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Abstract
Multi-modal large language models (MLLMs)
have achieved remarkable success in fine-
grained visual understanding across a range
of tasks. However, they often encounter signifi-
cant challenges due to inadequate alignment for
fine-grained knowledge, which restricts their
ability to accurately capture local details and at-
tain a comprehensive global perception. While
recent advancements have focused on aligning
object expressions with grounding information,
they typically lack explicit integration of object
images, which contain affluent information be-
yond mere texts or coordinates. To bridge this
gap, we introduce a novel fine-grained visual
knowledge alignment method that effectively
aligns and integrates multi-scale knowledge of
objects, including texts, coordinates, and im-
ages. This innovative method is underpinned
by our multi-scale fine-grained enhancement
data synthesis pipeline, which provides over
300K essential training data to enhance align-
ment and improve overall performance. Fur-
thermore, we present TinyGroundingGPT, a
series of compact models optimized for high-
level alignments. With a scale of approximately
3B parameters, TinyGroundingGPT achieves
outstanding results in grounding tasks while
delivering performance comparable to larger
MLLMs in complex visual scenarios. The data
and code will be released in https://github.
com/wwangweii/TinyGroundingGPT.git.

1 Introduction

Recent advancements in multi-modal large lan-
guage models (MLLMs) have showcased remark-
able capabilities in multi-modal understanding, rea-
soning, and interaction, garnering unprecedented
attention (Touvron et al., 2023; Bai et al., 2023;
Li et al., 2025b,a; Zheng et al., 2025b,a; Jian
et al., 2025a, 2024). MLLM research in fine-
grained visual understanding has advanced signif-
icantly, particularly through early contributions

*Equal contribution. Order is random.

Figure 1: The comparison of alignment for multi-scale
object representations. The C, T, I denote object coordi-
nates, texts and images respectively. The “X-Y” denote
MLLMs handle input “X” and output “Y”.

from Shikra (Chen et al., 2023a) and Kosmos-
2 (Peng et al., 2023) in textually formatting po-
sitional vocabularies or object coordinates. Sub-
sequent studies aimed at improving model perfor-
mance primarily focused on common strategies, in-
cluding parameter enlargement (Chen et al., 2023a;
Peng et al., 2023; Li et al., 2024c; Bai et al., 2023)
and dataset enrichment (Chen et al., 2023b; Bai
et al., 2023; Wang et al., 2023; Chen et al., 2024b).
Additionally, there is a growing interest in develop-
ing efficient, smaller fine-grained MLLMs (Li et al.,
2024a; Hu et al., 2024; Yao et al., 2024; Zhu et al.,
2023; Zhou et al., 2024) for real-world applica-
tions. Regardless of methods used, the core of fine-
grained models lies in achieving better alignment
between object texts and visual features, encom-
passing both coordinate and semantic information.

While effective, these methods face a significant
challenge, i.e., the lack of fine-grained alignments.
Visual objects typically encompass multi-scale rep-
resentations with varying levels of information, in-
cluding coordinates, texts, and images, as illus-
trated in Fig. 1. In this context, coordinates provide
low-level object grounding information, texts offer
primary descriptions that may not capture every
detail, and images convey high-level information
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Figure 2: Illustration of the proposed multi-modal fine-grained visual knowledge alignment method. It adopts a
three-stage training strategy that progresses from easy to hard and the multi-scale fine-grained enhancement data
synthesis pipeline constructs over 300K fine-grained alignment data.

that extends beyond words. Most fine-grained mod-
els (Chen et al., 2023a; You et al., 2023; Li et al.,
2024c) primarily focus on alignments between ob-
ject texts and coordinates (i.e., T-C and C-T), often
neglecting direct interactions with object images.
Although recent models like Qwen2-VL (Wang
et al., 2024a) and InternVL2 (Chen et al., 2024b)
can process multiple image inputs and understand
relationships between the main image and object
images (T-I), they still struggle to establish explicit
alignments among object texts, coordinates, and
images. This limitation can lead to hallucinations
and insufficient grounding capabilities (Chen et al.,
2024a).

To achieve high-level alignments and inte-
grate multi-granularity knowledge, as illustrated in
Fig. 2(a), we introduce a fine-grained visual knowl-
edge alignment method that effectively aligns ob-
ject texts, coordinates, and images across multiple
scales. Our method adopts a three-stage training
strategy that progresses from easy to hard: 1) Ob-
ject and Relation Perception Pretraining: To de-
velop a foundational understanding of object texts
and images, we implement a progressive train-
ing approach for MLLMs based on a pretrained
LLM. 2) Multi-scale Fine-grained Local Knowl-
edge Alignment: To attain fine-grained visual un-
derstanding and share multi-scale object knowl-
edge, we conduct data-driven high-level alignments

among object text descriptions, bounding box co-
ordinates, and image features. 3) Detailed Global
Knowledge Alignment: To enhance the model’s
global understanding by integrating fine-grained
knowledge, we guide the MLLMs to bridge differ-
ent objects with multi-scale representations. To
support this method, we propose a multi-scale
fine-grained enhancement data synthesis pipeline
(see Fig. 2(b)) that constructs alignment data from
both local and global perspectives. Leveraging this
framework, we propose TinyGroundingGPT, which
requires less storage for deployment while outper-
forming larger models across multiple benchmarks,
particularly in grounding tasks. Our contributions
can be summarized as follows:

• We introduce a fine-grained visual knowledge
alignment method that enables the model to
progressively enhance its fine-grained visual
understanding through both global and local
multi-scale object alignments.

• We develop a multi-scale fine-grained en-
hancement data synthesis pipeline that lever-
ages open-source datasets and advanced mod-
els to generate over 300K essential training
data for fine-grained alignment.

