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Abstract

Vision-Language Models have made signif-
icant progress on many perception-focused
tasks. However, their progress on reasoning-
focused tasks remains limited due to the lack
of high-quality and diverse training data. In
this work, we aim to address the scarcity of
reasoning-focused multimodal datasets. We
propose VisualWeblnstruct, a novel approach
that leverages search engines to create a di-
verse and high-quality dataset spanning multi-
ple disciplines, including mathematics, physics,
finance, and chemistry, etc. Starting with a
meticulously selected set of 30,000 seed im-
ages, we employ Google Image Search to iden-
tify websites containing similar images. We
collect and process HTML data from over
700K unique URLs. Through a pipeline of
content extraction, filtering, and synthesis, we
construct a dataset of approximately 900K
question-answer (QA) pairs, with 40% con-
sisting of visual QA pairs and the remaining
comprising text-based QA pairs. Models fine-
tuned on VisualWeblnstruct demonstrate sig-
nificant performance improvements: (1) fine-
tuning on Llava-OV results in 10-20 absolute
points improvement across benchmarks, and
(2) fine-tuning from MAmmoTH-VL yields
a 5 absolute points gain across benchmarks.
Our best model, MAmmoTH-VL2, achieves
the best known performance with SFT without
RL within the 10B parameter class on MMMU-
Pro (40.7), MathVerse (42.6), and DynaMath
(55.7). These results highlight the effectiveness
of our dataset in enhancing the reasoning capa-
bilities of vision-language models for complex
multimodal tasks.

1 Introduction

Vision-Language Models (VLMs) have shown
progress in perceptual tasks like VQA (Antol et al.,
2015) and DocVQA (Mathew et al., 2021), yet
struggle with complex reasoning tasks such as
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Figure 1: Overview of our automated data curation
approach and major experimental results.

MMMU (Yue et al., 2024) and MathVista (Lu
et al., 2023). A major bottleneck is the scarcity
of reasoning-focused training data. Existing
datasets are limited by narrow focus on specific
image types (FigureQA (Kahou et al., 2017),
ChartQA (Masry et al., 2022)), reliance on syn-
thetic images (CLEVR (Johnson et al., 2017)), or
insufficient complexity (AI2D (Kembhavi et al.,
2016), ScienceQA (Saikh et al., 2022)).

Inspired by Weblnstruct (Yue et al., 2025), we
aim to mine naturally existing reasoning-focused
instruction data from the internet. However, di-
rectly applying Weblnstruct’s approach to the mul-
timodal domain presents significant challenges.
While Weblnstruct retrieves reasoning-focused text
data from Common Crawl, this method is infeasible
for multimodal content due to two key limitations:
(1) the absence of a comparable large-scale mul-
timodal database similar to Common Crawl, and
(2) the high unreliability of existing multimodal
information retrieval models. To overcome these
obstacles, as illustrated in Figure 1, we leverage
commercial web image search tools like Google
Image Search (Zhang and Rui, 2013), which of-
fer superior coverage and accuracy. Starting with
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Dataset Size Source & Domains Coverage

ScienceQA 21K Elementary and high school science Science Q&A, diagrams, K-12 Exam
IconQA 107K Abstract diagrams and visual reasoning Visual reasoning, diagrams
Geol70K 170K Synthesized from LLMs Geometry

CLEVR 700K  Synthesized from rules Shapes

FigureQA 1.3M  Synthesized from rules Bar, Line, Pie

ChartQA 23K Charts from Staista, Pew, etc Charts

Math360V 260K  FigureQA, CLEVR, IconQA, etc Math reasoning, diagrams
Mulberry 260K  Geo3K, IconQA, ChartQA, ScienceQA, etc  Geo, Figure, Medical, K-12 Exam
Llava-CoT 100K  ChartQA, AI2D, GeoQA, CLEVR, etc Geo, General VQA, K-12 Exam
VISUALWEBINSTRUCT 906K Internet (Homework Website, Forums, etc) All Above + College Exams

Table 1: Comparison between our dataset and the existing datasets. VISUALWEBINSTRUCT is the most diverse
dataset with very broad coverage of disciplines and image types.

30,000 seed images across disciplines including
Accounting, Chemistry, Mathematics, and Physics,
we use these as queries to identify websites with
similar visual content. During our extraction pro-
cess, we discover that these websites contain not
only visual QA content but also valuable text-only
examples, which we intentionally preserve to en-
hance model training across both modalities.
Through subsequent extraction and refinement
processes, including consistency verification and
alignment with source content, we develop VI-
SUALWEBINSTRUCT, containing approximately
900K QA pairs (40% visual QA with 163,743
unique images) that preserve both the visual and
textual information necessary for complex rea-
soning tasks. Table 1 compares VISUALWEBIN-
STRUCT with other datasets in terms of source
and coverage. Fine-tuning MAmmoTH-VL (Guo
et al., 2024) on VISUALWEBINSTRUCT creates
MAmmoTH-VL2, which achieves the best known
performance with SFT without RL within the
10B parameter class on complex reasoning bench-
marks including MMMU-Pro-std (40.7%), MM Vet
(64.5%), and Dyna-Math (55.7%), outperforming
competitors like InternVL2.5 (Chen et al., 2024)
and Phi-4-Mini (Abouelenin et al., 2025).
Our contributions can be summarized as follows:
(1) We propose a scalable pipeline for acquiring
high-quality multimodal reasoning data from the
internet, ensuring both scalability and quality.
(2) We introduce VISUALWEBINSTRUCT, a di-
verse and comprehensive multimodal instruction
dataset, which we will publicly release to the re-
search community.
(3) We develop MAmmoTH-VL2, a TB-parameter
vision-language model fine-tuned on VISUALWE-
BINSTRUCT, achieving the best known perfor-
mance with SFT without RL among models of

comparable size and excelling in complex visual
reasoning tasks.

2 Stage 1: Mining Data from the Internet

Our data mining pipeline follows a systematic ap-
proach to extract image-rich QA pairs from the
internet, as illustrated in Figure 2. We begin with
approximately 30K scientific images as seed data
spanning multiple disciplines. We employ Google
Image Search to identify visually similar content,
gathering 758,490 unique URLs. After filtering
out irrelevant domains, we construct accessibility
trees for the relevant websites to extract meaningful
content, preserving both textual and visual infor-
mation while eliminating non-essential elements.
We then leverage the Gemini 1.5 Flash model in a
two-stage process: first to automatically extract QA
pairs from the accessibility trees and then to filter
these pairs based on comprehensive quality criteria,
including question validity and image relevance,
ensuring the educational value and integrity of the
final dataset.

2.1 Seed Data collecting

Due to the limited availability of image-rich QA
datasets and the predominant focus on mathematics
in existing datasets, creating a comprehensive QA
dataset that incorporates diverse subjects and abun-
dant visual content is essential. Our seed dataset
consists of approximately 30,000 images from mul-
tiple high-quality educational sources, including
K12 educational forums (42.4%), geometry prob-
lems (33.3%), MMMU dev split samples (21.2%),
and educational reference materials (3.1%). These
images span multiple disciplines, including math-
ematics, physics, accounting, chemistry, engineer-
ing, and biology, ensuring both subject diversity
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Figure 2: Comprehensive Pipeline for VISUALWEBINSTRUCT Dataset Generation. The workflow illustrates our
multi-stage approach for creating high-quality multimodal instruction data. Stage 1: starting with seed images, we
leverage Google Image search to identify relevant webpages, which are processed into accessibility trees. The raw
QA pairs are extracted from the trees and refined through a post-processing step to ensure the validity the data.
Stage 2: we first generate multiple synthesized answers for consistency filtering, then align these with original
web-sourced content to enhance the accuracy of the answers.

and visual richness. Detailed composition statistics
are provided in Appendix A.

