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Abstract

Despite their impressive capabilities, Large
Vision-Language Models (LVLMs) frequently
generate plausible yet incorrect or unsupported
responses, referred to as hallucinations. In this
study, we investigate whether different types of
hallucinations are reflected in the model’s in-
ternal representations by probing their encoded
features. We focus on two causes of hallu-
cination in multimodal reasoning—(1) over-
reliance on textual priors and (2) preference
for user prompts over conflicting visual ev-
idence—which have been identified in prior
work as frequent and impactful factors. Our
probing results reveals that hallucinations ex-
hibit distinguishable representational patterns,
suggesting a representation-level approach to
characterize and mitigate them. Motivated
by this, we propose Steering HAllucination
via RePresentation Engineering (SHARP),
a representation-level intervention framework
that modulates hallucination-related features
during inference. SHARP identifies functional
representations responsible for prior-driven and
visual-context conflicts, and jointly adjusts the
model’s internal activations during inference.
We evaluate our approach extensively using
three large vision-language models across var-
ious benchmarks. Experimental results show
that our proposed intervention effectively re-
duces hallucinations without compromising the
performance and generalization of the LVLMs.

1 Introduction

Large Vision-Language Models (LVLMs) have
demonstrated exceptional capabilities across a wide
range of multimodal tasks (Liu et al., 2023; Bai
et al., 2023; Hurst et al., 2024; Jaech et al., 2024),
spanning from basic perception to recognition and
complex reasoning. However, they are inevitably
plagued by hallucination issues-generating con-
tent that contradicts the given multimodal context.

*Equal Contribution. †Corresponding Author.

This limitation not only hinders model reliability
but also poses serious safety concerns (Liu et al.,
2024b). Identifying the underlying mechanisms
responsible for hallucinations can enhance our un-
derstanding of LVLMs’ limitations and pave the
way for developing more reliable models.

There have been several studies that investigate
the causes of hallucinations in LVLMs from two
perspectives: external and internal. From the exter-
nal perspective, hallucinations are often attributed
to data-level biases. For instance, POPE (Li et al.,
2023) and LURE (Zhou et al., 2024) show that hal-
lucinated objects are often popular ones in training
data or those that co-occur with objects mentioned
in the instructions or prior responses. Additionally,
LRV-Instruction (Liu et al., 2024a) highlights that
most LVLMs are fine-tuned to encourage them to
cater to positive instructions.

In contrast, internal-factor analyses attribute hal-
lucination to architectural behaviors. Contrastive
decoding-based methods, such as VCD (Leng et al.,
2024) and HALC (Chen et al., 2024b), share the
common assumption that hallucinations arise from
the model’s sensitivity to image and instruction in-
puts, coupled with unimodal biases inherited from
LLMs. Additionally, studies like Opera (Huang
et al., 2024) and AD-HH/TF-HH (Yang et al., 2024)
reveal that some specific attention patterns within
attention heads can cause LVLMs to overlook criti-
cal visual information, ultimately leading to hallu-
cinated outputs.

Despite these advancements, existing methods
primarily associate overall hallucination patterns
with internal model behaviors (Huang et al., 2024;
Yang et al., 2024), without disentangling the causes
of different types. For instance, it remains unclear
whether the model contains internal features that
can distinguish between hallucinations driven by
textual priors and those induced by vision-text con-
flicts. This gap hinders the development of targeted
interventions that can precisely address distinct hal-
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lucination causes.
To fill this gap, we examine two causes of halluci-

nation in multimodal reasoning—over-reliance on
textual priors and vision-context conflicts—which
have been identified in prior work as frequent and
impactful causes of hallucination (Bitton-Guetta
et al., 2023; Wang et al., 2024; Liu et al., 2024f;
Bai et al., 2024; Leng et al., 2024). Our anal-
ysis spans intra- and inter-cause levels: the for-
mer examines whether internal representations dif-
fer under a single cause, while the latter investi-
gates whether there are distinguishable features
associated with hallucinations arising from differ-
ent causes. As shown in Fig. 1, the model not
only detects cause-specific hallucinations but also
differentiates between different hallucination cat-
egories, revealing an inherent capacity for fine-
grained, representation-level intervention. The de-
tailed analysis is listed in Sec. 3.

Based these insights, we propose SHARP
(Steering HAllucination via RePresentation Engi-
neering), a novel inference-time intervention strat-
egy designed to mitigate hallucinations in Large
Vision-Language Models (LVLMs). SHARP lever-
ages decomposed steering vectors to modulate
internal representations and reduce hallucination
without retraining. As illustrated in Fig. 2, our
method consists of three key stages: (1) Stimulus-
driven data collection, where we elicit model re-
sponses under different hallucination-inducing con-
ditions; (2) Cause-specific vector derivation, in
which we extract steering vectors by contrasting
hidden activations between faithful and halluci-
nated responses for each casues; (3) Hallucination
intervention: different steering vectors are jointly
applied during inference to mitigate hallucination-
inducing patterns. Comprehensive experimental
results show that SHARP achieves a significant
improvement in hallucination reduction compared
to existing methods.

Our contributions are summarized as follows:

• We demonstrate that LVLMs’ internal repre-
sentations encode informative signals associ-
ated with distinct hallucination causes, indi-
cating the presence of internal cues that reflect
their underlying causes even when hallucina-
tions occur.

• We propose SHARP, a novel inference-time
method that steers cause-specific activations
to mitigate hallucinations by adjusting internal
states.

• Extensive experiments on multiple bench-
marks demonstrate that SHARP significantly
reduces hallucinations while preserving gen-
eration capabilities.

2 Related Work

2.1 Hallucination Mitigation Methods in
LVLMs

Hallucination has been a critical challenge in
LVLMs (Li et al., 2023; Liu et al., 2024c). Un-
like hallucination mitigation in LLMs (Manakul
et al.; Chuang et al., 2024; Zhang et al., 2025),
which primarily targets improving factual consis-
tency in text generation, mitigation in LVLMs aims
to align model outputs with visual evidence. A
range of methods have been proposed for this pur-
pose, which can be broadly grouped into training-
based approaches (Sun et al., 2024; Gunjal et al.,
2024; Jiang et al., 2024), inference-time interven-
tions (Leng et al., 2024; Chen et al., 2025; Wang
et al., 2025; Kim et al., 2024), and post-generation
correction methods (Zhou et al., 2024; Yin et al.,
2024; Chen et al., 2024a).