• We introduce TinyGroundingGPT, a series of
compact models with 1.5B and 3B parame-
ters, which excel in multi-modal understand-
ing and grounding capabilities, achieving per-
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formance comparable to larger 7B MLLMs.

2 Related Works

Multi-modal Large Language Models Recent
progress in large language models (LLMs) such
as ChatGPT and LLaMA (Touvron et al., 2023)
has spurred the development of multi-modal LLMs.
Notable models like GPT-4V (OpenAI, 2023) have
demonstrated strong multi-modal capabilities in
visual tasks. Early open-source models, includ-
ing BLIP-2 (Li et al., 2023a), MiniGPT-4 (Zhu
et al., 2023), and LLaVA (Liu et al., 2024), lever-
age pre-trained LLMs and perform well in visual
question answering. Subsequent models, such as
Qwen-VL (Bai et al., 2023), InternVL (Chen et al.,
2024b), and MiniCPM-V (Yao et al., 2024), further
enhance capabilities through dynamic resolution,
expanded training data, and reinforcement learning,
achieving notable results in OCR and grounding
while improving response credibility.

However, the high parameter counts of MLLMs
lead to significant training and deployment costs,
limiting their widespread use. To address this,
lightweight LLMs such as Mini-Gemini (Li et al.,
2024a), MobileVLM (Chu et al., 2024), and
MiniCPM-V (Yao et al., 2024) have been devel-
oped. These models, combined with optimized
structures and training strategies, achieve perfor-
mance comparable to larger models. Additionally,
studies (Hsieh et al., 2023; Wang et al., 2024b; Shu
et al., 2024) have explored distilling capabilities
from larger models to enable smaller models to
acquire complex reasoning abilities.

Fine-grained Multi-modal Models Recent
works have focused on MLLMs for fine-grained
understanding, with applications in tasks like
grounding and OCR. Region-level understanding
MLLMs (Yuan et al., 2024; Guo et al., 2024; Lu
et al., 2023; Jian et al., 2025b) achieved local
alignment between specific region features and
texts. Methods such as Shikra (Chen et al., 2023a)
and Kosmos-2 (Peng et al., 2023) enhanced visual
grounding by constructing datasets with coordinate
information, often converting visual tasks into
instruction-following formats using templates.
Other approaches integrated additional visual
components, like GLaMM (Rasheed et al., 2024)
and LLaVA-Grounding (Zhang et al., 2023b),
or extracted regional features as supplementary
inputs, as seen in Ferret (You et al., 2023), NExT-
Chat (Zhang et al., 2023a), and GPT4RoI (Zhang

et al., 2023c). GroundingGPT (Li et al., 2024c)
extended support for multi-modal grounding
tasks. Models like VisionLLMv2 (Wu et al., 2024)
and UnifiedMLLM (Li et al., 2024b) expanded
capabilities for various visual tasks, including
image editing and segmentation. For fine-grained
tasks, models such as LLaVA-UHD (Xu et al.,
2024) and Qwen2-VL (Wang et al., 2024a)
explored dynamic high-resolution techniques,
improving OCR results. However, these models
often lack systematic alignment among object texts,
coordinates, and images, limiting the integration of
multi-scale representations.

3 Method

In this paper, we first introduce a novel fine-grained
visual knowledge alignment method that harnesses
the potential of MLLMs by aligning object texts,
coordinates, and images across multiple scales,
as shown in Fig. 2(a). Our method consists of
three training stages that progress from easy to
hard: (a) Object and Relation Perception Pretrain-
ing, which enables the model to understand mul-
timodal inputs, identifying objects in images and
their interrelations. (b) Multi-scale Fine-grained
Local Knowledge Alignment by which the model
is guided to achieve multi-scale, fine-grained align-
ments, accommodating diverse inputs such as ob-
ject texts, coordinates, and images. (c) Detailed
Global Knowledge Alignment which focuses on
model training for global alignment and under-
standing, further integrating fine-grained informa-
tion and bridging different objects with multi-scale
representations. To support this high-level align-
ment, we then propose a multi-scale fine-grained
enhancement data synthesis pipeline, as illustrated
in Fig 2(b), which generates multi-scale alignment
datasets from both global and local perspectives.
Building on this framework, we propose Tiny-
GroundingGPT, which requires less storage for
deployment while outperforming larger parameter
models across multiple benchmarks, particularly in
hallucination evaluation and grounding tasks.

3.1 Fine-grained Visual Knwoledge
Alignment

We elaborate the three training stages in our fine-
grained visual knowledge alignment method below.

Object and Relation Perception Pretraining In
this stage, we aim for the model to comprehend
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Figure 3: The model architecture of our proposed TinyGroundingGPT. It utilizes multi-scale visual encoders and
supports queries regarding different object representations. Object images are cropped and zoomed from the input
image according to the input coordinates.

multi-modal inputs, recognizing the objects present
in the image and the relationships among them,
which forms the foundation for subsequent reason-
ing and grounding tasks. Throughout the training
process, we initially keep the LLM and encoder
frozen, training only the projector to connect the
text and image semantic spaces. Subsequently, we
train both the LLM and the projector to enhance
the understanding of objects and their relationships.
We utilize LLaVA-Pretrain-595k (Liu et al., 2024)
and each sample is accompanied by a sampled
instruction that requires the model to provide a
concise description of the image.

