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Abstract

Final-answer-based metrics are commonly used
for evaluating large language models (LLMs)
on math word problems, often taken as prox-
ies for reasoning ability. However, such met-
rics conflate two distinct sub-skills: abstract
formulation (capturing mathematical relation-
ships using expressions) and arithmetic com-
putation (executing the calculations). Through
a disentangled evaluation on GSM8K and
SVAMP, we find that the final-answer accu-
racy of Llama-3 and Qwen2.5 (1B-32B) with-
out CoT is overwhelmingly bottlenecked by
the arithmetic computation step and not by
the abstract formulation step. Contrary to
the common belief, we show that CoT pri-
marily aids in computation, with limited im-
pact on abstract formulation. Mechanistically,
we show that these two skills are composed
conjunctively even in a single forward pass
without any reasoning steps via an abstract-
then-compute mechanism: models first cap-
ture problem abstractions, then handle compu-
tation. Causal patching confirms these abstrac-
tions are present, transferable, composable, and
precede computation. These behavioural and
mechanistic findings highlight the need for dis-
entangled evaluation to accurately assess LLM
reasoning and to guide future improvements.1

1 Introduction

Large language models (LLMs) have demonstrated
impressive progress on various math problem
datasets (Cobbe et al., 2021; Hendrycks et al.,
2021b; Patel et al., 2021), often leveraging Chain-
of-Thought (CoT) prompting (Wei et al., 2022).
Despite the availability of step-by-step reasoning
chains, standard evaluation predominantly relies on
final-answer accuracy (comparing the model’s fi-
nal numerical output against a gold answer), which

†Work done during a Mitacs internship at Borealis AI.
1Code available at: https://github.com/

ziling-cheng/Disentangle-Math-Reasoning.

reduces model performance to a single metric (Liu
et al., 2024; Opedal et al., 2024). This reduction
limits the possible insights when diagnosing LLMs’
reasoning abilities, especially in zero-shot scenar-
ios without CoT. When an LLM fails to produce
the correct answer, is it due to “reasoning deficits”,
or could it be a calculation error?

To investigate this, we propose a disentangled
evaluation framework that separately measures two
core skills of mathematical problem-solving (See
Figure 1): (1) abstract formulation (hereafter, ab-
straction) — the ability to identify relevant quan-
tities and translate the natural language problem
into its underlying mathematical relationships (e.g.,
36 + 47 or x+ y in Figure 1); and (2) arithmetic
computation (hereafter, computation) — the ca-
pacity to calculate the final answer from that ex-
pression (e.g., evaluate 36 + 47 to 83).

Using this disentangled evaluation on GSM8K
(Cobbe et al., 2021) and SVAMP (Patel et al., 2021)
with Llama-3 and Qwen-2.5 models (1B-32B), we
find that even without CoT: (i) models surprisingly
perform better at abstraction than computation, de-
spite the former’s perceived conceptual complexity.
(ii) if deriving the final answer in math word prob-
lems depends on these two skills conjunctively,
final-answer accuracy alone may give a mislead-
ing picture of models’ reasoning abilities in math
word problems. Moreover, we show that CoT pri-
marily improves computation, with limited gains
in abstraction, further demonstrating the value of
disentangled evaluation.

While these behavioural findings suggest that
models can formulate abstractions without explicit
CoT when separately prompted, it remains unclear
whether abstraction and computation are composed
conjunctively when deriving the final answer dur-
ing single-pass inference. To explore this, we move
beyond outcome-based evaluation, and conduct
mechanistic interpretability analyses. Using logit
attribution and activation patching, we identify a
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 Emma has 5 apples, she buys another 3.        
How many apples does Emma have now ? 

 Emma has 36 apples, she buys another 47.        
 How many apples does Emma have now?

x + y 
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36 + 47

Arithmetic Computation

  Emma has 36 apples, she buys another 47.    
  How many apples does Emma have now?

  Emma has x apples, she buys another y. 
  How many apples does Emma have now?

What is the value of 36 + 47?
36 + 47 =?
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Figure 1: Left (Disentangled evaluation framework): Final-answer accuracy obscures reasoning ability due
to conflating abstract formulation and arithmetic computation. Right (Abstract-then-Compute Mechanism in
Llama-3 8B): (a) Residual stream at the last token position shows that models first capture problem abstraction
(L13-14), followed by computation (L18). (b) Same as (a), but one critical layer output is patched with a different
symbolic abstraction (e.g., x− y), causally changing the computation from 5 + 3 = 8 to 5− 3 = 2.

consistent and sequential abstract-then-compute
mechanism (see Figure 1a), where models first cap-
ture problem abstraction (L13-14), followed by
arithmetic computation (L18). Moreover, cross-
prompt patching provides evidence that models do
form abstractions internally independent of the sur-
face form (numerical or symbolic, see Figure 1b):
when these symbolic abstractions (e.g. x− y) are
transferred into a different problem, they are uti-
lized and composed with the subsequent computa-
tion stages, altering the final answer.
Contributions: (i) Through disentangled evalua-
tion, we show that without CoT, models exhibit
stronger reasoning ability than final-answer accu-
racy suggests, and that CoT primarily aids calcu-
lation. (ii) Using mechanistic interpretability, we
uncover an abstract-then-compute mechanism in
a single-pass generation, where abstractions are
transferrable across problem variants. Collectively,
our findings suggest an alternative narrative: poor
final-answer accuracy without CoT (Wei et al.,
2022; Sprague et al., 2025), or performance de-
clines on problem variants (Zhang et al., 2024a; Shi
et al., 2023; Mirzadeh et al., 2025), can stem from
arithmetic errors rather than reasoning deficits.

2 Related Work

Mathematical Reasoning Evaluation Existing
math problem-solving benchmarks spans elemen-
tary word problems (Cobbe et al., 2021; Patel et al.,
2021; Amini et al., 2019; Miao et al., 2020; Ling
et al., 2017; Koncel-Kedziorski et al., 2016; Shi

et al., 2015) to higher levels (Hendrycks et al.,
2021b,a; Zhong et al., 2024; Zhang et al., 2023;
He et al., 2024). Early datasets paired expressions
with answers, but evaluation largely focused on
final-answer-based metrics (Patel et al., 2021; Shi
et al., 2015). With the rise of LLMs and CoT
prompting (Wei et al., 2022), rationale-based for-
mats became common (Hendrycks et al., 2021b;
Cobbe et al., 2021), with some approaches rely on
program generation and execution (Mishra et al.,
2022; Gao et al., 2023; Chen et al., 2023), yet
standard evaluations still predominantly use final-
answer metrics. In contrast, we move beyond
this final-answer-centric paradigm, by decompos-
ing problem-solving into abstract formulation and
arithmetic computation, inspired by the cognitive
theories (Opedal et al., 2024).

Memorization vs. Generalization Variants of
math word problems with perturbations were intro-
duced to test generalization beyond memorization
(Zhang et al., 2024a; Ye et al., 2025; Gao et al.,
2023; Shi et al., 2023; Li et al., 2024; Mirzadeh
et al., 2025). While performance drops are often
interpreted as reasoning failures, our results sug-
gest they may instead stem mainly from arithmetic
errors, pointing to a different improvement strategy.

