Process-Supervised Reinforcement Learning for Code Generation

Yufan Ye!, Ting Zhang?, Wenbin Jiang?, Hua Huang>*

'Beijing Institute of Technology, *Beijing Normal University
yeyufan@bit.edu.cn, {tingzhang, jiangwenbin, huahuang} @bnu.edu.cn

Abstract

Existing reinforcement learning (RL) strategies
based on outcome supervision have proven ef-
fective in enhancing the performance of large
language models (LLMs) for code generation.
While reinforcement learning based on process
supervision shows great potential in multi-step
reasoning tasks, its effectiveness in the field
of code generation still lacks sufficient explo-
ration and verification. The primary obstacle
stems from the resource-intensive nature of
constructing a high-quality process-supervised
reward dataset, which requires substantial hu-
man expertise and computational resources. To
overcome this challenge, this paper proposes
a "mutation/refactoring-execution verification"
strategy. Specifically, the teacher model is used
to mutate and refactor the statement lines or
blocks, and the execution results of the com-
piler are used to automatically label them, thus
generating a process-supervised reward dataset.
Based on this dataset, we have carried out a
series of RL experiments. The experimental
results show that, compared with the method
relying only on outcome supervision, reinforce-
ment learning based on process supervision per-
forms better in handling complex code gener-
ation tasks. In addition, this paper for the first
time confirms the advantages of the Direct Pref-
erence Optimization (DPO) method in the RL
task of code generation based on process super-
vision, providing new ideas and directions for
code generation research.

1 Introduction

Automatic code generation refers to the process of
automatically writing code through algorithms or
programs. Traditionally, automatic code generation
has relied primarily on rule-driven programming
tools and template-based code generators (Little
and Miller, 2007; Gvero and Kuncak, 2015). These

*Corresponding author

tools are typically only capable of handling sim-
ple, highly repetitive tasks, and require develop-
ers to precisely define rules and logic. In recent
years, with the emergence of LLMs based on deep
learning and natural language processing (such as
GPT (Brown, 2020; Floridi and Chiriatti, 2020;
Achiam et al., 2023) and LLaMA (Touvron et al.,
2023a,b; Dubey et al., 2024)), the capabilities of
automatic code generation have been substantially
improved. These models can understand natural
language descriptions and automatically generate
the corresponding code (Li et al., 2023; Zhu et al.,
2024), even solving complex programming prob-
lems (Allamanis et al., 2018; Zan et al., 2022; Ma
et al., 2025), thus greatly improving development
productivity.

To better align models with complex hu-
man demands, reinforcement learning (RL) has
played a crucial role by integrating human feed-
back (Ouyang et al., 2022; Lee et al., 2023). The
strength of RL lies in its ability to indirectly
optimize non-differentiable reward signals, such
as CodeBLEU scores (Ren et al., 2020) and hu-
man preferences (Wu et al., 2023), through pol-
icy optimization and value function approxima-
tion (Williams et al., 2017; Dhingra et al., 2016).
However, obtaining the required human feedback
often requires significant human effort and re-
sources (Casper et al., 2023). In code generation
tasks, RL. demonstrates unique advantages: lan-
guage models can automatically utilize compiler
feedback from unit tests as reward signals, reduc-
ing excessive reliance on human feedback (Zhang
et al., 2023; Le et al., 2022; Wang et al., 2022; Sho-
jaee et al., 2023). This approach not only efficiently
optimizes the output but also significantly enhances
the model’s performance in code generation tasks.

Although these methods have achieved great suc-
cess, they predominantly rely on compiler feed-
back signals from entire code segments to train
the reward model, raising the issue of sparse re-

14225

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 14225-14238
November 4-9, 2025 ©2025 Association for Computational Linguistics

Method 2:
Outcome-Supervised RL

¥

% Base Model

Method 1:
Supervised Fine-Tuning

4‘ % Base Model I

SFT Problem S::Q"'t:ﬂ ‘ Code
g Snippets
<[>
E_ o 2
Ccompiler

rewards

Method 3:
PRLCoder(Ours)

% Base Model

mutate/

=
=
=

refactor
Code
Snippets Y
E L Process-supervised
reward dataset
Compiler

Finetuned
Model

Figure 1: Illustrating a comparison of three methods: supervised training, outcome-supervised reinforcement
learning, and the process-supervised reinforcement learning proposed in this study.

ward space (Russell and Norvig, 2016; Amodei
et al., 2016), where the policy has no idea how
well it performs during training before reaching
the ultimate output. In this context, the Process-
Supervised Reward Model (PRM) (Uesato et al.,
2022; Lightman et al., 2023) offers a new perspec-
tive. This model provides step-level feedback for
multi-step reasoning results generated by language
models, helping to identify and correct errors in
intermediate steps, rather than focusing solely on
the final outcome. However, the current PRM has
only been validated in the field of logical reasoning
and has yet to demonstrate its effectiveness in code
generation tasks. Moreover, given the high cost
of manual labeling required to construct datasets
for PRM training, efficiently building a correspond-
ing dataset tailored for code generation remains a
critical challenge.

