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Abstract

Rotary Position Embedding (RoPE) has shown
strong performance in text-based Large Lan-
guage Models (LLMs), but extending it to
video remains a challenge due to the intricate
spatiotemporal structure of video frames. Ex-
isting adaptations, such as RoPE-3D, attempt
to encode spatial and temporal dimensions sep-
arately but suffer from two major limitations:
positional bias in attention distribution and dis-
ruptions in video-text transitions. To overcome
these issues, we propose Video Rotary Position
Embedding (VRoPE), a novel positional encod-
ing method tailored for Video-LLMs. Specifi-
cally, we introduce a more balanced encoding
strategy that mitigates attention biases, ensur-
ing a more uniform distribution of spatial fo-
cus. Additionally, our approach restructures
positional indices to ensure a smooth transi-
tion between video and text tokens. Extensive
experiments on different models demonstrate
that VRoPE consistently outperforms previous
RoPE variants, achieving significant improve-
ments in video understanding, temporal reason-
ing, and retrieval tasks. Code is available at
https://github.com/johncaged/VRoPE.

1 Introduction

In recent years, Large Language Models (LLMs)
have achieved remarkable progress (Touvron et al.,
2023; Bai et al., 2023). Building on the success
of LLMs, Video Large Language Models (Video-
LLMs) (Maaz et al., 2023; Li et al., 2024d; Jin
et al., 2024) have emerged as a powerful paradigm
for video-language understanding. These models
typically integrate LLMs with pre-trained vision
encoders, enabling the joint modeling of video and
textual information. However, a fundamental chal-
lenge in Video-LLMs lies in effectively modeling
positional relationships within video sequences.

*Equal contribution.
†Corresponding author.
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Figure 1: Comparison of RoPE, RoPE-3D, and our
VRoPE in video positional encoding. (a) Positional Un-
biasedness: RoPE and RoPE-3D exhibit spatial biased
attention, particularly towards later tokens or specific
frame regions, while VRoPE ensures more uniform at-
tention. (b) Seamless Video-Text Transition: RoPE-3D
causes a discontinuity when transitioning from video
to text tokens, which VRoPE smooths for better cross-
modal dependency modeling.

In LLMs, positional encoding plays a crucial
role in enabling models to capture order-dependent
patterns, as self-attention mechanisms themselves
are inherently permutation-invariant. Among vari-
ous positional encoding schemes, Rotary Position
Embedding (RoPE) (Su et al., 2024) has gained
widespread adoption due to its ability to encode
relative position relationships. RoPE enables ef-
ficient long-range dependencies, making it highly
effective in text-based models. However, when ap-
plied directly to video data, vanilla RoPE—where
video tokens are treated as a simple sequence akin
to text—fails to account for the complex spatiotem-
poral structure inherent in video frames, leading
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to suboptimal representations. Despite its critical
role, an effective video-specific positional encoding
strategy remains an open challenge.

To optimally encode positional relationships in
Video-LLMs, we identify three key properties that
an ideal video positional encoding should satisfy:

(1) Spatiotemporal Structure Modeling. Un-
like text, where positional relationships are strictly
one-dimensional, video frames exhibit both spatial
(width, height) and temporal (frame index) dimen-
sions. An effective encoding must reflect this in-
herent structure to facilitate accurate modeling of
spatiotemporal dependencies. Recent approaches
(Wang et al., 2024; Bai et al., 2025), referred to
as RoPE-3D, extend RoPE for video structure by
splitting the feature channels into three parts to sep-
arately encode frame, width, and height positions.

(2) Positional Unbiasedness. A critical yet of-
ten overlooked aspect of positional encoding is its
impact on attention distribution. As illustrated in
Figure 1 (a), RoPE, by design, applies a long-term
decay over increasing positional indices, inadver-
tently introducing a bias that amplifies attention
toward later tokens. This issue persists in RoPE-
3D, where spatial positions within video frames are
unevenly weighted, causing attention to be dispro-
portionately focused on certain areas—typically the
bottom-right regions of frames—while suppressing
others, which is shown in Figure 1 (a). Such biases
distort spatial contextual modeling, leading to sub-
optimal video comprehension. An effective video
positional encoding should mitigate these biases to
ensure uniform attention across the entire frame.

(3) Seamless Video-Text Transition. For effec-
tive multimodal understanding, an ideal positional
encoding should ensure a seamless transition be-
tween video and text tokens. However, as demon-
strated in Figure 1 (b), RoPE-3D introduces a dis-
continuity when transitioning from video to text
tokens, as the positional indices of text tokens are
arbitrarily offset by the maximum position index
of the video sequence (determined by the largest
of frame count, width, and height, which often
vary significantly). This artificial “jump” in the
positional encoding space disrupts the smooth flow
of information between modalities, hindering the
model to establish meaningful cross-modal depen-
dencies.

Based on the above principles, we propose Video
Rotary Position Embedding (VRoPE), a novel po-
sitional encoding method specifically designed for
Video-LLMs. Our approach consists of two key

components to satisfy those principles. (1) Sym-
metric Bias Mitigation: To counteract the attention
bias present in RoPE-based encodings, we design
a symmetric positional representation that encodes
each spatial coordinate from vertices to the center.
By distributing attention more uniformly across
spatial locations, this method prevents positional
distortions and improves overall video understand-
ing. (2) Temporal Centered Arrangement: We pro-
pose a center-aligned design that spatially aligns
the geometric centers of video frames with the tex-
tual arrangement axis, and arranges video frames
in temporally ordered progression along the tex-
tual positional axis. This transformation not only
maintains spatial coherence within video frames
but also ensures a smooth transition between video
and text tokens, mitigating discontinuities in the
positional encoding space.

