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Abstract

Contrastively-trained Vision-Language Mod-
els (VLMs), such as CLIP, have become the
standard approach for learning discriminative
vision-language representations. However,
these models often exhibit shallow language
understanding, manifesting bag-of-words be-
haviour. These limitations are reinforced by
their dual-encoder design, which induces a
modality gap. Additionally, the reliance on
vast web-collected data corpora for training
makes the process computationally expensive
and introduces significant privacy concerns. To
address these limitations, in this work, we chal-
lenge the necessity of vision encoders for re-
trieval tasks by introducing a vision-free, single-
encoder retrieval pipeline. Departing from
the traditional text-to-image retrieval paradigm,
we migrate to a text-to-text paradigm with the
assistance of VLLM-generated structured im-
age descriptions. We demonstrate that this
paradigm shift has significant advantages, in-
cluding a substantial reduction of the modality
gap, improved compositionality, and better per-
formance on short and long caption queries, all
attainable with only a few hours of calibration
on two GPUs. Additionally, substituting raw
images with textual descriptions introduces a
more privacy-friendly alternative for retrieval.
To further assess generalisation and address
some of the shortcomings of prior composition-
ality benchmarks, we release two benchmarks
derived from Flickr30k and COCO, containing
diverse compositional queries made of short
captions, which we coin subFlickr and sub-
COCO. Our vision-free retriever matches and
often surpasses traditional multimodal models.
Importantly, our approach achieves state-of-the-
art zero-shot performance on multiple retrieval
and compositionality benchmarks, with models
as small as 0.3B parameters. Code is available
at LexiCLIP.

*Equal contribution.

1 Introduction

Contrastively-trained Vision-Language Models
(VLMs) (Radford et al., 2021a) have rapidly be-
come a cornerstone for learning powerful, discrim-
inative vision-language representations. Their suc-
cess is underscored by remarkable zero-shot trans-
fer abilities across a wide array of tasks (Jia et al.,
2021; Li et al., 2022a,c; Radford et al., 2021a;
Zhai et al., 2023a). These capabilities are largely
attributed to their training on vast quantities of
image-text pairs using a simple contrastive objec-
tive. However, this scale comes at a significant cost:
training such models is computationally expensive,
and the reliance on web-collected data introduces
notable privacy challenges. Moreover, the preva-
lent dual-tower architecture that encodes images
and text separately induces a modality gap, an ef-
fect which hinders the model’s fairness and compo-
sitional abilities (Liang et al., 2022). The latter also
stems from the limited understanding of language
structure of the CLIP’s text encoder, whose repre-
sentations tend to ignore word order and syntactic
relations – effectively treating the caption as an un-
ordered bag-of-words (Yuksekgonul et al., 2023).
Due to the above limitations, contrastively trained
VLMs (e.g., CLIP, SigLIP (Zhai et al., 2023b)) of-
ten exhibit poor compositional generalization and
shallow language understanding, yet they achieve
strong performance on popular text-image retrieval
benchmarks like Flickr30k (Young et al., 2014) and
COCO (Lin et al., 2014).

A growing body of research has quantified the
limitations of current vision-language models and
begun to address them through several approaches.
These include constructing or mining hard negative
examples (Yuksekgonul et al., 2023), employing
shared or partially shared backbones (Likhosher-
stov et al., 2021), and adding cross-modal fusion
modules or adapters to learn fine-grained align-
ment between image regions and words (Li et al.,
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2023a). However, the use of hard negatives has
been shown to potentially rely on shortcuts or spu-
rious patterns (Hsieh et al., 2023) while approaches
based on cross-modal fusion are impractical due
to the need for a separate inference pass for each
image with every new query.

Departing from previous works, we aim to (1)
remove the modality gap by design, (2) reduce the
bag-of-words behavior, and (3) alleviate the privacy
concerns pertaining to the training data; all under a
framework that requires limited training and data.
Finally, (4) we seek to introduce a new text-image
retrieval benchmark that cannot be easily solved by
VLMs exhibiting bag-of-words behaviour.

To this end, we propose a paradigm shift by con-
verting images entirely into carefully crafted tex-
tual descriptions, thereby enabling language mod-
els to reason about visual content purely through
text. This strategy offers significant advantages,
including leveraging high-capacity pretrained text
encoders, significantly narrowing the modality gap
through a fully shared encoder, and substantial mit-
igation of privacy risks as the model avoids direct
handling of sensitive image data. However, this
approach faces a fundamental challenge: faithfully
representing rich visual information solely with
text remains an open and under-explored problem.
To address this, we first introduce a robust, prin-
cipled, and carefully designed pipeline for image-
to-text conversion that captures the richness of vi-
sual information. We then show that the result-
ing text-based image representation can produce
strong, vision-free, zero-shot text-image retrieval
models. To further boost the accuracy of the model,
we utilize the textual corpus generated by apply-
ing the proposed pipeline to 1.5M images from the
OpenImages dataset (Kuznetsova et al., 2020a) to
fine-tune the model, better aligning it to the input
distribution.

Finally, recognizing the aforementioned limita-
tions of existing text-image retrieval benchmarks,
we introduce two new datasets, subFlickr and
subCOCO (derived from the Flickr and COCO
datasets, respectively), specifically designed to
assess performance on short compositional tags,
an area poorly represented in previous test suites,
where, as we show, the standard VLMs appear to
struggle. In summary, our main contributions are:

• We introduce LexiCLIP , a novel text-only
Vision-Language framework that converts im-
ages into textual descriptions, enabling language

models to process visual content. This inherently
removes the modality gap, reduces the “bag-of-
words” effect, and alleviates privacy concerns, all
while requiring limited to no training and data.

• A new principled and carefully designed pipeline
for accurately converting rich visual information
into text, with ample validation on a multitude of
benchmarks.

• We introduce two new datasets, subFlickr and
subCOCO, specifically curated to evaluate VLMs
on short compositional queries, an area previ-
ously underrepresented in benchmarks.

• Using solely textual inputs, and no task-
specialised data, we set a new state-of-the-art
result on image-text composionality and image
retrieval with long captions.