Multi-scale Fine-grained Local Knowledge
Alignment After the initial training stage, where
the model learns to recognize objects and their
relationships, it still lacks the grounding capabil-
ity to accurately locate these objects in images
and to integrate different representations of a sin-
gle object. In this stage, we therefore train the
model to achieve fine-grained alignments among
object texts, coordinates, and images, fully shar-
ing their multi-scale knowledge for each rep-
resentation. We utilize original visual ground-
ing datasets such as RefCOCO (Kazemzadeh
et al., 2014), RefCOCO+ (Kazemzadeh et al.,
2014), RefCOCOg (Mao et al., 2016) and Visual
Genomes (Krishna et al., 2017), along with a de-
veloped multi-scale fine-grained enhancement data
synthesis pipeline (details provided in the following
subsection) to construct a fine-grained grounding
dataset. The instances in the training data can be
categorized into three classes:

• Object Texts and Coordinates Alignment:
The model refers to corresponding coordi-

nates for a given object text description or
describes a region based on input coordinates.

• Object Images and Coordinates Alignment:
Given an augmented object image, the model
identifies its location within the image. When
provided with coordinates, the model selects
the most relevant object images.

• Object Texts and Images Alignment: The
model selects the most relevant augmented
object image based on the input question or
answers inquiries about the relationships in-
volving augmented object images.

Throughout the training process, we train both
the LLM and the projector. Afterwards, the
model can effectively perform fine-grained image
understanding by achieving high-level alignments
among object texts, images, and coordinates,
while sharing multi-scale knowledge across each
representation.

Detailed Global Knowledge Alignment Despite
achieving a fine-grained understanding of multi-
modal data in the previous stage, the model lacks
systematic training for global image comprehen-
sion and the ability to connect different objects
with varied representations. Specifically, in the
previous stage, only the representations of individ-
ual objects in each training sample were aligned.
In this stage, our goal is to further align and inte-
grate multiple objects within a single image in-
put to enhance global knowledge learning. To
achieve this, in addition to utilizing common im-
age annotation datasets for instruction tuning, in-
cluding LLaVA-v1.5-mix665k (Liu et al., 2024)
and ShareGPT4V (Chen et al., 2023b), we con-
struct a global grounding dataset with high-level
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fine-grained alignments based on Flickr30K Enti-
ties (Plummer et al., 2015): 1) Multi-round Ground-
ing Conversation Data: This dataset guides the
model to achieve a global understanding of the
image through multi-round conversations, requir-
ing it to combine fine-grained knowledge and thor-
oughly explore the relationships among different
representations of various objects. 2) Grounding
Description Data: This dataset prompts the model
to provide a detailed description of the image to
connect multi objects in one-round conversations,
where the generated object texts are enhanced with
coordinates to confirm their existence and effec-
tively integrate grounding information.

This method enables us to leverage the fine-
grained grounding alignment learned in the sec-
ond stage to enhance the model’s global grounding
alignment. Additionally, we train both the LLM
and the projector in this stage.

3.2 Multi-scale Fine-grained Enhancement
Data Synthesis Pipeline

As shown in Fig. 2(b), we develop a multi-scale
fine-grained enhancement data synthesis pipeline,
and construct a multi-scale fine-grained grounding
dataset (in Stage2) as well as a global grounding
dataset (in Stage3). Specifically, given an image,
we perform the following steps:
Object Recognition We employ expert models or
MLLMs for object detection in input images, gen-
erating a list of identified objects, referred to as L1.
A prompt example for GPT-4V (OpenAI, 2023) is
provided in Appendix Fig.7.
Object Grounding Beyond object text and coordi-
nate pairs in original datasets such as RefCOCO,
we apply grounding models to obtain bounding
box coordinates. In this paper, we employ Ground-
ingDINO (Liu et al., 2023b) to locate objects in L1

and filter out those with low confidence, resulting
in an object bounding box dictionary S1.
Relationship Extraction To uncover the relation-
ships between objects for subsequent QA gener-
ation, we instruct GPT-4V to identify potential
connections among objects. As shown in Ap-
pendix Fig. 7, given the object list L1, GPT-4V
generates a list L2 containing triples in the format
(object1, relation, object2).
QA Generation Based on above L1, S1 and L2, we
use task-specific prompts for GPT-4V to generate
different kinds of datasets (we provide case exam-
ples in Appendix Figs. 8 and 9): (1) 256K Addi-
tional Multi-scale Fine-grained Grounding Dataset:

Compared to previous works (Li et al., 2024c; Chen
et al., 2023a) that focused solely on the alignment
between object texts and coordinates, we enhance
the alignment format by constructing an additional
multi-scale, fine-grained dataset. This dataset incor-
porates object images, texts, and coordinates, facil-
itating more fine-grained image understanding and
multi-scale alignment. Details can be seen in Ap-
pendix Fig. 10. (2) 57K Global Grounding Dataset:
To enhance the global alignment and bridge ob-
jects with various representations, we construct two
kinds of datasets: 1) 28K Multi-round Grounding
Conversation: This dataset includes multi-turn dia-
logue formats, focusing on point-to-point questions
about local details. 2) 29K Grounding Description:
This dataset features single-turn dialogue formats,
emphasizing an understanding of overall image de-
scriptions with fine-grained grounding information.
See details in Appendix Figs. 11 and 12.
Filter We filter out QAs that contain object images
with areas that are either too large or too small,
as well as those with high Intersection over Union
among object images in the options. Additionally,
we exclude QAs related to objects with low confi-
dence or those with an excessive number of bound-
ing boxes. This helps avoid low-resolution noise
or image reference ambiguity. Finally, we exclude
low-quality QAs with the assistance of GPT-4V.