In this paper, we propose PRLCoder, an im-
proved framework for code generation based on
process-supervised reinforcement learning. Fig-
ure 1 presents presents a comparison of three meth-
ods. We critically design a "mutation/refactoring-
execution verification" strategy to enable automatic
generation of process-supervised data. Specifically,
for each statement line or block in the code, we
employ a teacher model to perform mutation and
refactoring operations. Mutation generates code
snippets that serve different functions from the orig-
inal statement line or block, while refactoring aims
to maintain functionality as much as possible. The

modified code is then verified by a compiler. Based
on the outcome of test cases, the samples are la-
beled as either "Chosen" or "Rejected". On this
basis, a series of reinforcement learning experi-
ments are conducted using the constructed process-
supervised reward dataset. This approach not only
significantly reduces the time and cost required
for manual annotation in traditional process su-
pervision, but also eliminates errors and biases in
manual annotation. Furthermore, the precision of
fine-grained rewards enables the model to explore
the environment more efficiently, improving the
stability of the training process.

The proposed method is evaluated on the high-
quality dataset APPS+. The experimental results
indicate that PRLCoder improved the pass rate by
8.8% compared to the base model and by 2.7%
compared to the best outcome-supervised reinforce-
ment learning method, with more significant per-
formance gains in tasks involving complex code
generation. In addition, to verify the generalization,
we also conduct tests on some widely used bench-
mark datasets, further confirming the effectiveness
of the method. In summary, our main contributions
are as follows:

1) We apply multiple process-supervised RL
methods to the coding domain, exploring their
potential to improve the performance of code
generation. Furthermore, we first confirm the
superiority of the DPO method in RL based
on process supervision in the code domain.

14226

2) To address the challenge of the resource-
intensive manual labeling process, we in-
troduce a "mutation/refactoring verification"
strategy to automatically generate a high-
quality process-supervised reward dataset.

3) Empirically, we demonstrate that process su-
pervision surpasses outcome supervision in
code generation, with particularly notable im-
provements observed on complex tasks.

2 Related Work
2.1 Pretrained LLMs for Code

In the domain of code generation, LL.Ms, trained
on extensive corpora of code and natural language,
are capable of generating code that is coherent both
syntactically and semantically (Jiang et al., 2024;
Guo et al., 2020; Li et al., 2022; Nijkamp et al.,
2022). Among them, encoder models like Code-
BERT (Feng et al., 2020) focus on understanding
code structure and semantic relationships, encoder-
decoder models like CodeT5 (Wang et al., 2021)
specialize in translating high-level language de-
scriptions into concrete code, while decoder-only
models like DeepSeekCoder (Guo et al., 2024) gen-
erate syntactically correct and semantically coher-
ent code through autoregressive methods. Further-
more, researchers in the coding community have
applied instructional tuning to their models. Wang
et al. (2023) fine-tuned CodeT5+ using 20,000 in-
struction data generated by InstructGPT, resulting
in InstructCodeT5+ with enhanced generalization
capabilities. However, these models largely over-
look the unique sequential features of code, ex-
hibiting limited performance in handling complex
issues and in cross-task generalization and scalabil-
ity (Zhang et al., 2024a).

2.2 RL based on Compiler

Reinforcement learning (RL) is a method aiming to
allow an agent to interact with the environment and
receive rewards to guide behavior and maximize
cumulative rewards (Mnih, 2013; Mnih et al., 2015;
Van Hasselt et al., 2016). Given the requirement for
both syntactic and functional correctness in code
generation tasks, leveraging compiler feedback sig-
nals from unit tests for RL has become a more
competitive strategy. PPOCoder (Shojaee et al.,
2023) utilizes the Proximal Policy Optimization
(PPO) architecture, which jointly optimizes the pol-
icy model and the value model, and makes use of
the compiler feedback signals as reward signals.

RLTF (Liu et al., 2023) uses compiler-generated
error messages and locations to provide more fine-
grained feedback. It constructs an online reinforce-
ment learning framework, generating data in real-
time during the training process. StepCoder (Dou
et al., 2024) introduces two components, CCCS and
FGO, which are respectively used to handle long
sequence problems and determine whether a code
snippet is executed. However, despite the progress
made by these outcome-supervised reinforcement
learning methods, they still face challenges such as
sparse reward space and training instability.

2.3 Process Supervision

Outcome supervision focuses on the final out-
put, while process supervision provides guidance
through intermediate steps (Uesato et al., 2022; Luo
et al., 2024; Wang et al., 2024; Wu et al., 2024).
Lightman et al. (2023) collected a large amount of
process-supervised data and built the PRM800OK
dataset. The results demonstrated that process su-
pervision significantly outperformed outcome su-
pervision in solving problems in the MATH dataset.
In the coding domain, Ma et al. (2023) modified
atomic operators by employing AST to train a re-
ward model, which was applied in multi-step rea-
soning and proven effective. Dai et al. (2024) uti-
lized LLM to generate completions for code pre-
fixes and evaluated their correctness. With this,
they determined whether the prefixes were cor-
rect and then automatically generated a process-
supervised dataset, exploring the effectiveness of
process supervision. Compared with the work we
performed during the same period, there are differ-
ences in the core aspect of automatically creating
the process-supervised dataset. Moreover, for the
first time, we verified that the DPO method outper-
forms the PPO method in the context of process-
supervised reinforcement learning for code genera-
tion.

3 Approach

In this section, we elaborate on the technical de-
tails of the PRLCoder method. By designing a
more fine-grained reward mechanism, PRLCoder
enables multiple reinforcement learning algorithms
to achieve more precise exploration and optimiza-
tion in code generation tasks.