Overall, VRoPE effectively enhances Video-
LLMs by preserving spatiotemporal structure, miti-
gating attention bias, and ensuring smooth video-
text transitions. We conduct extensive experiments
on different models and training datasets. Our re-
sults demonstrate significant performance improve-
ments over RoPE and RoPE-3D on multiple video
benchmarks, covering general video understand-
ing, temporal reasoning, long video comprehen-
sion, and video retrieval. These findings establish
VRoPE as a robust and efficient positional encod-
ing method tailored for Video-LLMs. We hope
this work inspires further research on Video-LLM
positional encoding and provides valuable insights
for future Video-LLM designs.

2 Related Work

2.1 Video Large Language Models

Recent advancements in Video-LLMs (Maaz et al.,
2023; Li et al., 2023, 2024b; Jin et al., 2024;
Li et al., 2024d; Xu et al., 2024) have signif-
icantly enhanced video processing by integrat-
ing multiple modalities and employing instruction
fine-tuning. Notable innovations include Video-
ChatGPT (Maaz et al., 2023), which introduced
video instruction tuning for text generation, and
VideoChat (Li et al., 2023) and VideoChat2 (Li
et al., 2024b), which improved modality alignment
via cross-attention and multi-stage bootstrapping
etc. Other models, such as Chat-UniVi (Jin et al.,
2024) and LLaMA-VID (Li et al., 2024d), focus on
efficient video representations through techniques
like token compression and dual-token methods
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that separate context and content. Additionally,
PLLaVA (Xu et al., 2024) explores the use of
image-pretrained LLaVA models for video tasks,
utilizing simple spatial pooling techniques.

2.2 Multimodal Position Embedding
Most Video-LLMs inherit the default design from
LLMs by using Rotary Position Embedding (RoPE)
(Su et al., 2024) for positional encoding. RoPE
encodes relative distance information as absolute
position embeddings, offering key advantages like
no additional training parameters and improved
performance in various tasks (Su et al., 2024). It
is widely used in modern LLMs due to its ability
to extrapolate context length, extending a model’s
window size without the need for expensive re-
training. However, RoPE’s 1D design, effective
for text, overlooks the spatiotemporal structure of
video data, limiting its suitability for Video-LLMs.
To address this, several approaches have adapted
RoPE for video. For instance, RoPE-2D (Agrawal
et al., 2024; Wang et al., 2024) extends the encod-
ing to capture spatial relationships in video frames,
while RoPE-3D (Wang et al., 2024; Bai et al., 2025)
divides the channel dimension into three groups to
better represent the spatiotemporal dimensions.

However, these approaches still face issues like
Positional Attention Bias and Cross-Modal Posi-
tional Discontinuity, which are discussed in Section
3. Our VRoPE method addresses these limitations,
offering more accurate and robust positional encod-
ing tailored for Video-LLMs.

3 Motivation

3.1 Preliminary: Rotary Position Embedding
Rotary Positional Embedding (RoPE) is a widely
adopted method in LLMs that encodes absolute
positional information while preserving relative po-
sitional relationships. This property makes RoPE
particularly effective for self-attention mechanisms,
as it allows models to capture the relative distance
between tokens in a computationally efficient man-
ner. Given a token embedding x at position index
m, RoPE applies a complex-valued rotation opera-
tion, formulated as:

RoPE(x,m) = xeimθ (1)

where i is the imaginary unit, and the frequency
encoding vector θ is defined as:

θj = base
−2j
d (2)

where base is a hyperparameter, d is the feature
dimension, and j = [0, 1, ..., d/2− 1] denotes the
index of each feature channel.

In the self-attention mechanism, RoPE trans-
forms absolute position embeddings into relative
ones. The attention score between m-th query qm

and n-th key kn is

A(m,n) = ℜ
[
qm · k∗

ne
i(m−n)θ

]
(3)

where ℜ[·] denotes the real part, and ∗ represents
the complex conjugate.

While RoPE excels in sequential text modeling,
its direct application to video-text interleaved se-
quences poses challenges due to the complex spa-
tiotemporal relationships inherent in video frames.

3.2 RoPE for Video-LLMs
In Video-LLMs, video frames are typically pro-
cessed by vision encoders (e.g., ViTs (Alexey,
2020) or CNNs (He et al., 2016)) and transformed
into a sequence of visual tokens. These visual to-
kens are then concatenated with text tokens and fed
into an LLM backbone.

In most existing approaches, video tokens are
treated as a simple 1D sequence, with position in-
dices assigned in an increasing order, similar to
text. However, this naive approach, referred to as
RoPE, overlooks the inherent spatiotemporal struc-
ture of video data. Flattening video frames this way
disrupts spatiotemporal structure and leads to in-
efficient position usage. Unlike text, video tokens
carry less dense semantic information, and their
excessive sequence length can weaken contextual
dependencies, making long-range understanding
harder.