3.3 TinyGroundingGPT
Using our proposed alignment method and synthe-
sis data, we train TinyGroundingGPT to demon-
strate the effectiveness of our method. Fig. 3 il-
lustrates the overall architecture of TinyGround-
ingGPT. Images in various formats are processed
through multi-scale vision encoders to extract fea-
tures. Specifically, we use the pre-trained vi-
sual encoders ViT-L/14 (Radford et al., 2021) and
DINOv2-L/14 (Oquab et al., 2023) to extract image
features, concatenating them to combine the global
perception of CLIP and the local fine-grained un-
derstanding of DINOv2 (Jiang et al., 2023). These
features are then mapped to the LLM embedding
space using an MLP. In TinyGroundingGPT, the
input supports both global images and object im-
ages, each represented by different special tokens:
< image > and < object >. These object images
are cropped and zoomed from the global image
based on the corresponding coordinates. We also
support the input and output of object bounding box
coordinates < loc >, represented in the text format
[x1, y1, x2, y2] with values in [0.000, 1.000].
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Type Model LLM Size RefCOCO RefCOCO+ RefCOCOg Avgval testA testB val testA testB val test

Specialist
UNITER (Chen et al., 2020) - 81.41 87.04 74.17 75.90 81.45 66.70 74.02 68.67 76.17

MDETR (Kamath et al., 2021) - 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89 81.81
UniTAB (Yang et al., 2022) - 86.32 88.84 80.61 78.70 83.22 69.48 79.96 79.97 80.89

Generalist

KOSMOS-2 (Peng et al., 2023) 1.6B 52.32 57.42 47.26 45.48 50.73 42.24 60.57 61.65 52.21
Shikra (Chen et al., 2023a) 7B 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 82.93

NExT-Chat* (Zhang et al., 2023a) 7B 85.50 90.00 77.90 77.20 84.50 68.00 80.10 79.80 80.38
Ferret* (You et al., 2023) 7B 87.49 91.35 82.45 80.78 87.38 73.14 83.93 84.76 83.91

GroundingGPT (Li et al., 2024c) 7B 88.02 91.55 82.47 81.61 87.18 73.18 81.67 81.99 83.46
InternVL2+ (Chen et al., 2024b) 2B 82.3 88.2 75.9 73.5 82.8 63.3 77.6 78.3 77.74
Qwen2-VL+ (Wang et al., 2024a) 2B 87.6 90.6 82.3 79.0 84.9 71.0 81.2 80.3 82.11

Generalist TinyGroundingGPT 3B 89.16 92.24 85.38 81.70 87.16 75.09 83.27 84.08 84.76
1.5B 86.76 90.42 81.81 78.86 84.65 70.24 79.88 80.04 81.58

Table 1: Performance comparison on the referring expression comprehension(REC) task. "*" indicates that the
model employs additional image region perception modules and "+" indicates that the model uses dynamic high-
resolution. The best results are highlighted in bold, while the second-best results are underlined.

4 Experiments

4.1 Experimental Setup
We employ Qwen2.5-3B and Qwen2.5-1.5B (Yang
et al., 2024) as the language models for our Tiny-
GroundingGPT. During the training process, all
images were padded to a square shape and resized
to a resolution of 336 × 336. For more details on
hyper-parameter settings, training processes and
datasets, please refer to the Appendix A.1 and A.2.

4.2 Image Grounding Evaluation
To evaluate the image grounding capability of Tiny-
GroundingGPT, we conducted experiments on the
Reference Expression Understanding (REC) task,
which involves locating the bounding box for a
given text reference. We utilized three datasets:
RefCOCO, RefCOCO+, and RefCOCOg. We com-
pared TinyGroundingGPT against various baseline
models, including end-to-end multi-modal models
such as UNITER (Chen et al., 2020), MDETR (Ka-
math et al., 2021), and UniTAB (Yang et al., 2022),
as well as LLM-based models like KOSMOS-2,
Shikra, NExTChat, Ferret, and GroundingGPT.
Additionally, smaller models such as InternVL2
and Qwen2-VL were included. We used a uni-
fied prompt formatted as “Output the coordinate of
< exp >”, where “< exp >” represents the refer-
ence expression. As shown in Table 1, TinyGround-
ingGPT demonstrates strong performance across
all datasets, even with smaller LLM sizes (3B and
1.5B), matching or exceeding the performance of
specialized fine-tuned models and larger MLLMs
with additional image perception modules. Notably,
the 3B model achieved state-of-the-art results on

several benchmarks, attaining the highest average
accuracy. Furthermore, TinyGroundingGPT-1.5B
showed comparable grounding results, outperform-
ing Next-Chat-7B on nearly all test sets.

4.3 Image Understanding Evaluation
We evaluated TinyGroundingGPT on seven bench-
marks, providing a comprehensive assessment of
its performance across various metrics. As shown
in Table 2, TinyGroundingGPT-3B achieves results
comparable to models such as MiniCPM-V-2 and
InternVL-2, which utilize dynamic high resolution
or enriched training data. Compared to models
with similar fine-tuning data, including LLaVA-
1.5, GroundingGPT, TinyLLaVA, and LLaVA-
Phi, TinyGroundingGPT-3B demonstrates superior
image understanding capabilities on the VQAv2,
GQA, SQA, and POPE benchmarks, achieving in-
creases of 2.6% on MMB and 1.2% on GQA over
GroundingGPT-7B. Notably, TinyGroundingGPT-
1.5B outperforms LLaVA-Phi, despite its larger
parameter count, on most benchmarks. We further
evaluated the MLLMs for object hallucination on
the POPE benchmark, with more details provided
in Appendix A.3. Overall, TinyGroundingGPT, op-
timized by our multi-scale visual knowledge align-
ment method, achieved impressive results across
multiple evaluation sets.