Mechanistic Interpretability Mechanistic inter-
pretability methods, such as logit attribution (nos-
talgebraist, 2020; Belrose et al., 2023) and causal
patching (Goldowsky-Dill et al., 2023; Wang et al.,
2023; Meng et al., 2022; Zhang and Nanda, 2023;
Merullo et al., 2024; Cheng et al., 2025), have
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been used to trace model computations. Most
prior mechanistic interpretability work in math
reasoning has focused on synthetic arithmetic cal-
culation tasks (e.g., 226 - 68 = ?), where mod-
els are prompted to perform explicit calculations
(Nikankin et al., 2025; Zhang et al., 2024b; Yu
and Ananiadou, 2024; Zhou et al., 2024). For ex-
ample, Nikankin et al. (2025) revealed an arith-
metic circuit with activation patching and classi-
fier probing: attention heads copy operands and
operators, and MLPs compute the answer using
heuristics. Zhou et al. (2024) identified that LLMs
add numbers using Fourier features with logit lens.
Yu and Ananiadou (2024) proposed the Compara-
tive Neuron Analysis (CNA) method and identified
four distinct stages in the internal logic chain (fea-
ture enhancing, feature transferring, feature pre-
dicting, and prediction enhancing) for calculating
numbers. In contrast, we focused on a more com-
plex setup – math word problems – which requires
more processing from natural language. While (Ye
et al., 2025) applied probing classifiers to identify
surface-level answer attributes (e.g., parameters
computed and to compute), our work applies exist-
ing mechanistic interpretability tools to understand
if the two stages (abstraction and computation) are
implemented by the models internally in a sequen-
tial manner. We uncover an abstract-then-compute
mechanism in math word problems, and we further
show that these abstract representations are trans-
ferable across different problems and surface forms
— providing new insight into the internal reasoning
in LLMs.

(a) N-steps (b) Distractor

Figure 2: Distribution of problem characteristics by
number of reasoning steps (GSM8K) and presence of
distractors (SVAMP).

3 Dataset and Experimental Design

Task and Dataset We study math word problems
using GSM-8K (Cobbe et al., 2021) and SVAMP
(Patel et al., 2021). GSM-8K spans 2–8 steps with-
out distractors (See Figure 2 for statistics), while
SVAMP involves single-step reasoning with dis-

tractor variants. To evaluate abstract formulation,
we create symbolic variants: SVAMP expressions
are templated into variable-based forms; GSM-8K
symbolic versions from the test set are generated us-
ing gpt-4o-mini (OpenAI, 2024) via a two-stage
generate-then-validate to ensure the correctness.
See Appendix A.1 and Table 4 for details and exam-
ples. For interpretability, we generate 3,600 simple
1–2 step2 word problems involving basic operations
(+,−,×,÷) from 1,200 diverse LLM-generated
templates, covering varied scenarios, verb choices,
entities, names and sentence structures. See Ap-
pendix B.1 and Table 7 for details and examples.

Models We evaluate instruction-tuned Llama-3
(1B, 3B, 8B) (Grattafiori et al., 2024) and Qwen
2.5 (Yang et al., 2024) (3B, 7B, 14B, 32B) mod-
els. Mechanistic interpretability analyses focus on
Llama-3 8B, Qwen 2.5 7B, and Qwen 2.5 14B.

Evaluation All experiments use greedy decoding
and FP16 precision on RTX 8000/A100L GPUs.
Numeric answers are evaluated via normalized Ex-
act Match. Symbolic expressions are evaluated us-
ing gpt-4o-mini (94% agreement with humans on
120 samples, prompt and details in Appendix A.2)
and with sympy for numeric expressions. We report
standard accuracy. CoT generations are capped at
512 tokens. See Appendix A.2 for details.

4 Disentangled Evaluation

We first introduce the disentangled evaluation
framework, then present results without CoT in
Sec. 4.1, followed by an analysis of CoT’s impact
in Sec. 4.2.

Framework Suppose a task T can be decom-
posed into a set of sub-skills {s1, s2, . . . , sn}, such
that solving T requires executing these skills con-
junctively (i.e., T = s1 ∩ s2 ∩ · · · ∩ sn). Disen-
tangled evaluation aims to assess each sub-skill
si independently via a corresponding subtask ti,
designed to isolate and test that specific skill.
Let Eval(T ) denote the evaluation metric on the
full task, and Eval(ti) the metric for subtask ti.
Measuring Eval(t1), . . . ,Eval(tn) enables finer-
grained attribution of performance, identifying fail-
ure of specific skills. In math word problems, let
(Q,E,A) be the question, expression and answer

2We focus on 1–2 step problems, as models often fail
simple word problems involving multi-step computations in a
single forward pass.
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Setting Skills Tested Question Form and Example Answer Form and Example

Original Abstraction
+Computation

Numerical: Weng earns $12 for every hour she works.
If she worked for 50 minutes, how much did she earn?

Number: 10

Arithmetic
Computation

Computation Numerical: What is the value of 12×
(
50
60

)
? Number: 10

Numerical
Abstraction

Abstraction Numerical: Weng earns $12 for every hour she works.
If she worked for 50 minutes, how much did she earn?

Expression: 12×
(
50
60

)

Symbolic
Abstraction

Abstraction Symbolic: Weng earns $x for every hour she works. If
she worked for y minutes, how much did she earn?

Expression: x×
(

y
60

)

Table 1: Disentangled evaluation in math word problems with tested skills, varying by question and answer forms.
Instructions in Appendix Table 5.

Figure 3: Model zero-shot without CoT performance on GSM8K. (i) Models exhibit much better abstraction
performance (Symbolic and Numerical) than in actually computing the expressions (Arithmetic Computation).
(ii) Final-answer accuracy in the Original setting may provide a misleading picture of models’ reasoning ability,
possibly due to arithmetic limitations.

triplets, we decompose mathematical problem-
solving into abstract formulation (translating Q
to mathematical relationships E) and arithmetic
computation (executing the calculation from E
to produce A). Besides the standard Original set-
ting (requiring both abstraction and computation),
we design three targeted subtasks: Symbolic Ab-
straction, which assess abstraction using symbolic
variables; Numerical Abstraction, evaluating ab-
straction with concrete numbers but without com-
putation; and Arithmetic Computation, which di-
rectly tests execution of fully specified expressions
from Q. See Table 1 and Appendix A.2 for details.

4.1 Understanding Model Failures:
Reasoning or Arithmetic Error?

We first apply disentangled evaluation zero-shot
without CoT across multiple model sizes of Llama-
3 and Qwen2.5 families. As shown in Figure 3, the
error rates are consistently lower for abstract formu-
lation (both Numerical and Symbolic Abstraction)
compared to arithmetic computation. This suggests
that if final-answer accuracy in the Original set-

ting depends on both competencies conjunctively,
poor performance observed in the Original setting
could stem from arithmetic computation failures,
rather than reasoning deficits. Consequently, this
indicates that final-answer accuracy alone from
the Original setting may substantially mislead a
model’s underlying reasoning ability. See addi-
tional results in Appendix A.3. To assess the relia-
bility and external validity of the symbolic abstrac-
tion evaluation, we perform ablations over symbol
order and symbol choice in Appendix A.5.

∆ Accuracy 8B 7B 14B 32B Avg.

Original 64.8 68.5 58.4 59.7 62.8
Arith. Comp. 64.8 60.5 51.2 58.2 58.7
Numerical Abstr. 15.8 21.6 21.6 11.6 17.6
Symbolic Abstr. 11.0 13.2 1.1 1.3 6.7

Table 2: Accuracy difference (%) with and without
CoT. Results are shown for Llama 3 (8B) and Qwen2.5
models (7B, 14B, 32B).