3.3 RoPE-3D for Video-LLMs
Recent approaches, such as M-RoPE in Qwen2-
VL(Wang et al., 2024), have proposed RoPE-
3D as an extension of RoPE for video structure
preserving. RoPE-3D intuitively partitions the
feature dimensions to separately encode spatial
(width, height) and temporal (frame index) po-
sitions. Given a video token with coordinates
(w, h, t), RoPE-3D computes:

RoPE-3Dj(x, w, h, t) =





RoPEj(x, w), j ∈ Dw

RoPEj(x, h), j ∈ Dh

RoPEj(x, t), j ∈ Dt

(4)

where where Dw, Dh, Dt denote feature partitions
assigned to width, height, and temporal axes, re-
spectively. For text tokens, the encoding remains
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Figure 2: Attention weight visualization of RoPE, RoPE-3D, and VRoPE. We compute average text-to-video frame
attention weights on VideoMME (Fu et al., 2024) benchmark (lighter color indicates higher attention). (a) RoPE
exhibits row-wise attention decay within frames. (b) RoPE-3D shows a similar decay from the bottom-right to the
top-left, introducing positional bias that skews attention toward spatially closer frame tokens. (c) VRoPE mitigates
this bias, leading to a more balanced attention distribution.

Table 1: Average attention weights at the video-text
boundary on Video-MME. We use the subsequent text
instruction as the query and video/text tokens as keys.
Note that text-to-video attention weights of RoPE-3D
are an order of magnitude lower than other methods,
indicating its positional discontinuity between video
and text.

Method Text-to-Text Text-to-Video

RoPE 1.41e-2 2.08e-4
RoPE-3D 1.27e-2 5.12e-5
VRoPE (Ours) 1.32e-2 3.70e-4

consistent with the original RoPE by setting w =
h = t = m, ensuring that:

RoPE-3Dj(x,m,m,m) ≡ RoPEj(x,m) (5)

This design explicitly models spatial and tempo-
ral positions while preserving text token behavior.
However, RoPE-3D still exhibits two key limita-
tions, which we elaborate on below.

3.4 Problem Analysis
While RoPE-3D introduces a promising design by
partitioning the feature dimensions to encode spa-
tial (width, height) and temporal (frame index) po-
sitions separately, two critical issues persist when
handling video–text data.

(1) Positional Attention Bias. As is demon-
strated in Figure 2 (a), RoPE naturally applies a
long-term decay over increasing positional indices,
which amplify attention toward later positions. Un-
fortunately, we find that this issue persists in RoPE-
3D, where the decay leads to an uneven distribution
of focus across spatial positions in video frames.

As is shown in Figure 2 (b), notably, tokens in the
bottom-right of each frame receive disproportion-
ately higher attention, while those in the top-left
are increasingly suppressed. This imbalance can
distort spatial contextual modeling by weakening
dependencies on earlier tokens, which in turn af-
fects the model’s understanding of the video.

(2) Cross-Modal Positional Discontinuity.
RoPE-3D introduces separate positional encodings
for spatial (width, height) and temporal (frame
index) dimensions. However, when video tokens
are concatenated with subsequent text tokens,
their positional indices do not follow a smooth
transition. Instead, text tokens inherit positional
indices that are arbitrarily offset by the maximum
position value across spatial (W,H) and temporal
dimensions T , i.e., max(W,H, T ). This results
in an artificial “jump” in the positional encoding
space when transitioning from video to text
tokens. The discontinuity creates an abrupt and
non-uniform gap between the final video token and
the subsequent text token. As is shown in Table
1, text-to-video attention weights of RoPE-3D at
the video-text boundary are an order of magnitude
lower than RoPE and VRoPE, which demonstrates
that the discontinuity in position embedding will
affect the attention weights. Further, the magnitude
of this gap depends on video dimensions rather
than being a fixed offset, making it inconsistent
across different video-text samples. Such a
discrepancy can degrade the model’s ability to
establish seamless contextual dependencies across
modalities. This issue is particularly problematic
in long videos, as the increasing frame count T
exacerbates the positional gap, which will be

14475



Vision Encoder

Position Embedding 

Large Language Model

“Please provide a 
detailed description of 

the video content.”

“The video shows a group of penguin chicks
migrating. On the left side of the frame, a
penguin chick is observing its surroundings…”

Text Tokenizer

Video Input

VRoPE (Ours)
(a) Symmetric Bias Mitigation (b) Temporal Centered Arrangement

Text
Video

Text

…
Text Bidirectional Text Video Frame

…

𝒖𝟎 𝒖𝟏 𝒖𝟐

…

𝒖𝟏 𝒖𝟐

𝒖𝟑 𝒖𝟒

…

…
	𝑢& = 𝑤 + ℎ
	𝑢' = 𝑤 − ℎ
	𝑢( = −𝑤 − ℎ
	𝑢) = −𝑤 + ℎ

Symmetric Arrangement in Video Frames

Uniform 
Partitioning

…

𝑛

ℎ

𝑗

𝒖𝟏
𝒖𝟐
𝒖𝟑
𝒖𝟒

… 	𝑣& = 𝑢& + 𝑏&
	𝑣' = 𝑢' + 𝑏'
	𝑣( = 𝑢( + 𝑏(
	𝑣) = 𝑢) + 𝑏)

𝑣* + 𝑡(𝐻 +𝑊 − 1)
Frame
Offset

Figure 3: Left: the overall architecture of a typical Video-LLM. In this work, our improvements primarily target
the positional embedding component of the LLM to enhance its video understanding capability. Right: method
illustration of VRoPE. (a) We first apply symmetric arrangement to mitigate positional bias in video frames.
The RoPE frequencies are uniformly allocated to the four dimensions. (b) We propose to use temporal centered
arrangement in video frames to form a seamless video-text transition, which enables video input of arbitrary length
without causing discontinuity.

further discussed in Section 5.3.