3.1 Process-Supervised Dataset Construction

Similar to the field of mathematical logic reasoning,
collecting fine-grained human feedback through

14227

— . — | —"Y | — s N — e | — P - \
| Split by | Line by line _ %= Mutate _‘j — verification <
= | line or block’| mask Ek = | Block by block Refactor | Mask Ek — =y
;ode Positive Teacher Model Transformed Compiler
Snippets Example (Deepseek) Code
Problem Input Prompt

def reduce characters(string, char):
"""Replace multiple occurence of character by single"""......

Solution Program code

def reduce_characters(string, char):
pattern = char + "{2,}"
string = re.sub{pattern, char, string)
return string

pattern = char + '{2,}’

def reduce_characters(string, char)

Please mutate (refactor) the above code snippet so that
it has a different (same) effect as the original code:

{ code snippet}

(note that variable names must not be modified, Try to

keep the number of lines of code consistent)

def reduce characters(string, char):

Mutated code

def reduce characters(string, char):

Test List [PEREESRD = char + "{2,}" pattern = char + '{3,}" Rejected
string = re.sub{pattern, char... string = re.sub(pattern, '', string)
Igputs. S o def reduce_characters(string, char)
i e Eedfmm [rammasi] pattern = char + '{2,}' Refactored code
Outputs: string = re.sub(pattern, char..
[pep\n Grek\n Mon\n] return string def reduce characters(string, char)
pattern = f"{char}{{2,}}" Chosen
Text EEJ Chosen string =

def reduce_characters(string, char):
"""Replace multiple occurence of character by single"""......

re.compile(pattern).sub(char, string)
return string

Figure 2: The schematic diagram of the method for automatically constructing the reward dataset for process
supervision in the field of code generation. The bolded portions represent code segments that have been mutated or
refactored by DeepSeek-R1, and the subsequent content will undergo mask processing.

manual annotation to construct step-level reward
datasets often requires significant human and ma-
terial resources. To address this, we propose an
innovative approach that leverages a teacher model
and compiler feedback to automatically construct a
process-supervised reward dataset for the domain
of code generation. Figure 2 illustrates a schematic
of the dataset generation process.

Formally, let D = {d;, w;}Y, denotes the code
generation training dataset, where d; represents the
t-th problem description and w; is the correspond-
ing canonical solution. Initially, we leverage the
canonical solution to construct positive samples.
Specifically, we divide the canonical solution into
k segments according to lines or blocks. Then for
each segment of the code, all subsequent content
is masked, and we directly mark the corresponding
label for the segment as ''chosen''. In other words,
the original canonical solution can be reformulated
directly as positive samples for process supervision
with the format: {"prompt" : (d;), " chosen"
wijlj<p;p = 1, kR

Positive samples generated from the canonical
solution are insufficient for training reward models;
therefore, we design a novel strategy to construct
negative samples. Specifically for each segment
of code, we employ a teacher model to perform
mutation and refactoring operations using specific
prompt examples detailed in Figure 2. The mod-
ified segment, along with the remaining code, is

then validated through the compiler. Based on the
compiler feedback, it is labeled as ''chosen'' if it
passes all test cases, or ''rejected'’ otherwise.
During the dataset construction process, we
find that several canonical solutions in the APPS+
dataset are not suitable for the construction require-
ments of this study. Therefore, we make targeted
modifications to these canonical solutions, and the
specific details are provided in the Appendix B.

3.2 Reward Model Training

Outcome-Supervised Reward Model. ORM
adopts a holistic reward approach, mapping the
overall quality and reliability metrics correspond-
ing to the problem description d and the generated
code w into a single scalar reward. Typically, this
reward is only assigned to the final token in the
generated sequence and is defined as follows:

O = Ro(d,w;8), t=T)
0, otherwise

where 6 represents the parameters of ORM Rp.
First, we adopt the method described in the previ-
ous section to perform overall mutation and refac-
toring processing on the code snippets, thereby
training a basic ORM. However, relying solely on
this dataset to train the ORM has limitations: the ac-
tive learning strategy exhibits a strong bias towards
incorrect answers in the dataset, thereby diminish-
ing the overall performance of the model. Thus,

14228

|
Problem
H ‘ Problem ‘

canonical solution

i
mutatelrefactor] l generate
2] 2] | o 2]
Code Code : Code Code
Snippet A Snippet B | Snippet A Snippet B
Code Code i Code Code
Snippet € Snippet D Snippet C Snippet D

L T J i \ I J
:/b Compiler ; :bo Compiler
0:0-0:0 |
{ |
= 100 0
: Pass Fail Runtime Comopile
¢,.> ‘:'= t,') ‘a’ é 1.0

-0.3 Error Error
i
E (b)Compiler-based Outcome Supervision

-0.6 -1.0

(a)Basic Outcome Supervision

Figure 3: Training of two types of outcome supervision.

we refer to methods such as PPOCoder mentioned
earlier. We introduce the compiler as a source of su-
pervision signals and utilize four types of feedback
signals generated by the compiler to optimize the
generator model, thereby constructing a compiler-
based ORM. These feedback signals, including
pass, fail, runtime error and compile error. Fig-
ure 3 illustrates the structures of these two ORM
models.