14321



4.2 Disentangling CoT Gains

We now apply disentangled evaluation with CoT
to disentangle CoT gains (Table 2). We show that
CoT yields the largest gains in computation (e.g.,
+62.8%), confirming its effectiveness in multi-step
arithmetic. In contrast, abstraction shows limited
improvement (e.g., +6.7% for Symbolic abstraction
and +17.6% for Numerical abstraction), even with
extended generation budgets (512 tokens), suggest-
ing CoT is less helpful for abstraction. Gains in the
Original setting (e.g., +62.8%) likely reflect a mix
of benefits from both components and possible data
leakage. See additional results in Appendix A.4.
Summary: These findings challenge the view
that poor final-answer accuracy in math reason-
ing benchmarks always implies ‘poor reasoning’.
Instead, our disentangled design reveals that many
models do possess a level of abstract formulation
capabilities, which are often obscured in standard
evaluations due to their limited arithmetic compe-
tence. Crucially, while abstraction variants indicate
far higher performance than the Original setting,
models are still not perfect — performance in Sym-
bolic Abstraction remains far from 100% (45.7%
for Llama-8B, 76.8% for Qwen-32B), but the gap
is significantly narrower than previously assumed,
calling for more precise definition and evaluation
of reasoning.

5 Inside the Model: Probing Abstraction
and Computation

To investigate whether abstraction and computation
are composed conjunctively when producing a fi-
nal numerical answer in a single forward pass, we
move beyond outcome-based evaluation and apply
mechanistic interpretability. We hypothesize an
abstract-then-compute process: first inferring the
abstraction (e.g., ‘+’ from “buys”), then performing
the computation (e.g., 5+3). Section 5.1 identifies
key layers for each stage; Section 5.2 validate these
layers and tests abstraction transferability across
forms (symbolic/concrete) and logic.

5.1 Uncovering the Abstract-Then-Compute
Mechanism in One Forward Pass

5.1.1 Methods
We use logit attribution (nostalgebraist, 2020; Bel-
rose et al., 2023) and activation patching (Ghan-
deharioun et al., 2024; Zhang and Nanda, 2023;
Meng et al., 2022) to probe whether abstraction
and computation occur during single-step genera-

tion. As summarized in Figure 4, we seek evidence
of abstraction and computation.

Logit Attribution We use logit attribution to ex-
amine specific information (e.g., operator or answer
tokens) at each layer (See Figure 4a for illustra-
tion). Specifically, we compute direct logit attribu-
tion (nostalgebraist, 2020; Belrose et al., 2023) of
a target token t by projecting hidden states at vari-
ous points in each layer onto the vocabulary space:
logit(t) = ⟨WU [t],LN(h)⟩, where h is the hidden
state, LN is LayerNorm, and WU [t] is the unem-
bedding vector. We probe four points within each
layer at the last token position: the attention output,
MLP output, and the residual stream immediately
after merging the attention output (resid mid) and
after merging the MLP output (resid final). As sum-
marized in Figure 4a, we track abstraction via the
logits of operator tokens (e.g., “+”, “add”, “addi-
tion”) and computation via the logits of operand
and answer tokens across layers.

Algorithm 1 Activation Patching

1: Input: Set Ω of clean and corrupted sample
pairs (Xcl, Xcor), modelM with hidden states
S.

2: Output: Patching effects for S: ES .
3: for (X

(i)
cl , X

(i)
cor) ∈ Ω do

4: logito, Acl ← M(X
(i)
cl , Acl) # Clean run:

get clean logits and store all layer activations
Acl

5: logitc, Acor ← M(X
(i)
cor, Acor) # Cor-

rupted run: get corrupted logits and store
all layer activations Acor

6: for s ∈ S do
7: A′

cor(s)← Acl(s) # Patched run:
replace hidden state s in Acor by Acl

8: logitp ←M(X
(i)
cor, A′

cor) # get patched
logits

9: e
(i)
s ← logitp−logitc

logito−logitc
# patching effect

10: end for
11: end for
12: Return: Es ← 1

|Ω|
∑|Ω|

i=1 e
(i)
s

Activation Patching To identify components
causally responsible for abstraction and compu-
tation, we apply activation patching (Algorithm 1,
see Figure 4b for visualization)) (Ghandeharioun
et al., 2024; Zhang and Nanda, 2023; Meng et al.,
2022). To quantify the contribution of each com-
ponent across layers, this method replaces a single

14322



 

(i) Clean Run: Numerical Addition (ii) Corrupted Run: Different Logic + Same Numbers  

  Emma has 5 apples, she buys another 3. How many apples does Emma have now ?         Emma has 5 apples, she eats 3. How many apples does Emma have now ?

8 8?
(iii) Patch Clean States

  (“+” logic)
(i) Clean Run: Numerical Addition (ii) Corrupted Run: Same Logic + Different Numbers

  Emma has 5 apples, she buys another 3. How many apples does Emma have now ?   Emma has 11 apples, she buys another 7. How many apples does Emma have now ?

Abstraction: 
“buys” → “+”?

Computation: 
“5, 3” → “8”?

(i) Clean Run: Numerical Addition (ii) Corrupted Run: Different Logic + Different Numbers

  Emma has 5 apples, she buys another 3. How many apples does Emma have now ?           There was 11 birds, but 7 birds flew away. How many birds are there now?

Numerical
Abstraction:

Do clean states 
encode “+” logic?

Can clean logic and corrupted numbers be composed? (11 + 7 = 18)
(i) Clean Run: Different Logic + No Numbers (ii) Corrupted Run: Numerical Addition

  Emma has 5 apples, she buys another 3. How many apples does Emma have now ?         There was x birds, but y birds flew away. How many birds are there now?

Symbolic
Abstraction:

 Can sym. logic be 
used in num. 

addition?

(iii) Patch Clean States
(computation)

8?

18?(iii) Patch Clean States 
            (“+” logic)

(iii) Patch Clean States 
(Symbolic “-” logic)

2?

Can clean symbolic logic and corrupted numbers be composed? (5 - 3 = 2) 

Can we recover the addition logic?

Can we recover the computation of 5+3?
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  Emma has 5 apples, she buys another 3. How many apples does Emma have now ?

   Abstraction Add, plus, +, addition

  Computation Operands: 5,3; Result: 8Lo
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8

x-y

(a)

(b)

(c)

Figure 4: Overview of interpretability methods probing the abstract-then-compute mechanism in simple math
problems, focusing on hidden states at the last token position across layers.

intermediate hidden state in the corrupted forward
pass with the corresponding hidden state from the
clean run and measures how much this single hid-
den state injected in corrupted forward pass can
restore the prediction of the clean answer. This
patching effect per state per layer is a normalized
score from 0 (no recovery) to 1 (full recovery to
clean performance), with higher indicating more
contribution. We patch attention, MLP and final
layer outputs across layers at the last position. For-
mally, we quantify causal impact using the logit dif-
ference between clean a

(i)
cl and corrupted answers

a
(i)
cor in Eq. 2.

LD∗(i) = logit∗(a
(i)
cl )− logit∗(a

(i)
cor) (1)

e(i)s =
LDp(i)− LDc(i)

LDo(i)− LDc(i)
(2)

To probe abstraction (Figure 4b), we construct
minimally different clean/corrupted pairs that vary
in their underlying logic (e.g., “buys” for addition
vs. “eats” for subtraction) but have the same num-
bers (e.g., “5,3”). In Figure 4b, the clean input im-
plies 5 + 3 = 8, while the corrupted input implies
5− 3 = 2. We patch individual clean states to the
corrupted run to identify critical layers for restoring
the addition logic and recovering the clean answer
‘8’. For computation (Figure 4b), we use pairs
with the same logic (e.g., addition), but different

numbers (e.g., “5,3” vs. “11,7”). Here, we seek to
identify layers whose states when patched individ-
ually from the clean run to the corrupted run, are
critical to perform the clean-run-specific computa-
tion with clean operands 5, 3 and output “8”.