2.2 Google Image Searching

Using the seed images, we conducted Google Im-
age searches to find visually similar content across
the web. Leveraging Google Lens (Figure 3), we
collected approximately 60 URLs per image, re-
sulting in a total of 1,747,634 URLs containing
visually similar content. Many websites with non-
permissive licenses implement anti-crawling mech-
anisms, and we ensured compliance by avoiding
data collection from such sources. We applied rig-
orous deduplication and filtering, removing URLSs
from domains unlikely to contain educational con-
tent (e.g., video platforms and image reposito-
ries). This refinement yielded 758,490 unique,
high-quality URLSs for further processing. By us-
ing images as primary search keys, we ensured
strong visual and contextual connections between
the collected data and our seed dataset, effectively
preserving the original distribution while signifi-
cantly expanding its coverage.

2.3 Accessibility Tree Building

After filtering out irrelevant domains, we processed
the HTML content of each remaining URL to con-
struct accessibility trees that capture essential tex-
tual and visual information. As illustrated in Fig-
ure 4, our implementation focuses on extracting
meaningful text content and image elements while
filtering out non-essential components such as nav-
igation menus, advertisements, and auxiliary ele-
ments. We developed a tree-based structure where
each node represents either textual content or an

(4 Query
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Figure 3: Example of Google Lens search functionality
for circle geometry problems.

image, preserving the hierarchical relationships
present in the original HTML while removing un-
necessary markup and styling information. The
resulting accessibility trees provide a clean, hier-
archical representation of each webpage’s content,
making subsequent QA pair extraction more effi-
cient and reliable.

2.4 QA Pairs Extraction

After constructing accessibility trees, we use the
Gemini 1.5 Flash model to identify and extract
high-quality QA pairs from the web content. We de-
signed a structured prompt that instructs the model
to extract the complete text of the question, iden-
tify relevant images related to the question, and
extract the complete details of the solution while
preserving mathematical notation and step-by-step
explanations. This approach maintains the educa-
tional integrity of the extracted content by preserv-
ing its original formatting, mathematical expres-
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Figure 4: Example of an accessibility tree structure
extracted from an educational website.

sions, and logical structure, ensuring technical ac-
curacy throughout the extraction process. Through
this method, we extracted a total of 421,320 raw
QA pairs from the webpages, with approximately
60% containing images.

We then implemented a post-processing stage
using the Gemini 1.5 Flash model to ensure dataset
quality by evaluating both textual content and im-
ages. Our evaluation framework assessed two key
criteria: question validity and meaningfulness, as
well as the relevance and clarity of question-related
images. By prompting Gemini to verify whether
images are properly referenced, clear, visible, and
contribute to understanding the question, we es-
tablished strict validation criteria for retaining QA
pairs. This post-processing step significantly im-
proved dataset quality by removing incomplete,
unclear, or irrelevant content while preserving edu-
cational integrity and effectiveness. Our analysis
shows that out of 421,320 processed pairs, 361,015
(85.7%) were valid, while 60,305 were filtered out
as invalid. Similarly, out of 449,859 total images
processed, 331,818 (73.76%) were deemed valid
and relevant to their corresponding questions.

3 Stage 2: Dataset Refinement

After Stage 1, we obtain a large amount of raw
data from the Internet. However, this data contains
a notable level of noise. For instance, more than
half of the questions lack corresponding answers
due to various issues, such as (1) membership re-

quirements, (2) interaction requirements, and (3)
the absence of an answer. Thus, a second round
of refinement is necessary to further improve the
dataset quality.

3.1 Answer Refinement

We implemented a comprehensive refinement pro-
cess to ensure consistency and quality in our
dataset. This step was critical in addressing po-
tential variations or inconsistencies in the extracted
answers, thereby creating a high-fidelity dataset for
model training.

Our refinement methodology leveraged GPT-
40’s capabilities in a two-stage process. First,
for each question and its associated images, we
prompted GPT-40 (Hurst et al., 2024)! to gen-
erate four different answer variations. This ap-
proach allowed us to obtain multiple perspectives
on each question. Next, we employed GPT-40
as an LLM judge to determine whether the syn-
thesized responses aligned with each other. As
illustrated in Figure 5, we evaluated whether the
conclusions were mutually consistent across these
responses. This evaluation was particularly impor-
tant for questions in domains such as mathematics
and physics, where precision and correctness are
paramount. Only when more than half of the syn-
thesized responses demonstrated consistency did
we retain the question along with the consistent
responses. This rigorous consistency check served
as an additional quality filter, ensuring that our
dataset contained highly accurate and unambigu-
ous answers that could be reliably used for training.

Through this refinement process, we success-
fully created a dataset in which all responses were
systematically generated by GPT-4o, ensuring a
consistent style and level of quality throughout
the collection. The resulting dataset comprises
1.04 million QA pairs spanning multiple disci-
plines, representing one of the largest collections of
consistency-verified multimodal instruction data.

3.2 Answer Alignment

The final step in our quality assurance process in-
volved answer alignment to further enhance accu-
racy. While the previous refinement step generated
consistent answers using GPT-40, we recognized
the importance of validating these against authori-
tative content from the original web sources.

'"We compared GPT-40 and Gemini-1.5 and found that
GPT-40’s outputs were significantly more reliable. Therefore,
we adopted GPT-4o.
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Figure 5: Illustration of our consistency checking
methodology using LLLM judge.

In this step, we used Gemini-2.0-Flash to mea-
sure the alignment between GPT-generated re-
sponses and the original extracted answers, if avail-
able. In cases where the comparison indicated in-
consistency, we preserved the original web-sourced
answer. Conversely, when the Gemini model de-
termined strong alignment between the generated
and web-sourced answers, we retained the GPT-
generated version. Through this alignment process,
we combined the consistency of model-generated
content with the authority of original educational
materials in a balanced manner.

4 Dataset Statistics

Knowledge Domain Distribution: The statistics
presented in Table 2 illustrate the distribution of
knowledge domains in our dataset, VISUALWE-
BINSTRUCT. While the major categories are shown
in the table, the "Others" category (6.60%) com-
prises General Knowledge (2.45%), Computer Sci-
ence (2.25%), Biology (1.40%), and humanities
subjects, including Language/Literature (0.25%),
Social Sciences (0.20%), and Arts (0.05%). This
distribution reflects the dataset’s strong quantitative
orientation while ensuring sufficient breadth.
Educational Difficulty: Figure 6 presents the edu-
cational difficulty distribution across different aca-
demic levels. The dataset is primarily concentrated
at middle school (40.1%) and high school (38.6%)
levels, with a substantial portion at undergraduate
level (18.0%). The relatively small proportions
at elementary (3.0%) and graduate (0.2%) levels
indicate that our dataset focuses on intermediate
to advanced educational content rather than either
very basic or highly specialized material, which
aligns well with the typical difficulty range of rea-
soning tasks in benchmarks.