2 Related work

2.1 Text-only training

Recent methods propose to drop images from the
training pipelines in an attempt to alleviate the
modality gap. Knight (Wang et al., 2023) intro-
duces a text-only captioning pipeline where image-
or video-derived captions are used to build a text
corpus for training a decoder with autoregressive
loss. At inference, the k-nearest captions are re-
trieved and used as embeddings to a decoder. De-
Cap (Li et al., 2023b) trains a lightweight lan-
guage decoder purely on a large corpus of text
embeddings generated from CLIP’s (Radford et al.,
2021b) text encoder. CLOSE (Gu et al., 2023)
observes the low image-text cosine similarity and
proposes a hyper-parameter-scaled noise injection
method. IFCap (Lee et al., 2024) similarly in-
jects noise into text embeddings to imitate image
embeddings, improving the retrieval of semanti-
cally aligned captions. CLIPPO (Tschannen et al.,
2023) shifts from the dual encoder paradigm by
jointly processing images and text (where alt-text
is rendered as an image) using a purely pixel-based
model. The resulting image pair is encoded with a
shared vision encoder and trained via contrastive
loss. Different from previous works, our pipeline
is more privacy-friendly, excels at long-form text
retrieval—overcoming the fixed sequence-length
constraints of pixel-based encoders—and enables
extensive linguistic knowledge transfer via strong
pre-trained language models.
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2.2 Datasets for text-to-image retrieval

Text-image retrieval datasets typically fall into two
categories: long-caption and short-tag datasets.
The conventional approach, common in many prior
works, uses long captions. Key benchmarks are
Flickr30k (Young et al., 2014) (31K images) and
MS COCO (Lin et al., 2014) (330K images), each
offering five crowdsourced full-sentence descrip-
tions per image, averaging 10–13 tokens and de-
scribing the full scene. NoCaps (Agrawal et al.,
2019) expands this to 15K OpenImages-derived
images with 166K human-written captions cover-
ing a broader range of categories. These datasets
are characterized by rich, syntactic, sentence-level
annotations describing the entire image and often
averaging over 10 words per caption.

The newer and second line of research uses
short tag datasets with keyword-style annotations.
Tag2test (Huang et al., 2023b), RAM (Zhang et al.,
2023) and RAM++ (Huang et al., 2023a) automat-
ically extract a set of tags from existing captions
or metadata, yielding large-scale image–tag pair
corpora without manual labeling. Each image is
labeled with a collection of salient keywords (e.g.
“dog”, “couch”, “table” for a living-room scene)
rather than a full sentence, enumerating the con-
tents without syntax. Such tag-based datasets are
often an order of magnitude larger, on the order of
millions of images drawn from web data and cover-
ing thousands of distinct tag categories, e.g. 3,400
categories in Tag2Text handles and 4583 in RAM.
These tags lack sentence structure but reflect real-
world search behavior more closely, where users
input short, compositional queries.

In this work, we introduce subCOCO and sub-
Flickr, which are positioned between these two
extremes regarding annotation granularity. Built
from Flickr30K and COCO, they use sub-sentential
phrases, shorter than full captions but semantically
richer than flat tags. An overview of these datasets
and others is presented in Tab. 1.

3 Vision-Free Constrastive Learning

Contrastive language-image pretraining has
emerged as a highly effective method for de-
veloping vision-language models, leveraging
vast amounts of web-collected image-text pairs.
Using this data, the prevalent technique trains
two independent encoders, one for each modality,
using a contrastive loss that aims to map each input
to a joint embedding space (Radford et al., 2021b).
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(a) The proposed Image to Text conversion pipeline: An
image is converted into an equivalent textual description
in two steps: one prompted using “Prompt A” to describe
the image in detail, and another, using “Prompt B” aimed
at capturing each object and corresponding attributes.
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(b) LexiCLIP - the proposed Vision-Free
image-text retrieval model.

Figure 1: The proposed Vision-Free Retrieval Pipeline.

Despite its success, this approach suffers from a
series of drawbacks: (1) Training and finetuning
such models is computationally expensive, (2)
Using web collected images may result in privacy
infringements and (3) The models suffer from a
bag-of-words behaviour (Yuksekgonul et al., 2022),
largely a consequence of the modality gap induced
by the two separate towers (Liang et al., 2022). As
a solution to these issues, we introduce LexiCLIP ,
a novel vision-free text-to-text contrastive learning
framework that leverages pretrained language
models for effective image-text retrieval within
a shared single-tower architecture. Our key idea
is to bring the images into the language domain
via dense captioning, leveraging thereafter the
world knowledge of discriminatively pretrained
LLMs. The conversion to textual descriptions
is also privacy-friendly, as most identity-related
information (i.e., faces, private rooms, etc.) is
removed. Without any further training, in a
zero-shot manner, our solution showcases strong
image-text retrieval abilities, which we further
boost using a light finetuning on a small dataset.

Representing images using text: A picture’s
worth: how many words, and which ones truly
matter? A wide disparity exists in the literature
regarding the structure, content, and particularly
the length of these textual representations, span-
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Table 1: Overview of text-image retrieval evaluation datasets used in this study. * - denotes estimated statistics.

Dataset # Images # Queries Avg. Query Length Captions per Image Query Type

Flickr30K (Young et al., 2014) 1 K 5 K 13.4 5 Full Sentence
MS-COCO (Lin et al., 2014) 5 K 25 K 10.4 5 Full Sentence
NOCAPs (Agrawal et al., 2019) 10 K 106 K 9–11 10–11* Full Sentence
Conceptual Captions (Sharma et al., 2018) 22.5 K 22.5 K 9.7 1 Sentence Caption
Winoground (Thrush et al., 2022) 400 400 8.8 1 Compositional (Paired)
SugarCrepe (Hsieh et al., 2023) 7.5 K 7.5 K 10* 1 Compositional (Paired)
SugarCrepe++ (Dumpala et al., 2024) 4.8 K 9.5 K 10* 2 Compositional (Paired)
ADE20K (Zhou et al., 2017) 2 K N/A 9.9 N/A Tag-based Queries
OpenImages (Kuznetsova et al., 2020b) 125 K N/A 1–5 8 Tag-based Queries

subFlickr 935 280 4.5 6.0 Compositional Caption
subCOCO 4030 256 3.47 4.1 Compositional Caption

Figure 2: Example of our textual image representations.

ning from brief annotations of one word (Gal et al.,
2022) to extensive descriptions comprising over a
thousand words (Collell Talleda and Moens, 2016).
In the absence of a prevailing standard, we under-
take an analysis of this question within the specific
domain of image retrieval. We posit that a series of
desirable properties characterize an effective tex-
tual descriptor: It should capture the (1) high-level
scene details, identify (2) all salient objects, and
articulate (3) actions, interactions, and object place-
ment. Furthermore, its structure must be (4) coher-
ent and (5) organized.

Thanks to the rapid progress in the area of large
vision language modeling (Chen et al., 2024; Bai
et al., 2025b), many of these requirements can
be readily addressed by providing a Vision LLM
(VLLM) with an image and an appropriate prompt
that tasks the model to generate highly detailed
image descriptions. Generally, we find that longer
descriptions are desirable, as they better capture
the richness of information present in an image.

Nonetheless, this alone is insufficient. Due to
significant variations in image object density, the
model may occasionally fail to identify certain ob-
jects or inaccurately report or miss their attributes.

To mitigate this issue, we propose a supplemen-
tary step utilizing the same VLLM: generating a
structured list that enumerates the objects present
in the image, accompanied by a brief description
for each. Our findings indicate that a JSON format
is optimal for structuring this output.