5.1.2 Abstract-then-Compute Hypothesis
As shown in Figure 5, we observe distinct stages
for abstraction and computation, supporting the
abstract-then-compute hypothesis. Logit attribu-
tion reveals that around L13–14, attention begins
moving the inferred operator (e.g., ‘+’, plus’, add’)
to the last position (Figure 5i, iv). This coincides
with a divergence in logit differences between tar-
get operators (+’ vs. ‘–’) in addition and subtraction
problems (Figure 5v), suggesting that while earlier
layers encode generic operator features, problem-
specific abstraction emerges here. Subsequently,
around L15–16, Figure 5i,iv shows operands trans-
fer to the last position; Following abstraction, the
computation phase appears to begin at L18, primar-
ily through MLPs layers (Figure 5ii, iv). Activation
patching confirms the distinct stages: abstraction
starts at around L13, with rising attention and layer
patching effects (Figure 5iii); The rise of atten-
tion and layer patching effects in L15,16 in Fig-
ure 5vi aligns with our previous observation that
operands are being moved to the last position. Fi-
nally, the peak patching effect of MLP at L18 high-
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(i) Attention (ii) MLP (iii) Abstraction

(iv) Resid Final (v) Resid Mid (vi) Computation

Figure 5: Visualizations of internal computations at last token position in Llama-3 8B for addition math word
problems: (i,ii, iv, v) for logit attribution results where a, b are operands and c is the result; (iii, vi) for activation
patching results. We label the starting layer of abstraction, operand moving and computation in pink, blue and green,
respectively.

light their crucial role in calculating the answer.
These combined results support our hypothesis that
the model follows an abstract-then-compute mech-
anism within a single forward pass. Additional
logit attribution and activation patching results for
other models and two-operator problems are in Ap-
pendix B.2.

5.2 Validation and Abstraction Transfer with
Cross-Prompt Patching

We now validate the causal role of the critical
layers for abstraction (L13,14) and computation
(L15,16 for operands, L18 for execution). We also
investigate if the abstraction representations formed
at around L13,14 are transferable across problem
forms (symbolic/concrete) and templates, and can
be composed with subsequent computation stage.

Method Cross-prompt patching also uses Algo-
rithm 1, but instead of computing patching ef-
fects, we track the log-probability of specific to-
kens across layers in each patched run. This acts
as a form of “knock-out” intervention: we over-
write a single layer’s activations in the corrupted
run with clean activations that are hypothesized
to contain specific information (e.g., abstraction,
operands, computation), and observe whether this
information is reflected in the output level.

To validate the critical layers for each stage, we
cross-patch for numerical abstraction (Figure 4c),
where both the clean and corrupted inputs are nu-

merical problems, but differ in both underlying
logic and operands. As shown in Figure 4c, the
clean run corresponds to 5 + 3 = 8 and the cor-
rupted to 11 − 7 = 4. We patch hidden states
from the clean run into the corrupted run and vali-
date our hypothesis: (i) Abstraction (L13-14): At
these layers, operands have not been transferred yet,
so patching should only transfer the clean logic.
If these layers encode addition logic, the model
should apply the clean addition operator to the
corrupted operands, computing 11 + 7 = 18 in
the remaining forward pass. We expect the log-
probability of this target answer (‘18’) to rise. (ii)
Operand Transfer (L15–16): L15 begins operand
transfer and already contains both clean run logic
and operand information. Patching them should
increase the log-prob of the clean answer (e.g.,
‘8’), while reducing probability of the corrupted
(‘4’) and target answers (‘18’). (iii) Computation
(Layer 18): By this point, the full ingredients (ab-
straction and computation) are available. Patching
here should fully recover the clean answer (‘8’).
We expect the log-prob close to 0. To evaluate
these effects, we track log-probabilities across lay-
ers for the target answer (18 = 11 + 7, clean
logic + corrupted operands) – testing numerical
abstraction transfer, the clean answer (8 = 5 + 3)
– testing operand alignment and execution, and the
corrupted answer (4 = 11− 7).

To investigate if the abstraction representations
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(a) Cl: a+ b; Cor: a− b (b) Cl: a− b; Cor: a+ b (c) Cl: a× b; Cor: a÷ b (d) Cl: a÷ b; Cor: a× b

(e) Cl: Paired x−y; Cor: a+b (f) Cl: x− y; Cor: a+ b (g) Cl: x× y; Cor: a+ b (h) Cl: x÷ y; Cor: a+ b

Figure 6: Cross-patching results for Llama-3 8B with corresponding clean and corrupted run. a, b indicate concrete
numerical problems, while x, y indicate symbolic problems. Top (Numerical Abstraction): Patching concrete
problems with different abstractions shows target log-prob rising at 13 (abstraction onset), peaking at 14 (abstraction
formed), then falling as clean operands are introduced. Meanwhile, the clean answer’s log-prob rises from 13
(abstraction) and 15 (operand integration), stabilizing at layer 18 (computation). Bottom (Symbolic Abstraction):
Patching symbolic problems into concrete addition shows target log-probability rising at layer 13, peaking at 15
(where predictions flip), then declining.

can be transferred across problem forms (symbol-
ic/numerical) and templates, and if they can be
composed with subsequent computation stage, we
cross-patch for symbolic abstraction (See Fig-
ure 4c) – patching symbolic clean states to numeri-
cal corrupted run. Here, clean inputs are symbolic
(no concrete numbers), and corrupted inputs are nu-
merical problems with a different underlying logic.
This ensures that only abstraction (no operands or
computation) is transferred from the clean run, un-
like numerical abstraction cross-patching. In the
example in Figure 4c, clean run predicts x − y,
while the corrupted run corresponds to 5 + 3 = 8.
By patching clean states from the symbolic prob-
lem to the numerical corrupted run, we examine (i)
if symbolic abstractions are also formed at around
L13-14, despite predicting ‘x’ as the first token,
and (ii) if this abstraction (x− y), when transferred
into numerical corrupted run, can be used and com-
posed with corrupted operands (5, 3) to compute
5 − 3 = 2. To assess this, we track the per-layer
log-probabilities of the target answer (clean logic
+ corrupted operands, 2 = 5 − 3) and corrupted
answer (8 = 5 + 3), and omit the clean answer
‘x’. If symbolic abstraction transfer occurs, we ex-
pect an increase in the target answer log-prob, and
a corresponding decrease in the corrupted answer
starting around L13. Note that since the symbolic
clean states across layers are predicting ‘x’, we
expect both answer log-probs to drop.

Results Figure 6a shows results for numerical
abstraction cross-patching results corresponding
to the example illustrated in Figure 4. As expected,
the target answer log-probability (‘18’) begins ris-
ing at L13 (abstraction onset), peaks at L14 (ab-
straction formed), and drops when clean operands
are introduced (L15). The clean answer (‘8’) log-
probability keeps rising from L13 (abstraction) and
continue at 15 (operand integration), stabilizing
by L18 (computation). The corrupted answer (‘4’)
log-probability drops after L13. These trends hold
across underlying logic (Figure 6b-d), confirming
the roles of these critical layers as identified ear-
lier. In symbolic abstraction cross-patching (Fig-
ure 6e-h), we observe consistent behaviour: from
L13 onward, the target answer probability increases
while the clean answer decreases, eventually flip-
ping. This indicates that (i) abstractions injected
via patching are composed with corrupted operands
to produce valid outputs, and (ii) abstraction repre-
sentations at L13–14 are invariant to surface form
and problem template. Concretely, comparing Fig-
ure 6e and Figure 6f, where minimally different
templates are used in (e) and random templates
in (f), we observe near-identical effects in both
cases —suggesting abstraction transfer is template-
invariant. Furthermore, (g) and (h) show that inject-
ing symbolic multiplication and division abstrac-
tions into concrete addition problems still flips the
model’s prediction—demonstrating the generality
of abstraction transfer. Cross-patching results for
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other models, and two-operator problems are in
Appendix B.3.