Pipeline Statistics: Table 3 summarizes the statis-
tics after each step of the VISUALWEBINSTRUCT
pipeline, showing the data progression through two

main stages. Our approach effectively scaled the
initial 30,000 seed images into a comprehensive
multimodal instruction dataset containing 900K in-
struction data. The final dataset includes 347,313
image-associated QA pairs (approximately 38%
of the total) supported by 163,743 unique images.
The total pipeline cost of approximately $10,771
demonstrates the cost-effectiveness of our approach
(see Appendix B for detailed cost analysis).
Image Distribution per QA Pair: Analysis of
the image-text associations reveals that 68% of
QA pairs contain a single image, 22% contain two
images, and the remaining 10% contain three or
more images. This distribution reflects the natu-
ral complexity of educational content, where most
problems can be understood with a single diagram
or figure, while more complex scenarios require
multiple visual aids.

Human Evaluation: To assess the quality of our
dataset, we conducted human evaluation on 200
randomly sampled QA pairs. The evaluation re-
sults demonstrate excellent question quality, with
99.0% of questions showing high clarity and 95.5%
exhibiting strong image relevance, indicating that
our questions are well-formulated and tightly con-
nected to their associated images. For answer qual-
ity assessment, we observed solid performance met-
rics, achieving 77.5% answer accuracy and 82.0%
answer completeness. These results validate the
effectiveness of our multi-stage answer refinement
process in producing high-quality multimodal in-
struction data.

Dataset Integrity: We also conducted thorough
decontamination checking to ensure our training
dataset does not contain any data from the evalua-
tion benchmarks, thereby maintaining the integrity
of our experimental results.

Category Percentage Num of QA Pairs
Math 62.50% 566K
Physics 14.50% 132K
Finance 7.25% 66K
Chemistry 4.80% 43K
Engineering 4.35% 39K
Others 6.60% 60K

Table 2: Distribution of Categories

5 Experiments

We detail the training and evaluation details of our
experiments in this section.
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Processing Stage ‘ Total QA Pairs  Image-Associated QA Unique Questions  Total Images  Unique Images
Stage 1: Mining Data from the Internet
QA Pairs Extraction 421,320 248,643 421,320 552,269 362,728
Post-Processing 361,015 159,059 361,015 331,818 212,530
Stage 2: Dataset Refinement
Answer Refinement 1,041,598 407,218 257,201 577,455 167,493
Answer Alignment 906,160 347,313 257,201 475,099 163,743

Table 3: Statistics of different milestones in the data processing pipeline of VISUALWEBINSTRUCT.

Level 1 (Elementary): 3.071 /Level 5 (Graduate): 0.2%

Level 4 (Undergraduate)

Level 2 (Middle School)

N\

N

Level 3 (High School)

Figure 6: Educational difficulty distribution

5.1 Training Setup

For our experiments, we directly employed a su-
pervised fine-tuning (SFT) approach on an exist-
ing MAmmoTH-VL checkpoint on our VISUAL-
WEBINSTRUCT dataset. We refer to our resulting
model as MAmmoTH-VL2. The architecture con-
sists of a language tower based on Qwen2.5-7B-
Instruct (Yang et al., 2024), a vision tower using
SigLip (Zhai et al., 2023), and a projector mod-
ule connecting these components, following Llava-
OneVision (Liu et al., 2023a; Li et al., 2024a).

To enhance data diversity, we employed a data
mixing strategy that combined our VISUALWE-
BINSTRUCT dataset with modified LlaVA-CoT (Xu
et al., 2025) (with CoT prompting tags removed) in
a 9:1 ratio, resulting in approximately 900K sam-
ples from VISUALWEBINSTRUCT and 100K sam-
ples from the modified L1aVA-CoT dataset. This
mixing strategy empirically improved our model’s
performance across diverse visual reasoning tasks.

This fine-tuning approach enabled MAmmoTH-
VL2 to leverage the strong multimodal founda-
tion of MAmmoTH-VL while enhancing its per-
formance on our targeted visual reasoning tasks
that require multi-step deliberation with visual con-
text. Complete training configuration details are
provided in Appendix D.

5.2 Evaluation Setup

We evaluated MAmmoTH-VL2 on seven multi-
modal reasoning benchmarks: MMMU, MMMU-
Pro, MathVista, MM Vet, MathVerse, and Dyna-
math. Using greedy decoding in a zero-shot set-
ting, we compared our model against three cate-
gories of models: (1) closed-source models (GPT-
40, Gemini-1.5-Pro, Claude-3.5-Sonnet), (2) open-
source vision-language models (e.g., Qwen2-VL,
InternVL2.5), and (3) reasoning-enhanced vision-
language models (e.g., Llava-CoT, Mulberry). De-
tailed descriptions of all evaluation benchmarks
are provided in Appendix E.1, model categories
and descriptions are detailed in Appendix E.2, and
complete evaluation methodology is described in
Appendix E.3.

5.3 Experimental Results

In this section, we evaluate our results from dif-
ferent perspectives. The table 4 presents the per-
formance of MAmmoTH-VL2 compared to various
multimodal models across seven benchmarks. Our
analysis reveals several important findings regard-
ing the effectiveness of models fine-tuned on VI-
SUALWEBINSTRUCT.

Overall Performance MAmmoTH-VL2 achieves
an average accuracy of 50.4% across all bench-
marks, outperforming other open-source vision-
language models of comparable size trained with
SFT. This represents a significant improvement
over standard vision-language models like Qwen2-
VL (43.8%), LLaVA-OV (40.8%), and Molmo
(37.5%). It even beats the very recent model like
InternVL2.5 (Chen et al., 2024) and Phi-4-mini-
Multimodal (Abouelenin et al., 2025).
Mathematical Reasoning Capabilities
MAmmoTH-VL2  demonstrates  particularly
strong performance on mathematical reasoning
tasks. On MathVista, our model achieves 68.1%
accuracy, surpassing all the open-source and
closed-source models in the table. The model’s per-
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Model Size | MMMU MMMU-Pro MMMU-Pro MathVista MMVet MathVerse Dyna-Math Avg
val standard vision testmini test testmini test
Closed-sourced Models
GPT-40 - 69.1 54.0 49.7 63.8 76.2 50.2 63.7 61.0
Gemini-1.5-Pro - 59.1 49.4 65.8 63.9 64.0 412 64.8 58.3
Claude-3.5-Sonnet - 68.3 55.0 48.0 67.7 75.4 442 60.5 59.9
Open-source General Vision-Language Models

Molmo 8B 453 28.3 18.9 51.6 58.0 18.9 41.6 37.5
Llava-OV 7B 48.8 29.5 18.7 63.2 58.6 26.2 40.3 40.8
Llama-3.2-Inst 11B 50.7 33.0 237 515 59.3 31.6 40.5 41.5
Qwen2-VL 7B 52.1 37.0 26.9 58.2 62.0 28.2 42.1 43.8
MAmmoTH-VL 7B 50.8 332 253 66.0 62.3 342 44.7 452
InternVL2.5 7B 55.8 38.2 304 64.4 62.8 39.5 49.8 48.7
Phi-4-mini 5.6B 55.1 39.7 31.2 62.4 60.5 37.6 514 48.6
DeepSeek-VL2 27B 51.1 31.4 243 62.8 - - - -