4 Method: VRoPE

In this section, we introduce Video Rotary Position
Embedding (VRoPE), a novel positional encoding
method tailored for Video-LLMs. Our approach
addresses the inherent limitations of RoPE-3D, in-
cluding positional attention bias and cross-modal
positional discontinuity, by leveraging a combina-
tion of Symmetric Bias Mitigation and Temporal
Centered Arrangement. The overall framework of
VRoPE is illustrated in Figure 3.

4.1 Symmetric Bias Mitigation

As discussed in Section 3.4, both RoPE and RoPE-
3D employ a single positional arrangement direc-
tion when encoding features within video frames
(e.g., row-major scanning for RoPE and top-left to
bottom-right ordering for RoPE-3D), inevitably in-
troducing positional attention bias. To address this
limitation, we propose Symmetric Bias Mitigation
as illustrated in Figure 3 (a).

Specifically, we design a unified symmetric po-
sitional arrangement paradigm applicable to arbi-
trary dimensions. For textual tokens represented
as points, their inherent symmetry is preserved.
For one-dimensional sequences, we adopt bidirec-
tional positional indexing starting from both end-
points (similar to bidirectional modeling in lan-
guage models). For two-dimensional planes (i.e.,
video frames), we implement a four-directional
symmetric arrangement extending from frame ver-
tices toward the center. This scheme naturally ex-

tends to three-dimensional space with eight-vertex
symmetry, etc. Given an input video frame of size
(W,H), we compute four symmetric directional
positional arrangements as follows:




u1
u2
u3
u4


 =




w + h
w − h
−w − h
−w + h


 . (6)

Considering that RoPE employs different fre-
quencies across channels, we strategically allocate
frequencies to these four symmetric positional in-
dices in a uniform manner. This design enables
distinct positional arrangement directions to model
features through different RoPE frequencies (high,
medium and low).

4.2 Temporal Centered Arrangement

While Symmetric Bias Mitigation effectively al-
leviates positional bias, the inherent discontinu-
ity between video and textual modalities persists.
To address this challenge, we propose the Tempo-
ral Centered Arrangement for positioning video
frames. Given that textual positions inherently sat-
isfy u1 = u2 = u3 = u4 (demonstrating isotropic
symmetry), we first align the geometric center of
each video frame with the textual arrangement axis
through coordinate transformation. Specifically,
for a video of size (W,H, T ) with an initial posi-
tion index pstart (i.e., the last position id + 1 of the
previous text), this process can be denoted as:
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


v1
v2
v3
v4


 =




u1
u2 +H − 1

u3 +H +W − 2
u4 +W − 1


+ pstart. (7)

Subsequently, we systematically arrange frame
positions along the temporal dimension using the
following formulation:

vtj = vj + t(H +W − 1), (8)

where t is the frame index. This configuration en-
sures that: (1) The central position of each video
frame coincides with the textual arrangement axis,
and (2) Sequential frames naturally extend along
the textual positional progression direction through
temporal ordering. Consequently, the temporal ex-
pansion axis of video sequences becomes intrinsi-
cally aligned with the positional growth direction
of text tokens, which means that arbitrary length of
video input does not affect the continuity between
video and text.

Finally, our VRoPE computes the positional en-
coding as:

VRoPEj(x, v
t
1, v

t
2, v

t
3, v

t
4)

=





RoPEj(x, v
t
1)j=4k

RoPEj(x, v
t
2)j=4k+1

RoPEj(x, v
t
3)j=4k+2

RoPEj(x, v
t
4)j=4k+3

(9)

where k ∈ {0, 1, 2, ...}. For text tokens, we retain
the original RoPE encoding structure (Eq. 5) to en-
sure compatibility with LLMs. Further discussions
can be found in Appendix A.

5 Experiments

5.1 Experimental Setup
Implementation Details. We apply our proposed
VRoPE to Video-LLM architectures with three
widely used LLM backbones: Vicuna-7B, Qwen2-
1.5B, and Qwen2-7B, the resulting models are
denoted as Video-Vicuna-7B, Video-Qwen2-1.5B,
and Video-Qwen2-7B. For the vision encoder, we
leverage Eva-CLIP (Sun et al., 2023), and connect
the Vision Encoder to the LLM using a Multi-Layer
Perceptron (MLP) (Tolstikhin et al., 2021). We use
a 224×224 resolution for both image and video in-
puts. For video input, the number of input frames is
16 and the frames are tokenized using a 2× 2 pool-
ing kernel with a stride of 2, i.e., each frame has

64 tokens as input. Training follows a two-stage
paradigm: in the pre-training stage, only the MLP
connector is trained, while in the instruction-tuning
stage, both the MLP and LLM backbones are fine-
tuned, with the Vision Encoder frozen throughout.
During pre-training, we use a batch size of 256 and
a learning rate of 1e-3, while for instruction-tuning,
we reduce the batch size to 128 and set the learning
rate to 2e-5. A warm-up ratio of 0.03 is used, fol-
lowed by cosine learning rate decay after the linear
warm-up phase. The training was conducted on 8
Nvidia A800 GPUs.

