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Abstract

Recently, inference-time reasoning strategies
have further improved the accuracy of large lan-
guage models (LLMs), but their effectiveness
on smaller models remains unclear. Based on
the observation that conventional approaches
often fail to improve performance in this
context, we propose Cycle-Consistency in
Question Answering (CCQA), a novel reason-
ing method that can be effectively applied to
SLMs. Inspired by cycle consistency, CCQA
generates a question from each reasoning path
and answer, evaluates each by its similarity to
the original question, and then selects the can-
didate solution with the highest similarity score
as the final response. Since conventional SLMs
struggle to generate accurate questions from
their own reasoning paths and answers, we
employ a lightweight Flan-T5 model special-
ized for question generation to support this pro-
cess efficiently. From the experimental results,
it is verified that CCQA consistently outper-
forms existing state-of-the-art (SOTA) methods
across eight models on mathematical and com-
monsense reasoning benchmarks. Furthermore,
our method establishes a new practical base-
line for efficient reasoning in SLMs. Source
code can be found at https://github.com/
scai-research/ccqa_official.

1 Introduction

Recent advancements in large language models
(LLMs) have yielded remarkable performance
across a wide range of tasks, including machine
translation (Bahdanau et al., 2014; Stahlberg,
2020), code generation (Chen et al., 2021; Feng
et al., 2020), sentiment analysis (Socher et al.,
2013; Devlin et al., 2019), and reasoning (Shao
et al., 2024; Bhargava and Ng, 2022). On top of
that, inference-time reasoning strategies, such as
chain-of-thought (CoT) (Wei et al., 2022), self-
consistency (SC) (Wang et al., 2023), and self-
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correction (Huang et al., 2024), can produce more
reliable outputs and further improve model accu-
racy, albeit at the cost of additional test-time com-
putation (Wei et al., 2022; Wang et al., 2023; Huang
et al., 2024).

While prior studies have clearly demonstrated
the effectiveness of these reasoning techniques for
large-scale models (Wang et al., 2023; Huang et al.,
2024; Madaan et al., 2023), their applicability to
small language models (SLMs) has yet to be fully
explored. This motivates us to empirically inves-
tigate whether such reasoning strategies remain
effective when applied to SLMs, and our observa-
tions indicate that they often lead to performance
degradation in this setting, which will be discussed
in Section 5.

The performance degradation observed in SLMs
can be attributed to two main factors. First, smaller
models could struggle to understand complex in-
puts and fail to follow instructions (Chang et al.,
2024; An et al., 2024; Fang et al., 2024; Shi et al.,
2024). However, recent self-feedback methods,
such as self-correction (Huang et al., 2024), self-
refinement (Madaan et al., 2023), and universal
self-consistency (USC) (Chen et al., 2023), operate
under the assumption that the model is capable of
comprehending lengthy and complex inputs to gen-
erate appropriate feedback. This mismatch between
the model’s capacity and the underlying assump-
tion often leads to suboptimal or even misleading
outputs in the context of SLMs. Second, voting-
based approaches such as SC (Wang et al., 2023)
rely on a majority vote across multiple generated
answers. This strategy becomes less effective when
SLMs produce highly inconsistent outputs (Wang
etal., 2024). In such cases where generated answers
exhibit high variance without a clearly dominant
response, majority voting fails to produce a reliable
consensus and offers no meaningful advantage over
random choice. This occurs because SC selects the
final answer solely based on frequency, without
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evaluating the quality of reasoning paths.