Llava-CoT-L 11B 50.1 31.6 20.4 54.8 60.3 30.2 44.8 41.7
Llava-CoT-M 7B 51.4 33.0 23.7 63.8 58.6 39.4 483 45.5
LlamaV-ol 11B 49.1 31.5 22.4 54.4 63.6 - - -

Mulberry 7B 55.0 36.8 23.6 63.1 60.9 31.0 45.1 45.0
Insight-V 8B 50.2 30.7 20.5 59.9 60.8 28.7 47.8 42.6
MM-Eureka 8B 49.2 - - 67.1 60.7 40.4 - -

MAmmoTH-VL2 7B 54.7 40.7 26.3 68.1 64.5 42.6 55.7 50.4
A over SoTA -1.1 +1.0 -4.9 +2.1 +0.9 +3.1 +4.3 +1.7

Table 4: Evaluation Results of our model and other baseline models. Most of the baseline results are taken from
other papers. The best and second-best results across all open-source models are highlighted in bold and underlined.

Training Data MMMU MMMU-Pro MMMU-Pro MathVista MMVet MathVerse Dyna-Math Avg
val standard vision testmini test testmini test
Training from LLava-OV-mid
- 40.1 21.2 12.2 36.0 32.1 18.1 24.4 26.3
Llava-CoT 40.8 25.8 14.6 45.7 47.5 27.2 339 33.6
Ours 45.3 31.5 20.9 43.9 57.6 274 40.3 38.1
Ours+Llava-CoT 47.6 31.6 20.9 48.8 51.7 34.9 42.3 39.7
Training from MAmmoTH-VL
- 50.8 34.8 25.3 66.0 62.3 342 44.7 454
Llava-CoT 514 352 24.6 63.8 58.7 394 48.3 45.9
Ours 52.6 38.6 29.0 65.9 61.8 394 55.7 49.0
Ours+Llava-CoT 54.7 40.7 26.3 68.1 64.5 42.6 55.7 50.4

Table 5: Ablation Results of our experiments. We show experimental results from different backbones to show the
impact of consistency filtering and data mixing with Llava-CoT. The best performance is highlighted in bold.

Model MMMU MathVista MMLU-Pro GSM8K
MAmmoTH Variants
MAmmoTH-VL  50.8 66.0 27.7 67.9
Visual only 54.0 67.6 40.1 80.9
Visual + Text 54.7 68.1 44.5 84.2
Other Vision-Language Models
Qwen2-VL 52.1 58.2 344 78.4
InternVL2.5 55.8 64.4 46.0 72.4

Table 6: Performance comparison of MAmmoTH-VL
variants and other vision-language models.

formance on MathVerse (42.6%) and Dyna-Math
(55.7%) further confirms its enhanced capability
for visual reasoning.

Complex Reasoning Tasks On MMMU-Pro-std
with 10 options, MAmmoTH-VL2 achieves 40.7%
accuracy, showing a significant improvement over
other 7B models such as LLaVA-OV (29.5%) and
Qwen2-VL (37.0%). This demonstrates that our ap-
proach effectively enhances the model’s ability to
perform complex reasoning across diverse domains
beyond mathematics.

Comparison with Reasoning-Enhanced Models
Among the reasoning-enhanced vision-language
models like Llava-CoT, Mulberry (Yao et al., 2024),
LlamaV-ol (Thawakar et al., 2025) and Insight-
V (Dong et al., 2024), MAmmoTH-VL2 demon-
strates competitive performance, achieving results
comparable to or better than specialized models
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like L1aVA-CoT and Mulberry. For instance, on
MMMU-Pro Vision, our model achieves 26.3% ac-
curacy, outperforming LIaVA-CoTM’s 23.7%. No-
tably, other reasoning-enhanced models often uti-
lize complex methodologies in either the training or
inference stage to enhance their chain-of-thought
abilities, which makes the development process
and deployment more complicated. In contrast,
MAmmoTH-VL2 achieves much better reasoning
capabilities through our straightforward SFT on
VISUALWEBINSTRUCT, offering a simpler yet ef-
fective solution compared to the other approaches.
These results confirm that fine-tuning on VI-
SUALWEBINSTRUCT significantly enhances the
model’s reasoning capabilities. The consistent
performance improvements across diverse bench-
marks from non math-related and math-related
domains demonstrate the effectiveness of our ap-
proach in developing more capable multimodal rea-
soning models. We believe our dataset can be uti-
lized to augment future vision-language models.

5.4 Ablation Study

Llava-CoT Contribution: Table 5 demonstrates
the complementary nature of VISUALWEBIN-
STRUCT and existing datasets. For Llava-OV-mid,
the baseline (26.3% average) improves to 33.6%
with Llava-CoT and 38.1% with VISUALWEBIN-
STRUCT, while their combination achieves 39.7%.
The stronger MAmmoTH-VL baseline (45.4%)
improves to 49.0% with VISUALWEBINSTRUCT
and 50.4% with the combined approach, show-
ing significant gains across MMMU variants and
Dyna-Math. These results highlight an impor-
tant distinction: our pipeline and VISUALWEBIN-
STRUCT dataset provide diverse real-world visual
reasoning examples enhancing general capabilities,
while a small portion (10%) of benchmark-aligned
Llava-CoT helps bridge the distribution gap be-
tween benchmarks and real-world educational con-
tent—a standard practice in leading models like
InternVL and Qwen-VL. The consistent pattern
across both models demonstrates that our approach
significantly improves visual reasoning regardless
of model strength, with weaker models showing
larger relative gains.

Text-only Data Contribution: Our pipeline pro-
duces both visual and text-only QA pairs, with
text pairs constituting approximately 60% of our
dataset. As shown in Table 6, including text QA
pairs consistently improves performance across
all benchmarks. This enhancement stems from

two key factors: (1) the cognitive similarities be-
tween text and visual reasoning within the same
domain, enabling effective cross-modality knowl-
edge transfer, and (2) prevention of catastrophic
forgetting of text reasoning capabilities during vi-
sual fine-tuning. The impact is particularly evident
in text reasoning benchmarks, where our complete
dataset improves GSM8K performance by +16.3%
compared to visual-only training. This also aligns
with approaches adopted by leading models like
InternVL2.5, Qwen2-VL, and Phi-4-mini, all of
which leverage mixed modality training data, un-
derscoring that high-quality text data is essential
for robust multimodal reasoning models.

5.5 Performance on Non-Reasoning
Multimodal Tasks

To evaluate whether our reasoning-enhanced train-
ing affects performance on simpler multimodal
tasks that require only direct answers without ex-
planations, we tested MAmmoTH-VL2 on two
representative non-reasoning benchmarks: POPE
(Yes/No visual question answering) and TextVQA
(reading text from images). Table 7 presents the
comparative results.