Together, these results provide strong support for
the abstract-then-compute hypothesis with critical
layers for abstraction (L13,14) and computation
(L15,16 for operands and L18 for computation),
and further demonstrate that: (i) abstraction can
be transferred and composed with subsequent com-
putation across surface forms (symbolic/concrete)
and templates, and (ii) even at the last position in
symbolic problems, when predicting the first output
token ‘x’, middle layers already encode abstraction
(e.g., the correct operator), indicating that next-
token prediction reflects not just immediate token
prediction, but also anticipates future outputs.

6 Discussion

Math reasoning tasks, particularly structured and
easily verifiable math word problems such as
GSM8K, have attracted significant attention in the
community. Our findings provide a complementary
perspective to recent work on efficient and latent
reasoning.

Toward More Token-Efficient CoT Reasoning:
Recent work has explored reducing the token cost
of lengthy CoT chains (Ma et al., 2025; Fan et al.,
2025; Fatemi et al., 2025; Munkhbat et al., 2025;
Kang et al., 2025; Xia et al., 2025). Our findings
offer a complementary perspective: if models inter-
nally represent abstract problem structures and the
computation step is the primary bottleneck, then the
allocation of intermediate tokens could be recon-
sidered. While CoT facilitates arithmetic computa-
tion, it raises a key question: what is the minimal
number of CoT steps required for accurate arith-
metic computation? This suggests new directions
for designing concise yet effective CoT scaffolds
that exploit internal abstraction, reducing verbosity
without sacrificing performance.

Latent CoT and Internal Computation: Our
results suggest that the abstraction skills exist in-
ternally, which supports the emerging view that
models can internalize reasoning, even when such
reasoning steps are not explicitly verbalized in the
generated output. This is consistent with recent
work on latent CoT (Hao et al., 2024; Pfau et al.,
2024; Goyal et al., 2024; Cheng and Van Durme,
2024; Su et al., 2025; Zhang et al., 2025; Wu et al.,
2025), where the reasoning is embedded in the hid-
den space rather than in discrete vocabulary space.

The abstract-then-compute behavior and abstrac-
tion transferability across problems suggest that
reasoning may be increasingly internalized with
scale and training. These insights can inform fu-
ture work on dynamic strategy selection during
decoding—where models might conditionally de-
cide whether to externalize reasoning or rely on
internal computation—depending on task difficulty,
context, or resource constraints.

7 Conclusion

Disentangled evaluation reveals that, without CoT,
models perform better at abstraction than compu-
tation, with the latter bottlenecking final-answer
accuracy — challenging the view that poor per-
formance always implies reasoning failure. Mech-
anistic interpretability uncovers an abstract-then-
compute mechanism with transferable abstractions.
We argue for disentangled evaluation to more pre-
cisely assess model abilities and inform architec-
tural design.

8 Limitations

Our study has several limitations. First, we focus
solely on English-language datasets; whether the
abstract-then-compute mechanism generalizes to
other languages remains an open question. Second,
our evaluation decomposes mathematical problem-
solving into only two stages: abstract formulation
and arithmetic computation. Finer-grained break-
downs (e.g., Opedal et al. (2024)) may offer deeper
insight. Third, our interpretability analysis is lim-
ited to single-step generation, as common tech-
niques (e.g., activation patching, logit attribution)
target single-token behavior. Extending these to
multi-step reasoning is an ongoing challenge, with
recent work like SelfIE (Chen et al., 2024) provides
initial steps. Fourth, while we focus on critical lay-
ers involved in abstraction and computation, we
leave detailed analysis of components to future
work. Finally, due to compute constraints, we an-
alyze models up to 12B parameters. Extending to
larger models is left for future studies.
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A Disentangled Evaluation Details and
Additional Results

A.1 Symbolic Variant Creation For GSM8K
and SVAMP

Question: Weng earns $12 an hour for 
babysitting. Yesterday, she just did 50 
minutes of babysitting. How much did she 
earn?

Abstracted Question: Weng earns $x an 
hour for babysitting. Yesterday, she just did 
y minutes of babysitting. How much did she 
earn?

Symbolic Answer: x * (y/60)

Question-Solution Pair (GSM-8K)

Question
Solution 

Pair

Abstracted Question 
+ Symbolic Answer +

Substitution Rule

Solution: Weng earns 12/60 = 
$<<12/60=0.2>>0.2 per minute. Working 
50 minutes, she earned 0.2 x 50 = 
$<<0.2*50=10>>10. #### 10

1) Automated Generation with API 2) Automated Validation with Python

Substitution Rule: x = 12, y = 50

Generated Triplet (GPT-4o-mini)

Validation of the 
generated symbolic 
answer against gold 
answer answer using 

substitution rule

Keep 
only 

verified 
correct 
samples

Figure 7: Generate-then-validate pipeline: We use
API calls to obtain abstract question-answer-substitution
triplets from the concrete question-solution pair from
GSM-8K, then validate them against gold answer using
sympy. Triplets that fail this check are manully reviewer
and corrected.

All our evaluations are conducted on the GSM8K
test set and the full SVAMP dataset. To support our
evaluation of abstract formulation and arithmetic
computation in Section 4, we construct symbolic
question and expression answer variants for both

14329

https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421
https://openreview.net/forum?id=Tn5B6Udq3E
https://openreview.net/forum?id=Tn5B6Udq3E
https://doi.org/10.18653/v1/2024.emnlp-main.193
https://doi.org/10.18653/v1/2024.emnlp-main.193
https://doi.org/10.18653/v1/2024.emnlp-main.193
https://openreview.net/forum?id=RJZRhMzZzH
https://openreview.net/forum?id=RJZRhMzZzH
https://openreview.net/forum?id=RJZRhMzZzH
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://doi.org/10.18653/v1/2024.findings-naacl.149


SVAMP and GSM-8K. Examples are shown in Ta-
ble 4.

For SVAMP, which already includes both the
expression (e.g., 20 × 10) and the final numerical
answer (e.g., 200), we create symbolic abstraction
variants by replacing all numeric values with sym-
bolic variables (e.g., x, y) in both the question
and the corresponding expression. This preserves
the structure and semantics of the original prob-
lem while abstracting away from the concrete num-
bers. For arithmetic computation variant, we use
the paired expression.

For GSM-8K, which lacks such annotations,
we generate both the symbolic abstraction vari-
ant and the numerical expressions using a two-
stage generate-then-validate pipeline (Figure 7). In
the generation stage, we use GPT-4o-mini (Ope-
nAI, 2024) to produce triplets from original ques-
tion–solution pairs. Each triplet consists of: (1) a
symbolic version of the question, where relevant
numbers are replaced with variables while main-
taining the semantic content; (2) a symbolic expres-
sion that represents the solution in closed-form us-
ing those variables; and (3) a substitution rule that
maps each variable to its original numeric value.
In the validation stage, we verify the correctness
of each generated sample. We apply the substitu-
tion rule to the symbolic expression, obtaining a
numerical expression, then using sympy to evaluate
the expression, and compare the resulting numeric
answer to the gold answer from GSM-8K. Triplets
that fail this check are manually reviewed and cor-
rected.