To address these limitations, we propose a novel
reasoning method that can be effectively applied
to SLMs, called Cycle-Consistency in Question
Answering (CCQA). Inspired by the principle of
cycle consistency (Hoffman et al., 2018), we con-
struct a cycle between the original question, the
solution produced by the SLM, and the question
generated from that solution. Here, the solution
includes a reasoning path and its corresponding
answer. We believe that if the reasoning path and
answer are correct, the regenerated question should
be highly similar to the original input question. In
the proposed framework, the SLM first receives
the question as input and produces multiple can-
didate solutions. When there is no dominant re-
sponse during majority voting, CCQA generates a
new question from each candidate and measures its
similarity to the original; a higher similarity score
indicates that the solution is more likely correct.
The candidate solution whose generated question
most closely matches the original is selected as the
final response, without requiring the model to pro-
cess any additional complex input. Moreover, we
fine-tune a lightweight Flan-T5-base (Chung et al.,
2024) model to generate questions from candidate
solutions. This is because conventional SLMs typi-
cally struggle to generate questions from their rea-
soning paths and answers. We confirm that our
fine-tuned Flan-T5 is both efficient and excels at
producing high-quality questions.

Extensive experiments are conducted on six rea-
soning benchmarks, including four mathematical
and four commonsense tasks. Our evaluation uses
eight SLMs ranging from 135M to 3B parame-
ters, including Llama3.2 (Grattafiori et al., 2024),
SmolLM2 (Allal et al., 2025), and Qwen2.5 (Yang
et al., 2025). From the experimental results, it is
confirmed that CCQA consistently outperforms
current state-of-the-art (SOTA) reasoning meth-
ods across most SLMs and benchmarks. Notably,
CCQA with Llama3.2-3B on GSMS8K achieves
69.60% accuracy compared to USC’s 53.83%.
On CommonSenseQA with Llama-1B, it attains
38.74% versus USC’s 33.99%, demonstrating its
effectiveness in enhancing SLM reasoning capabil-
ities.

Our main contributions are summarized as fol-
lows:

* Our paper introduces a novel inference-
time reasoning technique for SLMs, namely

CCQA, that evaluates the quality of each rea-
soning path and its answer by regenerating a
question and measuring its similarity to the
original. 7o the best of our knowledge, this is
the first attempt to investigate the inference-
time reasoning capabilities of SLMs and to
improve them.

* We leverage a lightweight Flan-T5 model to
generate questions from candidate solutions.
Compared to conventional SLMs, our fine-
tuned Flan-T5 is computationally efficient and
produces higher-quality questions.

* Our extensive experiments across diverse
benchmarks and SLMs demonstrate that
CCQA consistently outperforms SOTA rea-
soning methods, substantially improving rea-
soning capabilities of SLMs.

2 Related Work
2.1 Reasoning Methods for LLMs in Test-time

Reasoning remains one of the most challenging
tasks for language models, involving complex
problem-solving such as arithmetic and common-
sense reasoning. Various approaches have been de-
veloped to enhance reasoning performance. CoT
(Wei et al., 2022) induces models to describe
problem-solving steps clearly, with extensions like
least-to-most (Zhou et al., 2023) and tree of thought
(Yao et al., 2023) exploring more diverse reason-
ing paths. Self-feedback methods, including self-
correction (Huang et al., 2024) and self-refinement
(Madaan et al., 2023), enable models to improve
outputs using their own responses, though these
typically require processing extensive input con-
texts. Aggregation techniques such as SC (Wang
et al., 2023) employ majority voting across multi-
ple samples, while USC (Chen et al., 2023) gener-
ates responses by considering all previous outputs.
However, these methods rely on assumptions about
model capacity that become problematic for SLMs
with inconsistent outputs or limited ability to pro-
cess complex prompts.

2.2 Cycle Consistency in Generative Models

Cycle consistency has been widely used as an ef-
fective training and evaluation paradigm across var-
ious domains. Initially introduced in computer vi-
sion for tasks such as image-to-image translation
(Zhu et al., 2017) and 3D reconstruction (Tulsiani
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Figure 1: Overall process of the CCQA. (1) CCQA receives a question as input and generates /N solutions. (2) It
checks for the LCV condition; if the LCV condition is met (i.e., when the model’s answers are inconsistent with
no clear majority), it regenerates questions from the answers, otherwise it performs majority voting to select the
final answer. (3) Under the LCV condition, it compares the generated questions with the original question to assign
similarity scores. (4) The solution corresponding to the question with the highest similarity score is selected as the

final answer.