Model POPE TextVQA
MAmmoTH-VL (baseline) 88.0% 75.4%
MAmmoTH-VL2 (ours) 86.9% 73.3%
Change from baseline -1.1% -2.1%
Qwen2.5-VL 87.2% 79.5%
Qwen2-VL 89.8% 80.0%

Table 7: Performance on Non-Reasoning Multimodal
Benchmarks

The results demonstrate that reasoning training
does not significantly compromise performance
on simple tasks. The 1-2% differences between
MAmmoTH-VL and MAmmoTH-VL2 fall within
typical experimental variance and are not statisti-
cally significant. Furthermore, the performance
gaps with Qwen models (0.3-2.9% on POPE, 6.2-
6.7% on TextVQA) are consistent across both
our baseline and reasoning-enhanced models, in-
dicating these differences stem from architectural
choices rather than reasoning specialization.
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6 Related Works

6.1 Multimodal Instruction Data

Creating high-quality multimodal datasets remains
a significant challenge in advancing MLLMs. Cur-
rent approaches face critical limitations, partic-
ularly in balancing quality and scale. Human-
annotated datasets provide high-precision, contex-
tually appropriate data (Xu et al., 2024; Deitke
et al., 2024; McKinzie et al., 2024; Sun et al., 2023)
but suffer from prohibitive costs and scalability con-
straints. Meanwhile, methods leveraging existing
academic datasets (Tong et al., 2024; Liu et al.,
2023b) offer more cost-effective alternatives but
lack the diversity and reasoning complexity needed
for advanced multimodal reasoning tasks. This lim-
itation is particularly evident in the scarcity of large-
scale, reasoning-focused multimodal datasets that
can be efficiently produced. Our work addresses
these challenges by proposing a novel, scalable
methodology for constructing multimodal instruc-
tion datasets that maintain both the quality and
reasoning complexity.

6.2 Multimodal Large Language Models

Multimodal Large Language Models have ad-
vanced with proprietary models like GPT-40 (Hurst
et al.,, 2024) and Gemini (Team et al., 2024)
achieving superior performance, while open-
source alternatives including LLaVA (Li et al.,
2024b), MiniGPT-4 (Zhu et al., 2023), and Qwen-
VL (Wang et al., 2024) have progressed through
connector-based approaches (Li et al., 2023) and
various reasoning enhancement techniques (Xu
et al., 2025; Hu et al., 2024); however, these mod-
els face a critical limitation: the scarcity of large-
scale visual reasoning datasets (Bai et al., 2024),
which our work addresses by tackling the super-
vised fine-tuning data bottleneck while building on
the connector-training paradigm.

7 Conclusion

In this paper, we present VisualWeblnstruct, a
novel approach to constructing large-scale multi-
modal reasoning datasets without relying on expen-
sive human annotation. We are the first to system-
atically leverage Google Image Search for mining
high-quality visual reasoning data from the web,
demonstrating that commercial search engines can
serve as powerful tools for automated dataset cre-
ation.

Our two-stage pipeline successfully transforms
30K seed images into a comprehensive dataset of
906K question-answer pairs, with 347K containing
visual content across diverse disciplines including
mathematics, physics, chemistry, finance, and engi-
neering. The automated approach achieves remark-
able cost-efficiency at approximately $10,771 total
cost, representing a fraction of traditional dataset
creation expenses while maintaining high quality
through rigorous filtering and consistency verifica-
tion.

The effectiveness of our approach is demon-
strated through substantial performance improve-
ments: MAmmoTH-VL2, fine-tuned on VisualWe-
blnstruct, achieves state-of-the-art results among
7B parameter models with supervised fine-tuning,
including 40.7% on MMMU-Pro, 42.6% on Math-
Verse, and 55.7% on DynaMath. Importantly, our
rigorous contamination prevention measures ensure
these gains reflect genuine learning rather than data
leakage, with 0.000% contamination rate across all
evaluation benchmarks.

Our work addresses a critical bottleneck in multi-
modal Al development by providing both a scalable
methodology and a high-quality dataset that sig-
nificantly enhances reasoning capabilities without
compromising performance on simpler tasks. The
success of web-based data mining opens new pos-
sibilities for automated dataset construction across
various domains.

8 Limitations

Despite the promising results achieved with VISU-
ALWEBINSTRUCT, we acknowledge several limi-
tations in our approach:

Data Limitations: Our multi-stage filtering pro-
cess, while thorough, cannot completely eliminate
noise and inconsistencies inherent in web-sourced
data. The web-based collection process introduces
dependency on available online educational re-
sources, which may vary in quality across domains.
Additionally, there are notable distributional imbal-
ances in our dataset, with mathematics represent-
ing 62.50% of the content, potentially limiting the
model’s capabilities in underrepresented domains
such as biology (1.40%), humanities, and arts (un-
der 0.5%). This imbalance reflects the availability
of visual reasoning content on the web but may
propagate existing biases in educational resource
distribution. Examples demonstrating the breadth
of disciplines covered in our dataset can be found
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in Appendix F.2.2.
Methodological Limitations: Our pipeline relies
on proprietary systems (Google Image Search) and
LLM-based filtering (Gemini and GPT-40), which
could affect reproducibility and introduce biases
from these foundation models. The multi-stage
refinement process, while improving quality, may
also inadvertently prioritize certain reasoning pat-
terns or problem-solving approaches that align with
the evaluation criteria of these models. Further-
more, our consistency checking may occasionally
filter out valid but unconventional or innovative
solution methods.
Evaluation Limitations: While our evaluation
demonstrates significant improvements across mul-
tiple benchmarks, the assessment primarily focuses
on academic and structured reasoning tasks. Real-
world visual reasoning often involves ambiguous,
open-ended scenarios that may not be fully cap-
tured by our current evaluation framework.
Scalability and Accessibility: The computational
resources required for the dataset construction, in-
cluding web crawling, image search, content extrac-
tion, and LLM-based filtering, may present barriers
to reproducibility for research groups with limited
computational resources.
Future Work: To address these limitations and
further enhance dataset quality, several promising
directions emerge. First, diversifying data col-
lection through integration of multiple search en-
gines (Bing Visual Search, TinEye, Yandex Images)
and similarity threshold tuning could balance rele-
vance with diversity while expanding beyond our
current 758K unique sources. Second, develop-
ing more accessible and open-source alternatives
for the dataset construction pipeline would reduce
barriers for research groups with limited compu-
tational resources. Third, expanding evaluation
frameworks to include more diverse, real-world
reasoning scenarios would better capture the full
spectrum of visual reasoning capabilities.
Additionally, investigating mechanisms to detect
and mitigate potential biases introduced during the
dataset construction process would improve fair-
ness and robustness. Active diversification strate-
gies during seed selection and targeted domain-
specific data collection could further balance the
current mathematical focus (62.5%) with underrep-
resented areas like biology and humanities. We also
believe our dataset provides a strong foundation for
reinforcement learning-based training, potentially
enabling even more significant performance gains,

representing an exciting direction for scaling both
data quality and model capabilities.
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A Seed Data Composition

Our seed dataset comprises approximately 30,000 carefully curated images spanning multiple educational
domains. Table 8 presents the detailed breakdown of our seed data sources.

