32

Table 9: Results of GPT-4 and human annotation for
3,000 samples. Sing. = Single, Comp. = Comprehen-
sive.

for each criterion. To understand how GPT-4’s
holistic evaluation aligns with each individual di-
mension, we employed CoT (Wei et al., 2022) ap-
proach: the model first evaluates each rule sep-
arately, and then provides an overall evaluation.
Each rule is assessed with a binary yes/no question,
and after six evaluations, we average the results to
obtain the final score (for human evaluations, this
entails averaging the scores given by six annota-
tors).

Table 9 displays the percentage of data with a rel-
atively high degree in each dimension, along with
the correlation coefficients between GPT-4’s and
human evaluations. From the proportions of high-
quality data in each dimension, it is evident that
GPT-4’s scores approximate human scores more
closely when evaluated individually, with differ-
ences within a margin of 0.2 at most. However,
GPT-4’s scores exhibit greater variability when
multiple rules are integrated. In terms of correlation
coefficients, there is a strong correlation between
GPT-4’s individual scoring and human scoring, but

40 42 44 46 48 50 52 54
AVG. score

Linear

Gaussian

Gaussian Reverse 50.0

49.7

49.5

Ablation Study

Figure 11: Ablation experiments evaluating the impact
of different orthogonality functions on model perfor-
mance.

this correlation significantly diminishes when it
comes to comprehensive scoring. Particularly, in
the Require Expertise aspect, the correlation is only
0.32. This suggests that GPT-4’s current capabil-
ity to adhere to all rules in a single prompt is still
inadequate.

E.3 Orthogonality Function

There are various methods to calculate orthogonal-
ity, and we aim to identify the most effective one.
We compare three functions for orthogonality cal-
culation: linear, gaussian, and sym. gaussian (the
symmetrically processed gaussian function). As
illustrated in Figure 11, the three functions achieve
comparable results, all surpassing the configuration
without orthogonality, which demonstrates the ef-
fectiveness of incorporating orthogonality. Besides,
the sym. gaussian function outperforms the other
two. The gaussian function smooths the correla-
tion coefficient around zero, while the sym. gaus-
sian function amplifies changes in orthogonality
near zero. The linear function, however, strikes
a balance between these two. Our experimental
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results confirm that enhancing the rate of change
around zero is more efficient, emphasizing the role
of highly orthogonal raters, and intensifying the
penalties for raters with high correlation.

E.4 Effect of Sample/top-K
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Figure 12: The impact of the sample temperature co-
efficient on model performance. τ is the temperature
coefficient, and when τ = 0, it refers to top-K selection.

Qurating (Wettig et al., 2024) suggest that sam-
pling is more effective than directly selecting the
top-K data. In this experiment, we integrate four
different raters to rigorously investigate the im-
pact of sampling on the model’s final performance.
Specifically, we calculate the sampling probability
for all rated samples using the following softmax
formula:

P (x) =
exp(I(x)/τ)∑
exp(I(x)/τ)

(15)

where τ is the temperature parameter. We train
a model of the same size as in the previous exper-
iments. From the results presented in Figure 12,
several key observations can be made:

(1) Our findings reveal that direct top-K selec-
tion outperforms sampling, further affirming the
efficacy of our integration method. Additionally,
Wettig et al. (2024) posits that sampling enhances
data diversity, which is beneficial for model learn-
ing. Our results indicate that the top-K scores are
higher than the sampling scores, demonstrating that
the top-ranked data according to our integration rat-
ing exhibit a broader distribution rather than being
concentrated in a single domain.

(2) Contrary to the optimal value of 2 suggested
by Wettig et al. (2024), our analysis indicates that
a relatively smaller τ value yields optimal results.
A smaller τ accentuates the impact of ratings, sug-

gesting that our method effectively selects higher-
quality data. Furthermore, our multi-dimensional
approach also accounts for the diversity of data
types, ensuring a more comprehensive evaluation.

F Selected Data Cases

We show the document cases rated by the single
raters and FIRE in the Table 10. For each method,
we show the best/middle/worst sample.
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Method Best Middle Worst

Writing Style

... is the very thing that makes each person inim-

itable, the thing that allows us finally to see and

celebrate one another’s distinct natures. Once it

is understood that this expanse must always exist,

each person is free to become whatever it is they

will become, unburdened by the need to shape

themselves to fit their partner. And this individ-

uation need not be a growing apart. For if each

partner can remember the beauty and necessity

of the expanse, then they can come to appreciate

fully the ...

... him some of that history," she said. Near the

beginning of the session panelist Don Lemon of

CNN played video of his story on what he called

"a picture of racial unity," Sherrod’s reunion with

the elderly white farmers whose farm she helped

save, after first not making a full effort at a non-

profit where she worked 24 years ago. The author

of legislation that would require natural-gas com-

panies to disclose hydraulic-fracturing fluids says

she feels betrayed by industry groups that have

spoken ...

... - 2006 Y-T-D Stat Scoring Average (Actual) -

2006 Stat Scoring Average (Actual) - 2006 Y-T-D

Stat Scoring Average (Actual) - 2006 Stat Scor-

ing Average (Actual) - 2006 Y-T-D Stat Scoring

Average (Actual) - 2006 Stat Scoring Average

(Actual) - 2006 Y-T-D Stat Scoring Average (Ac-

tual) - 2006 Stat Scoring Average (Actual) - 2006

Y-T-D Stat Scoring Average (Actual) - 2006 Stat

Scoring Average (Actual) - 2006 Y-T-D Stat Scor-

ing Average (Actual) - 2006 Stat Scoring Average

(Actual) - 2006 Y-T-D St ...