et al., 2018), the concept leverages the principle
that transformations should be reversible — if data
is transformed from domain A to domain B and
back to domain A, the result should closely match
the original input. This principle has been extended
to natural language processing, including machine
translation (Sennrich et al., 2016; He et al., 2016),
where back translation serves as a form of cycle
consistency to improve translation quality. Recent
work has also explored cycle consistency for evalu-
ating text generation quality (Lee and Lee, 2022)
and ensuring factual consistency in summarization
(Yuan et al., 2020). While cycle consistency has
been used to assess generation quality in various
domains, applying it to SLM’s reasoning quality
offers a promising new direction.

3 Proposed Method

3.1 Motivation

SLMs have gained increasing attention (Qu et al.,
2025; Liu et al., 2024b), but when applied to rea-
soning tasks, they underperform mainly due to two
limitations. First, SLMs struggle with processing
long and complex inputs (>1K tokens) due to their
weak in-context learning abilities (Liu et al., 2024a;
An et al., 2024; Fang et al., 2024). Second, they
often generate inconsistent outputs that are highly

varied (Wang et al., 2024). Consequently, both self-
feedback mechanisms (e.g., self-correction, self-
refinement) and voting mechanisms (e.g., SC, USC)
show limited effectiveness with SLMs, as they re-
quire either strong input processing capabilities or
output consistency. Despite these limitations, rea-
soning approaches specifically designed for SLMs
remain largely unexplored, highlighting the need
for tailored methodologies for SLMs. Based on
these observations, we derive two key requirements
for effective SLM reasoning: (1) avoid lengthy feed-
back or correction prompts, and (2) reliably identify
high-quality reasoning despite inconsistent outputs.

3.2 CCQA

The overall process of CCQA is illustrated in Fig-
ure 1. CCQA begins by generating /N independent
solutions, including both reasoning paths (RPs™)
and answers, using CoT prompting. It then applies
answer-only voting, as in the SC method, disre-
garding RPs. However, SLMs frequently produce
extremely diverse answers to the same question,
leading to unstable voting patterns where majority
voting acts like random selection. In those cases,
we employ a fine-tuned T5 model to regenerate

“Reasoning paths refer to the step-by-step solution pro-

cesses generated using CoT prompting, excluding the final
answer.
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a question from each solution (Section 3.4) and
measure both lexical and semantic similarity be-
tween each generated question and the original one.
Finally, CCQA determines the final output by se-
lecting the answer whose generated question has
the highest similarity score (Section 3.5).

3.3 Multiple Solution Generation and LCV
Identification

When SLMs generate highly varied answers, addi-
tional verification becomes necessary. For instance,
consider a case where a mathematical problem
yields answers ‘18°, 24°, 27°, and ‘35’ with simi-
lar frequencies across multiple generated solutions.
In this scenario, it is difficult to determine which
answer is more reliable based on voting alone, as
the method cannot evaluate the quality of the RPs.
To address this problem, we define such situations
with highly varied answers as Low Confidence
Voting (LCV) conditions. An LCV condition is
defined by the following condition:

LCV = {mjaxfreq(Aj) < [N/2]}.

Here, freq(A;) represents the frequency of the j-
th unique answer, and N is the total number of gen-
erated responses. In other words, LCV is defined as
a situation where the frequency of the most voted
answer does not reach a majority of the total num-
ber of responses. In our experiments on the GSM8K
dataset, evaluating eight different models of various
sizes (0.5B-3B), we found that on average, LCV
occurred in 36.46% of problems, and 80.85% of
answers selected by SC in these LCV cases were
incorrect. This demonstrates that a simple majority
voting method cannot sufficiently leverage the rea-
soning capabilities of SLMs. In these situations, a
verification mechanism that directly considers RPs
is needed rather than a majority voting approach.
Therefore, we apply backward question generation
and similarity measurement methods to directly
evaluate the quality of each RP.