Source Category Number of Images Percentage
K12 Educational Forums 12,701 42.4%
Geometry Problems 9,999 33.3%
MMMU Dev Split Samples 6,376 21.2%
Educational Reference Materials 924 3.1%
Total 30,000 100.0%

Table 8: Seed Data Composition by Source

Domain Number of Images
Mathematics 505
Physics 408
Chemistry 603
Finance 355
Accounting 380
Architecture 551
Mechanical Engineering 429
Energy and Power 432
Economics 267
Psychology 305
Public Health 509
Other domains 1,632
Total 6,376

Table 9: MMMU Dev Split Domain Distribution

Table 9 shows the detailed domain distribution of the MMMU dev split samples, which were used
exclusively for seed image collection via Google Image Search, ensuring no data leakage to evaluation
sets.

B Pipeline Cost

Stage Calls Cost($) Stage Calls Cost($)
QA Extract 758K 455 Answer Refine 1.81M 9,851
Post-Process 421K 168 Answer Align 257K 297

Table 10: Cost breakdown by pipeline stage.

Table 10 shows the cost breakdown of our VisualWeblnstruct pipeline. The total investment of approx-
imately $10,771 is highly cost-effective compared to traditional dataset creation methods. The largest
expense is in the Answer Refinement stage ($9,851), which ensures high-quality instruction-answer pairs.
The modest costs for QA Extraction ($455), Post-Processing ($168), and Answer Alignment ($297)
highlight our automated pipeline’s efficiency. By leveraging web resources rather than creating data from
scratch or using expensive human annotation, we achieve substantial cost savings while maintaining
dataset quality and diversity. For context, contemporary multimodal Al model training often requires
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investments in the millions of dollars. Our pipeline’s total cost represents just a fraction of typical training
budgets while effectively addressing a critical bottleneck in vision-language model development: the
acquisition of high-quality multimodal reasoning data.

C Data Leakage Prevention

To ensure the integrity of our evaluation results and prevent data contamination between our training
dataset and evaluation benchmarks, we implemented a comprehensive two-stage decontamination pipeline.
C.1 Stage 1: URL-Level Pre-filtering During Data Collection

During the initial data collection phase, we proactively filtered potentially problematic URLs to prevent

benchmark data inclusion at the source level. From our initial pool of 758,490 candidate URLs, we

systematically excluded high-risk domains that could potentially host evaluation benchmark data.
Exclusion Categories:

» Dataset hosting platforms: archive.org, kaggle.com, huggingface.co
* Academic venues: openreview.net, neurips.cc, icml.cc
* Direct benchmark domains: mathvista.github.io, mmmu-benchmark.github.io

Through this pre-filtering process, we excluded 237 high-risk URLs (0.03% of total candidates)
and retained 758,490 URLs (99.97%) from legitimate educational sources. This proactive approach
successfully prevented benchmark data inclusion at the source level.

C.2 Stage 2: Multimodal Content-Level Verification

After extracting content from the filtered URLs, we implemented a rigorous multimodal content verifica-
tion system to detect any potential contamination that might have escaped the URL-level filtering.

Verification Methodology:

* Applied comprehensive multimodal fuzzy matching with strict similarity thresholds:
— Text similarity threshold: 85%
— Image similarity threshold: 90%

* Verified against all major evaluation benchmarks used in our study

* Used representative sampling (50,000 training samples) to ensure computational feasibility while
maintaining statistical validity

C.3 Contamination Detection Results

Table 11 presents the comprehensive results of our multimodal contamination detection across all evalua-
tion benchmarks.

Benchmark Samples True Duplicates Text Similar, Diff Images Contamination Rate
MMMU val 900 0 4 0.000%
MMMU-Pro standard 1,730 0 7 0.000%
MathVista testmini 1,000 0 12 0.000%
MM Vet test 218 0 3 0.000%
MathVerse testmini 788 0 2 0.000%
DynaMath test 501 0 1 0.000%
Total 5,137 0 29 0.000%

Table 11: Multimodal Contamination Detection Results
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Our verification process achieved a 0.000% contamination rate across all benchmarks, with no
true multimodal duplicates detected. While we identified 29 instances of text similarity with different
images, these represent legitimate educational content covering similar topics rather than actual benchmark
contamination, as evidenced by the different associated images. This rigorous two-stage decontamination
process ensures that our training dataset contains no direct copies of evaluation benchmark questions,
confirming that the substantial performance improvements demonstrated by models trained on VISUAL-
WEBINSTRUCT are attributable to genuine learning from diverse, high-quality educational content rather

than memorization of evaluation data.

D Training Setup

Model Architecture

Data Processing

Base Language Model
Vision Encoder
Vision-Language Connector
Vision Select Layer

Patch Merge Type

Starting Checkpoint

Qwen/Qwen2.5-7B-Instruct
google/siglip-so400m-patch14-384
MLP-based projector (2-layer with GELU)
-2 (second-to-last layer)

spatial_unpad

MAmmoTH-VL

Image Aspect Ratio
Image Grid Pinpoints
Group by Modality
Image Start/End Tokens
Image Patch Token
Lazy Preprocessing

anyres_max_4
(1x1),...,(6x6)
Enabled
Disabled
Disabled
Enabled

Training Configuration

Dataset Configuration

Training Epochs

1

Primary Dataset

VisualWeblnstruct

Batch Size 256 Additional Dataset LlaVA-CoT (9:1 ratio)
Maximum Sequence Length | 8,192 tokens Prompt Template qwen_2_5
Learning Rate le-5 (language and projector)
Vision Tower Learning Rate | 2e-6
Weight Decay 0.0
Warmup Ratio 0.03
LR Scheduler Cosine
Tunable Components Optimization
Language Model Enabled Distributed Training DeepSpeed Zero-3
Vision Tower Enabled TF32 Precision Enabled
MLP Adapter Enabled Mixed Precision BF16
Gradient Checkpointing Enabled TF32 Precision Enabled
Torch Compile Enabled (inductor)

Table 12: Training Configuration of MAmmoTH-VL2

E Evaluation Setup

E.1 Benchmark Descriptions

Benchmark Description

MMMU University-level problems across 30 disciplines; 11.5K questions requiring integration of visual
and textual information; college and graduate-level difficulty

MMMU-Pro Focuses on visual reasoning abilities with more challenging visual components

Vision

MMMU-Pro Extended version with more challenging problems and more distractor options (6-8 options vs.