4.4 Ablation Study
Ablation Study on Additional Multi-scale
Fine-grained Grounding Dataset. In Stage 2,
compared to traditional methods that rely solely
on alignment datasets for object texts and coor-
dinates, we utilized our constructed multi-scale
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Models LLM Size VQAv2 GQA SQAI POPE MMEP MMB LLaVAW

BLIP-2 (Li et al., 2023a) 13B 41.0 41 61 85.3 1293.8 - 38.1
InstructBLIP (Dai et al., 2023) 7B - 49.2 60.5 - - 36 60.9
InstructBLIP (Dai et al., 2023) 13B - 49.5 63.1 78.9 1212.8 - 58.2

Shikra (Chen et al., 2023a) 13B 77.4 - - - - 58.8 -
LLaVA-1.5 (Liu et al., 2023a) 7B 78.5 62.0 66.8 85.9 1510.7 64.3 63.4

GroundingGPT (Li et al., 2024c) 7B 78.7 62.1 - 87.4 1454.2 63.8 70.9
Qwen-VL-Chat (Bai et al., 2023) 7B 78.2 - 68.2 - 1487.5 60.6 -

MiniCPM-V-2+ (Yao et al., 2024) 2.8B - - - 87.8 - 69.6 69.2
InternVL-2+ (Chen et al., 2024b) 2B - 61.0 - 88.3 1439.6 - 62.5

LLaVA-Phi (Zhu et al., 2024) 2.7B 71.4 - 68.4 86.7 1335.1 59.8 -
TinyLLaVA (Zhou et al., 2024) 2.7B 77.7 61.0 70.1 86.3 1437.3 68.3 67.1

TinyGroundingGPT 3B 79.3 63.3 70.3 87.9 1423.2 66.4 67.5
1.5B 77.9 62.2 63.1 87.6 1392.4 64.2 65.3

Table 2: Comparison of MLLMs on image understanding benchmarks. Benchmark names are abbreviated due
to space limits. VQAv2 (Goyal et al., 2017); GQA (Hudson and Manning, 2019); SQAI:ScienceQA-IMG (Lu
et al., 2022); POPE (Li et al., 2023b); MME (Fu et al., 2023); MMB:MMBench (Liu et al., 2025); LLaVAW:
LLaVA-Bench (In-the-Wild) (Liu et al., 2024). "+" indicates that the model uses dynamic high-resolution.

fine-grained grounding datasets for TinyGround-
ingGPT, enabling multi-scale alignment among
object texts, images, and coordinates. The
ablation study in Table 3 shows that our proposed
multi-scale fine-grained alignment outperforms
traditional referring data that only aligns object
texts with coordinates. For both the 3B and 1.5B
TinyGroundingGPT models, our method enhanced
performance on the RefCOCO, RefCOCO+, and
RefCOCOg benchmarks. For instance, on the
RefCOCO+ benchmark, our method achieved an
increase of 1.67% for the 3B model and 0.87% for
the 1.5B model, demonstrating the effectiveness of
our proposed fine-grained alignments and datasets.

Size Alignment RefCOCO RefCOCO+ RefCOCOg

3B
T, C 87.35 78.89 83.25

T, C, I 88.50 80.56 83.69

1.5B
T, C 85.93 77.05 79.54

T, C, I 86.33 77.92 79.96

Table 3: Ablation study on our Additional Multi-scale
Fine-grained Grounding Dataset in Stage 2. Here, T, C,
and I denote Text, Coordinate, and Image, respectively.
We report the average accuracy for each benchmark.

Ablation Study on Global Grounding Datasets.
In Stage 3, we utilized the constructed Global
Grounding Datasets for TinyGroundingGPT to
bridge different objects with varied representations
and enhance global image comprehension. The re-
sults presented in Table 4 showcased the effective-
ness of this strategy. Notably, a reduction in hallu-
cinations can be observed on the POPE benchmark.
Overall, significant improvements in visual under-

standing benchmarks underscored the value of de-
tailed global knowledge learning and the Global
Grounding Datasets, which enhanced global object
alignment by connecting different objects repre-
sented by texts, coordinates, and images.

Size Global Align GQA VQAv2 SQA POPE MMB

3B
61.7 77.4 65.6 86.6 63.1

✓ 63.3 79.3 70.3 87.9 66.4

1.5B
60.3 77.3 62.1 86.4 63.0

✓ 62.2 77.9 63.1 87.6 64.2

Table 4: Ablation study on our Global Grounding
Datasets in Stage 3. If the model is trained without
global alignment, it indicates that we do not use these
datasets to further align different objects represented by
texts, coordinates, and images.

Figure 4: A case for the outputs of our TinyGrounding-
GPT when the input is either enhanced with coordinates
or not. Probability values indicate the likelihood of gen-
erating corresponding tokens.

Ablation Study on Models. (1) Larger parame-
ters: We applied our method to TinyGroundingGPT
with the larger language model Qwen2.5-7B (Ap-
pendix A.4). (2) Vision encoders: We explored the
effects of our multi-scale vision encoders (ViT and
DINOv2) (Appendix A.5). (3) Qwen2 as pretrained
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Figure 5: Visualization of the attention map for image patches with different object representation outputs (texts,
coordinates, and images, underlined). The red bounding box denotes the target region. The attention at the four
corners serves as anchors for grounding, while attention at specific objects highlights their importance.

LLM: We compared Qwen2.5 with Qwen2, demon-
strating Qwen2.5’s effectiveness (Appendix A.6).
Overall, the results highlight the effectiveness of
our proposed method and TinyGroundingGPT.

5 Discussion

5.1 Effectiveness of Fine-grained Knowledge
Our fine-grained visual knowledge alignment
method not only improves grounding ability but
also enhances comprehensive image understand-
ing. Examples of image descriptions generated
by TinyGroundingGPT are provided in Appendix
Fig. 13, demonstrating the model’s ability to avoid
incorrect or nonexistent object descriptions. We
evaluated the annotation quality by selecting 50
images from RefCOCO-test and using GPT-4V to
score descriptions from different models. As de-
tailed in Appendix A.7, TinyGroundingGPT-3B
outperforms GroundingGPT-7B and Qwen2-VL-
2B in overall quality and richness. Additionally,
incorporating fine-grained knowledge into input
questions for TinyGroundingGPT results in more
accurate and persuasive responses. As shown in
Fig. 4, adding coordinates to object texts in queries
enhances response confidence compared to directly
asking about objects in an image. This underscores
the potential of fine-grained MLLMs.