3.4 Backward Question Generation

To evaluate RP quality in LCV situations, we lever-
age backward question generation. The backward
question generation process is as follows: In LCV
situations, each R P; (where ¢ indicates the index of
the RP) is used as input to the fine-tuned T5 model
to generate a question (GQ);, where ¢ indicates the
index of the GQ). To ensure more accurate ques-
tion generation, we carefully select the appropriate

Algorithm 1 CCQA

Require: Original Question O(Q), parameter «, 3,
sample count N, backward question genera-
tion BQG, reasoning path RP;, answer A;

Ensure: Final answer (RPfina1, Afinal)

1: Generate reasoning path and answers
{(RP;, A},

2: Count frequency of each unique answer:
freq(A4;)

3: Jmaz < argmax; freq(A4;)

4: if freq(4;,,,,) > [N/2] then

5. return (RPj,,.., Aj...)

6: else

.

8

9

for i =1to N dodo

GQi < BQG(RF))

10: cos; < Cosine similarity(GQ;, OQ)
11: score; <+ a - bleu; + B - cos;

12:  end for

13:  best_idx < arg max; score;

14: return (RPbest_idxa Abest_idac)

15: end if

model architecture and design a comprehensive
training process. Among models of similar size,
we choose the T5-base model due to its superior
performance in text generation tasks. We also ex-
periment with other small-sized models, but they do
not perform well regardless of whether we apply
fine-tuning or not. Furthermore, we utilize train-
ing sets from various mathematical and common-
sense reasoning benchmarks, reverse the existing
question-answer pairs to answer-question format
for our task. Detailed hyperparameters and data
preprocessing rules are presented in the Section 4.

3.5 Similarity-based Answer Selection

After the backward question generation is com-
pleted, we need to compare the similarity between
the generated questions (G(@Q)) and the original
question (OQ). We measured the similarity be-
tween each (GQ); from each reasoning path RPF;
and the original question (OQ)) using two comple-
mentary methods: BLEU (Papineni et al., 2002)
and embedding-based cosine similarity (Reimers
and Gurevych, 2019). BLEU score for lexical over-
lap and embedding-based cosine similarity for se-
mantic correspondence. BLEU score captures the
lexical overlap and structural similarity by mea-
suring n-gram matches between the generated and
original questions. This helps identify how well the
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surface-level textual elements are preserved. For
semantic similarity, we used cosine similarity of
sentence embeddings generated by Sentence-BERT
(Reimers and Gurevych, 2019), which captures the
overall meaning correspondence between the two
questions beyond exact word matches. These two
measurements were combined using the following
weighted sum:

score(GQ;, OQ) = a - BLEU(GQ;, 0OQ)
+ B - cosine(GQ;, 0Q). (1)

Here, BLEU is the BLEU score value, and cosine is
the embedding-based cosine similarity score value.
« and [ are weights that adjust the importance of
each measurement. In our method, we set « to 0.4
and [ to 0.6. Detailed experiments for determining
these weights are presented in Section 6. The com-
plete CCQA approach is formalized in Algorithm
1.

4 Experimental Setup

Models. The specific models used in our ex-
periments are Llama3.2-1B and Llama3.2-3B
(Grattafiori et al., 2024), Qwen2.5-0.5B, Qwen?2.5-
1.5B, and Qwen2.5-3B (Yang et al., 2025),
SmolLM2-135M and SmolLM2-360M (Allal et al.,
2025). Llama3.2 is a decoder-only language
model with improved reasoning and instruction-
following capabilities. We selected Llama3.2-1B
and Llama3.2-3B variants to test performance
on recent architectural designs. Qwen2.5 is a
transformer-based model known for its strong
multilingual capabilities and performance on
knowledge-intensive tasks. To assess how CCQA’s
scaling properties are affected by increasing model
capacity, we utilized three different variants of this
model. SmolLM?2 is a lightweight model optimized
for efficiency with a specialized architecture for
resource-constrained environments. We included
SmolLM2-135M and SmolLM?2-360M variants to
test CCQA’s applicability in on-device environ-
ments. Also we fine-tuned Flan-T5-base(258M)
models to generate question, using learning rate of
2e-5, 3 epochs, and a batch size of 16.