A.2 Evaluation Details
In this section, we detail the evaluation of the four
settings. First, we show the instructions used in
each settings in Table 5 with and without CoT. The
prompt used in each setting is then a concatenation
of the instruction and the question.

For the Original and Arithmetic Computation
settings, where the expected output is a final inte-
ger answer, we extract the answer following the
token ####, remove any accompanying units, and
normalize formatting (e.g., removing commas, dol-
lar signs, percentage symbols, and units like ‘g‘)
before comparing it with the gold answer.

For the Numerical Abstraction setting, where
answers are expected to be numerical expressions,
we first convert LaTeX-style expressions to Python
syntax (when written in Markdown form), then
evaluate them using sympy to check equivalence

Box 1: Symbolic Evaluation Prompt

Determine whether the following two mathematical
expressions are equivalent. The expressions may be
written in simplified or unsimplified symbolic form
(e.g., 1/2x + 3), natural language (e.g., “Susan made
1/2x + 3 buttons”) or in LaTeX notation. Consider
expressions equivalent if they represent the same
mathematical value, even if written differently (e.g.,
different notation, simplification, or variable order
when valid). Respond only with: True or False.

Example:
1. z − (y − x)
2. z - y + x
Answer: True

1. Susan made 1/2*x buttons
2. 0.5x
Answer: True

1. 2(y + x)
2. M = 2(y + x)
Answer: True

1. xz * ((1 - y)/100)
2. x × z - (y/100) × (x × z)
Answer: True

Now evaluate:
1. {symbolic_gold_answer}
2. {abstract_generated_answer}
Answer:

with the gold expression.
In the Symbolic Abstraction setting, where

outputs are symbolic expressions, we use
gpt-4o-mini as an automated evaluator. The
prompting to gpt-4o-mini is shown in Box 1, and
responses are generated with temperature set to 0.
To validate this method, we annotated a held-out
set of 120 samples manually for correctness, and
compared our annotations with the gpt-4o-mini
evaluator’s decisions. We find that gpt-4o-mini
achieves 94% agreement with our judgment in
identifying symbolic expression equivalence. Ex-
ample comparisons are shown in Table 3.

A.3 Additional Result of Disentangled
Evaluation Without CoT

We report zero-shot, no-CoT performance on
SVAMP in Figure 9. Compared to GSM8K,
SVAMP is a significantly simpler benchmark con-
sisting of math word problems that require only a
single reasoning step — namely, a single arithmetic
operation. As with GSM8K, models perform bet-
ter on the abstraction variants than in the original
setting, though the performance gap is smaller due
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Gold Answer Model Generation Our Eval GPT-4o-mini Eval

u ∗ (x+ y + z) xu+ yu+ zu True True
x+ x ∗ (1/y) x+ (x/y) True True
0.5(x+ yz) z ∗ (y + 1) ∗ x/2 False False
(y + z)/x xz − y = xy False False
xz ∗ ((1− y)/100) (x ∗ (1− y/100) ∗ z) False True
(12/x) ∗ y y ∗ 12 False True

Table 3: Comparison of gold answers, model generations, our annotated correctness, and GPT-4o-mini evaluation
on a held-out set of 120 samples.

Dataset Symbolic Question Answer Substitution

GSM8K I have x liters of orange drink that are y% water and I
wish to add it to z liters of pineapple drink that is u%
water. But as I pour it, I spill v liters of the orange drink.
How much water is in the remaining w liters?

(y ·(x−v)+u ·z)/100 x = 10, y =
2
3
, z = 15, u =

3
5
, v = 1, w = 24

GSM8K Jerry has a flock of chickens. The red chickens produce x
eggs a day, and the white chickens produce y eggs a day.
Every day Jerry collects z eggs. If he has u more white
chickens than red chickens, how many red chickens does
he have?

(z − u · y)/(x+ y) x = 3, y = 5, z =
42, u = 2

GSM8K Adrian’s age is x times the age of Harriet, and Harriet is
y the age of Zack. Calculate the average age of the three
in three years if Harriet is z years old now.

(x∗z+z+(z/y)+9)/3 x = 3, y =
1
2
, z = 21

SVAMP Each pack of DVDs costs x dollars. If there is a discount
of y dollars on each pack

x− y x = 76, y = 25

SVAMP An industrial machine worked for x minutes. It can make
y shirts a minute.

x · y x = 4, y = 5

SVAMP Paco had x salty cookies and y sweet cookies. He ate
z sweet cookies and u salty cookies. How many salty
cookies did Paco have left?

x− u x = 26, y =
17, z = 14, u = 9

Table 4: Constructed symbolic examples from GSM8K and SVAMP datasets.

to the task’s simplicity.
Interestingly, we observe a notable difference

from GSM8K: across all model sizes, even small
models such as LLAMA 1B and 3B perform well
on the Arithmetic Computation variant, often out-
performing both the abstraction variants and the
original setting. This suggests that computing one-
step expressions (e.g., 5 − 3) is less challenging
than deriving an abstract formulation with only one
step. However, in tasks involving multiple steps,
abstraction becomes comparatively easier than ex-
ecuting the full computation correctly, as shown
in the case of GSM8K. This highlights how model
capabilities depend not just on the skill type but
also on the complexity of the required operation.

A.4 Additional Resuls of Disentangled
Evaluation With CoT

We present the full results on GSM8K for Llama
family and Qwen family in Figure 10, and full
results on SVAMP for Llama family and Qwen

Weng earns $x an hour for babysitting. 
Yesterday, she just did y minutes of babysitting. 
How much did she earn?

x * (y/60)

Original Symbols

Weng earns $y an hour for babysitting. 
Yesterday, she just did x minutes of babysitting. 
How much did she earn?

y * (x/60)

Reversed Symbols
Weng earns $s an hour for babysitting. 
Yesterday, she just did b minutes of babysitting. 
How much did she earn?

s * (b/60)

Random Symbols

Figure 8: Experiment configurations for the ablation
study on symbol choices and symbol order.

family in Figure 11.

A.5 Ablation on Symbolic Abstraction
Variant

To assess the reliability and external validity of
the symbolic abstraction evaluation, we perform
ablations over symbol order and symbol choice. As
illustrated in Figure 8, we compare three settings:

• Original Symbols: Variables are consistently
represented using a fixed set of letters in
order—x, y, z, u, v, w, p, q, r, s, t—e.g.,
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Table 5: Prompting Strategies, Problem Variants and Instructions

Setting Strategy Instruction Question Answer

Original No CoT Please answer the question directly WITHOUT
showing the reasoning process, you MUST
write the answer as an integer after ‘####’,
without including the equation or units.

Weng earns $12 an hour for
babysitting. Yesterday, she just
did 50 minutes of babysitting.
How much did she earn?

10

Original CoT Let’s think step by step, you MUST write
the answer as an integer after ‘####’ without
including the units. Write the answer at the
end.

Weng earns $12 an hour for
babysitting. Yesterday, she just
did 50 minutes of babysitting.
How much did she earn?

10

Arithmetic Computation No CoT Please answer the question directly WITHOUT
showing the reasoning process, you MUST
write the answer as an integer after ‘####’

What is the value of 12 * (50/60)? 10

Arithmetic Computation CoT Let’s think step by step, you MUST write the
answer as an integer after ‘####’ . Write the
answer at the end.