Training Data. For Vicuna-7B, we pre-train the
model on the LLaVA-558K dataset (Liu et al.,
2024a) with WebVid samples (Bain et al., 2021)
and fine-tune it on the LLaVA-mix665K (Liu et al.,
2024a) dataset augmented with VideoChatGPT
data (Maaz et al., 2023). For the Qwen2 LLM
series, we pre-train the models on a randomly sam-
pled 1M caption dataset, which includes LLaVA-
558K, WebVid, DenseFusion-1M (Li et al., 2024c),
VALOR (Liu et al., 2024b), and CC3M (Chang-
pinyo et al., 2021). The models are then fine-tuned
on a combination of LLaVA-mix665K, VideoChat-
GPT, and LLaVA-Video-178K (Zhang et al., 2024).

Evaluation Benchmarks. We evaluated VRoPE
across diverse video benchmarks, covering gen-
eral video understanding (Video-MME (Fu et al.,
2024)), video temporal understanding (MVBench
(Li et al., 2024b), TempCompass (Liu et al.,
2024c)), long video understanding (MLVU (Zhou
et al., 2024), LongVideoBench (Wu et al., 2025),
EgoSchema (Mangalam et al., 2024)), and long
video retrieval (Video-NIAH (Zhao et al., 2024))
to validate its effectiveness. The evaluation is con-
ducted using the official code provided by each
benchmark.

5.2 Main Results
We evaluate the performance of RoPE, RoPE-3D,
and our proposed VRoPE across six video un-
derstanding benchmarks. As shown in Table 2,
VRoPE consistently outperforms both RoPE and
RoPE-3D, achieving the highest average scores
across all tasks and backbones.

For instance, in the Video-Vicuna-7B row,
VRoPE achieves an average score of 44.48, sur-
passing RoPE by 1.13 points. Similarly, when eval-
uated with Qwen2-1.5B and Qwen2-7B, VRoPE
demonstrates consistent improvements across all
benchmarks. Notably, it outperforms RoPE and
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Table 2: Performance comparison of RoPE variants on video benchmarks across different LLM backbones. Results
across tasks, including general video understanding (Video-MME), video temporal understanding (MVBench,
TempCompass), and long video understanding (MLVU, LongVideoBench, EgoSchema).

Method
Video-MME MLVU

MVBench
LongVideoBench TempCompass EgoSchema

Avg.
(w/o subs) @M-Avg @Val @Multi-Choice @Test

Video-Vicuna-7B
w/ RoPE 38.5 47.00 43.90 41.66 53.10 35.92 43.35
w/ RoPE-3D 38.0 (↓0.5) 46.30 (↓0.7) 44.55 (↑0.65) 40.16 (↓1.5) 54.94 (↑1.84) 39.79 (↑3.87) 43.96 (↑0.61)
w/ VRoPE 38.9 (↑0.4) 47.37 (↑0.37) 45.18 (↑1.28) 40.69 (↓0.97) 54.05 (↑0.95) 40.71 (↑4.79) 44.48 (↑1.13)

Video-Qwen2-1.5B
w/ RoPE 39.0 51.15 51.15 46.63 56.96 48.50 48.90
w/ RoPE-3D 39.3 (↑0.3) 51.19 (↑0.04) 50.45 (↓0.70) 48.01 (↑1.38) 57.97 (↑1.01) 49.00 (↑0.50) 49.32 (↑0.42)
w/ VRoPE 42.4 (↑3.4) 51.76 (↑0.61) 50.78 (↓0.37) 47.79 (↑1.16) 57.15 (↑0.19) 49.90 (↑1.40) 49.96 (↑1.06)

Video-Qwen2-7B
w/ RoPE 50.1 54.87 54.33 49.36 63.73 57.14 54.92
w/ RoPE-3D 49.5 (↓0.6) 56.06 (↑1.19) 54.23 (↓0.1) 49.55 (↑0.19) 64.49 (↑0.76) 58.80 (↑1.66) 55.44 (↑0.52)
w/ VRoPE 50.6 (↑0.5) 57.81 (↑2.94) 54.70 (↑0.37) 50.48 (↑1.12) 65.88 (↑2.15) 58.60 (↑1.46) 56.35 (↑1.43)
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Figure 4: Visualization of long video retrieval results on Video-NIAH (Zhao et al., 2024). Our VRoPE consistently
achieves high accuracy across varying background lengths and needle depths, showing strong retrieval capability in
long videos.

RoPE-3D by significant margins on tasks such as
Video-MME (a 3.4-point increase for Qwen2-1.5B)
and MLVU (a 2.94-point increase for Qwen2-7B).

These results highlight the superior adaptabil-
ity of VRoPE across different LLM types and pa-
rameter sizes. Importantly, VRoPE introduces no
new learnable parameters and does not increase
computational complexity, making it a cost-free
performance enhancement for Video-LLMs. More
results and visualization examples can be found in
Appendix B and Appendix C.

5.3 Results on Long Video Retrieval

We compare our method with RoPE (Su et al.,
2024) and RoPE-3D (Wang et al., 2024) on the long
video retrieval task to evaluate the model’s general-
ization ability with longer video inputs. Following
the setup in Video-NIAH (Zhao et al., 2024), we
conduct Video Needle-In-A-Haystack (V-NIAH)
experiments, where a target "needle" frame is in-
serted into a sequence of background frames, with
the total frame count varying between 256 and
1216.