Process-Supervised Reward Model. Our PRM
rewards the quality of each code segment, allow-
ing for finer adjustments and feedback at each step.
We divide the code sequence w into k segments
(w1, ws, ..., wy), where w; represents the preced-
ing part of the code sequence. The synchronous
execution concludes at time 7;. Within this frame-
work, the reward model assigns a reward to each
input segment (d, w;), distributing the highest re-
ward to the final segment of w. Finally, the reward
r¢ 18 defined as:

k
rf =Y Rp(d,wi; ¢) - 1(t = T))

=1

2

where ¢ represents the parameters of PRM Rp.

3.3 Reinforcement Learning Algorithm

Proximal Policy Optimization (PPO) is a reinforce-
ment learning algorithm based on policy gradi-
ents. Its core idea is to limit the magnitude of
changes between old and new policies to prevent
excessively rapid updates (Schulman et al., 2017;
Huang et al., 2024). In code generation tasks,
PPO first interacts with the environment using

the current policy my to obtain the state d, gen-
erate a code w;, and receives a reward r; and
other data. Subsequently, the advantage function
A = YoV T e 4 Wildeia) — Vip(dy))
is calculated for each time step, where the value
function Vy,(d) represents the expected cumulative
rewards from state d. In addition, we adopt the
method from (Wu et al., 2021) to add a divergence
penalty kl = log mg(w;|d) — log mef(w;|d) to each
token, representing the ratio of the current and ref-
erence policies. our reward function becomes:

{—ﬁ kL, LA T,
re= . 3)
—B-kl+ry, t=T;

We also conduct research on the recently pro-
posed Direct Policy Optimization (DPO) algo-
rithm. The core idea of DPO is to directly opti-
mize the policy using a discriminative approach,
focusing on maximizing the relative preference
between different policies without explicitly es-
timating the reward function (Rafailov et al., 2023;
Zhang et al., 2024b). During the reinforcement
learning training process, we first use the Bradley-
Terry model to convert preference information into
scores, which is expressed as p(w;. > wi,|d) =
o(r(d, w;e)—r(d, w;)). where w;. and w;, denote
the i-th chosen and rejected code segment, respec-
tively, and d represents their prefix. By introduc-
ing the partition function Z(z) = 3, mrer(w; |

d) exp (%r(d, wl)) , we reparameterize the reward
function to obtain:

mo(w; | d)
Wref(wi ‘ d)

re = [log 4

See Appendix C for more details.

4 Experiments

4.1 Benchmarks

APPS+. To construct the process-supervised re-
ward dataset, we select APPS+ as the seed dataset,
which is an improved version of the popular bench-
mark APPS. APPS+ covers three difficulty levels:
Introductory (2,889), Interview (3952), and Com-
petition (572). Each instance is annotated with at-
tributes marking the start and end positions of state-
ment blocks in the standard solution. To ensure
comparability with the original paper, we adopt
the same dataset partitioning strategy, randomly
sampling approximately 25% of instances for the
validation set and another 25% for the test set.

14229

HumanEval dataset consists of 164 original pro-
gramming problems, with some problems compa-
rable in difficulty to the interview questions for
fundamental software. MBPP dataset consists of
a test set of 500 crowd-sourced Python program-
ming problems. Each problem includes a task de-
scription, a code solution, and three automated test
cases. LiveCodeBench dataset provides holistic
and contamination-free evaluation of the coding ca-
pabilities of LLMs. In particular, LiveCodeBench
continuously collects new problems over time from
contests across three competition platforms. We
select release_v5 with problems released between
May 2023 and January 2025 containing 880 prob-
lems.

4.2 Settings

Evalution Metric. Following the method proposed
by Kulal et al. (2019); Chen et al. (2021), we em-
ploy the pass@1 metric to evaluate the correctness
of functions, generating only one code sample per
problem for assessment. The prompts used for code
generation are listed in Appendix A
Implementation Details. We select deepseek-
coder-6.7b-instruct as the base model. During the
SFT phase, training is conducted over 3 epochs
with a learning rate of 2e-5 using eight NVIDIA
A800 80G GPUs. For the PPO, MiniCPM-2B (Hu
et al., 2024) is chosen as the reward model, main-
taining the same learning rate configuration and
completing 10 training epochs. In sample gener-
ation, four code snippets are generated for each
sample using nucleus sampling with a temperature
of 0.6, top-p set to 0.95, and a maximum token
limit of 1024. During DPO training, the learning
rate is adjusted to Se-6 for 3 epochs, incorporating
a linear scheduler and warm-up. In the decoding
phase, we use greedy search decoding for code
generation.

Training Data. In this study, all training data
are constructed based on the APPS+ training set.
For SFT and compiler-based outcome supervision
methods, we directly train on the APPS+ training
set. For basic outcome supervision methods, we
use a dataset generated by mutating and refactor-
ing entire canonical solutions. For PPO and DPO,
we constructed process-supervised reward datasets
through line-by-line and block-by-block mutation
and refactoring on the APPS+ training set, respec-
tively. Although there are differences in the training
data for different methods, the training sets gener-
ated from the same seed set all reflect the optimal

results under each training method.

4.3 Experimental Results
4.3.1 Results on APPS+

To evaluate the performance of our PRLCoder in
code generation, we perform comprehensive exper-
iments on the APPS+ dataset, and the experimental
results are presented in Table 1.