Standard 4-5 in MMMU)

MathVista 6,141 problems across 6 categories and 24 subcategories; requires interpretation of charts,
diagrams, and visual scenes to solve mathematical problems

MM Vet 200 questions assessing visual recognition, OCR, spatial reasoning, and chart understanding
across diverse contexts

MathVerse Emphasizes visual mathematical reasoning with minimal text hints; requires deriving mathemati-
cal insights primarily from visual content

Dynamath Problems requiring temporal reasoning, visual extrapolation, and understanding cause-effect
relationships in mathematical scenarios

GSMS8k 8,500 high-quality grade school math word problems; tests multi-step mathematical reasoning
abilities requiring 2-8 steps to solve; focuses on arithmetic operations and logical problem-
solving

Dynamath Problems requiring temporal reasoning, visual extrapolation, and understanding cause-effect
relationships in mathematical scenarios

Table 13: Description of evaluation benchmarks used in our study.
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E.2 Model Categories

Category Models Description
GPT-40 OpenAl’s multimodal model with strong visual understanding
Closed-source Gemini-1.5-Pro | Google’s advanced model with long-context capabilities
Claude-3.5- Anthropic’s model known for nuanced reasoning
Sonnet
Molmo (8B) General-purpose vision-language model
LLaVA-OV Large Language and Vision Assistant with One Vision
(7B)
Open-source Llama-3.2 Meta’s multimodal model based on Llama architecture
Vision-Language (11B)
Qwen2-VL Alibaba’s vision-language model built on Qwen2
(7B)
MAmmoTH- Vision-language model with multilingual capabilities
VL (7B)
InternVL2.5 Enhanced visual understanding model
(7B)
Phi-4-mini Microsoft’s compact multimodal model
(5.6B)
DeepSeek-VL2 | DeepSeek’s advanced vision-language model
Llava-CoT-L LLaVA with chain-of-thought reasoning capabilities
(11B)
Reasoning-Enhanced Llava-CoTM Compact version of L1aVA-CoT based on MAmmoTH-VL
Vision-Language (7B)
LlamaV-ol Vision-enhanced Llama with reasoning capabilities
(11B)
Mulberry (7B) VLM optimized with tree search techniques
Insight-V (8B) Vision-language model with enhanced reasoning
MM-Eureka Multimodal model trained with reinforcement learning

Table 14: Categories and descriptions of models compared in our evaluation.

E.3 Evaluation Methodology

Component Specification

Evaluation Framework | LMMsEval

Decoding Strategy Greedy decoding (temperature = 0)

Evaluation Mode Zero-shot (no demonstration examples provided)

Metrics Accuracy scores for multiple-choice questions; exact match for short-
form answers

Answer Extraction Consistent regex-based answer parsing across all models

Hardware 8x NVIDIA A100 80GB GPUs for evaluation

Reporting Opverall scores and subsection-specific performance where relevant; aver-
age score across all benchmarks for holistic evaluation

Table 15: Evaluation methodology used in our experiments.

F Failure Case Analysis of MAmmoTH-VL2

Error Category Percentage (%)
Multi-step reasoning failures 48
Domain-specific terminology misunderstandings 32
Visual-textual integration errors 20

Table 16: Distribution of error categories from analysis of 100 random test examples.

Multi-step reasoning failures (48%) occur when models struggle with sequential dependencies in complex
problems. Domain-specific terminology misunderstandings (32%) are particularly prevalent in specialized
technical fields. Visual-textual integration errors (20%) happen when models fail to properly connect
visual elements with corresponding text descriptions.

1389



F.1 Prompt for Each Stage

QA Pairs Extraction

"""Analyze this webpage content and extract questions, images, and
complete solution details in Markdown format.

Please format your response as follows:

**Question 1:xx

[complete question text]

**Images: **

* [First image URL if available]

* [Second image URL if available]

[continue for each additional image...]

*xSolution:**

[Copy the complete solution text from the webpage, including all steps,
explanations, and calculations]

*xImages in Solution:#**

* [First image URL if available]

* [Second image URL if available]

[continue for each additional image...]

[repeat for each additional question...]

Requirements:

- Keep the complete solution text exactly as shown in the webpage
- Use Markdown formatting throughout the response

- Mark missing content as "Not found”

- For images, include URL only

- For multiple questions, number them sequentially

- Do not summarize or modify the solution text

- Preserve all mathematical notations and formulas

- Keep all step-by-step explanations intact

- Preserve all line breaks and indentation in solution text

- If there is no question in the content, mark it as "Not found”
- If the webpage is empty or missing, return nothing

Webpage content:

{Accessibility Tree}

nnn

1390



QA Pairs Validation

"""Please analyze this question-answer pair and its images:
Question: complete question text

Solution: complete solution text

Your tasks:

1. Determine if the question is meaningful and valid.

2. For the question images (if any), determine if each is:
- Properly referenced in the question

- Clear and visible

- Actually helps understand the question

3. For the solution images (if any), determine if each is:
- Helps explain the solution

Notes:

- Image indices start from @ (e.g., first image is index @, second is index 1, etc.)
- Images should be marked as valid if they show the actual content being discussed
Images should be marked as invalid only if they are:

Completely irrelevant to the question/solution

Corrupted or unreadable

Duplicate or redundant

* % %

Question Images:

[Images loaded here] Solution Images (starting a new section, indexes reset to 0):
[Images loaded here] Please respond in this exact format:

QUESTION_VALID: [yes/no]

ANALYSIS: [Brief explanation of why the question is valid/invalid]
QUESTION_IMAGES: [comma-separated list of valid image indices starting from @]
QUESTION_IMAGES_REASON: [Brief explanation for each image decision]
SOLUTION_IMAGES: [comma-separated list of valid image indices starting from 0]
SOLUTION_IMAGES_REASON: [Brief explanation for each image decision]

CRITICAL RESPONSE FORMAT INSTRUCTIONS:

- You MUST respond using EXACTLY this format with no additional text
- Use ONLY numeric indices for images, starting from 0

- If no images are valid, use an empty string

- Be precise and use actual numbers

- Always use numeric indices (0,1,2...)

- Use empty string for no images (e.g., "SOLUTION_IMAGES: ")

- Do not add explanatory text in the indices field

nnn

Answer Refinement

"""Please solve the following problem step-by-step, providing a clear and comprehensive
explanation:

[PROBLEM]

Structure your response with numbered sections and subsections as follows:

(1) Key Components: - Identify the main elements or concepts in the problem - Explain their roles
or functions - Highlight important relationships between components

(2) Underlying Principles: - Describe the fundamental mechanisms or processes involved - Explain
relevant theories, frameworks, or systems - Connect these principles to the specific context of
the problem

(3) Step-by-Step Analysis: - Break down the problem into logical stages - For each stage, explain
what happens and why - Use clear cause-and-effect relationships to show progression

(4) Integration: - Connect the various elements to show how they work together - Explain interactions
between different processes or components - Demonstrate how these interactions lead to the overall
outcome

(5) Comprehensive Answer: - Provide a concise summary that directly answers the original question
- Include the most important points from your analysis - Ensure your answer is complete but
accessible

Throughout your explanation: - Use clear, precise language appropriate to the subject - Present
information in a logical sequence - Use bullet points for clarity when listing related items -
Connect each section to the central question being asked """
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Consistency Checking """Please analyze the consistency between the following answers to the same

question:

Question: [QUESTION_TEXT]
Answer 1: [ANSWER_1]
Answer 2: [ANSWER_2]
Answer 3: [ANSWER_3]
Answer 4: [ANSWER_4]

Your tasks:

1. Determine if more than half of the answers are consistent with each other in terms of:
- Final answer/conclusion (Do they reach the same result?)

- Reasoning process (Are the solution approaches compatible?)

- Key facts (Are factual claims consistent?)

- Calculations (Do calculations lead to the same results, if applicable?)