Benchmarks. We evaluated CCQA on six stan-
dard reasoning benchmarks. For arithmetic reason-
ing, we utilized GSM8K (Cobbe et al., 2021) with
its multi-step grade school math problems (train:
747K, test: 1.32K), SVAMP (Patel et al., 2021)
offering varied math word problems (train: 700,

test: 300), and Multi-Arith (Roy and Roth, 2015)
for problems requiring multiple operations (train:
420, test: 180). For commonsense reasoning, we se-
lected CSQA (Talmor et al., 2019) for its multiple-
choice questions requiring world knowledge (train:
9.74K, val: 1.22K, test: 1.14K), StrategyQA (Geva
et al., 2021) which poses yes/no questions need-
ing strategic inference (train: 1.6K, test: 687), and
ARC-Challenge (Clark et al., 2018) (train: 1.12K,
val: 299, test: 1.17K). If there was an answer field,
we used the test dataset; if not, we used the dev
dataset. Also, the datasets used for finetuning were
the train sets of CSQA, StrategyQA, and GSM8K-
main.

Implementation. We conducted experiments us-
ing the A6000 with 48GB. For generating model
responses, we followed standard guidelines to set
the temperature parameter for text generation (Rad-
ford et al., 2019; Holtzman et al., 2020). Specifi-
cally, we configured the temperature to 0.7 across
all models when generate solutions. Additionally,
based on previous research showing that top-p sam-
pling provides more stable results for smaller mod-
els(Albalak et al., 2024; Brown et al., 2020), we
used top-p = 0.9 for decoding. (Albalak et al., 2024;
Brown et al., 2020). We conducted all experiments
in a few-shot setting, utilizing demonstration exam-
ples derived from prior open-domain text genera-
tion studies (Wei et al., 2022; Wang et al., 2023).
We also created simple prompts for TS5 question
generation. Our prompts and sample solutions are
presented in Appendix A.1, which shows the cor-
responding prompts used for question generation.
Additionally, we converted question-answer pairs
from the training sets of various reasoning bench-
marks into answer-question pairs to fine-tune the
Flan-T5 model.

5 Experimental Results

We evaluated CCQA on multiple benchmarks, com-
paring it with conventional reasoning methods, in-
cluding CoT (Wei et al., 2022), self-correction
(Huang et al., 2024), SC (Huang et al., 2024), and
USC (Chen et al., 2023). As mentioned earlier, we
focused on assessing the effectiveness of inference-
time reasoning strategies for SLMs.

5.1 Main Results

Arithmetic Reasoning. The results for arith-
metic reasoning are presented in Table 1. Each
SLM independently generated five solutions
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Model GSMS8K MultiArith SVAMP

Base CoT Self-Corr SC CCQA | Base CoT Self-Corr SC CCQA | Base CoT Self-Corr SC CCQA
Qwen-0.5B 265 1145 455 1732 17.32 | 8.89 40.00 11.24 51.11 52.22 | 6.33 4433 1533 52.67 55.00
Qwen-1.5B 8.19 3798 2237 4488 48.37 [21.67 95.00 66.85 97.22 97.22 | 3.00 74.33 38.00 83.67 84.00
Qwen-3B 9.78 33.01 0.30 29.12 30.71 |42.22 7556 0.00 81.11 82.78 | 3.33 86.00 16.67 88.00 88.33
Llama-1B 2.05 2532 17.89 3578 39.20 | 8.89 70.22 2584 85.00 86.11 | 2.66 52.33 40.00 58.67 59.00
Llama3.2-3B 1.59 4981 4.85 6931 69.60 |21.11 80.58 8.63 93.89 98.89 | 4.66 79.00 27.33 85.00 86.00
Falcon-1B 5.76 3252 0.08 4094 42.61 | 7.22 79.21 6333 91.67 92.78 | 3.33 44.00 20.67 51.33 52.33
SmolLM2-135M | 1.90 2.35 0.00 1.97 2.88 | 0.56 0.00 0.00 333 333 | 5.00 6.00 0.00 833 7.67
SmolLM2-360M | 2.65 6.60 0.00 879 872 | 1.67 17.78 0.00 2444 2556 | 1.66 1533 0.00 24.33 27.00
Model CommonSenseQA StrategyQA ARC-Challenge