As shown in Figure 4, the retrieval accuracy of

RoPE drops significantly when the number of in-
put frames exceeds 832, while VRoPE outperforms
other approaches by a considerable margin. The
quantitative results, presented in Table 4, further ev-
idence this finding. Specifically, VRoPE achieves
an accuracy that is 32.19 points higher than RoPE
and 14.22 points higher than RoPE-3D when the
number of input frames increases to 1024-1216.
Notably, these results are obtained even though
the input frame count in this range is dozens of
times greater than the maximum number seen dur-
ing training. This demonstrates the exceptional
extrapolation ability of VRoPE. Moreover, RoPE-
3D underperforms the RoPE baseline for inputs of
256-512, 512-768, and 768-1024 frames, which
further proves that the cross-modal positional dis-
continuity affects the model’s ability to understand
videos of different lengths.

5.4 Ablation Studies

Comparison of RoPE Variants. We conduct ex-
periments to assess the impact of three key proper-
ties: Spatiotemporal Structure Modeling (S.S.M.),
Positional Unbiasedness (P.U.), and Seamless
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Table 3: We assess various RoPE designs to validate the necessity of the three desired properties: Spatiotemporal
Structure Modeling (S.S.M), Positional Unbiasedness (P.U.), and Seamless Video-Text Transition (S.V.T.). The
results indicate that the model attains optimal performance when all properties are fully incorporated.

Method S.S.M. P.U. S.V.T. Video-MME EgoSchema LongVideoBench Avg.

RoPE ✘ ✘ ✔ 39.0 48.50 46.63 44.71
RoPE-2D ✔ ✘ ✔ 43.2 (↑4.2) 47.60 (↓0.90) 46.33 (↓0.30) 45.71 (↑1.00)
RoPE-3D ✔ ✘ ✘ 39.3 (↑0.3) 49.00 (↑0.50) 48.01 (↑1.38) 45.44 (↑0.73)
RoPE-Share ✘ ✔ ✔ 39.7 (↑0.7) 48.66 (↑0.16) 45.10 (↓1.53) 44.49 (↓0.22)
RoPE-Compact ✔ ✘ ✔ 38.1 (↓0.9) 50.77 (↑2.27) 45.96 (↓0.67) 44.94 (↑0.23)
VRoPE ✔ ✔ ✔ 42.4 (↑3.4) 49.90 (↑1.40) 47.79 (↑1.16) 46.70 (↑1.99)

Table 4: Average retrieval accuracy across different
input frame length intervals on Video-NIAH (Zhao et al.,
2024). Compared to RoPE, the performance advantage
of VRoPE becomes more pronounced at longer video
lengths.

Method 256-512 512-768 768-1024 1024-1216

RoPE 94.84 87.03 73.28 54.84
RoPE-3D 88.90 80.94 69.69 72.81
VRoPE 98.28 95.16 90.31 87.03

Video-Text Transition (S.V.T.), as discussed in Sec-
tion 1. The results, summarized in Table 3, high-
light the importance of these properties.

We first compare RoPE-2D (Agrawal et al.,
2024) and RoPE-3D (Wang et al., 2024) with the
baseline RoPE (Su et al., 2024) method. RoPE-
2D encodes only the spatial coordinates (w, h) of
each frame. While it resolves the cross-modal posi-
tional discontinuity, it still suffers from positional
bias. Both RoPE-2D and RoPE-3D show improve-
ments over RoPE, demonstrating the benefits of
spatiotemporal structure modeling.

Next, we evaluate two additional variants, RoPE-
Share and RoPE-Compact, to further ablate the
impact of S.S.M. and P.U. RoPE-Share uses iden-
tical positional embeddings within each frame, ar-
ranged sequentially. While it resolves positional
bias and ensures continuity, it neglects the spatial
structure of the frames, leading to a performance
drop compared to RoPE. RoPE-Compact is an ex-
tention of RoPE-3D that addresses positional dis-
continuity by encoding subsequent text tokens with
(W + 1, H + 1, T + 1)T , but it deviates from text
compatibility requirements, which slightly limits
its performance. In contrast, our proposed method
(VRoPE) incorporates all three properties, achiev-
ing a 1.99-point improvement over the RoPE base-
line, surpassing all other variants. More detailed
illustration of RoPE-Share and RoPE-Compact can

Table 5: Ablation study on VRoPE components. We
evaluate the impact of Symmetric Bias Mitigation (Sym-
metric) and Temporal Centered Arrangement (Continu-
ity). The model achieves the best performance when
both components are applied together.

Continuity Symmetric Video-MME LongVideoBench

✘ ✘ 39.0 46.63
✔ ✘ 42.3 46.30
✘ ✔ 41.3 47.27
✔ ✔ 42.4 47.79

be found in Appendix D.

Ablation on VRoPE Components. We conduct
ablation experiments to evaluate the individual con-
tributions of the Symmetric Bias Mitigation and
Temporal Centered Arrangement components. The
results, presented in Table 5, reveal that when ap-
plied separately, each method produces mixed ef-
fects. Specifically, Temporal Centered Arrange-
ment improves performance on Video-MME, indi-
cating its effectiveness in enhancing smooth trans-
lation for general video understanding. Symmet-
ric Bias Mitigation shows a significant gain on
LongVideoBench, indicating its effectiveness in
reducing bias in long video tasks. When combined
in VRoPE, the two components work synergisti-
cally, resulting in more consistent performance.