Training-based approaches, such as LRV-
Instruction (Liu et al., 2024a) and HACL (Jiang
et al., 2024), improve LVLM robustness by con-
structing diverse and comprehensive datasets for
instruction tuning. Inference-time strategy have
demonstrated effectiveness and efficiency in re-
ducing hallucinations. For instance, VCD (Leng
et al., 2024) compares outputs under perturbed vi-
sual inputs to suppress over-reliance on unimodal
priors. OPERA (Huang et al., 2024) detects ab-
normal attention patterns and applies a rollback
mechanism to penalize hallucination-prone behav-
iors. HALC (Chen et al., 2024b) further integrates
external grounding signals to enforce both local
and global visual-textual consistency during decod-
ing. In addition, CLIP-guided scoring (Deng et al.,
2024) ranks candidate responses by evaluating
their alignment with visual input. Post-generation
correction methods, such as LURE (Zhou et al.,
2024) and LogicCheckGPT (Wu et al., 2024), re-
fine model outputs by detecting and revising hallu-
cinations through external verification or internal
consistency checks.

Compared to prior methods, our approach di-
rectly intervenes in the latent representation space
of LVLMs to suppress hallucination behavior. It
performs a single-step representation-level mod-
ification during inference, achieving both effec-
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tiveness and efficiency without retraining or extra
overhead.

2.2 Representation Engineering Methods

Recent efforts to interpret and steer LLMs have
increasingly turned to leverage representation en-
gineering, which manipulates internal representa-
tions without full retraining. This approach enables
scalable alignment of model behavior. For example,
ActAdd (Turner et al., 2023) identified directional
vectors corresponding to specific concepts, while
RepE (Zou et al., 2023) showed that vector oper-
ations in activation space can steer factuality in
generation. Beyond intervention, some methods
extract latent vectors representing abstract features
and leverage them to guide inference, producing
more aligned outputs through controlled prompt-
ing or gating mechanisms (Subramani et al., 2022;
Panickssery et al., 2023).

Inspired by these works, we extend repre-
sentation engineering to LVLMs. By identify-
ing hallucination-related directions and applying
lightweight, training-free interventions at specific
layers, we effectively suppress hallucinations in
LVLMs without sacrificing performance.

3 Analysis: Diagnosing Hallucination via
Representation Separability

We investigate two causes of hallucination in
LVLMs, both of which have been recognized as
frequent and significant contributors in prior stud-
ies: (1) Textual priors, where the model over-
relies on patterns learned during language pretrain-
ing, generating answers consistent with linguistic
co-occurrence or commonsense associations even
when they contradict the visual input. (2) Vision-
context conflicts, where misleading or false as-
sumptions in the prompt conflict with the visual
content, testing whether the model can rely on vi-
sual evidence rather than textual cues. These two
causes represent distinct failure modes in LVLMs,
illustrating different pathways through which hal-
lucinations can occur.

To test whether internal representations encode
hallucination signals, we construct cause-specific
datasets D(m) = D(m)

faithful ∪ D
(m)
hallucinated for each

cause m ∈ {T,C}, where T denotes textual priors
and C denotes vision–context conflicts. Each con-
tains query-answer pairs labeled by whether the
response is faithful to the visual input, enabling
intra-cause analysis. We also define an inter-cause

(a) Textual prior (b) Vision-context conflict

(c) Comparison across causes

Figure 1: Probing results across layers for LLaVA-v1.5-
7B, Qwen-VL, and LLaVA-Next. (a) and (b) show
intra-cause probing, where a logistic regression clas-
sifier is trained to distinguish hallucinated from non-
hallucinated samples under each specific hallucination
cause (e.g., textual prior or vision-context conflict). (c)
shows inter-cause probing, where a logistic regression
classifier is trained to differentiate hallucinated samples
originating from different hallucination causes. Models
exhibit clear separability in both settings.

datasetDinter = D(T)∪D(C) to examine shared and
distinct features across the two hallucination types.
The details about data construction can be referred
in 4.1.

We analyze the residual stream at the final input
position, which encodes both image and question
context and predicts the first response token, to
probe for hallucination signals. We employ linear
probing to test whether residual activations encode
hallucination signals. Logistic regression classi-
fiers are trained to distinguish between faithful and
hallucinated responses (intra-cause), and between
hallucination types (inter-cause), using activations
from each layer. Evaluation on held-out data with
AUROC scores is conducted for both LLaVA-v1.5-
7B, LLaVA-Next and Qwen-VL.

The probing results are shown in Fig. 1. Specif-
ically, Fig. 1a and Fig. 1b demonstrate as layer
depth increases, the separation between halluci-
nated and factual examples under textual prior and
vision-context conflict causes becomes clearer and
stabilizes around layers 10 to 15. This suggests that
the models progressively encode discriminative fea-
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Figure 2: The overall framework of SHARP for steering hallucination behavior.

tures tied to each hallucination type, with early to
mid layers playing a key role in developing feature
separability. Fig. 1c further shows that different hal-
lucination types are also distinguishable from one
another, suggesting that the models implicitly cap-
ture the nature of the hallucination trigger. These
findings demonstrate LVLMs’ internal sensitivity
to hallucination cues and support our training-free,
inference-time mitigation strategy leveraging this
latent signal.

4 Method

Our method, SHARP, aims to identify two func-
tional vectors that are closely related to halluci-
nation causes in LVLMs, using contrastive activa-
tion analysis. These vectors are then used to guide
model generation through intervention on internal
activations. As illustrated in Fig. 2, SHARP oper-
ates in three stages: (1) Constructing cause-specific
data to stimulate hallucination-related activations;
(2) Extracting cause-relevant direction vectors via
contrastive analysis; and (3) Steering model activa-
tions during inference based on these vectors.