Comparison with LLMs. For the baseline, we
select multiple code Instruct models (Roziere et al.,
2023; Hui et al., 2024) with varying parameter
scales. Under the same experimental conditions,
the performance of these models on the APPS+ test
set is evaluated to ensure the fairness and consis-
tency of the comparison process. The experimental
results show that, compared with the baseline mod-
els, our model achieves a higher pass rate on the
test set with a smaller parameter scale.
Comparison with ORMs. We further conduct a
comparative evaluation of our method against mul-
tiple outcome-supervised reinforcement learning
(RL) approaches. We select basic outcome super-
vision and compiler-based outcome supervision
as comparison objects and carry out experiments
on APPS+ to ensure the fairness of the evaluation.
Given that the RL-related code in PPOCoder and
StepCodr is not open-sourced, the analysis in this
section adopts the experimental results reported in
their original papers. The results show that our
method achieves significant performance improve-
ments across tasks of varying difficulty levels, with
particularly prominent advantages in medium and
hard problems. This indicates that process super-
vision can provide more detailed guidance on the
model’s rewards in complex tasks, leading to the
generation of more accurate code snippets.

We also compare the differences between ap-
plying PPO and DPO in the PRLCoder frame-
work. Experimental results show that DPO ex-
hibits more significant advantages, while the per-
formance of PPO is even slightly lower than that
of the StepCoder method. Our analysis suggests
that this may be attributed to insufficient gener-
alization and robustness in constructing line-by-
line process-supervised reward datasets or training
process-supervised reward models, leading to de-
graded performance of PPO. In contrast, DPO can
more effectively learn the quality of code genera-
tion by leveraging statement blocks with specific
functions, without being affected by reward models.
We provide a more detailed analysis in Section 4.4.

14230

Pass@1

Models Size . .
Introductory Interview Competition Overall
Supervised Fine-tuning Models
InstructCodeT5+ 16B 15.4 9.6 0.9 11.1
CodeLlama 13B 32.1 11.7 1.2 18.7
Qwen2.5-Coder 7B 53.6 22.6 7.8 333
Deepseek-Coder 6.7B 48.2 19.3 4.0 29.1
SFT on APPS+ 6.7B 49.1 19.9 6.8 30.0
Reinforcement Learning Models with Outcome Supervision
Basic 6.7B 53.1 18.7 5.7 30.8
PPOCoder 6.7B 54.4 20.3 6.4 32.1
RLTF 6.7B 55.3 20.1 6.0 324
StepCoder 6.7B 59.7 23.5 8.6 36.1
Reinforcement Learning Models with Process Supervision

PRLCoder(Ours)

with PPO 6.7b 57.4 234 8.0 35.2

with DPO 6.7b 61.9 26.4 11.8 38.8

Table 1: Performance results for various models on APPS+ testing set. In the experimental results of the supervised
fine-tuning models, we uniformly adopt Instruct models. "SFT on APPS+" indicates that DeepSeek-Coder is
subjected to supervised fine-tuning on the APPS+ training set as the control group. "Basic" represents the basic

outcome supervision.

Model Humaneval Mppp 1 eCodeBench
(Overall)
Deepseek-Coder 77.4 64.0 20.3
SFT on APPS+ 71.9 60.3 17.8
Basic 763 640 196
PPOCoder 76.8 63.8 -
RLTF 77.9 64.5 21.4
StepCoder 78.7 67.0
PRLCoder(OQurs)
with PPO 77.8 67.6 22.6
with DPO 79.5 69.4 24.2

Table 2: Quantitative results on popular benchmark.

4.3.2 Results on Popular Benchmarks

To further assess the generalization performance
of PRLCoder, we test the performance of multiple
methods on several mainstream benchmarks, with
specific experimental results detailed in Table 2.
PRLCoder demonstrats superior performance com-
pared to supervised fine-tuning (SFT) and outcome-
supervised methods. It is worth noting that we
find a slight decline in the performance of the base
model on the HumanEval and MBPP benchmarks
after SFT on APPS+. This phenomenon aligns with

the characteristics of "negative transfer," a com-
mon issue in SFT, and it is hypothesized that its
cause may be related to differences in input formats
across datasets. In contrast, RL-based methods can
effectively enhance the model’s overall code gener-
ation ability and generalization capability.

4.4 Analysis

We systematically analyze the combinations of dif-
ferent code segmentation strategies and reinforce-
ment learning (RL) algorithms, comparing their
post-training performance on the test set, as well
as the efficiency and stability of the models during
the RL training process.

Row-level and Block-level Code Segmentation.
We systematically investigate different code par-
titioning strategies and train using the DPO algo-
rithm on process supervision reward datasets con-
structed via line-by-line mutation or refactoring.
Experimental results are detailed in Table 3. The
study reveals that the block-based code partitioning
strategy significantly outperforms line-wise par-
titioning in training effectiveness. Furthermore,
we train a reward model for the PPO algorithm

14231

—a
085 B

Metric Value
N

0.60 —e— Accuracy —a = Precision
-m - Fl-Score Recall

1 2 3 4 5 6
Training Epochs

Figure 4: Quantitative analysis of the process-
supervised reward model for the PPO.