We consider a wide variety of prompts and
models. Out of the models tested, the best re-
sults were obtained using InternVL-2.5-8B-MPO
(Wang et al., 2025) VLLM. We provide the final
prompts used alongside a set of randomly sampled
examples in the supplementary material. The over-
all image-to-text conversion process is shown in
Fig. 1a, while Fig. 2 shows an example of the re-
sulting representation.
Zero-shot vision-free image-text retrieval: Given
an image description T and a query Q, the corre-
sponding image and query embeddings, fT and
fQ are obtained by passing each tokenized input
through the shared language model Φ(Θ, .). Fol-
lowing best practices for zero-shot evaluations, we
also concatenate a handcrafted prompt pQ for the
query. The process is depicted in Fig. 1b.
Vision-Free text-to-text finetuning: While single-
tower language models exhibit robust zero-shot
performance, finetuning presents opportunities for
enhancement, especially in the case of smaller vari-
ants. Such improvements are motivated by two
key factors: firstly, smaller models tend to have
more constrained generalization, and secondly, the
statistical distribution of image descriptions can di-
verge from the data typically used in the pretraining
phase of these Language Models.

To this end, we construct a small alignment set
by converting 1.5M images from the OpenImages
dataset to textual representations using the afore-
mentioned process. Since these images are not
paired with short (query) captions, we synthetically
generate them using VLLMs. In particular, we
run BLIP-2 to generate concise captions of around
10 tokens, and we prompt InternVL-2.5-8B-MPO
(Wang et al., 2025) to extract a pool of six 2-3 word
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compositional captions.
For fine-tuning, we adopt a two-stage contrastive

training paradigm. In the first stage, our model
is trained to align longer BLIP-2 captions with
images. As a second stage, the model is adapted
using a mixture of short compositional captions
and BLIP-2 captions, refining its understanding of
fine-grained details. More details on the prompt
and the training can be found in the appendix.

4 subFlickr and subCOCO

Most widely used image-text retrieval datasets,
such as MS COCO and Flickr30K, feature full-
sentence captions that average 10–13 words in
length. These captions tend to be lengthy, formal,
and grammatically complete. Moreover, bench-
marks like MS COCO and Flickr30K mostly rely
on broad, scene-level descriptions, which do not
reflect how people actually search for images. For
example, a caption in Flickr30K might be “A man
in a green t-shirt and long tan apron hacks apart
the carcass of a cow while another man hoses away
the blood.” but in real-world queries that could
possibly be much shorter and more fragmented like
“man in a green t-shirt,” or “hack the carcass up.”
These natural queries are typically informal, un-
grammatical, and omit function words, resembling
spoken language rather than written prose. On
the other hand, keyword-style annotations (Huang
et al., 2023b; Zhang et al., 2023; Huang et al.,
2023a) lack in semantic richness, compositionality,
and alignment with real user queries.

To address this limitation, we introduce two re-
trieval benchmarks, subFlickr and subCOCO, de-
rived from the test sets of the Flickr30k and MS
COCO datasets, respectively. To generate a set of
concise queries, we decompose the existing ground-
truth captions into shorter, meaningful subcap-
tions. For this, we employ a pretrained constituency
parser (Honnibal et al., 2020) to decompose each
caption to its constituent nodes, i.e. complete cap-
tions, sentences, sub-phrases, and individual lexical
items (nouns, verbs, etc.). From this structure, we
extract recurring subphrases that are likely to be vi-
sually grounded. We then manually curate a set of
queries, choosing compositional expressions, such
as “a person with a white shirt. These serve as
retrieval queries in our benchmark. To match each
image with the relevant queries, we first compute
text-to-text similarity scores between the ground
truth subcaptions and the curated queries using a

text encoder (Bge-large-en-v1.5 (Xiao et al., 2023)).
As a second step, we use two VLMs: Qwen2-VL-
7B (Bai et al., 2025b) and InternVL2.5-8B (Chen
et al., 2024) to verify whether each query is visu-
ally present in the image. A query is assigned to
an image if both models agree, providing a more
reliable and grounded labeling. As a final step, we
visually inspect 20% of our dataset. More details
about our dataset can be found in the appendix.

5 Experiments

We compare our approach with the current state-of-
the-art in four tasks of interest: (1) compositional
retrieval using short captions on our newly intro-
duced benchmarks, (2) zero-shot text-to-image re-
trieval, (3) image-to-text long captions retrieval,
and (4) compositional understanding. In each case,
we compare our method against a broad set of state-
of-the-art two-tower (independent) VLMs. For spe-
cialized tasks such as compositional understanding,
we include targeted baselines where applicable.

We refer to our models evaluated in a zero-shot
setting using structured text-only representations
as LexiCLIP –ZS, and to their fine-tuned vari-
ants as LexiCLIP –FT. We focus our evaluation
on a 0.3B parameter encoder backbone configura-
tion, denoted as LexiCLIP (0.3B). Specifically, we
adopt a robust instruction-tuned, contrastively pre-
trained text model: BGE-large-en-v1.5 (Xiao et al.,
2023), which achieves state-of-the-art performance
on the MTE Benchmark (Muennighoff et al., 2022)
within its model size.

5.1 Implementation details

We train our model in two stages. For both stages,
the model is trained for three epochs using the
FlagEmbedding library (Xiao et al., 2023), with a
cosine-annealed learning rate schedule and a 5%
warm-up phase. The model is trained on two A100
GPUs with an effective batch size of 2,048, a peak
learning rate of 1 × 10−4. In the first stage, the
training is done only using BLIP-2 captions. In the
second stage, we fine-tune the model using a mix-
ture of BLIP-2 and compositional captions, where
each batch of 2,048 samples consists of 200 concise
BLIP-2 captions and the remainder compositional
ones. The final model is obtained by averaging the
checkpoints from the two stages, weighted 0.4 for
the first and 0.6 for the second stage.
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5.2 Short caption retrieval

We benchmark our datasets, subFlickr and sub-
COCO, over a series of models for short-caption
text-to-image retrieval. The goal is to recognise
all relevant images given a query, which is a short
caption. Each query is associated with a binary rele-
vance label over the test set. For evaluation, we opt
for mean Average Precision (mAP) and F1-score.

Tab. 2 reports results for both zero-shot and
fine-tuned retrieval pipelines. In addition to a
range of general two-tower models, we evaluate
RAM (Zhang et al., 2023) and RAM++ (Huang
et al., 2023a) tagging models. We evaluate our
method zero-shot, but also after fine-tuning. The
latter, denoted as LexiCLIP (0.3B)–FT in our ta-
ble, and as proposed in this work, is a fine-tuned
version of BGE-large-en-v1.5 that is trained exclu-
sively on textual inputs—namely, BLIP-2 captions
and corresponding descriptive annotations - with-
out using any image features during training (i.e.
the text-only training introduced in Section 3).