4.1 Cause-Stimulated Data Construction

To systematically analyze the underlying causes of
hallucinations in MLLMs, we construct a cause-
oriented dataset D, which is divided into two sub-
sets based on the types of hallucination-inducing
causes: (1) the over-reliance on textual priors sub-
set DT, where the question is designed to induce
hallucinations by exploiting linguistic priors, and

(2) the visual-textual conflict subset DC, where the
textual query contradicts the visual content of the
image. These two causes are empirically associated
with hallucination generation in LVLMs. Specifi-
cally, we adopt the insufficient context subset from
the HaloQuest benchmark (Wang et al., 2024) as
DT, and the false premises subset as DC. Detailed
information about the benchmark is provided in
AppendixB.1.

Given an image-question pair (vi, xi) from the
dataset, where vi is the input image and xi is
the corresponding natural language question, we
query a base multimodal model M (e.g., LLaVA
or LLaVA-Next) to obtain its predicted answer:

ŷi = M(vi, xi) (1)

Then we leverage the LLM-as-a-Judge frame-
work to assess the factual correctness of the gen-
erated answer ŷi. Specifically, we provide the
scoring model (GPT-4o-mini) with both the model-
generated answer ŷi and the reference ground truth
answer yi for each input pair (vi, xi). The scoring
model returns a binary factuality label:

si = Judge(yi, ŷi) ∈ {Correct, Incorrect} (2)

where Correct indicates that the generated answer
is factually consistent with the ground truth. The
exact prompt design used in the scoring process is
provided in AppendixB.1.

Based on the factuality label si for each multi-
modal input, we further divide the cause-specific
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subsets into factual and hallucinatory splits. Specif-
ically, DT is split into:

DT = DT
truth ∪ DT

hallucination (3)

where DT
truth contains examples where the model’s

answers are correct, andDT
hallucination includes those

where hallucinations occur. Similarly, we divide
DC into:

DC = DC
truth ∪ DC

hallucination (4)

These four refined subsets represent multimodal
inputs that elicit different behaviors from the
model when confronted with distinct hallucination-
inducing factors. Analyzing these subsets enables
us to probe the internal representations that help the
model suppress hallucinations and enhance factual
alignment under different cause conditions.

4.2 Cause Vector Extraction
We extract cause-specific steering vectors by per-
forming contrastive analysis over the model’s hid-
den representations. Let hℓ(v, x) ∈ Rd denote the
hidden state of the final token at layer ℓ when the
model processes an input image v and question x.

To derive a steering vector for each hallucination
cause, we aggregate contrastive signals across all
samples in the corresponding cause-specific subset.
For a cause type m, given the dataset D(m) =
{(vi, xi, ŷi)}Ni=1, we compute:

v⃗ℓm =
1

|D(m)
truth|

∑

(vi,xi)∈D(m)
truth

hℓ(vi, xi)

− 1

|D(m)
hallucination|

∑

(vj ,xj)∈D(m)
hallucination

hℓ(vj , xj)

(5)

In practice, we normalize v⃗ℓm to ensure consistent
scaling across layers and cause types. This steering
vector captures the average discriminative direc-
tion in the representation space that distinguishes
truthful from hallucinated responses under cause m.
These cause-specific vectors serve as interpretable
directions in the activation space and they can be
used to probe the model’s reasoning or directly in-
tervene in hidden states, enabling us to steer model
toward more faithful outputs.

4.3 Steering Hallucination Mitigation
After obtaining the cause-specific steering vectors
(Section 4.2), we aim to steer the model by directly

intervening in its internal representations during
inference. Specifically, we select a target layer ℓ∗

and inject a linear combination of v⃗ℓ
∗

T and v⃗ℓ
∗

C into
the hidden states of each generated token t ≥ |xi|:

h
(ℓ∗)
steered(vi, xi)t = h(ℓ

∗)(vi, xi)t

+ α ·
(
β · v⃗ℓ∗T + (1− β) · v⃗ℓ∗C

)

(6)

where α controls the overall intervention strength,
and β determines the relative weight of each
steering vector. This intervention guides the
model’s representations toward more faithful,
image-grounded reasoning. As shown in Sec-
tion 5.2, our approach effectively reduces both
types of hallucinations while preserving overall
response quality.

5 Experiment

5.1 Experiment Setup
Benchmarks and Evaluation Metrics (1)
POPE (Li et al., 2023) is a dedicated benchmark
for evaluating object hallucination. It probes a
model’s ability to recognize specific objects by pos-
ing binary questions. Performance is measured us-
ing standard classification metrics, including Accu-
racy, Precision, Recall, and F1 score. (2) MME (Fu
et al., 2024) construct paired questions with oppo-
site answers (“yes” and “no”) for each image. In
addition to question-level accuracy (Acc), it intro-
duces image-level accuracy (Acc+), which requires
both answers to be correct. The final performance
is measured by the MME Score, calculated as the
sum of Acc and Acc+. (3) CHAIR (Rohrbach et al.,
2018) assesses hallucinations in image captioning
by analyzing model-generated captions. It mea-
sures the proportion of object mentions that do not
appear in the ground-truth annotations. The evalua-
tion includes three metrics: CHAIRi for instance-
level and CHAIRs for sentence-level hallucination,
and Recall for (4) AMBER (Wang et al., 2023) is
evaluates object, attribute, and relation hallucina-
tions in both discriminative and generative tasks.
For discriminative tasks, it adopts standard met-
rics such as Accuracy, Precision, Recall, and F1
score. In generative settings, it employs CHAIRi,
Cover, Hal, and Cog. A detailed explanation of
these metrics can be found in Section B.2. To en-
able holistic assessment, AMBER also introduces
a unified metric, defined as:

AMBER Score =
1

2
× (1− CHAIRi + F1). (7)
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Setting Method
LLaVA-v1.5 QwenVL LLaVA-Next