5.2 Interpretability for High-level Alignments
Grounding MLLMs fundamentally model the max-
imum likelihood output based on visual inputs
and text prompts. By conditioning on the refer-
ring prompt, the model identifies which parts of
the image significantly influence the output. To
demonstrate the effectiveness of our multi-scale
fine-grained grounding capability, we visualize the
attention map in the last layer of our TinyGround-

ingGPT. As shown in Fig. 5, the attention maps of
our TinyGroundingGPT reveal distinct location at-
tributions, unlike the baseline GroundingGPT-7B.

For object coordinates, high attention scores are
concentrated at the four corners of the image, serv-
ing as anchors for bounding box coordinates, as
well as at the locations of the intended objects men-
tioned in the prompt. When prompted to describe
a specific region, the model directs increased atten-
tion to the corresponding object patches. For the
output of an object image, the attention values be-
tween image patches and the target object highlight
relevant regions and reinforce grounding anchors.
This indicates that TinyGroundingGPT effectively
learns both aligned features and grounding infor-
mation for object images. In summary, our find-
ings underscore the effectiveness of the proposed
fine-grained visual knowledge alignment method,
achieving high-level alignment among different ob-
ject representations. This provides insights for fur-
ther explaining MLLMs, particularly in grounding
tasks. More visualizations can be found in Ap-
pendix Fig. 14.

6 Conclusion

In this paper, we introduce a novel fine-grained vi-
sual knowledge alignment method for MLLMs to
address the limitations of fine-grained alignments
in previous works. Our method progresses from
easy to hard, emphasizing multi-scale fine-grained
alignments among object texts, coordinates, and im-
ages from both local and global perspectives. This
empowers models to effectively learn fine-grained
knowledge and facilitates reasoning and grounding
tasks. Additionally, we develop a multi-scale fine-
grained enhancement data synthesis pipeline that
leverages open-source datasets and advanced mod-
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els to generate over 300K essential training sam-
ples. Building on this foundation, we train Tiny-
GroundingGPT, a series of smaller models (1.5B
and 3B parameters) optimized through high-level
alignments, capable of handling various visual and
grounding tasks, often surpassing larger models.
Experimental results demonstrate the effectiveness
of our proposed method and the generated datasets.
Our work contributes to the advancement of practi-
cal applications for MLLMs.

Limitations

Our work has developed a fine-grained visual
knowledge alignment method for MLLMs. Based
on this, we constructed the necessary datasets
and trained our proposed TinyGroundingGPT.
There are several aspects that can be further im-
proved: (1) Additional techniques can be applied
to TinyGroundingGPT to further enhance its perfor-
mance. For example, the dynamic high-resolution
in works (Xu et al., 2024; Chen et al., 2024b) has
been proved to improve image understanding ca-
pabilities. (2) Additional datasets, such as OCR
datasets described in (Wang et al., 2024a), can be
utilized for supervised fine-tuning of TinyGround-
ingGPT in Stage3 to further enhance its multi-
modality capabilities. (3) Our current multi-scale
alignments focus only on objects within a single
image. This approach can be further extended to
include similar objects or objects captured from
different angles across multiple images, thereby en-
hancing the robustness and generality of alignment.
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A Appendix

A.1 Implementation Details
We present additional details about our experimen-
tal configuration to facilitate the reproduction of
our model. The hyperparameters for all stages are
summarized in Table 5. We adopted a progressive
training strategy in Stage 1 because the loss after
pretraining the MLP for TinyGroundingGPT was
still relatively high (about 3.0). Further finetun-
ing TinyGroundingGPT with both the MLP and
pretrained LLMs reduced the loss to around 1.5
for improving multi-modality ability. Moreover,
the object coordinates in training were normalized
after padding.

Size
Stage 1

Stage 2 Stage 3
Pretrain Finetune

Batch size 32 32 32 16
Learning rate 1e-3 2e-5 2e-5 2e-5

Epochs 1 1 1 2
Learning schedule Cosine decay

Warm-up ratio 0.03 0.03 0.03 0.03
Weight decay 0 0 0 0

BF16 ✓ ✓ ✓ ✓
TF32 ✓ ✓ ✓ ✓

DeepSpeed stage ZeRO2
GPUs 8xA100

Table 5: The hyperparameters for model training.

A.2 Dataset Details
We provide additional details about the datasets we
utilized, as summarized in Table 6. We also in-
clude additional examples of the generated datasets
in Fig. 8 for Stage 2 and in Fig. 9 for Stage 3.
Specifically, during the training process, the object
images are cropped and zoomed from the origi-
nal image and then fed into the vision encoders
to obtain object image features. These features
are subsequently used to replace the placeholder
denoted as <img> in the QA pairs.

As described in Section 3.2, we developed a
multi-scale fine-grained enhancement data synthe-
sis pipeline, which includes the construction of
a multi-scale fine-grained grounding dataset (in
Stage 2) and a global grounding dataset (in Stage
3). In Fig. 7, we present the prompt messages used
for object recognition and relation extraction to pre-
pare additional data material. Fig. 10 illustrates the
detailed processing steps involved in constructing
the multi-scale fine-grained grounding dataset. Fur-
thermore, Figs. 11 and 12 outline the processing
steps for constructing the global grounding dataset.
Additionally, Table 7 shows an example prompt
used to evaluate the generated QA pairs. Based on
these evaluations, we filtered out low-quality QAs
(or descriptions), specifically those with incorrect
answers or low-quality scores (<3).