We note that both RAM (Zhang et al., 2023)
and RAM++ (Huang et al., 2023a) achieve high
zero-shot performance on our benchmarks. Their
success is attributed to two key factors: first, these
models are trained on a large-scale dataset of 14
million image-tag pairs, and second, they leverage
explicit tag supervision, which allows them to learn
fine-grained object-attribute associations.

5.3 Zero-shot image-text retrieval

We evaluate our approach on the standard
Flickr30K (Young et al., 2014) and MSCOCO
(Lin et al., 2014) benchmarks. As Tab. 3 shows,
without any finetuning, our 300 M-parameter Lexi-
CLIP achieves 69.5 R@1 on Flickr30K and 41.7
R@1 on COCO, comparing favourably with simi-
larly sized CLIP models. Post finetuning, our ap-
proach trained only on 1.5M text samples, matches
and outperforms OpenCLIP (BiG/14), a 2.5B pa-
rameter model trained on 2B image-text pairs.

5.4 Image-text long captions retrieval

The CLIP model’s ability to process longer text is
greatly restricted by the text encoder, which typ-
ically can only process up to 77 (Radford et al.,
2021b) tokens. In practice, due to the data distri-
bution of the captions, the effective length is even
lower, at around 20-25 tokens. As our approach
leverages pretrained language models trained on
generic text, we posit that LexiCLIP is well-suited

for deployment for retrieval using long text. To test
this, in Tab. 4 we evaluate our approach on the Ur-
ban1k (Zhang et al., 2024) dataset. As the results
show, without any finetuning, we already surpass
(1) all other CLIP variants and (2) specialised CLIP
models finetuned on long captions (Zhang et al.,
2024).

With finetuning using the proposed approach,
requiring no specialized data, we outperform prior
state-of-the-art results by over 5%.

5.5 Image-text compositionality
We evaluate our LexiCLIP models on composition-
ality on the SugarCrepe (Hsieh et al., 2023) and
SugarCrepe++ (Dumpala et al., 2024) benchmarks.
As Tab. 5 shows, even without fine-tuning, Lexi-
CLIP (0.3B) compares favorably against CLIP, out-
performing the similarly sized ViT-L model. Our
proposed finetuning process further improves the
results by +7.2% pts on average, surpassing even
the much larger 2.5B (BigG/14) model and achiev-
ing state-of-the-art performance. We note that the
largest gains are the Swap tasks—object up +5.3%
pts, attribute up +22.7% pts-which directly probe
“bag-of-words” shortcuts.1 Similar results can be
observed on SugarCrepe++ in Tab. 6

6 Ablation studies and analysis

6.1 Bridging The Modality Gap
The modality gap (Liang et al., 2022) is one of the
primary factors contributing to the poor composi-
tionality of contrastive vision-language models and
can also adversely affect model fairness. We assess
below, on the Flickr test set, its evolution from the
initial zero-shot configuration through to the post-
finetuning stage by analyzing the distribution of
pairwise cosine similarities and the inter-modality
distance between image and text representations.
Pairwise Cosine Similarity Distributions: Fig. 3
presents the pairwise cosine-similarity distributions
for three models: SigLip, LexiCLIP (0.3B)before
finetuning, and LexiCLIP (0.3B)after fine-tuning.
For both modalities, the pre-distributions are tightly
concentrated at high similarity, indicating a par-
tially “collapsed” space where unrelated pairs re-
main largely aligned. After fine-tuning, the distri-
butions shift toward lower similarities and broaden,
demonstrating that the model has learned to de-
collapse its representation space, pushing unre-
lated instances farther apart. This increased spread

1We provide the detailed results in the appendix.
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Table 2: Zero-shot text–image retrieval metrics (mAP and F1@K) on SubFlickr and SubCOCO

Method SubFlickr SubCOCO

mAP F1@1 F1@5 F1@10 mAP F1@1 F1@5 F1@10

CLIP (ViT-B) (Radford et al., 2021b) 29.2 10.3 20.0 21.9 33.6 4.5 11.9 17.5
CLIP (ViT-L) (Radford et al., 2021b) 29.7 11.0 20.0 21.7 36.1 4.8 13.4 19.5
OpenCLIP (ViT-G/14) (Schuhmann et al., 2022) 35.3 12.0 24.5 26.6 41.2 6.3 15.9 22.0
OpenCLIP (ViT-BigG/14) (Schuhmann et al., 2022) 36.5 13.3 25.4 26.8 42.1 6.3 16.1 22.6
SigLIP ViT-B/16 (Zhai et al., 2023b) 36.6 13.6 25.6 27.2 43.6 6.5 16.4 23.0
EVA-02-CLIP (ViT-L-336) (Fang et al., 2023) 36.5 12.9 24.9 27.3 41.6 6.1 15.3 21.6
RAM (Zhang et al., 2023) 48.3 14.7 32.2 34.2 50.8 6.1 17.2 26.0
RAM++ (Huang et al., 2023a) 49.1 15.3 32.7 35.5 52.5 6.2 17.4 26.2

LexiCLIP (0.3B)–ZS 45.6 17.1 30.6 31.9 48.3 6.2 17.1 25.4
LexiCLIP (0.3B)–FT 55.1 17.9 37.6 40.0 54.3 6.7 18.5 27.5

Table 3: Zero-shot text–image retrieval accuracy on Flickr30K and COCO.

Method Params (B) Image retrieval Text retrieval

Flickr30K COCO Flickr30K COCO
R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

CLIP (ViT-B) (Radford et al., 2021b) 0.15 58.8 89.8 30.5 66.8 77.8 98.2 51.0 83.5
SigLIP ViT-B/16 (Zhai et al., 2023b) 0.23 74.6 95.6 47.8 81.0 89.1 99.3 65.7 91.3
CLIP (ViT-L) (Radford et al., 2021b) 0.43 67.3 93.3 37.0 71.5 87.2 99.4 58.1 87.8
BLIP (ViT-L) (Li et al., 2022b) 0.23 70.0 95.2 48.4 83.2 75.5 97.7 63.5 92.5
BLIP2 (ViT-L) (Li et al., 2023a) 1.17 74.5 97.0 50.0 86.1 86.1 99.4 63.0 93.1
EVA-02-CLIP (ViT-L-336) (Fang et al., 2023) 0.43 78.0 96.8 47.9 80.0 89.6 99.6 64.2 90.9
OpenCLIP (ViT-G/14) (Schuhmann et al., 2022) 1.37 77.8 96.9 48.8 81.5 91.5 99.6 66.3 91.8
OpenCLIP (ViT-BigG/14) (Schuhmann et al., 2022) 2.54 79.5 97.5 51.3 83.0 92.9 97.1 67.3 92.6

LexiCLIP (0.3B)–ZS 0.3 69.5 94.2 41.7 76.7 75.9 97.4 45.4 80.3
LexiCLIP (0.3B)–FT 0.3 79.2 97.4 52.7 84.5 91.6 99.7 67.4 92.1

Table 4: Zero-shot text–image retrieval on Urban1k.