6 Conclusion

In conclusion, we propose VRoPE, a dedicated
positional encoding strategy for Video-LLMs that
balances spatiotemporal structure, mitigates atten-
tion bias, and ensures a smooth transition between
video and text tokens. Extensive experiments on
different model scales validate its superior perfor-
mance in video understanding, temporal reasoning,
and retrieval tasks. We believe VRoPE can serve
as a useful building block for future Video-LLMs,
enabling better video-language understanding.
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8 Limitations

While VRoPE demonstrates strong performance,
there are some limitations. Due to computational
resource constraints, our experiments were limited
to models with 1.5B, 7B and 8B (shown in Ap-
pendix B) parameters. Larger-scale models could
potentially yield further performance gains. Addi-
tionally, although VRoPE is adaptable across dif-
ferent dimensions, its extension to other modalities
(e.g., audio, 3D point clouds, Electroencephalogra-
phy (EEG)) and higher-dimensional data (e.g., 4D
spatiotemporal or medical imaging data) remains
an area for future research and validation.
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Table 6: Performance comparison of RoPE variants on
event-based EventBench (Du et al., 2024).

Method EventBench

Video-Vicuna-7B
w/ RoPE 38.97
w/ RoPE-3D 39.33 (↑0.36)
w/ VRoPE 40.38 (↑1.41)

Video-Qwen2-1.5B
w/ RoPE 53.31
w/ RoPE-3D 52.76 (↓0.55)
w/ VRoPE 54.23 (↑0.92)

Video-Qwen2-7B
w/ RoPE 59.25
w/ RoPE-3D 58.61 (↓0.64)
w/ VRoPE 60.35 (↑1.1)

A Discussion

Dimensional Adaptability. A key advantage of
VRoPE is its ability to degenerate into lower-
dimensional embeddings without altering its funda-
mental structure. Unlike methods that assign sepa-
rate feature channels for each coordinate, VRoPE
employs linear combinations of the original coor-
dinates, allowing any dimension set to 1 to seam-
lessly adapt into lower-dimension form. For in-
stance, when H = 1, the encoded positions sim-
plify to (w,w,−w,−w), effectively reducing to
a 1D form—unlike previous methods that rely on
separate encodings, such as (w, 0). This property
is particularly beneficial for adapting pre-trained
model’s positional encodings from images (2D) or
videos (3D) to data of varying dimensions with-
out disrupting the original encoding scheme. Con-
sequently, models can transfer more effectively
across modalities while preserving consistent posi-
tional behavior.

B More Results

B.1 Results on EventBench

The benchmark evaluated in Section 5.2 already
encompasses comprehensive capabilities required
for video understanding tasks. To further validate
temporal reasoning performance, we conduct addi-
tional evaluations focusing on event-based tasks
involving complex temporal dependencies. As
shown in Table 6, our VRoPE demonstrates con-
sistent improvements across all models compared
to existing methods. These results confirm that our

Table 7: Detailed performance comparison of RoPE
variants on Video-MME (Fu et al., 2024).

Method Short Medium Long

Video-Vicuna-7B
w/ RoPE 46.4 38.0 31.0
w/ RoPE-3D 46.0 (↓0.4) 37.5 (↓0.5) 30.6 (↓0.4)
w/ VRoPE 46.4 (-) 38.3 (↑0.3) 31.8 (↑0.8)

Video-Qwen2-1.5B
w/ RoPE 47.4 37.6 32.2
w/ RoPE-3D 47.1 (↓0.3) 37.0 (↓0.6) 33.8 (↑1.6)
w/ VRoPE 50.1 (↑2.7) 39.3 (↑1.7) 37.8 (↑5.6)

Video-Qwen2-7B
w/ RoPE 60.2 47.6 42.5
w/ RoPE-3D 60.0 (↓0.2) 46.7 (↓0.9) 41.7 (↓0.8)
w/ VRoPE 60.4 (↑0.2) 47.6 (-) 43.9 (↑1.4)

Table 8: Results on Video-MME (Du et al., 2024) under
lower frame rates (8 frames).

Method Acc.

Video-Qwen2-1.5B
w/ RoPE 38.9
w/ RoPE-3D 37.2 (↓1.7)
w/ VRoPE 40.9 (↑2.0)

approach maintains superior comprehension capa-
bilities when processing videos containing intricate
event sequences.

B.2 Results on Video-MME with varying
lengths

In this section, we analyze the performance of
RoPE, RoPE-3D, and our VRoPE across varying
input video lengths on the Video-MME dataset,
as summarized in Table 7. The results indicate
that VRoPE demonstrates marked superiority in
processing long-form videos, while also achiev-
ing moderate advantages for medium and short
videos, maintaining comparable performance to
baselines at minimum. This further validates the
effectiveness of our approach in enhancing model
comprehension capabilities across varying video
durations. The consistent improvements under-
score our method’s robustness in understanding
tasks under various video context lengths.

B.3 Results under Challenging Conditions

In this section, we evaluate the performance of
RoPE, RoPE-3D, and VRoPE on Video-MME
under low frame-rate inputs (8 frames), as re-
ported in Table 8. Notably, VRoPE maintains
enhanced performance even in these challenging
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… … …

Question: What is the object that appears after the red door opens in the video?