What is the value of 12 * (50/60)? 10

Numerical Abstraction No CoT Please answer the question directly without
showing the reasoning process, you MUST
write the expression with appropriate round
brackets after ‘####’, without including the
units, and you DO NOT need to simplify the
expression.

Weng earns $12 an hour for
babysitting. Yesterday, she just
did 50 minutes of babysitting.
How much did she earn?

12 ∗ (50/60)

Numerical Abstraction CoT Let’s think step by step, at the end, you
MUST write the expression with appropriate
parenthesis after ‘####’, without including the
units, but you DO NOT need to simplify the
expression.

Weng earns $12 an hour for
babysitting. Yesterday, she just
did 50 minutes of babysitting.
How much did she earn?

12 ∗ (50/60)

Symbolic Abstraction No CoT Please answer the question directly WITHOUT
showing the reasoning process, you MUST
write the expression with appropriate round
brackets after ‘####’ without including the
units, and you DO NOT need to simplify the
expression.

Weng earns $x an hour for babysit-
ting. Yesterday, she just did y min-
utes of babysitting. How much did
she earn?

x ∗ (y/60)

Symbolic Abstraction CoT Let’s think step by step, at the end, you
MUST write the expression with appropriate
round brackets after ‘####’ without including
the units, but you DO NOT need to simplify
the expression.

Weng earns $x an hour for babysit-
ting. Yesterday, she just did y min-
utes of babysitting. How much did
she earn?

x ∗ (y/60)

x× (y/60).

• Reversed Symbols: The same set of sym-
bols is used, but the order is reversed (e.g.,
y×(x/60)), preserving the semantic and struc-
tural content of the problem while changing
the superficial presentation.

• Random Symbols: Each original symbol is
replaced with a randomly sampled letter from
the alphabet, unique to each dataset. This
preserves the structure of the expression while
removing any consistent identity cues. The
mappings are as follows: {’a’: ’h’, ’d’:
’i’, ’m’: ’s’, ’n’: ’r’, ’p’: ’e’,
’q’: ’l’, ’r’: ’c’, ’s’: ’v’, ’t’:
’j’, ’u’: ’m’, ’v’: ’t’, ’w’: ’o’,
’x’: ’u’, ’y’: ’p’, ’z’: ’b’, ’Z’:
’f’}

In Table 6, we observe mild performance degra-
dation with symbol perturbations on both models,
(e.g., three-point drop with Reversed and another
two points with Random), but models retain strong
accuracy compared to the Original setting. This

suggests that Symbolic Abstraction is relatively
robust to surface-level symbol changes.

Setting Llama 8B Qwen 7B
No CoT CoT No CoT CoT

original 45.7 56.7 61.5 74.7

reverse 42.8 51.8 61.9 74.8
random 41.0 53.1 58.0 71.9

Table 6: Results of ablation study on symbol choices
and symbol order, with and without CoT under zero-
shot setting on GSM8K.

B Intepretability Results

B.1 Interpretability Data Construction

To construct a dataset suitable for mechanistic in-
terpretability, we focus on simpler math word prob-
lems that require only one or two reasoning steps
with one or two basic arithmetic operations (addi-
tion, subtraction, multiplication, or division). We
deliberately avoid more complex multi-step prob-
lems, as model performance on such tasks tends
to be poor, potentially confounding interpretability
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Figure 9: Model zero-shot without CoT performance on SVAMP.

Figure 10: Model zero-shot with and without CoT performance on GSM8K. A.C.: Arithmetic Computation; N.A.:
Numerical Abstraction; O.: Original; S.A.: Symbolic Abstraction.

analyses.
For each pair of arithmetic operations—(x +

y, x − y) and (x × y, x ÷ y) and (x + y + z, x +
y−z, x−y+z, x−y−z) — we use a proprietary
model to generate 150 template pairs, totaling 1200
templates. These templates are minimally different
in semantics but vary across a broad range of top-
ics, verb choices, names, and syntactic structures.
Examples are presented in Table 7. For instance, a
representative pair might include:

• [name] has {x} apples. They get {y} more
apples. How many apples does [name] have
now? (corresponding to x+ y)

• [name] has {x} apples. They give away {y}
apples. How many apples does [name] have
now? (corresponding to x− y)

Each template is instantiated by replacing the
[name] placeholder with a randomly selected name
from a curated list of 30 English first names, shown
below:

James, Emma, William, Olivia,
Benjamin, Charlotte, Henry, Amelia,
Alexander, Ava, Samuel, Sophia,
Jacob, Mia, Daniel, Lily, Michael,
Grace, Ethan, Ella, Jack, Chloe,
Lucas, Harper, Thomas, Zoe, Matthew,
Nora, Nathan, Isla.

The numerical placeholders {x} and {y} are
populated with integers ≤ 50, to avoid detokeniza-
tion issues during model processing.

B.2 Logit Attribution and Activation Patching
Additional Results

Other Models We observe a similar abstract-
then-compute mechanism in other models, includ-
ing Qwen 2.5 7B and Qwen 2.5 14B. In Qwen 2.5
7B, the abstraction stage occurs around layers 18–
20, with the computation stage beginning around
layers 22–23. In Qwen 2.5 14B, abstraction takes
place around layers 29–32, followed by computa-
tion starting at layer 36.

For additional interpretability results using logit
lens and activation patching:

• See Figure 12, Figure 13, and Figure 14 for
Llama-3 8B on subtraction, multiplication,
and division.

• See Figure 15, Figure 16, Figure 17, and Fig-
ure 18 for Qwen 2.5 7B on all four operations:
addition, subtraction, multiplication, and divi-
sion.

• See Figure 19, Figure 20, Figure 21, and Fig-
ure 22 for Qwen 2.5 14B on the same set of
arithmetic tasks.
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Figure 11: Model zero-shot with and without CoT performance on SVAMP. A.C.: Arithmetic Computation; N.A.:
Numerical Abstraction; O.: Original; S.A.: Symbolic Abstraction.

Subset Example Data

(+,−) (+) [name] owns x stuffed animals. A relative sends them y more stuffed animals. How many stuffed animals
does [name] have now?
(−) [name] owns x stuffed animals. They give y stuffed animals to a younger sibling. How many stuffed animals
does [name] have now?

(+,−) (+) [name] finds x seashells at the beach. The next day they find y more seashells. How many seashells does
[name] have now?
(−) [name] finds x seashells at the beach. The tide washes away y seashells. How many seashells does [name]
have now?

(+,−) (+) The storage has x gigabytes free. [name] saves y gigabytes of photos. How much space remains?
(−) The storage has x gigabytes free. Cloud storage adds y gigabytes. What is the new capacity?

(×,÷) (×) The glacier recedes x inches daily. How much will it shrink after y days?
(÷) The glacier retreated x inches over y days. What was the average daily recession?

(×,÷) (×) Each server rack uses x kilowatts. What’s the total power for y racks?
(÷) The data center used x kilowatts across y racks. What was the average per rack?

(×,÷) (×) The spaceship’s shield blocks x radiation units hourly. How much radiation can it block in y hours?
(÷) The shield blocked x units over y hours. What was its average protection rate?

Two opera-
tions

(x+ y + z) [name] collects x stamps, buys y more, and inherits z. Total stamps?
(x+ y − z) [name] has x stamps, acquires y more, but loses z. How many left?
(x− y + z) [name] owns x stamps, sells y, but trades for z. How many now?
(x− y − z) [name] has x stamps, donates y, and ruins z. How many remain?