Method Image retrieval Text retrieval

R@1 R@10 R@1 R@10

CLIP (ViT-B) (Radford et al., 2021b) 46.5 78.7 62.5 90.5
SigLIP ViT-B/16 (Zhai et al., 2023b) 62.1 89.1 62.8 90.7
CLIP (ViT-L) (Radford et al., 2021b) 51.4 82.9 63.5 91.7
EVA-02-CLIP (ViT-L-336) (Fang et al., 2023) 70.1 92.5 76.7 95.5
OpenCLIP (ViT-G/14) (Schuhmann et al., 2022) 76.0 95.1 76.7 96.3
OpenCLIP (ViT-BigG/14) (Schuhmann et al., 2022) 81.9 96.1 82.0 97.6

Long-CLIP (ViT-L) (Zhang et al., 2024) 86.1 96.2 82.7 96.4
TULIP (ViT-L) (Najdenkoska et al., 2025) 91.1 — 90.1 —

LexiCLIP (0.3B)–ZS 86.9 98.2 84.4 97.5
LexiCLIP (0.3B)–FT 97.1 99.9 96.7 100

Table 5: Comparison with state-of-the-art on the Sugar-
Crepe compositionality benchmark.

Method Params (B) Replace Swap Add Avg.

CLIP (ViT-B) (Radford et al., 2021b) 0.15 80.1 62.7 73.0 71.9
SigLIP ViT-B/16 (Zhai et al., 2023b) 0.23 84.1 65.7 86.4 78.7
CLIP (ViT-L) (Radford et al., 2021b) 0.43 79.5 61.3 74.9 71.9
EVA-02-CLIP (ViT-L-336) (Fang et al., 2023) 0.43 84.2 65.1 89.2 79.5
BLIP (ViT-L) (Li et al., 2022b) 0.23 82.4 71.7 88.6 80.9
BLIP2 (ViT-L) (Li et al., 2023a) 1.17 85.7 63.8 89.9 79.8
OpenCLIP (ViT-G/14) (Schuhmann et al., 2022) 1.37 84.4 67.1 86.8 79.4
OpenCLIP (ViT-BigG/14) (Schuhmann et al., 2022) 2.54 86.5 68.9 88.4 81.3

NegCLIP (Yuksekgonul et al., 2023) 0.15 85.0 75.3 85.8 82.0

LexiCLIP (0.3B)–ZS 0.3 85.3 61.6 85.4 77.4
LexiCLIP (0.3B)–FT 0.3 86.8 75.6 91.3 84.6

is especially pronounced in the image modality,
where the Post histogram has both peaks at lower
cosine values and extends over a wider band, sug-
gesting that visual features benefit strongly from
fine-tuning in terms of discriminative power.
Modality Gap Comparison: Fig. 4 demonstrates

(a) Text embeddings (b) Image embeddings

Figure 3: Distributions of pairwise cosine similarities
for three embedding sets: SigLip (blue), LexiCLIP
(0.3B)–ZS(orange), and LexiCLIP (0.3B)–FT (green).

that fine-tuning narrows the distance between text
and image embeddings in the shared space, as
shown by their projection into two dimensions via
PCA. In the SigLip baseline (Fig. 4a), the cen-
troids of text and image representations are sepa-
rated by ∼ 1.008, reflecting a substantial modal-
ity gap. With our method, even prior to target-
task finetuning (Fig. 4b), this gap is reduced to
0.476, a significant improvement attributable to the
unimodal architecture. Crucially, after finetuning
(Fig. 4c), the centroid distance further decreases
to 0.260. This final gap is nearly half that of our
model before finetuning and roughly a quarter of
the original SigLip gap. This progressive narrow-
ing demonstrates two key points: (1) our initial
zero-shot alignment significantly improves upon
the SigLip, and (2) the subsequent finetuning fur-
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Table 6: Comparison with state-of-the-art on the SugarCrepe++ compositionality benchmark.

Method Params Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation Avg. Avg.
(B) ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT

Human – 100.00 96.7 96.7 93.3 100.00 97.0 100.00 98.3 100.00 96.7 99.3 96.4

CLIP (ViT-B) (Radford et al., 2021b) 0.15 45.2 19.7 45.2 33.0 86.8 83.7 65.6 59.1 56.3 38.6 59.8 46.8
SigLIP ViT-B/16 (Zhai et al., 2023b) 0.23 39.5 23.0 56.1 46.4 91.3 79.2 75.2 64.0 54.8 45.0 63.4 51.5
CLIP (ViT-L) (Radford et al., 2021b) 0.43 46.0 14.5 44.5 28.7 92.0 81.3 68.8 56.3 53.4 39.1 60.6 44.0
EVA-02-CLIP (ViT-L-336) (Fang et al., 2023) 0.43 44.1 19.2 47.3 34.4 94.2 91.6 74.5 69.5 59.8 48.9 64.0 52.7
BLIP (ViT-L) (Li et al., 2022b) 0.23 46.8 29.8 60.1 52.5 92.6 89.1 71.7 75.0 56.8 57.7 65.6 60.8
BLIP2 (ViT-L) (Li et al., 2023a) 1.17 37.9 39.5 51.9 55.4 94.8 96.9 73.2 86.5 65.1 69.6 64.6 69.6
OpenCLIP (ViT-G/14) (Schuhmann et al., 2022) 1.37 40.7 27.4 54.2 49.6 93.1 89.4 72.5 73.1 57.6 51.4 63.6 58.2
OpenCLIP (ViT-BigG/14) (Schuhmann et al., 2022) 2.54 48.8 28.2 57.7 52.4 94.2 90.5 76.4 72.6 59.4 53.6 67.3 59.5

NegCLIP (Yuksekgonul et al., 2023) 0.15 55.3 34.7 58.0 56.5 89.5 94.5 69.4 76.3 52.3 51.6 64.9 62.7
CLIP-SVLC (Doveh et al., 2022) 0.15 43.0 18.9 48.4 34.6 80.9 91.6 57.0 66.9 47.3 51.3 55.3 52.7
BLIP-SGVL (Herzig et al., 2023) 0.15 13.2 – 38.8 – 53.8 – 34.4 – 30.7 – 34.2 –

LexiCLIP (0.3B)–ZS 0.3 48.2 20.8 43.8 28.1 91.2 95.6 75.5 85.8 72.4 77.2 66.2 61.5
LexiCLIP (0.3B)–FT 0.3 53.9 43.3 68.3 68.3 93.8 97.3 77.2 88.7 65.9 71.6 71.8 73.8

ther tightens modality alignment, enhancing the
cross-modal retrieval performance.