Video

Options: (A) A bird.    (B) A large building.    (C) A helicopter. (D) An oil drum.

RoPE RoPE-3D VRoPE (Ours)

Predict: (D) An oil drum Predict: (D) An oil drum Predict: (C) A helicopter

Figure 5: Attention weight visualization of RoPE, RoPE-3D, and VRoPE. The visualization reveals that VRoPE
exhibits stronger attention activation within critical frames (highlighted by red boxes), demonstrating its accurate
focus on pivotal spatiotemporal regions. In contrast, RoPE and RoPE-3D display attenuated attention responses in
these corresponding areas, indicating insufficient awareness of key events. This attention misalignment consequently
leads to erroneous predictions, as evidenced by their incorrect interpretations of the visual content.

sparse-sampling scenarios, empirically confirming
the robustness of our approach. This empirical
evidence highlights our method’s capability to pre-
serve spatiotemporal coherence under severe input
degradation.

B.4 Results of Larger Models and Datasets

In this section, we validate the superiority of our
approach through scaled-up model architectures
and expanded training datasets. Specifically, we
conduct experiments using SigLIP-2 (Tschannen
et al., 2025) and Qwen3-8B (Yang et al., 2025)
as backbone architectures. We expand the num-
ber of input frames to 32 and the resolution is set
to 384 × 384. During the pre-training stage, we
utilize LLaVA-558K (Liu et al., 2024a) combined
with 500K randomly sampled video-text pairs from
OpenVid-1M (Nan et al., 2024). For instruction
tuning, we integrate LLaVA-NeXT-790K (Li et al.,
2024a), LLaVA-Video-178K (Zhang et al., 2024),
and the full OpenVid-1M dataset. This configura-
tion results in approximately 1 million samples for
pre-training and 3 million samples for instruction
tuning. As demonstrated in Table 9, VRoPE main-
tains performance advantages even under these
enhanced baseline conditions (larger models, ex-
panded datasets, and stronger baselines). These

results further substantiate the generalizability and
robustness of our method across diverse architec-
tural scales and data regimes.

C Visualization Analysis

In Section 3.4, we analyze the positional attention
bias and cross-modal positional discontinuity inher-
ent to RoPE and RoPE-3D. To further substantiate
these observations, we provide concrete attention
visualization examples in this section. As illus-
trated in Figure 5, for an input video sequence, our
VRoPE effectively focuses on the video frames
most relevant to the query (the red door and the
helicopter), whereas RoPE and RoPE-3D exhibit
insufficient attention to critical frames. This defi-
ciency leads to localization errors and subsequent
incorrect responses – for instance, misidentifying
the opening of a black door as the opening of a red
door in this example. The comparative visualiza-
tion demonstrates our method’s enhanced capabil-
ity in spatiotemporal feature localization and event
understanding.

D Detailed Illustration of Other RoPE
Variants

RoPE-Share. RoPE-Share is a 1D positional en-
coding where all spatial tokens within a video
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Table 9: Performance comparison of RoPE variants on larger models and datasets. Results across tasks, including
general video understanding (Video-MME), video temporal understanding (MVBench, TempCompass), and long
video understanding (MLVU, LongVideoBench, EgoSchema).

Method
Video-MME MLVU

MVBench
LongVideoBench TempCompass EgoSchema

Avg.
(w/o subs) @M-Avg @Val @Multi-Choice @Test

Video-Qwen3-8B
w/ RoPE 61.00 64.96 59.68 60.81 68.67 56.41 61.92
w/ RoPE-3D 61.44 (↑0.44) 64.50 (↓0.46) 59.34 (↓0.34) 61.00 (↑0.19) 69.11 (↑0.44) 56.03 (↓0.38) 61.90 (↓0.02)
w/ VRoPE 62.56 (↑1.56) 65.36 (↑0.40) 59.23 (↓0.45) 61.48 (↑0.67) 68.67 (-) 57.07 (↑0.66) 62.40 (↑0.48)

frame share the same positional ID, i.e., the po-
sitional IDs of all frame tokens in the tth frame
are n + t. Text tokens follow the original encod-
ing: n+ T + 1, n+ T + 2, .... While this design
eliminates spatial attention bias and ensures cross-
modal continuity, it fails to model spatial positional
relationships within frames, leading to suboptimal
performance (as is shown in Section 5.4).

RoPE-Compact. RoPE-Compact is a variant
of RoPE-3D. The key difference lies in han-
dling cross-modal boundaries: (1) RoPE-3D
assigns the next text token a positional ID of
(max(W,H, T ),max(W,H, T ),max(W,H, T ))T .
For example, if T > W,H , the last video token
is (W,H, T )T , and the next text token becomes
(T, T, T )T , causing discontinuity in the w and h di-
mensions (as shown in Section 5.3). (2) To address
the above issue, RoPE-Compact increments each
dimension by 1, and uses it as the positional ID
for the next text token: (W + 1, H + 1, T + 1)T .
While this resolves cross-modal discontinuity,
it disrupts the pre-trained RoPE’s positional
frequency patterns of text, degrading performance.

E License Statement

The scientific artifacts used in this work are all
publicly available and this work only uses them
for research purposes, thus not violating any of the
artifacts’ licenses. The new models released in this
work is also licensed for research purposes only,
prohibiting any other misuse.
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