Table 7: Interpretability dataset examples.

Two-Operator Dataset For two operator dataset,
we only report results for Qwen 2.5 7B and Qwen
2.5 14B, because Llama-3 8B only achieve 16.5%
accuracy on this dataset.

See Figure 27 and Figure 28 for logit attribu-
tion results for Qwen 2.5 7B and Qwen 2.5 14B,
respectively.

B.3 Cross-Prompt Patching Additional
Results

Other Models See Figure 23, Figure 24, and
Figure 25 for symbolic abstraction cross-prompt
patching results (for single operators: +,−,×,÷)
on Llama3 8B, Qwen 2.5 7B, and Qwen 2.5 14B,
respectively. The results are consistent across mod-
els: the likelihood of the target answer peaks at
the abstraction stage, while the likelihood of the
corrupted answer drops significantly starting from
the same stage.

See Figure 26 for numerical abstraction cross-

prompt patching results on Llama3 8B, Qwen 2.5
7B, and Qwen 2.5 14B. We observe consistent
trends across all models: the probability of the tar-
get answer begins to rise at the onset of the abstrac-
tion stage and peaks by its end. Meanwhile, the
clean answer probability increases steadily through-
out the abstraction stage, reaching a log-probability
of 0 at the start of the computation stage.

Two-Operator Dataset For the two-operator
dataset, we report results only for Qwen 2.5 7B
and Qwen 2.5 14B, as Llama-3 8B performs poorly
on this setting, achieving only 16.5% accuracy.

See Figure 29 for symbolic abstraction cross-
prompt patching results on Qwen 2.5 7B and Qwen
2.5 14B.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 12: Visualizations of internal computations at last token position in Llama-3 8B for subtraction math word
problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results.

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 13: Visualizations of internal computations at last token position in Llama-3 8B for multiplication math
word problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 14: Visualizations of internal computations at last token position in Llama-3 8B for division math word
problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results.

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 15: Visualizations of internal computations at last token position in Qwen 2.5 7B for addition math word
problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 16: Visualizations of internal computations at last token position in Qwen 2.5 7B for subtraction math word
problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results.

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 17: Visualizations of internal computations at last token position in Qwen 2.5 7B for multiplication math
word problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 18: Visualizations of internal computations at last token position in Qwen 2.5 7B for division math word
problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results.

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 19: Visualizations of internal computations at last token position in Qwen 2.5 14B for addition math word
problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 20: Visualizations of internal computations at last token position in Qwen 2.5 14B for subtraction math
word problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results.

(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 21: Visualizations of internal computations at last token position in Qwen 2.5 14B for multiplication math
word problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results.
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(a) Attn (b) MLP (c) Abstraction

(d) Block (e) Resid Mid (f) Computation

Figure 22: Visualizations of internal computations at last token position in Qwen 2.5 14B for division math word
problems: (a, b, d, e) for logit attribution results, (c, d) activation patching for results. We label the starting layer of
abstraction, operand moving and computation in pink, blue and green, respectively.

(a) Paired − to + (b) − to + (c) × to + (d) ÷ to +

(e) Paired + to − (f) + to − (g) × to − (h) ÷ to −

(i) Paired ÷ to × (j) ÷ to × (k) + to × (l) − to ×

(m) Paired × to ÷ (n) × to ÷ (o) + to ÷ (p) − to ÷

Figure 23: Llama-3 8B cross-prompt patching for symbolic abstraction results: First row: patching symbolic
logic to concrete addition; Second row: patching symbolic logic to concrete subtraction; Third row: patching
symbolic logic to concrete multiplication; Fourth row: patching symbolic logic to concrete division;
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(a) Paired − to + (b) − to + (c) × to + (d) ÷ to +

(e) Paired + to − (f) + to − (g) × to − (h) ÷ to −

(i) Paired ÷ to × (j) ÷ to × (k) + to × (l) − to ×

(m) Paired × to ÷ (n) × to ÷ (o) + to ÷ (p) − to ÷

Figure 24: Qwen-7b cross-prompt patching for symbolic abstraction results: First row: patching symbolic logic
to concrete addition; Second row: patching symbolic logic to concrete subtraction; Third row: patching symbolic
logic to concrete multiplication; Fourth row: patching symbolic logic to concrete division;
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(a) Paired − to + (b) − to + (c) × to + (d) ÷ to +

(e) Paired + to − (f) + to − (g) × to − (h) ÷ to −

(i) Paired ÷ to × (j) ÷ to × (k) + to × (l) − to ×

(m) Paired × to ÷ (n) × to ÷ (o) + to ÷ (p) − to ÷

Figure 25: Qwen-14b cross-prompt patching for symbolic abstraction results: First row: patching symbolic logic
to concrete addition; Second row: patching symbolic logic to concrete subtraction; Third row: patching symbolic
logic to concrete multiplication; Fourth row: patching symbolic logic to concrete division;

(a) Cl: a+ b; Cor: a− b (b) Cl: a− b; Cor: a+ b (c) Cl: a× b; Cor: a÷ b (d) Cl: a÷ b; Cor: a× b

(e) Cl: a+ b; Cor: a− b (f) Cl: a− b; Cor: a+ b (g) Cl: a× b; Cor: a÷ b (h) Cl: a÷ b; Cor: a× b

(i) Cl: a+ b; Cor: a− b (j) Cl: a− b; Cor: a+ b (k) Cl: a× b; Cor: a÷ b (l) Cl: a÷ b; Cor: a× b

Figure 26: Cross-prompt patching results for numerical abstraction. First row: results for Llama-3 8B with
corresponding clean and corrupted run. Second row: results for Qwen2.5 7B with corresponding clean and
corrupted run. Third row: results for Qwen2.5 14B with corresponding clean and corrupted run.
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(a) Attn (b) MLP (c) Resid Final

(d) Attn (e) MLP (f) Resid Final

(g) Attn (h) MLP (i) Resid Final

(j) Attn (k) MLP (l) Resid Final

Figure 27: Visualizations of internal computations at last token position in Qwen 2.5 7B for two-operation math
word problems. First row: for a+ b+ c. Second row: for a+ b− c. Third row: for a− b+ c. Fourth row: for
a− b− c.
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(a) Attn (b) MLP (c) Resid Final

(d) Attn (e) MLP (f) Resid Final

(g) Attn (h) MLP (i) Resid Final

(j) Attn (k) MLP (l) Resid Final

Figure 28: Visualizations of internal computations at last token position in Qwen 2.5 14B for two-operation math
word problems. First row: for a+ b+ c. Second row: for a+ b− c. Third row: for a− b+ c. Fourth row: for
a− b− c.
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(a) x+ y + z to a+ b− c (b) x+ y + z to a− b+ c (c) x+ y − z to a+ b+ c (d) x− y + z to a+ b+ c

(e) x− y − z to a+ b− c (f) x− y − z to a− b+ c (g) x− y + z to a− b− c (h) x+ y − z to a− b− c

(i) x+ y + z to a+ b− c (j) x+ y + z to a− b+ c (k) x+ y − z to a+ b+ c (l) x− y + z to a+ b+ c

(m) x− y − z to a+ b− c (n) x− y − z to a− b+ c (o) x− y + z to a− b− c (p) x+ y − z to a− b− c

Figure 29: Two-operation cross-prompt patching for symbolic abstraction results: First row & Second row:
patching symbolic logic to concrete problems for Qwen 2.5 7B. Third row & Fourth row: patching symbolic logic
to concrete problems for Qwen 2.5 14B.
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