6.2 Impact of the proposed components

To better understand the key components of our
data-to-text pipeline, we ablate the impact of a)
object-based descriptions and b) length of the im-
age description. Zero-shot image retrieval (on
Flickr30k, COCO, Urban1K) and compositional
understanding (on SugarCreppe++) are evaluated
for the 0.3B LexiCLIP (0.3B)–ZS and a much
bigger 7B parameter decoder-only model based on
BGE-en-ICL-7B (Li et al., 2024), denoted as Lex-
iCLIP (7B)–ZS. Based on our experiments, we
draw the following conclusions:
Object-based descriptions lead to improved ac-
curacy: As the results from Tab. 7a show, the ad-
dition of object-based descriptions consistently en-
hances performance across all evaluated datasets
and tasks, underscoring the importance of dense
object-attribute coverage.
Longer descriptions do not bring improvements:
in Tab. 7b we report results for a 300M and 7B
sized model on two different sequence lengths,
256 tokens and 512/1024 for the 300M/7B model.
For the smaller 300M model, increasing the se-
quence length from 256 to its maximum of 512
tokens yields minimal gains. Similarly, the larger
7B model remains largely stable with only minor
gains on Urban1k. In general, 256 tokens suffice,
and further increases do not demonstrate accuracy
improvements.

6.3 Captioner choices

In Tab. 8, we ablate the impact of the captioner in
zero-shot retrieval of Flickr30k.
VLLM architecture: In Tab. 8a we evaluate how

the choice of the image-to-text VLLM convertor
impacts the downstream performance. We eval-
uate three similarly sized state-of-the-art VLLM,
Qwen2.5-VL-7b (Bai et al., 2025a), MiniCPM-V-2-
6-8b (Yao et al., 2024) and InternVL-2.5-8b-MPO.
We found InternVL to perform better. This high-
lights that better VLLM results in higher perfor-
mance and that careful consideration should be
made when choosing the VLLM.
Effect of Size of the Image-to-Text VLLM Con-
vertor: In Tab. 8b we ablate models ranging from
1B to 14B parameters as captioners. We note that
our approach is robust to the size of the image
captioner. Also, we observe that the 1B model
performs nearly as well as the 8B and 14B mod-
els, showcasing efficient performance even with
smaller models.
Captioner-Agnostic Inference: In Tab. 8c, we
investigate the transferability of LexiCLIP (0.3B)-
FT across different caption models. Our model,
fine-tuned once on captions from the 8B InternVL
model, maintains its performance even when
switching to different image description sources
(e.g., using a 1B model instead of 8B) without
further fine-tuning. This indicates that we can fine-
tune the model only once and then change the im-
age captioner freely.

6.4 Information loss when converting Images
to Text

Departing from raw pixels to text descriptions, even
if they are detailed, inherently risks losing subtle
visual information. To estimate how well our gen-
erated image descriptions capture visual content,
we measure the overlap with the ground-truth ob-
ject classes in MS-COCO (80 classes). With ex-
act class-name matching, we get 69% match score
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(a) SigLip (zero-shot) (b) Our model, pre–finetuning (c) Our model, post–finetuning
Figure 4: 2D (PCA) projections of text vs. image embeddings, with centroids (×) and the modality-gap arrow
annotated by its Euclidean length. (a) SigLip exhibits a large gap of ≈ 1.008, (b) our model before fine-tuning has a
gap of ≈ 0.476, (c) after fine-tuning the gap shrinks to ≈ 0.260, indicating improved alignment between modalities.

Table 7: Zero-shot retrieval accuracy and compositional understanding under two different ablations.
(a) With vs. without object-based descriptions

Model Obj. Flickr30K COCO Urban1k SugarCrepe++ (ITT)

Desc. R@1 R@10 R@1 R@10 R@1 R@10 Swap Obj Swap Attr Repl Obj Repl Attr Repl Rel

LexiCLIP (0.3B)–ZS ✓ 69.5 94.2 41.7 76.6 86.9 98.2 48.2 43.8 91.2 75.5 72.4
LexiCLIP (7B)–ZS ✓ 74.4 95.1 46.4 80.2 91.8 99.2 49.8 57.2 91.5 77.9 77.7

LexiCLIP (0.3B)–ZS 66.4 92.8 38.7 73.8 83.7 96.5 47.3 42.5 88.6 76.6 71.9
LexiCLIP (7B)–ZS 72.1 94.5 43.4 78.0 89.2 98.7 49.0 56.2 89.0 78.9 77.2

(b) Max sequence-length ablation
Model Max Seq Flickr30K COCO Urban1k SugarCrepe++ (ITT)

Len R@1 R@10 R@1 R@10 R@1 R@10 Swap Obj Swap Attr Repl Obj Repl Attr Repl Rel

LexiCLIP (0.3B)–ZS 256 69.5 94.2 41.7 76.6 86.9 98.2 48.2 43.8 91.2 75.5 72.4
LexiCLIP (7B)-ZS 256 74.4 95.1 46.4 80.2 91.8 99.2 49.8 57.2 91.5 77.9 77.7

LexiCLIP (0.3B)–ZS 512 69.1 94.0 41.1 76.3 86.9 98.2 47.8 44.4 91.3 75.0 71.2
LexiCLIP (7B)-ZS 1024 74.2 95.0 46.1 80.2 92.7 99.3 49.4 57.8 91.1 78.9 77.8

Table 8: Zero-shot retrieval on Flickr30K: Impact of the
VLLM captioner.

(a) Effect of VLLM architecture.

Method VLLM Image retrieval Text retrieval

R@1 R@10 R@1 R@10

LexiCLIP (0.3B)–ZS InternVL2.5-8B-MPO 69.5 94.2 75.9 97.4
LexiCLIP (0.3B)–ZS Qwen2.5-VL-7B 65.8 92.6 67.8 96.0
LexiCLIP (0.3B)–ZS MiniCPM-V-2_6-8B 67.2 92.9 75.3 96.6

(b) Effect of VLLM size.

Method VLLM Size (B) Image retrieval Text retrieval

R@1 R@10 R@1 R@10

LexiCLIP (0.3B)–ZS InternVL2.5-MPO 1 69.4 94.0 75.8 97.1
LexiCLIP (0.3B)–ZS InternVL2.5-MPO 2 68.2 94.0 74.3 97.2
LexiCLIP (0.3B)–ZS InternVL2.5-MPO 4 70.9 93.9 78.6 96.9
LexiCLIP (0.3B)–ZS InternVL2.5-MPO 8 69.5 94.2 75.9 97.4
LexiCLIP (0.3B)–ZS InternVL3 9 70.7 94.6 77.9 97.7
LexiCLIP (0.3B)–ZS InternVL3 14 70.3 94.3 74.2 97.2

(c) Effect of cross-VLLM inference (different captioners at
training vs. inference).