A.3 Object Hallucination Evaluation
We evaluated MLLMs for object hallucination, as
shown in Table 8. Higher accuracy and F1-score
metrics, along with a lower ’Yes’ metric, indi-
cate better performance. Our TinyGroundingGPT
yielded outstanding results across all three sam-
pling subsets. Notably, TinyGroundingGPT-3B
outperformed larger models like InstructBLIP-13B
in the challenging Adversarial subset, achieving
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Stage Dataset Samples

Stage1 LLaVA-Pretrain-595k 595K

Stage2 Alignment data
Text-coordinate pairs 4.1M

Image-coordinate pairs 210K
Text-image pairs 46K

Stage3 SFT data
LLaVA-v1.5, ShareGPT4V 665K

Grounding-conv 28K
Grounding-description 29K

Table 6: The dataset details used for model training.

You are tasked with evaluating QA pairs based on an
image. Please assess the provided QA pairs according
to the following criteria:
**Quality (1-5):**

1 - The QA is incoherent, lacks flow, and fails to convey
the content of the image effectively.

2 - The QA is somewhat relevant but contains notable
inaccuracies or lacks clarity.

3 - The QA is generally clear and relevant, though it
may overlook some important details or context from
the image.

4 - The QA is clear, coherent, and accurately reflects the
content of the image, with only minor omissions.

5 - The QA is highly coherent and effectively captures
the essence and details of the image, providing insightful
and accurate information.

Please evaluate the given QA pair on a scale from 1 to 5
and provide a brief justification for your rating, as well
as determine whether the QA is correct.

Your output should be structured as follows: "Quality":
"Your rating here.", "Correct": "Yes or No", "Justifica-
tion": "Your justification here.".

Do not include any additional text outside of this format.

Table 7: The prompt for GPT-4V to evaluate generated
QAs.

an increase of 14.67% in accuracy and a 8.90% in-
crease in F1 score, despite a decrease of 27.77% in
the ’Yes’ metric. Compared to GroundingGPT-7B,
our 3B model excelled in the Popular and Adver-
sarial subsets for both accuracy and F1 score. Sim-
ilarly, TinyGroundingGPT-1.5B achieved higher
accuracy and F1 score than some larger models
like Shikra while maintaining a lower ’Yes’ score.
This superior performance can be attributed to its
fine-grained knowledge alignment from both global
and local perspectives during training.

A.4 Grounding Ability for Larger Model
We further apply our fine-grained visual knowl-
edge alignment method to TinyGroundingGPT, us-
ing Qwen2.5-7B as the larger-parameter language
model, to evaluate its image grounding capability.

The results in Table 9 highlight the method’s effec-
tiveness, with increases of 0.68% on RefCOCO+-
testA and 0.81% on RefCOCO+-testB.

A.5 Ablation Study for Vision Encoders
Image features from ViT-L/14 (Radford et al.,
2021) (second-to-last layer) capture more object
semantics, while those from DINOv2-L/14 (Oquab
et al., 2023) (last layer) capture more local fine-
grained details, as shown in Fig. 6. The multi-scale
vision encoders in our proposed TinyGrounding-
GPT align well with the fine-grained alignment of
our method. As shown in Table 10, this approach
improves performance on benchmarks highly re-
lated to fine-grained understanding, such as POPE
and VQAv2.

A.6 Ablation Study for Pretrained LLM
We conduct additional experiments to explore the
effect of the pretrained LLM on TinyGrounding-
GPT. As shown in Table 11, TinyGroundingGPT
with Qwen2.5-1.5B outperforms that with Qwen2-
1.5B in image understanding, highlighting the effec-
tiveness of Qwen2.5 for our proposed TinyGround-
ingGPT.

A.7 Assessment for Image Annotation
As illustrated in Section 5.1, we provided examples
of image descriptions generated by TinyGround-
ingGPT in Fig. 13. Moreover, we selected 50 im-
ages from RefCOCO-test and utilized GPT-4V to
evaluate image descriptions produced by various
methods. We assessed the image descriptions us-
ing scores ranging from 1 to 5 across three per-
spectives: "Quality," which reflects overall quality;
"Richness," which measures the diversity of object
descriptions; and "Accuracy," which pertains to
precision. The prompt used for GPT-4V and the
scoring details are presented in Table 12. As the re-
sults summarized in Table 13, TinyGroundingGPT
achieved better overall quality and richness com-
pared to GroundingGPT-7B and Qwen2-VL-2B.

Model Alignment RefCOCO+
val testA testB

TinyGroundingGPT-7B T, C 83.98 88.08 77.90
T, C, I 84.56 88.76 78.71

Table 9: Performance comparison on the referring ex-
pression comprehension(REC) task for whether con-
ducting our proposed Multi-scale Fine-grained Local
Knowledge Alignment.
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Models LLM Size
Random Popular Adversarial

Accuracy F1-Score Yes Accuracy F1-Score Yes Accuracy F1-Score Yes

LLaVA 7B 72.16 78.22 76.29 61.37 71.52 85.63 58.67 70.12 88.33

mPLUG-Owl 7B 53.97 68.39 95.63 50.90 66.94 98.57 50.67 66.82 98.67

MiniGPT-4 13B 79.67 80.17 52.53 69.73 73.02 62.20 65.17 70.42 67.77

InstructBLIP 13B 88.57 89.27 56.57 82.77 84.66 62.37 72.10 77.32 73.03

Shikra 7B 86.90 86.19 43.26 83.97 83.16 45.23 83.10 82.49 46.50

GroundingGPT 7B 89.79 89.22 43.13 88.23 87.38 43.23 86.17 85.50 45.43

TinyGroundingGPT
3B 89.93 89.47 43.08 88.56 87.90 43.43 86.77 86.22 45.26

1.5B 89.59 88.98 42.92 88.67 87.90 42.87 86.74 86.04 44.77

Table 8: Results on the POPE benchmark for object hallucination evaluation. "Yes" represents the probability of
positive answers to the given question.