Methods strategy Pass@1
Intro. Inter. Comp. Over.
PPO Row-level 574 234 8.0 35.2
DPO Row-level 60.2 24.2 8.4 36.7
DPO Block-level 619 26.4 11.8 38.8

Table 3: Quantitative results on APPS+ testing set with
different code segmentation strategies.

using this dataset, with relevant results shown in
Figure 4. During the training phase, the overall ac-
curacy of the model is approximately 75%, which
may explain the relatively lower performance of
the line-wise partitioning strategy. In-depth analy-
sis identifies two issues with line-by-line mutation
or refactoring: first, some non-critical lines in the
dataset easily interfere with the training of the re-
ward model; second, when processing the latter
part of the text, excessively long prefixes hinder
the reward model from accurately learning reward
allocation. In conclusion, we argue that only by
combining block-based code partitioning strategies
with more advanced DPO algorithms can the advan-
tages of process-supervised reinforcement learning
in code generation tasks be fully realized.

Training process. When training the model us-
ing RL algorithms, we compare the training loss
curves under three different supervision methods,
as shown in Figure 5. The experimental results
demonstrate that the DPO algorithm based on pro-
cess supervision exhibits a faster convergence rate
during training, and both process-supervised rein-
forcement learning methods show higher stability
compared to the outcome-supervised method. This
phenomenon indicates that process supervision not
only improves the training efficiency of the code
generation model but also significantly enhances
the stability of the training process.

—e— Compiler Loss

\ —m—. PRLCoder (PPO) Loss
0.06 % ———
PRLCoder (DPO) Loss

°
S
3
-
n
-
-

o
S
R
-
o

=3
3
3
[]

Adjusted Loss (Scaled)
,
0
/
/
/
/
/
’ /

0.02

Training Steps

Figure 5: The loss curves of the reinforcement learning
under three different supervision methods.

5 Conclusion

In this paper, we present PRLCoder, a novel ap-
proach that explores enhancing the effectiveness of
code generation through process-supervised rein-
forcement learning (RL) with intermediate reward
signals. For the first time, we introduce the more
efficient Direct Policy Optimization (DPO) algo-
rithm into the code generation domain. To address
the challenge of high labeling costs, we design
an innovative step-level dataset construction strat-
egy that leverages teacher models and compiler
feedback to automatically generate code datasets
for process-supervised RL training. Experimental
results on APPS+ and multiple widely-used bench-
mark datasets demonstrate that our method signif-
icantly improves code generation quality, particu-
larly in complex tasks. Furthermore, this work vali-
dates the superiority of process-supervised RL over
outcome-supervised approaches in code generation,
most notably eliminating the need for resource-
intensive manual labeling.

6 Limitations

Looking ahead, several aspects of PRLCoder can
be further optimized and expanded. First, the cur-
rent seed dataset has limited diversity, which may
hinder the generalization of the trained model. Fu-
ture research could consider utilizing more diverse
datasets to better cover various scenarios and re-
quirements. In addition, current experiments with
PRLCoder have only been conducted on DeepSeek-
Coder, and future work could explore its appli-
cability and performance across more types and
larger-scale code generation models. Furthermore,
our proposed "mutation/refactoring verification"
strategy is not only applicable to code genera-
tion but also has the potential to establish process-

14232

supervised mechanisms for other reasoning or plan-
ning tasks. Future studies could further investigate
the applicability and advantages of this strategy in
other fields, especially its potential in addressing
complex reasoning and planning challenges.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu,
and Charles Sutton. 2018. A survey of machine learn-
ing for big code and naturalness. ACM Computing
Surveys (CSUR), 51(4):1-317.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul
Christiano, John Schulman, and Dan Mané. 2016.

Concrete problems in ai safety. arXiv preprint
arXiv:1606.06565.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Stephen Casper, Xander Davies, Claudia Shi,
Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David
Lindner, Pedro Freire, et al. 2023. Open problems
and fundamental limitations of reinforcement
learning from human feedback. arXiv preprint
arXiv:2307.15217.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei
Shi, Xing Jin, Guanlin Liu, Chen Dun, Liang Huang,
and Lin Yan. 2024. Process supervision-guided pol-
icy optimization for code generation. arXiv preprint
arXiv:2410.17621.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2016.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. arXiv preprint
arXiv:1609.00777.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong,
Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, et al. 2024. Step-
coder: Improve code generation with reinforcement
learning from compiler feedback. arXiv preprint
arXiv:2402.01391.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela

Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30:681-694.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Tihomir Gvero and Viktor Kuncak. 2015. Interac-
tive synthesis using free-form queries. In 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 2, pages 689—-692.
IEEE.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxi-
ang Huang, Weilin Zhao, et al. 2024. Minicpm:
Unveiling the potential of small language models
with scalable training strategies. arXiv preprint
arXiv:2404.06395.

Nai-Chieh Huang, Ping-Chun Hsieh, Kuo-Hao Ho, and
I-Chen Wu. 2024. Ppo-clip attains global optimal-
ity: Towards deeper understandings of clipping. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 12600-12607.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. Ad-
vances in Neural Information Processing Systems,
32.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314-21328.

14233

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,
Ethan Hall, Victor Carbune, Abhinav Rastogi, et al.
2023. Rlaif: Scaling reinforcement learning from
human feedback with ai feedback. arXiv preprint
arXiv:2309.00267.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092-1097.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Greg Little and Robert C Miller. 2007. Keyword
programming in java. In Proceedings of the 22nd
IEEE/ACM International Conference on Automated
Software Engineering, pages 84-93.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han,
Wei Yang, and Deheng Ye. 2023. RItf: Reinforce-
ment learning from unit test feedback. arXiv preprint
arXiv:2307.04349.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan,
Pengfei Liu, Yang You, and Hongxia Yang. 2023.
Let’s reward step by step: Step-level reward model

as the navigators for reasoning. arXiv preprint
arXiv:2310.10080.