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

random

Sampling 83.8 82.4 86.1 84.2 84.9 96.0 72.9 82.9 84.4 94.7 72.8 82.3
VCD 85.0 82.7 86.1 84.2 85.5 96.0 71.1 83.6 86.0 96.5 74.8 84.3
VTI 83.0 80.6 86.8 83.6 85.3 95.1 73.8 83.5 84.8 94.0 74.4 83.1
SHARP 85.0 83.8 86.9 85.3 86.1 97.4 74.1 84.2 88.4 93.5 82.6 87.7

popular

Sampling 82.0 79.7 85.9 82.6 84.0 94.7 72.1 81.9 83.2 90.9 73.8 81.5
VCD 82.1 78.5 88.3 83.2 84.9 94.5 74.9 83.6 84.5 92.9 74.8 82.9
VTI 80.4 76.4 88.1 81.8 83.0 93.3 74.1 82.3 81.8 82.5 80.8 81.6
SHARP 82.3 79.4 87.3 83.2 85.8 96.3 74.5 84.0 85.9 88.9 82.0 85.3

adversarial

Sampling 75.8 71.3 86.3 78.1 82.1 90.0 72.3 80.2 79.5 84.1 72.9 78.1
VCD 76.3 71.5 87.3 78.7 84.0 90.6 74.9 82.0 80.9 85.2 74.8 79.7
VTI 76.0 70.7 88.8 78.8 83.2 91.1 74.5 81.8 79.0 81.6 74.9 78.1
SHARP 76.8 72.3 86.9 79.0 83.9 92.6 73.7 82.1 82.8 82.7 82.9 82.8

Table 1: Results on POPE-MSCOCO benchmark. “Acc”, “Pre”, “Rec”, and “F1” stand for Accuracy, Precision,
Recall, and F1 score, respectively. The reported results are derived from the MS-COCO dataset. The best Acc and
F1 scores for each setting and model are bolded.

Model Method Object-level Attribute-level Total
Exist Count Pos Color

LLaVA-v1.5

Sampling 170.0 103.3 108.3 128.3 510.0
VCD 180.0 110.0 108.3 133.3 531.7
VTI 190.0 138.3 131.7 145.0 605.0
SHARP 175.0 155.0 103.3 180.0 613.3

Qwen-VL

Sampling 160.0 143.3 113.3 165.0 581.7
VCD 165.0 140.0 113.3 175.0 593.3
VTI 182.0 125.0 118.0 143.0 568.0
SHARP 175.0 145.0 103.3 185.0 608.3

LLaVA-Next

Sampling 175.0 143.3 131.7 145.0 595.0
VCD 190.0 145.0 116.7 160.0 611.7
VTI 180.0 110.0 101.7 140.0 531.7
SHARP 195.0 128.3 143.3 165.0 631.7

Table 2: Results on MME benchmark. The perfor-
mance is measured by MME Score. The “Total” column
represents the sum of four individual results in each row.
The best Total score for each model is bolded.

Baselines We compare SHARP with various hal-
lucination mitigation methods for LVLMs, as out-
lined below: VCD (Leng et al., 2024) suppresses
language priors by subtracting prior-induced noise
to enhance visual grounding during decoding.
VTI (Liu et al., 2024e) reduces hallucinations by
steering latent space representations during infer-
ence to enhance the stability of vision features.

Implementation details We evaluate our pro-
posed approach on three recent large vision-
language models (LVLMs): LLaVA-1.5 (Liu et al.,
2023), Qwen-VL (Bai et al., 2023), and LLaVA-
NEXT (Liu et al., 2024d). For all three models, we
set the representation steering layer ℓ∗ to the 10th

layer and fix the intervention strength at α = 5.
We adopt a sampling-based decoding strategy for
both SHARP and all state-of-the-art baseline meth-
ods. For baselines, we follow the configurations
reported in their original papers and released code
to ensure fair comparison. Additional details are
provided in Appendix B.3.

5.2 Main Results

Results on POPE The overall performance of
our proposed method SHARP on POPE bench-
mark on the MSCOCO dataset is shown in Ta-
ble 1. From the table, we can observe that SHARP
consistently outperforms all baselines across the
three evaluation settings. It significantly improves
upon the base sampling strategy, as the activation
steering guides the model’s internal representations
toward factual concepts, leading to more reliable
responses. Moreover, SHARP achieves the high-
est overall performance and consistently surpasses
strong baselines. In contrast, methods such as VCD
and VTI lack the robustness and stability demon-
strated by our approach. Complete results on the
A-OKVQA and GQA datasets are provided in Ap-
pendix C.1.

Results on MME To accurately evaluate whether
a model truly understands an image, MME adopts
a balanced evaluation protocol: an image is consid-
ered correctly understood only if the model answers
both the corresponding “yes” and “no” questions
correctly. Following prior work (Leng et al., 2024),
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Model Method CHAIRs ↓ CHAIRi ↓ Recall Length

LLaVA-v1.5

Sampling 52.8 15.9 77.3 93.4
VCD 51.0 14.9 77.2 101.9
VTI 36.8 13.6 66.6 66.7
SHARP 34.8 10.6 59.7 93.4

Qwen-VL

Sampling 2.8 3.0 31.0 5.3
VCD 1.4 1.2 30.8 4.0
VTI 1.9 1.9 30.2 4.5
SHARP 0.8 0.8 32.4 3.7

LLaVA-Next

Sampling 35.8 12.0 59.5 179.0
VCD 40.2 10.7 62.1 171.2
VTI 26.4 7.7 58.5 187.6
SHARP 31.8 9.2 61.5 180.5

Table 3: Results on CHAIR benchmark. Lower
CHAIRi and CHAIRs, along with higher Recall, cor-
respond to better performance. The best CHAIRs,
CHAIRi, and Recall scores for each setting and model
are bolded, and the second-best scores are underlined.

we evaluate our method on the object-level and
attribute-level perception tasks in MME, as shown
in Table 2. Our approach outperforms state-of-the-
art methods, achieving improvements of 8.3, 15,
and 20 points across the three LVLMs respectively.
However, Qwen-VL shows a slight drop on the
position subset and LLaVA-NEXT on the count
subset, likely due to the models’ limited spatial and
numerical reasoning—capabilities less impacted by
activation steering. We leave further investigation
to future work.