Notes:

- Focus on substantive consistency, not differences in wording

- For math/science questions, pay special attention to numerical results

- Answers reaching the same conclusion via different valid methods are consistent

- Mark as CONSISTENT only if more than half of the answers agree on the core solution

- Even if there are minor variations, if the key conclusions match, consider them consistent

Please respond in this exact format:

CONSISTENCY: [CONSISTENT/INCONSISTENT]

CONSISTENT_INDICES: [Comma-separated indices of consistent answers, e.g., "0,1,3"]
REASON: [Brief explanation why answers are consistent or inconsistent (1-2 sentences)]

CRITICAL RESPONSE FORMAT INSTRUCTIONS:

- You MUST respond using EXACTLY this format with no additional text

- Use ONLY "CONSISTENT" if more than half of the answers are consistent with each other

- Use "INCONSISTENT" if half or fewer answers are consistent with each other

- For CONSISTENT_INDICES, list the indices (starting from @) of answers that form the consistent

group
- Provide a brief, concise explanation in the REASON field

nnn

Answer Alignment

"""Given the question and the provided image(s), compare these two answers and determine if they
are aligned.

Question: question

GPT’s Answer: gptanswer

Real Answer: realanswer

Example of Aligned Answers:

Question: What is 2 + 2?

GPT Answer: 4

Real Answer: 4

Example of Misaligned Answers:

Question: What is derivative of z2?

GPT Answer: 2x + 1

Real Answer: 2x

Are these answers aligned? Respond with just ’Yes’ or ’No’ on the first line. Provide a brief
explanation on the second line."""
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F.2 Example of QA Pair
F.2.1 Web Answer vs. GPT Answer

Question: How many angles does a quadrilateral have? A. 1 B. 2 C. 3 D. 4

D B

Web Answer: Right Answer is: D SOLUTION An angle is made up of two rays starting from a common

initial point (or a common vertex). A quadrilateral has 4 angles. Consider quadrilateral ABCD. It
can be seen here that there are 4 angles here; 2 A, 2B, 2 Cand 2 D .

GPT Answerl: To determine how many angles a quadrilateral has, let's reason through it step by step:
1. xxDefinition of a Quadrilateral*%: A quadrilateral is a polygon with four sides. 2.
*xUnderstanding Angles**: In any polygon, the number of angles is equal to the number of sides
because each angle is formed where two sides meet. 3. *xApplying the Definitionxx: Since a
quadrilateral has four sides, by definition, it will also have four angles. 4. *%Double-check
with Examplesxx: Consider common examples of quadrilaterals like squares, rectangles, and
diamonds—all these shapes have four angles. So, based on the above reasoning, the quadrilateral
depicted in the image has four angles. Answer: D. 4

GPT Answer2: To determine how many angles a quadrilateral has, let's break it down step by step: 1.
*xDefinition of a Quadrilateralxx: A quadrilateral is a polygon with four sides. 2. **xInterior
Angles in a Quadrilateralxx: By definition, any polygon with four sides (a quadrilateral) will

have four interior angles. 3. xxExamples and Properties*x: - Consider a square, rectangle, or
any general quadrilateral. Each has four corners, and at each corner, there is an angle formed
between two sides. - A rectangle, for example, has four right angles. A rhombus has four angles,

the sum of which is also 360 degrees. 4. **Summation of Anglesx*: The sum of the interior angles
of any quadrilateral is 360 degrees. This sum indicates there must be four angles, as each angle

contributes to this total. 5. *xChecking against other Shapes*x: - A triangle, which is a three-
sided polygon, has three angles. - Extending to more sides, a pentagon (five-sided polygon) has
five angles. - This shows the number of angles is directly determined by the number of sides of

the polygon. Based on the above reasoning, a quadrilateral has 4 angles. Hence, the correct
answer is: ‘Answer: 4°

GPT Answer3: A quadrilateral is a polygon with four sides. By definition, a polygon has the same
number of angles as it does sides. Therefore: 1. A quadrilateral has four sides. 2. Since it has
four sides, it will also have four angles. Thus, a quadrilateral has four angles. Answer: D. 4

GPT Answer4: A quadrilateral is a polygon with four sides. By definition, any polygon with \( n \)
sides will also have \( n \) angles. Since a quadrilateral has 4 sides, it must also have 4
angles. Let's break this down: 1. Identify the shape: The given shape is a quadrilateral. 2.
Determine the number of sides: A quadrilateral has 4 sides. 3. Determine the number of angles: In

any polygon, the number of angles is equal to the number of sides. Therefore, a quadrilateral has
4 angles. Answer: D. 4
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F.2.2 More Samples

Q: The inputs to the digital
circuit are shown below. The
output Y is

PHYSICS

A: [reasoning]
*xAnswer: \(\overline{A
\cdot B} + \overline{C}\)x*

: Write F for the objects which
has flat surface and C for
curved surface.

A: [reasoning]
Answer: C, F, C, F, C, C, F, C

train ghost

Q: How does this drug work?

A : [reasoning]

**xAnswerxx: Zercepac blocks
HER2 signals on cancer cells,
stopping them from multiplying
and calling blood vessels for
nutrients. It also helps
immune cells to recognize and
attack cancer cells, slowing
tumor growth and starving
tumors.

CHEMISTRY

Q: The major product formed
the following reaction is

in

A: [reasoning]

BIOLOGY

4. Q: This experimental set up is

/ ;_\\ used to prove essentiality of

| | sis® | which of the following
requirements of photosynthesis?

\fracizer{-3s33{s}\)

Answer: \[\text{Ph-CH=CH-C0-CH}_3\]1 | 1] | A: [reasoning]
H W Answer: Carbon dioxide
: GEOMETRY ' ECONOMICS
: Q: como se chama o poligono com 11 | Q: In the figure below, a single-
! lados, 11 vértices e 11 angulos price unregulated monopoly will
: A.O‘ internos? : set price A- a B- b C- ¢ D- d
E : [reasoning] H . .
! wer: Endecagono (ou Undecagono). | A: [reasoning]
H *%Answer: C - cxx
,,,,,,,,,,,,, E.
PROPORTIONS 1 SCIENCE

Q: Which of the four pairs shown | Q: You start with two slices of bread

below are directly proportional? | that are exactly the same. You toast

Select all of the correct answers. slice B. Which slice weighs more now?

. I (A) A (B) B (C) There is no difference

' A: [reasoning] H _) . )
1 *xAnswer: Pair 1, Pair 3% 1 A: [reasoning] Final answer: -
1A B *kANSWET: Axk
oo b oo
: CALCULAS : MUSIC
' Q:The Laplace transform of ! Q: Tryand find all the G Major Scales,
: the waveform shown in the ! this would playing all the notes G A B
: below figure is i Open] 1 2[3]4ls |s]7]s]o folulz E?fxiiomg]
! 2 . §EFel (AL (8100l (F] Answer: Two complete G major scales are
: A:: [reasoning] A | [elc] [o] Jel [l IA] jjentified: 1st on the 3rd (6) string
| 3 o [ Jel [rlel [a] [8]c] Io] sequentially starting from open and 2nd
Answer: \(\frac{enr{-sti{is} + S [ Tal Ts[cT To[ TeT TFlG] beginning at 5th fxet on the 4th (D)
; || \fracfeni-asiHs} - LB e rtel ool g pcnine ety o o

Our pipeline naturally produces data across numerous disciplines

beyond mathematics, reflecting

the natural distribution of educational material on the web. The dataset contains entirely novel content
not found in any existing multimodal datasets, offering a significant contribution of fresh educational

examples.
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