Xuetao Ma, Wenbin Jiang, and Hua Huang. 2025.
Problem-solving logic guided curriculum in-context
learning for llms complex reasoning. In Findings of
the Association for Computational Linguistics: ACL
2025, page 8394-8412. Association for Computa-
tional Linguistics.

Volodymyr Mnih. 2013. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. nature,
518(7540):529-533.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728—
53741.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Stuart J Russell and Peter Norvig. 2016. Artificial intel-
ligence: a modern approach. Pearson.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and
Chandan K Reddy. 2023. Execution-based code gen-
eration using deep reinforcement learning. arXiv
preprint arXiv:2301.13816.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

14234

https://doi.org/10.18653/v1/2025.findings-acl.440
https://doi.org/10.18653/v1/2025.findings-acl.440

Hado Van Hasselt, Arthur Guez, and David Silver. 2016.
Deep reinforcement learning with double g-learning.
In Proceedings of the AAAI conference on artificial
intelligence, volume 30.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce llms step-
by-step without human annotations. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9426-9439.

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yi-
tong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang,
and Qun Liu. 2022. Compilable neural code gen-
eration with compiler feedback. arXiv preprint
arXiv:2203.05132.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023.
Codet5+: Open code large language models for

code understanding and generation. arXiv preprint
arXiv:2305.07922.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-

derstanding and generation. arXiv preprint
arXiv:2109.00859.

Jason D Williams, Kavosh Asadi, and Geoffrey
Zweig. 2017. Hybrid code networks: practical
and efficient end-to-end dialog control with super-
vised and reinforcement learning. arXiv preprint
arXiv:1702.03274.

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Sti-
ennon, Ryan Lowe, Jan Leike, and Paul Christiano.
2021. Recursively summarizing books with human
feedback. arXiv preprint arXiv:2109.10862.

Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and
Hongsheng Li. 2023. Human preference score: Bet-
ter aligning text-to-image models with human prefer-
ence. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2096-2105.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane
Suhr, Prithviraj Ammanabrolu, Noah A Smith, Mari
Ostendorf, and Hannaneh Hajishirzi. 2024. Fine-
grained human feedback gives better rewards for lan-
guage model training. Advances in Neural Informa-
tion Processing Systems, 36.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and
Jian-Guang Lou. 2022. Large language mod-
els meet nl2code: A survey. arXiv preprint
arXiv:2212.09420.

Huangzhao Zhang, Kechi Zhang, Zhuo Li, Jia Li, Yong-
min Li, Yunfei Zhao, Yuqi Zhu, Fang Liu, Ge Li, and
Zhi Jin. 2024a. Deep learning for code generation:
a survey. SCIENCE CHINA Information Sciences,
67(9):191101-.

Kechi Zhang, Ge Li, Yihong Dong, Jingjing Xu, Jun
Zhang, Jing Su, Yongfei Liu, and Zhi Jin. 2024b.
Codedpo: Aligning code models with self gen-
erated and verified source code. arXiv preprint
arXiv:2410.05605.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong
Liao, Zi Gong, Hang Yu, Jianguo Li, and Rui Wang.
2023. A survey on language models for code. arXiv
preprint arXiv:2311.07989.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

14235

https://doi.org/10.1007/s11432-023-3956-3
https://doi.org/10.1007/s11432-023-3956-3

A Prompt Design

To eliminate the interference of comments on
process-supervised reinforcement learning, we uni-
formly added the instruction "Do not add com-
ments when generating" at the end of the prompt.
The specific prompts used by Deepseek-Coder-
Instruct for the APPS+ code generation task are
as follows:

< lbegin_of _sentencel >You are an Al program-
ming assistant, utilizing the Deepseek Coder model,
developed by Deepseek Company, and you only an-
swer questions related to computer science. For
politically sensitive questions, security and privacy
issues, and other non-computer science questions,
you will refuse to answer

Instruction:

QUESTION:

{task description}

class Solution: def minEatingSpeed(self, piles:
List[int], H: int) -> int:

ANSWER: Do not add comments when generat-
ing.

Response:

B Dataset Specification

To construct a more standardized process-
supervised reward dataset, we first regularized the
solutions by uniformly standardizing the use of
‘\t’ to ensure code format consistency and verify
that each canonical solution passes the test cases.
Second, we revise approximately 20 canonical so-
lutions with enumeration-based expressions. For
example, in the "integer partition" problem, the
original canonical solution enumerated combina-
tions for each positive integer sequentially, which
was unsuitable for constructing the process super-
vision reward dataset. Therefore, we adapt these
solutions accordingly. An example of modifica-
tions to the APPS+ dataset is shown in Figure 6.

C RL Algorithm

The PPO and DPO algorithms in PRLCoder are
detailed in Algorithms 1 and 2, respectively.