Results on CHAIR Beyond the relatively sim-
plified and evaluation-friendly discriminative tasks,
generative tasks are of greater practical importance,
as LVLMs are predominantly used for content gen-
eration. As shown in Table 3, SHARP significantly
reduces both CHAIRs and CHAIRi, indicating that
it not only decreases the number of hallucinated
objects in generated responses but also improves
the proportion of factually grounded captions. It
is worth noting that Qwen-VL inherently exhibits
fewer hallucinations due to its tendency to produce
shorter responses. Nevertheless, our method is still
able to further mitigate hallucinations in this model,
demonstrating its generalizability. Additionally, we
report Recall and Length as supplementary metrics
to assess the richness and informativeness of gener-
ated content. Prior methods often reduce hallucina-
tions at the cost of lower recall and shorter outputs,
leading to overly conservative generations. Unlike
prior methods that suppress hallucinations at the
cost of expressiveness, our approach improves both,
indicating effective and precise mitigation without
sacrificing generation quality.

0 5 10 15 20 25 30
Layer

82.00

82.25

82.50

82.75

83.00

83.25

83.50

83.75

84.00

Ac
cu

ra
cy

SHARP
Sampling

0 5 10 15 20 25 30
Layer

80.00
80.25
80.50
80.75
81.00
81.25
81.50
81.75
82.00

F1
 S

co
re

SHARP
Sampling

Figure 3: The ablation results of target layer ℓ∗ for
Qwen-VL model on the POPE adversarial subset.

Results on AMBER The AMBER benchmark
offers a comprehensive evaluation across both dis-
criminative and generative tasks. The results are
summarized in Table 4. For the discriminative
tasks, SHARP achieves the highest performance
across all evaluation metrics, with an average abso-
lute improvement of 5.07% in accuracy and 4.53%
in F1 score. In the generative setting, SHARP
consistently improves all metrics across all eval-
uated models. Specifically, it effectively reduces
hallucination-related metrics such as CHAIRs and
Hal., while simultaneously increasing Cover, re-
flecting a broader and richer content generation.
Although VTI achieves slightly lower hallucination
scores on LLaVA-1.5, it does so at the expense of
significantly reducing Cover, which compromises
the informativeness and diversity of generated out-
puts. Finally, SHARP achieves the highest over-
all AMBER Score across all models, outperform-
ing the strongest baselines by a margin of 1.20%.
These results demonstrate the generalizability and
effectiveness of our approach—it not only miti-
gates hallucinations but also preserves the genera-
tive capacity and utility of LVLMs.

5.3 Analysis

Ablation on target layer ℓ∗ In this section, we
conduct experiments on POPE under adversarial
setting to analyze the performance fluctuation of
SHARP by the steering layer ℓ∗. The steering layer
ℓ∗ refers to the transformer layer where the steering
vectors are injected, ranging from 0 to 31 across
all three models. As shown in Fig. 3, SHARP
consistently improves performance across differ-
ent layers, demonstrating strong robustness to the
choice of ℓ∗. Notably, the best results are achieved
in the middle layers (10–15). This aligns with our
probing analysis in Sec. 3, which shows that repre-
sentation separability increases up to these layers
before stabilizing—suggesting that mid-level lay-
ers begin to encode cause-distinguishable features
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Model Method Discriminative Generative AMBER Score ↑

Acc Pre Rec F1 CHAIRi↓ Cover↑ Hal↓ Cog*

LLaVA-v1.5

Sampling 67.0 85.2 60.9 71.0 12.0 50.3 51.0 4.6 79.5
VCD 67.3 86.1 60.5 71.1 10.1 51.2 43.6 4.3 80.6
VTI 66.5 84.5 60.6 70.6 6.9 47.2 27.0 1.8 81.9
SHARP 74.2 89.9 68.8 77.9 8.5 52.1 39.2 4.8 84.7

Qwen-VL

Sampling 82.9 88.0 85.9 86.9 4.8 31.3 9.2 0.3 91.1
VCD 84.1 89.2 86.6 87.9 3.5 35.2 7.7 0.3 92.2
VTI 83.5 88.3 86.1 87.3 3.1 33.8 6.8 0.25 92.4
SHARP 84.4 89.1 87.1 88.1 2.7 36.1 5.7 0.2 92.7

LLaVA-Next

Sampling 72.9 82.4 75.2 78.6 12.0 56.5 59.6 5.1 83.3
VCD 74.3 83.9 75.8 79.6 11.8 59.1 58.6 5.0 83.9
VTI 75.2 79.3 84.7 81.9 10.3 58.5 58.3 4.9 87.1
SHARP 79.4 86.5 81.8 84.1 8.9 61.5 50.5 4.8 87.6

Table 4: Results on AMBER benchmark. In discriminative tasks, “Acc”, “Pre”, “Rec”, and “F1” stand for Accuracy,
Precision, Recall, and F1 score, respectively. Higher values for these metrics indicate superior performance. In
generative tasks, lower CHAIRi and Hal, along with higher Cover, signify better performance. *Cog measures the
extent to which hallucinations in LVLMs align with human cognition and is therefore not directly comparable. The
best Acc, F1, CHAIRi, Hal, and AMBER Score for each model are bolded
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Figure 4: The ablation results of intervention strength α
for Qwen-VL on the POPE adversarial subset.

that influence downstream representations. Based
on this observation, we select the 10th layer as the
default intervention layer, which achieves stable
and generalized improvements across tasks.

Ablation on intervention strength α The inter-
vention strength α controls the magnitude of steer-
ing applied to the internal representations. We vary
the intervention strength α from 1 to 21, as shown
in Fig. 4. The results demonstrate that SHARP
consistently remains effective across this spectrum,
outperforming the backbone model under all set-
tings. This indicates that SHARP is not only pow-
erful in mitigating hallucinations but also robust
to variations in the hyperparameter α, making it
practical and adaptable for real-world use without
needing fine-tuned adjustments.