Required Expertise

... induced climate change have used instrumental

records to study how quickly climate is warming

across different parts of the world. Our study uses

a collection of natural archives that preserve in-

formation about past temperatures over a much

longer period, spanning the last 500 years, to ask

the question: "When did the sustained warming

trends that we’ve seen in the 20th and 21st Cen-

turies first begin?" ...

... (by R.M. Butler?) in ’Folder 20’ seen by Nick

Sheaff, 1970s; Liam Swords, Achonry and its

churches (Strasbourg: Éditions du Signe, 2007),

78(illus.). Nature: Additions, for Lady Fitzger-

ald Arnott. contractor: Michael O’Brien, Dun

Laoghaire. Refs: IB 59, 27 Oct 1917, 551; MS

letter in IAA (Acc. 88/118) from Rev.P. Kilkenny

to Butler, 6 Jun 1919, states that he cannot resist

’revolutionary, ...

... more. Awesome. : 1138 This is one awesome

article.Thanks Again. Really Cool. : 1136 Appre-

ciate you sharing, great article. : 1135 I cannot

thank you enough for the blog post.Much thanks

again. Great. : 1134 I think this is a real great

post.Much thanks again. Cool.: 1133 A big thank

you for your blog article.Really looking forward

to read more. Great. : 1132 Great, thanks for

sharing this blog post.Much thanks again. ...

Facts and Trivia

... Native American to carry the United States

flag at the opening ceremony of the Olympic

Games: Clarence "Taffy" Abel (Chippewa). 1926

First Native American in the NHL New York

Rangers November 16, 1926: Clarence "Taffy"

Abel (Chippewa). First Native American woman

to hold state office in Oklahoma: Jessie Eliza-

beth Randolph Moore (Chickasaw). First national

reform group with only Native American mem-

bership: National Congress of American Indians

(NCAI) by Zitkala-Sa ...

... I probably only understand two-thirds of what’s

going on, honestly, but it’s still damn good stuff.

(Audiobook) Being Mortal by Atul Gawande:

Heard raves about this non-fiction about elder

and end-of-life care from many a Rioter, and it’s

ringing all my Books That Make Me Want To

Change the World buttons. (audiobook) Half-

Resurrection Blues by Daniel José Older: Loved

Older’s Salsa Nocturna, so I speedily picked up

this novel about a half-alive, half-dead sort-of-

secret-agent who works for ...

... T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME ...

Educational Value

... Learn what "big history" is and how scholars

apply this approach to the story of humanity. Gain

new understanding of the complete sweep of hu-

man history, across all civilizations and around

the world. Use the lens of history to find out what

makes us human, why the world exists as it does

today, and where we might be going in the future.

See how the environment, population growth, so-

cial complexity, and more have driven the rise and

fall of civilizations over ...

... a similar set of models as Fig. 2, this time

displaying the C-star fractions for models with

varying fCE between 0.008 and 0.4 at the base

of the convective envelope. In this instance, there

is a far more straightforward interpretation, with

an increase in fCE producing an increased C-

star fraction, in almost all cases. Furthermore,

there is more readily acceptable agreement with

the observed C-star fractions than was the case

for the ...

... 05:17:33 https://cse.google.com.bo/url?sa=t

url=https://toppornsites.mobi 2023-01-27
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In mathematics, the differential geometry of sur-

faces deals with the differential geometry of

smooth surfaces with various additional struc-

tures, most often, a Riemannian metric. Surfaces

have been extensively studied from various per-

spectives: extrinsically, relating to their embed-

ding in Euclidean space and intrinsically, reflect-

ing their properties determined solely by the dis-

tance within the surface as measured along curves

on the surface. One of the fundamental concepts

investigated is ...

... Everett, Washington: Charlotte Murray, 2010.

Second Edition of 10. 7.5 x 5.25"; 56 pages.

Images captured using three digital cameras, a

Nikon Coolpix 5700, a Nikon D70, and a Nikon

D80. Printed with Epson Photo Stylus R2880

printer with UltraChrome K3 pigment inks on

Epson Premium Presentation Paper Matte. Pa-

pyrus font. Coil binding with green see through

cover and lightweight cardboard back. Colophon:

"The Dead Tree Scrolls first edition was created

in 2005. This second edition was ...

... HBP - MILLER; MORALES. SF - WILKER-

SON(2). SB - EPPS(9); HORAN(3); PINDER(4).

CS - EPPS(3). Clemson IP H R ER BB SO AB

BF Justin Sarratt...... 6.1 6 3 3 1 8 24 26 Alex

Frederick...... 0.1 0 0 0 0 0 1 1 Joseph Moore-

field... 0.1 0 0 0 0 1 1 1 Matt Campbell....... 2.0 0

0 0 3 3 6 9 Virginia Tech IP H R ER BB SO AB

BF Marc Zecchino....... 7.1 7 5 4 1 7 27 29 Jake

Atwell......... 0.2 3 3 3 0 0 5 5 Sean McDermott ...

Table 10: Data cases are randomly selected from the top, middle, and bottom 0.01% of training samples, representing
the best, middle, and worst cases for each method.
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