D Error Distribution

To validate the effectiveness of our proposed strat-
egy, we conduct an error distribution analysis on
the automatically constructed reward dataset and
the code generated by the baseline model. As
shown in Figure 7, the error distributions of the

two code sets exhibit significant overlap, demon-
strating that the reward dataset constructed using
this strategy effectively captures common error pat-
terns in the code generation process. Furthermore,
when this dataset is used to train the base model
within a reinforcement learning framework, it sig-
nificantly enhances the model’s ability to supervise
code generation.

14236

Algorithm 1 Process-Supervised Reinforcement Learning for Code Generation With PPO

Input: initial policy model Py, ; initial value model V,;, .; PRM Ry trained from step-level datasets;
code task prompts D; hyperparameters ¢, 8
Output: 7
1: policy model Py < Fy, .,
2: forstep=1,...,M do
3: Sample a batch Dy, from D

Sample output sequence of program w™ ~ Py(- | ™) for each prompt z" € D,

reference model P..p < Py,

init

value model Vi, < Vi,

Compute rewards {T{L}!fﬂ‘ for each sampled output w™ by running Ry and P,y

for PPO iteration=1,..., u do

4
5
6: Compute advantages {At}rijl and value targets { V' (st)}]g;‘ for each w™ with V,,
7
8 Update the policy model using PPO objective:

Dy | |w™|

Py(at | st) . Pylar | s1)
0 < arg Max = min (A, clip(——=,1— €614+ ¢6)A;
IDb! Z Iw”! Z Pgalas | st) Pogalar | st)

9

Update the value model by minimizing a square-error objective:

|Dy|

< ar mln V (st) — V™(s

10: end for
11: end for

Algorithm 2 Process-Supervised Reinforcement Learning for Code Generation With DPO

Input: initial policy model Py, ; Process-supervised reward dataset D; hyperparameters (3
Output: P
1: policy model Py < Py, , reference model P, < P
2: forstep=1,..., M do
3: Sample a batch Dy, from D
4: Sample output sequence of chosen program w and rejected program w;’ for each prompt 2™ € D,

init

5. for DPOiteration=1,..., u do

6: Update the policy model using DPO objective:
Dy [w"|
1 1 PG(wc | d) PQ(wr | d)
0 + argmax — — [loga <Blog — pPBlog ——
0 ‘Db| nz::l ’wn‘ tZ:: Pref(wc ‘ d) P,«ef(’wr ’ d)

7: end for
8: end for

14237

Prompt:

def exp_sum(n):
"""# How many ways can you make the sum of a number?

From wikipedia: https://en.wikipedia.org/wiki/Partition_(number_theory)#

>In number theory and combinatorics, a partition of a positive integer *n*, also called an *integer partition*, is a way of writing n as

a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. If order matters,

the sum becomes a composition. For example, 4 can be partiticned in five distinct ways:

it Examples

#H## Basic

exp_sum(1l) # 1

exp_sum(2) # 2 -> 1+#1 , 2
exp_sum(3) # 3 -> 1+1+1, 1+2, 3

i Explosive
exp_sum(5@) # 204226
exp_sum(8@) # 15796476
exp_sum(1@e) # 100560292

Canonical Solution:

AMSWERS = { def exp_sum(n):
e: 1, Old partitions = [B] * (n + 1) new
1: 1, partitions[e] = 1
2: 2, for 1 in range(1, n + 1):
3: 3, for j in range(i, n + 1):
4: 5, partitions[j] += partitions[j - i]
58 To— return partitions[n]
) =
def exp_sum(number): Scopes:
if number < 8: return 8 [['Function Body', 2, 8], ["For Loop Body', 5, 7], ['For Loop
return ANSWERS[number] Body", 6, 7]
Scopes:
[["Function Body', 2525, 2527], ["If Statement Body', 2526,
252611

Figure 6: An example of the modifications we made to APPS+ to align with our method

Error Distribution

def max_difference_after_pourings():
"""You have n barrels lined up in a row, numbered from left to right from one. Initially, the i-th barrel
contains a_i liters of water......

def max_difference_after_pourings(): mutate for i in range(n - k - 1):
def solve(): ans += 1st[i]
n, k = map(int,input().split())
1st = list(map(int,input().split(})) refactor i-=n-k-1
1st.sort() while i < n:
ans = @ ans += 1st[i]
for i in range(n - k - 1, n): i+=1
ans += 1st[i]
print(ans) model output:
for i in range(int(input())):

def max_difference_after pourings():
def process_case():
n, k = map(int, input().split())
a = list(map(int, input().split()))
a.sort()
required = n - k - 1

solve()

sum_total = sum{a[:required]) if required < n else @

def calculate_alice score():
"""#lice and Bob play a game. They have a binary string $s§ (a string such that each character in it is either
$0% or $1%). Alice moves first, then Bob, then Alice again, and so on......"""

def calculate alice score(): mutate for i in range(@,len(p)):
for _ in range(int(input())): ans+=len(p[i])
s = input()
p = [i for i in s.split("e") if i!=""] refactor
p.sort(reverse=True)
ans = @ model output:
for 1 in range(@,len(p).2):
ans+=len(p[i])

print(ans)

ans += sum(map(len, p[::2]))

def calculate alice score():
import sys
input = sys.stdin.read().split()
for s in input[1:]:
groups = [len(seq) for seq in s.split('e’') if seq]
groups.sort(reverse=True)

print{sum(groups[::1))

Figure 7: Some examples of the same error distribution generated by the reward dataset and the base model.

14238