Ablation on steering vector weight β We ex-
plore the effect of the relative weight β assigned
to the two cause-specific steering vectors v⃗ℓ

∗
T and
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Figure 5: The ablation results of steering vector weight
β for the two causes — textual prior and visual-context
conflict — evaluation results for Qwen-VL on the POPE
adversarial subset.

v⃗ℓ
∗

C , as shown in Fig. 5. Adjusting β controls the
emphasis between different hallucination causes,
enabling us to understand the contribution of each
direction and optimize the intervention for com-
prehensive hallucination mitigation. When β is
set to 0 or 1—i.e., only one vector is applied—the
performance already surpasses the baseline, demon-
strating the effectiveness of each cause-specific in-
tervention. As β varies between 0 and 1, the model
shows some fluctuations but maintains a consis-
tently strong performance, with the best results
observed around β = 0.4. These findings highlight
the robustness of our approach and the benefit of
combining both steering directions for comprehen-
sive hallucination mitigation.
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6 Conclusion

In this work, we present a fine-grained analysis of
hallucination in LVLMs by disentangling two key
causes: over-reliance on textual priors and visual-
context conflict. Our findings reveal that LVLMs
internally encode signals indicative of these causes,
enabling targeted representation-level intervention.
Building on this insight, we propose SHARP, a
novel inference-time approach that steers internal
activations using cause-specific vectors without re-
quiring model retraining. Comprehensive experi-
ments on three LVLMs over four benchmarks show
our SHARP can significantly reduces hallucina-
tions across tasks while preserving generation qual-
ity.

Limitations

While SHARP demonstrates significant advan-
tages in effectiveness, several limitations remain
that warrant further investigation:

First, although our disentangled hallucination
mechanisms and steering vector derivation are effi-
cient and broadly applicable, they may not achieve
optimal disentanglement across all hallucination
scenarios. The current contrastive approach re-
lies on the model’s inherent capacity to separate
hallucination-inducing features via simple activa-
tion arithmetic. Future work could incorporate
causal analysis to uncover a more comprehensive
set of hallucination triggers, enabling finer-grained
categorization and allowing for the merging or de-
composition of steering vectors based on distinct
causes.

Second, our current implementation adopts a
relatively simple strategy for deriving steering vec-
tors. Exploring more advanced or targeted strate-
gies could help identify more precise intervention
directions, potentially improving the overall effec-
tiveness of hallucination mitigation. We leave these
explorations for future work.

Lastly, while our method currently focuses on
mitigating hallucinations in VQA and image cap-
tioning, its impact on long-form or complex rea-
soning appears limited, as shown in Sec. C.4. This
is expected, since SHARP primarily targets visu-
ally grounded hallucinations rather than general
reasoning capabilities. Future work will investigate
how to extend our approach to more complex and
diverse hallucination scenarios, aiming to enhance
overall performance.

Ethical Considerations

While our approach aims to reduce hallucinations
and improve the reliability of LVLMs, it does not
explicitly address potential biases in training data
or the risk of downstream misuse of steering in-
terventions. We underscore the importance of re-
sponsible deployment and fairness to ensure that
enhanced controllability is leveraged to improve
model safety rather than manipulate content or re-
inforce harmful biases. Our experiments are con-
ducted using publicly available pre-trained models,
including LLaVA-v1.5, Qwen-VL, LLaVA-NEXT,
and the GPT-4o-mini API. All models and datasets
have been carefully curated by their original au-
thors to mitigate potential ethical concerns.
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A Algorithm

The complete procedure of our SHARP is formal-
ized in Algorithm 1.

Algorithm 1: SHARP: Steering Hallucina-
tions via Representation Processing
Input: Base LVLM M ; Target layer ℓ∗;

Scaling factor α; Blending weight β;
VQA dataset (x, q)

Output: Steered faithful LVLM M

1 Stage 1: Cause-Specific Dataset
Construction;

2 foreach (xi, qi) in benchmark dataset do
3 Generate answer ŷi ←M(xi, qi);
4 Score factuality si ← Judge(yref

i , ŷi);

5 Classify (xi, qi, ŷi) into D(m)
faithful or

D(m)
hallucinated based on si and cause

m ∈ {T,C};

6 Stage 2: Cause-Specific Steering Vector
Extraction;

7 foreach cause m ∈ {T,C} do
8 Compute cause vector at layer ℓ∗:

v⃗ℓ
∗
m =

∑
(vi,xi)∈D(m)

faithful
hℓ

∗
(vi, xi)

|D(m)
faithful|

−
∑

(vj ,xj)∈D(m)
hallucinated

hℓ
∗
(vj , xj)

|D(m)
hallucinated|

(8)9

10 Stage 3: Dynamic Activation Steering
During Inference;

11 Compute adaptive steering vector:
v⃗ℓ

∗
adaptive = β · v⃗ℓ∗T + (1− β) · v⃗ℓ∗C ;

12 foreach token position t during generation
(t ≥ |xi|) do

13 Retrieve hidden state hℓ
∗
t ←M(x, q)t;

14 Inject: hℓ
∗

steered,t = hℓ
∗
t + α · v⃗ℓ∗adaptive;

B Experiment Details

B.1 Cause-related Stimulation Data
Construction Details

HaloQuest Dataset HaloQuest dataset (Wang
et al., 2024) is a VQA dataset designed to vari-
ous aspects of multimodal hallucination such as
false premises, insufficient contexts, and visual

challenges. Here we use the false premises split and
insufficient contexts split to construct our cause-
related stimulation data. Specifically, samples in
the false premise data split contain statements or
assumptions that directly contradict the visual con-
tent of the image. They are designed to test whether
the model can correctly prioritize visual evidence
over misleading linguistic cues. Besides, samples
in the insufficient context cannot be definitively
answered based on the image alone. They probe
whether models will resort to biases or unfounded
assumptions instead of acknowledging the limits
of the provided information. The statistical infor-
mation of the dataset is shown in Table 5

The prompt used for scoring The prompt tem-
plate we use to score LVLM’s output on the cause-
related stimulation dataset is shown in Fig. 6

B.2 Metrics
Metrics on CHAIR. CHAIR evaluates hallucina-
tions in image captioning by analyzing the objects
mentioned in model-generated captions. It quan-
tifies the proportion of object mentions that are
not present in the ground-truth annotations. Two
variants are considered: CHAIRi for instance-level
and CHAIRs for sentence-level hallucination. An
additional metric, Recall, measures the fraction of
ground-truth objects that are correctly mentioned.