Method VLLM Size (B) Image retrieval Text retrieval

R@1 R@10 R@1 R@10

LexiCLIP (0.3B)–FT InternVL2.5-MPO 1 78.7 97.1 90.8 99.5
LexiCLIP (0.3B)–FT InternVL2.5-MPO 2 77.9 96.7 92.0 99.6
LexiCLIP (0.3B)–FT InternVL2.5-MPO 4 79.3 97.6 92.0 99.4
LexiCLIP (0.3B)–FT InternVL2.5-MPO 8 79.2 97.4 91.6 99.7
LexiCLIP (0.3B)–FT InternVL3 9 79.5 97.2 91.9 99.9
LexiCLIP (0.3B)–FT InternVL3 14 78.7 97.0 92.0 99.5

between objects in our descriptions and those in
ground truth annotations. However, we note that
possibly there is a higher overlap, as our estimation
does not account for synonyms or paraphrasing.

7 Conclusions

We introduce a text-to-text paradigm for training a
vision-free single-encoder CLIP model, challeng-
ing the conventional two-tower paradigm. Our
framework uses VLLMs to generate structured im-
age descriptions and omits images during training.
This reduces the modality gap and improves com-
positional generalisation while achieving better per-
formance on short caption queries. Unlike tradi-
tional two-tower architectures, our LexiCLIP is
able to effectively model the full spectrum of query
distributions, from brief user-centric queries to
long, paragraph-level descriptions - all using the
same single encoder. To further assess composi-
tional generalisation, we release subFlickr and sub-
COCO, two curated benchmarks with diverse com-
positional queries made of short captions. Finally,
we show that models with 0.3B parameters can
match or even surpass traditional multimodal archi-
tectures, achieving SOTA results across multiple
compositionality benchmarks and retrieval tasks.
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8 Limitations

The limitations of this work are mostly related to its
strong dependence on VLLMs. As we depart from
raw pixels to text-based image descriptions gener-
ated by VLLMs, certain visual details will proba-
bly be lost. In particular, descriptions of crowded
scenes or those containing many small objects are
likely to omit a significant amount of information.
Moreover, since VLLMs are often biased or have
hallucinations, generated descriptions often inherit
them. Such errors can potentially propagate into
the retrieval process. As future work, to mitigate
these issues, we will try to adopt filtering methods,
ensemble captioners, or even some kind of human-
in-the-loop verification. Then, another limitation
of using VLLMs as an image captioner is the extra
computational overhead introduced. We calculate
that for an A100 GPU, an unoptimized implementa-
tion requires approximately 0.2 seconds per image.
This cost can be significantly reduced through op-
timized implementations (e.g., the vllm project)
and techniques like quantization. In our work, this
step is performed once, offline, ahead of evalua-
tion, while retrieval itself remains efficient. On an
A100 GPU, our method requires only 1.6 ms per
image, compared to 7.4 ms for OpenCLIP-2.54B.
Finally, we note that similar retrieval performance
can be obtained with smaller generators (e.g., a 2B
InternVL), which can lower the preprocessing cost.

9 Broader Impact

We also reflect on the broader impact and ethics
of our work. Given that the main body of our re-
trieval pipeline is based on text rather than images,
we consider that LexiCLIP allows for a more in-
terpretable and transparent retrieval. Additionally,
LexiCLIP is a more inclusive approach for users
with visual impairments. However, we acknowl-
edge that the heavy reliance of our work, in VLLMs
to generate image descriptions, is accompanied by
inherited biases that may reinforce stereotypes or
amplify unfair associations.
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A Technical Appendices and
Supplementary Material

A.1 subFlickr and subCoco benchmarks
Fig. 5 shows the distribution of the top 30 most
frequent queries in the subFlickr and subCOCO
datasets. Both datasets have long-tail distribution
with subCOCO showing a slightly sharper drop in
frequency.

(a) Top 30 most frequent queries in the subFlickr dataset.

(b) Top 30 most frequent queries in the subCOCO dataset.

Figure 5: Query frequency distributions in the subFlickr
(a) and subCOCO (b) datasets. The y-axis indicates how
many images are relevant to each query.Looks better
zoomed in.

A.2 Representing images using text
To convert images into rich, structured text, we
employ the OpenGVLab/InternVL2_5-8B-MPO
model2. We extract two complementary views of
each image:

• A detailed scene description, obtained by
prompting the model with:

Please describe the image in
detail.

2https://huggingface.co/OpenGVLab/InternVL2_
5-8B-MPO

• Object annotations, generated using the
prompt shown in Fig. 6.

Fig. 7 presents several examples of this text-
based representation—on the left, the raw image;
on the right, our model’s concatenated scene sum-
mary and per-object attribute list.

A.3 Generation of compositional captions
As stated in 5.1, we train our pipeline in two stages.
Given that OpenImages is not paired with longer or
compositional captions, we synthetically generate
them. For concise captions, we run BLIP-2. For
smaller compositional captions, we ask InternVL-
2.5-8B-MPO to generate a pool of 6 compositional
captions for each image based on its generated
image description in order to accelerate the data
preparation process. Below, we provide the prompt
we have used.

You are given a scene caption and a list of
structured object descriptions extracted
from an image. Your task is to generate
6 short compositional search queries (2
to 4 words) that someone might use to
find this image. Each query should refer
to an object, attribute, or visual element
described in the input.

Use combinations like: - object + color
(e.g., “red bird”) - object + position (e.g.,
“bird on branch”) - object + action (e.g.,
“bird flying”) - or noun phrases (e.g.,
“bird cage”)

Return only a raw JSON list of 6 strings
like: [“black bird”, “bird feeder”, “bird
in cage”, “wooden birdhouse”, “birds
perched”, “red flowers”]

Do not include markdown or code for-
matting such as triple backticks or json
labels.

A.4 Training details
We train our model in two stages. For both stages,
the model is trained for three epochs using the
FlagEmbedding library (Xiao et al., 2023), with a
cosine annealed learning rate schedule and a warm-
up phase 5%. The model is trained on two A100
GPUs with an effective batch size of 2,048, a peak
learning rate of 1×10−4 and a weight decay of 0.1.
Training employs mixed precision (FP16), gradient
checkpoint, and DeepSpeed.
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Figure 6: The prompt that was given to the model for extracting the object annotations.

During the first stage, the training is done only
using BLIP-2 captions using a symmetric con-
trastive loss. In the second stage, we fine-tune
the model using a mixture of BLIP-2 and composi-
tional captions, where each batch of 2,048 samples
consists of 200 concise BLIP-2 captions and the re-
mainder compositional ones. In this stag,e the loss
is only text-to-image. The final model is obtained
by averaging the checkpoints from the two stages,
weighted 0.4 for the first and 0.6 for the second
stage.

B Additional ablation studies

We extend our ablation studies of Sect. 6 to inves-
tigate two aspects. First, we assess the effect of
the maximum sequence length on downstream re-
trieval in Tab. 9. We note a clear performance drop
for descriptions shorter than 128 and diminishing
returns above 256. Second, in Tab. 10 we check
the zero-shot retrieval performance on Flickr30K
by varying the size of the VLLM used to generate
image and object-level descriptions, while keeping
the 7B model as the retriever.