Vision Encoder VQAv2 GQA SQAI POPE MMEP MMB

ViT 76.5 61.4 64.8 85.8 1417.8 63.0
ViT + DINOv2 77.9 62.2 63.1 87.6 1392.4 64.2

Table 10: Ablation Study on our TinyGroundingGPT-
1.5B for the multi-scale vision encoders.

A.8 More Visualizations
As illustrated in Section 5.2, we visualized the last-
layer attention maps of both the GroundingGPT-
7B baseline and our TinyGroundingGPT-1.5B. The
attention map in grounding MLLMs not only en-
hances interpretability but also illustrates the align-
ment between the model’s output and the input
image. The process for obtaining the heatmap of
attention involves several steps: (1) we select the
attention scores between image patches and ob-
ject representations (i.e., texts, coordinates, and
images); (2) we sum the attention scores across
the dimensions of both the attention heads and ob-
ject representations; (3) We map the normalized
attention scores onto the input image patches.

Additional visualizations are displayed in
Fig. 14. As shown, TinyGroundingGPT reveals
more distinct location attributions, indicating that it
effectively learned multi-scale fine-grained knowl-
edge and achieved high-level alignments among
object texts, coordinates, and images. This pro-
vides insights for further explaining MLLMs, par-
ticularly in grounding tasks. We also provide a
demo for utilizing TinyGroundingGPT in Fig. 15.

Pretrained LLM VQAv2 GQA SQAI POPE MMEP MMB

Qwen2-1.5B 76.3 61.2 56.8 85.7 1386.9 58.9
Qwen2.5-1.5B 77.9 62.2 63.1 87.6 1392.4 64.2

Table 11: Ablation Study on our TinyGroundingGPT-
1.5B for the pretrained LLM.

Model Quality Richness Accuracy

GPT-4V 4.24 4.10 4.88
GroundingGPT-7B 3.68 3.20 3.38

Qwen2-VL-2B 3.90 3.64 4.18

TinyGroundingGPT-3B 4.04 3.90 3.66

Table 13: The assessment for image annotation by GPT-
4V includes "Quality" for overall quality, "Richness"
for the diversity of object descriptions, and "Accuracy"
for precision. Scores are based on the average ratings
(1-5) from 50 samples.
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Evaluate the image description based on the following criteria:

Quality (1-5): Richness (1-5): Accuracy (1-5):

1 - The description is incoherent, lacks
flow, and does not effectively convey the
contents of the image.

1 - The description only mentions a few
basic objects or elements in the image,
without any contextual details or rela-
tionships.

1 - The description contains multiple sig-
nificant inaccuracies or errors in identi-
fying objects, elements, or their charac-
teristics.

2 - The description has some coherence
but is still disjointed, with limited flow
and incomplete coverage of the image.

2 - The description includes some ad-
ditional details about the objects or ele-
ments but lacks depth in terms of their
relationships or broader context.

2 - The description has some inaccura-
cies or errors in identifying objects, ele-
ments, or their characteristics.

3 - The description is generally coherent,
with reasonable flow, and covers most of
the key elements in the image.

3 - The description provides a reason-
able level of detail about the objects and
elements, as well as some of their rela-
tionships or broader context.

3 - The description is generally accurate
in identifying the objects, elements, and
their characteristics, with only minor in-
accuracies.

4 - The description is coherent, with
good flow, and comprehensively covers
the important aspects of the image.

4 - The description is rich in detail,
covering a diverse range of objects,
elements, their relationships, and the
broader context of the scene.

4 - The description is highly accurate
in identifying the objects, elements, and
their characteristics, with minimal to no
inaccuracies.

5 - The description is highly coherent,
with excellent flow, and articulately cap-
tures the essence of the image in a com-
pelling manner.

5 - The description is exceptionally rich,
providing abundant details about the di-
verse array of objects, elements, their
intricate relationships, and the compre-
hensive context of the scene.

5 - The description is completely accu-
rate in identifying all the objects, ele-
ments, and their characteristics, with no
discernible errors or hallucinations.

Table 12: The prompt for GPT-4V to assess descriptions from the perspectives of Quality, Richness, and Accuracy.

Figure 6: The visualizations of image feature cosine similarity for the selected patch (highlighted with yellow box).
Lighter colors indicate higher feature similarity.

Figure 7: The prompt message for object recognition and relation extraction.
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Figure 8: Our generated various kinds of data used in Stage2 for achieving high-level alignments among texts,
coordinates, and images, where the < img > denotes the corresponding augmented object image.

Figure 9: Our generated various kinds of data used in Stage3 for achieving global object alignment, where the
< img > denotes the corresponding augmented object image.
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Figure 10: The prompt message and user’s input example used for generating our Fine-grained Grounding Dataset
in Stage2.
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Figure 11: The prompt message and user’s input example used for generating our Multi-round Grounding Conversa-
tion Data in Stage3.
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Figure 12: The prompt message and user’s input example used for generating our Grounding Description Data in
Stage3.

Figure 13: A comparison of generated image descriptions between TinyGroundingGPT trained with our method
and without it.
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Figure 14: The visualization of the attention map for image patches with different object representation outputs
(texts, coordinates, and images, which are underlined), where the red bounding box denotes the target region.

Figure 15: A demo for the use of our TinyGroundingGPT.
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