CHAIRi =
|{hallucinated objects}|
|{all objects mentioned}| (9)

CHAIRs =
|{sentences with hallucinations}|

{all sentences}
(10)

Recall =
|{accurately mentioned objects}|
|{ground-truth objects}| (11)

Metrics on AMBER. In the context of genera-
tive tasks, AMBER employs CHAIRi (as defined
in Equation 9), Cover, Hal, and Cog as compre-
hensive metrics. For clarity, we represent the ob-
jects mentioned in a model’s response as Robj =
{r1, r2, . . . , rm}, and the ground-truth objects an-
notated in the image as Gobj = {g1, g2, . . . , gn}.

Cover: Measures the proportion of ground-truth
objects correctly mentioned.

Cover =
|Robj ∩Gobj|
|Gobj|

(12)
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Dataset Splits Train Eval Total

False Premise Questions 2,698 304 3,002
Questions with Insufficient Context 1,469 121 1,590

Table 5: Information about the two data splits in HaloQuest dataset.

You are a helpful assistant.
You will be given a pair of answers:
[Ground Truth Answer]: the human-annotated correct answer
[Model Answer]: the answer generated by a model
Your task is to judge whether the model answer is correct based on the ground truth answer.

Evaluation criteria:
If the model answer accurately conveys the core information of the ground truth answer, even if phrased differently, it should be judged as Correct.
If the model answer contains factual errors, omits key information, or is inconsistent with the meaning of the ground truth answer, it should be 
judged as Incorrect.
Focus solely on the factual correctness of the content. Do not evaluate language fluency or style.
Output format:
correct / incorrect

[Ground Truth Answer]
{gt_answer}
[Model Answer]
{model_output}

System prompt

Prompt

{default system prompt of GPT-4o-mini}

Figure 6: The prompt template we use to score LVLM’s answers on open ended VQA

Hal: Indicates whether any hallucinated object
appears in the response.

Hal =

{
1, if CHAIR ̸= 0

0, otherwise
(13)

Cog: Measures the extent to which hallucinated
objects align with those frequently hallucinated by
humans. Let Hobj = {h1, h2, . . . , hp} denote the
set of objects humans are prone to hallucinate. Cog
is calculated as:

Cog =
|Robj ∩Hobj|
|Robj|

(14)

B.3 Implementation Details

In this work, all experiments were conducted us-
ing the PyTorch framework (Paszke, 2019). All
baseline LVLMs and hallucination mitigation meth-
ods were re-implemented following their original
publications. We retained the default hyperparam-
eter settings for all backbone LVLMs and base-
line methods. Experiments were performed on 8
NVIDIA RTX 3090 GPUs (24 GB each), and all
reported results are based on a single run. In our
experiments, we employ the following library ver-
sions: Transformers 4.40.0 and scikit-learn 1.2.2.

C Full Evaluation Results

C.1 Additional Results on POPE Benchmark

In addition to the MSCOCO results in Table 1, we
report POPE performance on the AOKVQA and
GQA subsets (Tables 6 and 7). Each subset com-
prises 500 images, each paired with 6 questions.
Negative samples are generated under three set-
tings: random (randomly selected absent objects),
popular (frequently occurring but absent objects),
and adversarial (contextually co-occurring yet ab-
sent objects). The numbers of positive and negative
samples are kept balanced. It can be seen that
SHARP consistently achieves strong performance
across both subsets and all sampling settings.

C.2 Ablation Studies

Ablation on target layer ℓ∗ The ablation study
results of ℓ∗ on Llava-next model and LLaVA-V1.5
model are shown in Fig. 7 and Fig. 8

Ablation on intervention strength α The abla-
tion study results of α on LLaVA-V1.5 model and
Llava-next model are shown in Fig. 9 and Fig. 10.

Ablation on steering vector weight β The abla-
tion study results of β for the other two models are
show in Fig. 11 and Fig. 12.
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Setting Method
LLaVA-V1.5 Qwen-VL LLaVA-Next

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

random

Sampling 81.8 76.4 92.1 83.5 86.8 93.2 79.5 85.8 83.8 87.2 79.2 83.0
VCD 81.2 75.2 93.0 83.2 87.4 92.9 81.1 86.6 84.8 89.2 79.3 83.9
VTI 83.0 80.6 86.8 83.6 85.0 89.0 80.0 85.3 84.8 87.3 81.3 84.2
SHARP 83.2 77.7 93.1 84.7 87.8 94.0 80.8 86.9 89.0 88.3 89.8 89.1

popular

Sampling 75.3 69.1 91.5 78.7 85.6 90.6 79.5 84.7 81.4 83.4 78.3 80.8
VCD 74.7 68.2 92.5 78.5 86.3 89.5 81.2 85.1 81.5 82.6 79.9 81.2
VTI 76.1 69.5 92.9 79.5 82.5 87.0 79.8 83.3 80.4 82.7 76.9 79.7
SHARP 78.2 71.6 93.4 81.1 87.0 92.1 80.9 86.1 84.7 81.7 89.3 85.3

adversarial

Sampling 67.4 61.8 91.2 73.7 80.4 80.1 80.9 80.5 73.2 71.0 78.4 74.5
VCD 68.1 61.9 93.8 74.6 80.7 80.1 81.6 80.8 74.7 72.2 80.3 76.0
VTI 68.2 62.1 93.6 74.6 74.5 78.0 74.1 75.0 72.8 70.4 78.6 74.3
SHARP 68.8 62.7 93.3 75.0 81.3 81.5 81.0 81.2 76.9 71.5 89.5 79.5

Table 6: Results on POPE-AOKVQA benchmark. “Acc”, “Pre”, “Rec”, and “F1” denote Accuracy, Precision,
Recall, and F1 score, respectively. The best Acc and F1 scores for each model under each prompting setting are
bolded.
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Figure 7: The layer ℓ∗ ablation results for Llava-Next
model on POPE-MSCOCO benchmark under the adver-
sarial evaluation setting
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Figure 8: The layer ℓ∗ ablation results for LLaVA-V1.5
model on POPE-MSCOCO benchmark under the adver-
sarial evaluation setting
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Figure 9: The intervention strength α ablation results
for LLaVA-V1.5 model on POPE-MSCOCO benchmark
under the adversarial evaluation setting
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Figure 10: The intervention strength α ablation results
for Llava-Next model on POPE-MSCOCO benchmark
under the adversarial evaluation setting
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Figure 11: The steering vector weight β ablation results
for Llava-Next model on POPE-MSCOCO benchmark
under the adversarial evaluation setting
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Setting Method
LLaVA-v1.5-7B Qwen-VL LLaVA-Next