Table 9: Zero-shot retrieval on Flickr30K, ablating the
max seq. len used for encoding the image and object
descriptions.
Method Max Seq Len Image retrieval Text retrieval

R@1 R@10 R@1 R@10

LexiCLIP (0.3B)–ZS 64 63.3 90.1 71.5 94.6
LexiCLIP (0.3B)–ZS 128 67.5 93.2 73.5 95.8
LexiCLIP (0.3B)–ZS 256 69.5 94.0 75.9 97.4
LexiCLIP (0.3B)–ZS 512 69.1 94.0 74.8 97.1

Table 10: Zero-shot retrieval on Flickr30K, ablating
the size of the VLLM used for extracting the image
and object descriptions when using the 7B model as the
retriever.
Method VLLM Size (B) Image retrieval Text retrieval

R@1 R@10 R@1 R@10

LexiCLIP (7B)–ZS InternVL2.5-MPO 4 75.2 95.7 81.0 97.4
LexiCLIP (7B)–ZS InternVL2.5-MPO 8 74.4 95.1 82.6 98.0
LexiCLIP (7B)–ZS InternVL3 9 75.6 95.4 82.3 97.8
LexiCLIP (7B)–ZS InternVL3 14 74.3 95.8 80.6 96.8

B.1 SugarCrepe Detailed Results

Table 11 shows the detailed results of our method in
all seven categories. Our finetuned model achieves
state-of-the-art performance.

14071



Figure 7: Examples of our image representation in text: on the left, the raw image; on the right, the corresponding
structured description generated by our model.
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Table 11: Comparison with state-of-the-art on the SugarCrepe compositionality benchmark.

Method Params Replace Swap Add Avg.
(B) Object Attribute Relation Object Attribute Object Attribute

CLIP (ViT-B) (Radford et al., 2021b) 0.15 90.9 80.1 69.2 61.4 64.0 77.2 68.8 73.1
SigLIP ViT-B/16 (Zhai et al., 2023b) 0.15 95.3 86.7 70.3 60.0 71.5 89.1 83.8 79.5
CLIP (ViT-L) (Radford et al., 2021b) 0.43 94.1 79.2 65.2 60.2 62.3 78.3 71.5 73.0
EVA-02-CLIP (ViT-L-336) (Fang et al., 2023) 0.43 96.6 85.1 70.9 64.9 65.3 92.9 82.1 80.2
BLIP (ViT-L) (Li et al., 2022b) 0.23 96.5 81.7 69.1 66.6 76.8 92.0 85.1 81.1
BLIP2 (ViT-L) (Li et al., 2023a) 1.17 97.6 81.7 77.8 62.1 65.5 92.4 87.4 80.6
OpenCLIP (ViT-G/14) (Schuhmann et al., 2022) 1.37 95.8 85.0 72.4 63.0 71.2 91.5 82.1 80.1
OpenCLIP (ViT-BigG/14) (Schuhmann et al., 2022) 2.54 96.6 87.9 74.9 62.5 75.2 92.2 84.5 81.9

NegCLIP (Yuksekgonul et al., 2023) 0.15 92.7 85.9 76.5 75.2 75.4 88.8 82.8 82.5

LexiCLIP (0.3B)–ZS 0.3 94.0 82.5 79.3 63.7 59.6 84.1 86.8 78.6
LexiCLIP (0.3B)–FT 0.3 96.7 86.3 77.5 69.0 82.3 90.7 91.9 84.9

Table 12: Zero-shot text–image and image–text retrieval on NoCaps in the Out-of-Domain partition.

Method Params (B) Image retrieval Text retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLIP (ViT-B/16) (Radford et al., 2021b) 0.15 53.5 85.7 93.3 69.4 93.6 97.8
CLIP (ViT-L/14) (Radford et al., 2021b) 0.43 56.8 87.0 93.2 74.9 95.8 98.4
OpenCLIP (ViT-G/14) (Schuhmann et al., 2022) 1.37 70.8 93.5 97.3 85.6 98.2 99.8
OpenCLIP (ViT-bigG/14) (Schuhmann et al., 2022) 2.54 72.2 93.9 97.3 85.4 98.8 99.5
SigLIP ViT-B/16 (Zhai et al., 2023b) 0.23 71.5 93.6 97.3 85.3 98.6 99.8
EVA-02-CLIP (ViT-L-336) (Fang et al., 2023) 0.43 66.6 91.2 96.0 81.4 97.4 98.9

LexiCLIP (0.3B)–ZS 0.30 67.8 91.4 96.5 79.4 96.4 98.5
LexiCLIP (0.3B)–FT 0.30 71.0 93.7 97.3 85.9 97.3 99.3

Table 13: Zero-shot compositional retrieval on Winoground (Diwan et al., 2022) across Group, Image, and Text
scores.

Model Params (B) Image Text Group

CLIP (ViT-B/16) (Radford et al., 2021b) 0.15 10.5 25.0 7.3
CLIP (ViT-L/14) (Radford et al., 2021b) 0.43 12.3 27.5 8.3
OpenCLIP (ViT-G/14) (Schuhmann et al., 2022) 1.37 12.8 32.0 9.3
OpenCLIP (ViT-bigG/14) (Schuhmann et al., 2022) 2.54 15.5 35.5 12.0
SigLIP ViT-B/16 (Zhai et al., 2023b) 0.23 13.0 33.0 10.5

LexiCLIP (0.3B)–ZS 0.33 6.7 24.7 3.7
LexiCLIP (0.3B)–FT 0.33 13.3 35.8 10.8

B.2 Generalisation to out-of-domain data

To further validate our approach, we evaluated it on
two additional datasets: (1) Out-of-Domain Subset
NoCaps (Agrawal et al., 2019), a subset specifically
designed to assess retrieval performance on im-
ages that are out-of-domain relative to the COCO
and Flickr datasets. (2) Winoground (Diwan et al.,
2022), a challenging dataset exhibiting a combina-
tion of unusual, adversarial images, sketches, etc.

As the results below demonstrate, our approach
achieves performance comparable to significantly
larger models like OpenCLIP 2.54B. This is note-
worthy given that our model was trained on only
1.5 million textual samples, whereas OpenCLIP
utilized a massive 5 billion image-text pairs.

C Ethics Statement and Artifacts

Licenses. We follow the original licenses of all
datasets and models used in this work. Our re-
leased artifacts (code, subFlickr, subCOCO) will
be distributed under the MIT license.
Intended Use. All datasets and models used in this
work were employed strictly for research purposes,
in accordance with their original intended use. Our
derived benchmarks (subFlickr and subCOCO) are
released exclusively for research use, consistent
with the original licensing and access conditions of
COCO and Flickr30k.
Documentation. All datasets and models used in
this work are well-documented in their original
publications. Our derived benchmarks (subFlickr
and subCOCO) contain short, compositional En-
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glish queries paired with corresponding images, de-
signed to evaluate fine-grained retrieval. We release
the benchmarks with accompanying documentation
to ensure transparency and reproducibility.
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