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

random

Sampling 81.6 75.6 93.2 83.5 81.3 88.8 71.5 79.2 83.1 85.8 79.4 82.5
VCD 82.2 76.0 94.1 84.1 82.0 87.6 74.5 80.5 83.4 87.0 80.1 83.4
VTI 79.8 73.3 93.9 82.3 82.0 85.0 73.9 82.4 83.3 85.9 79.6 82.6
SHARP 83.2 77.8 92.9 84.7 83.7 90.7 75.2 82.2 87.3 86.8 88.0 87.4

popular

Sampling 73.1 66.7 92.5 77.5 75.9 78.1 72.0 74.9 78.5 78.7 78.2 78.5
VCD 71.5 64.7 94.5 76.8 75.9 76.6 74.7 75.6 78.2 77.2 80.1 78.6
VTI 73.5 66.7 94.1 78.0 76.5 77.0 73.5 77.9 78.6 79.9 76.5 78.2
SHARP 73.7 66.8 93.9 78.1 79.9 83.2 75.0 78.9 80.8 76.9 88.0 82.1

adversarial

Sampling 68.0 62.0 93.4 74.5 75.5 77.8 71.2 74.4 73.3 71.3 78.0 74.5
VCD 67.6 61.5 94.4 74.5 76.7 77.8 74.7 76.2 74.2 71.8 79.8 75.6
VTI 68.0 61.9 93.9 74.6 71.0 72.5 73.2 74.5 73.2 71.4 77.5 74.3
SHARP 69.4 63.1 93.7 75.4 79.2 82.0 74.9 78.3 76.6 71.8 87.4 78.9

Table 7: Results on POPE-GQA benchmark. “Acc”, “Pre”, “Rec”, and “F1” denote Accuracy, Precision, Recall,
and F1 score, respectively. The best Acc and F1 scores for each model under each prompting setting are bolded.
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Figure 12: The steering vector weight β ablation results
for LLaVA-V1.5 model on POPE-MSCOCO benchmark
under the adversarial evaluation setting

Model Method ACC F1

LLaVA-Next

Sampling 79.5 78.1
VCD 80.9 79.7
VTI 79.0 78.1
SHARP (HaloQuest) 82.8 82.8
SHARP (ConflictVis) 82.8 82.9

Table 8: Results of generalization experiments by re-
placing the textual-prior subset with ConflictVis (Liu
et al., 2024f) on the POPE adversarial subset.

C.3 Generalization Experiments with an
Alternative Textual-Prior Dataset

To evaluate the generalizability of our approach,
we replaced the textual-prior subset from Halo-
Quest with ConflictVis (Liu et al., 2024f), a
dataset specifically designed to induce hallucina-
tions through counterfactual visual content and
counter-commonsense queries. ConflictVis com-
prises 374 original images and 1,122 high-quality
QA pairs, which often trigger hallucinations or un-

warranted denials caused by textual bias.
As shown in Table 8, SHARP maintains supe-

rior performance even when the steering vectors
are derived from ConflictVis instead of HaloQuest,
underscoring the robustness and transferability of
our method across datasets.

C.4 Generalization on Reasoning
Benchmarks

To assess whether SHARP affects general reason-
ing, we evaluate it on on two challenging reasoning
benchmarks MMMU (Yue et al., 2024) and Math-
Vista (Lu et al., 2024) (Table 9). Results show only
minor fluctuations compared to standard sampling,
indicating that SHARP preserves reasoning abili-
ties without enhancing them. This is expected, as
SHARP primarily targets visually grounded hallu-
cinations from textual priors or misleading prompts,
which are largely independent of broader reasoning.
Future work will explore additional hallucination
causes and corresponding intervention vectors to
jointly mitigate hallucinations and enhance LVLM
capabilities.

C.5 Inference-Time Efficiency Analysis

While inference-time strategies reduce hallucina-
tions, they inevitably introduce computational over-
head. We measure the average time per response
on the CHAIR benchmark (Table 10). Sampling-
based decoding is fastest and serves as the baseline,
while VCD incurs substantial overhead due to dual
forward passes. In contrast, VTI and our SHARP
achieve a better balance of performance and effi-
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Model Method MMMU ↑ MathVista ↑

LLaVA-V1.5 Sampling 33.8 22.6
SHARP 33.3 22.8

Qwen-VL Sampling 31.7 34.7
SHARP 31.9 34.1

LLaVA-Next Sampling 34.8 31.3
SHARP 34.7 31.9

Table 9: Performance on general reasoning benchmarks.

Model Method Seconds / Sample

LLaVA-V1.5

Sampling 3.68
VCD 8.93
VTI 4.24
SHARP 4.18

LLaVA-Next

Sampling 6.80
VCD 13.97
VTI 7.66
SHARP 7.04

Table 10: Average response generation time on the
CHAIR benchmark.

ciency, with SHARP adding only minimal latency
by intervening in few positions. This shows that
SHARP is both effective and practical for real-
world use.

D Case Studies

There are two more case results, shown in Fig. 13
and Fig. 14.

E Licensing

The POPE, MME, CHAIR, and AMBER datasets
are released for academic use and are specifically
designed for hallucination detection tasks. Our us-
age of these datasets aligns with their intended pur-
pose. LLaVA-v1.5-7B and LLaVA-NEXT-7B are
released under the Apache 2.0 License, a permis-
sive open-source license. Qwen-VL-7B is released
under the Tongyi Qianwen LICENSE AGREE-
MENT by Alibaba Cloud, which permits non-
commercial academic usage and redistribution un-
der certain conditions. Our use of these models
is limited to academic research and complies with
their respective license terms.

Figure 13: Case study of generative tasks using LLaVA-
1.5. We compare responses generated by sampling and
our proposed SHARP. Hallucinated content is high-
lighted in red, while more detailed and accurate content
is marked in green.

Figure 14: Case study of generative tasks using LLaVA-
Next. We compare responses generated by sampling
and our proposed SHARP. Hallucinated content is high-
lighted in red, while more detailed and accurate content
is marked in green.
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