Base CoT Self-Corr SC CCQA | Base CoT Self-Corr SC CCQA | Base CoT Self-Corr SC CCQA
Qwen-0.5B 40.33 39.64 21.21 43.00 43.82 |52.33 53.13 19.07 54.29 54.29 [44.96 4428 26.54 48.46 49.89
Qwen-1.5B 57.56 62.74 7.53 66.58 66.34 |51.38 55.02 1223 52.55 55.17 |66.19 71.33 24.66 75.09 74.40
Qwen-3B 65.26 65.11 70.27 70.52 70.52 |54.15 51.97 51.53 5298 5531 |76.19 79.95 26.56 84.90 84.98
Llama-1B 24.07 30.71 2243 37.92 38.74 [53.28 54.00 3.64 57.21 57.35 (4534 4471 39.25 49.40 49.66
Llama3.2-3B 43.39 56.18 4837 65.68 66.42 |48.47 45.65 51.53 49.20 49.20 [68.63 69.71 72.05 74.40 74.06
Falcon-1B 28.32 32.68 0.00 35.14 35.79 [54.04 5852 6.11 58.52 59.57 |51.96 54.52 30.72 55.38 55.72
SmolLM2-135M | 16.09 16.79  0.00  17.69 18.35 |48.47 49.05 0.87 49.34 49.34 |17.41 22.53 18.00 23.12 23.98
SmolLM2-360M | 18.96 19.66 0.00 19.49 19.82 {39.74 49.49 0.15 49.20 49.49 [16.09 16.81 18.21 18.00 18.09

Table 1: Performance comparison including baseline and various inference-time techniques on arithmetic(GSMS8K,
Multi-Arith, SVAMP) and common-sense(CommonSenseQA, StrategyQA, ARC-Challenge) benchmarks, measured
by accuracy(%). Base: baseline performance using greedy decoding, CoT: chain-of-thought prompting, Self-Corr:

self-correction, SC: self-consistency, CCQA: proposed method.

(N = 5) per question. Interestingly, conventional
feedback-based methods, such as self-correction
and USC, showed significant performance degra-
dation. When applied to SLMs, these methods
achieved markedly lower accuracy than chain-of-
thought prompting and self-consistency, suggest-
ing that feedback-dependent inference strategies
may be suboptimal in the smaller model setting.
However, the results show that CCQA consistently
achieves the highest accuracy across most con-
figurations, outperforming all other methods on
GSMB8K, SVAMP, and MultiArith. In particular,
on the MultiArith benchmark, Llama3.2-3B with
CCQA achieves a 5.00 % performance improve-
ment over SC, showed better accuracy than the
other methods. For SmolLM?2, its limited capacity
resulted in generally poor performance on the arith-
metic reasoning benchmark. Nevertheless, CCQA
still produced a measurable accuracy improvement.

Commonsense Reasoning. Experimental results
for commonsense reasoning are also summarized in
Table 1. Across the three evaluated benchmarks, in-
cluding CommonsenseQA, StrategyQA, and ARC-
Challenge, CCQA outperformed competing meth-
ods across most models and benchmarks. As with
arithmetic reasoning, self-correction and USC also
exhibited performance degradation in common-
sense reasoning. For SmolLM2, every method ex-
cept CCQA and SC performed worse than CoT,
with some approaches’ accuracy even falling to

Benchmark LCV SCLCV CCQALCV A

GSMBK 3646 19.15 22.11 +2.96
CSQA 21.28 26.48 28.68 +2.20
StrategyQA 5.79 36.88 48.03 +11.15
SVAMP 36.46 19.15 21.20 +2.05

Table 2: Proportion of questions triggering the LCV con-
dition and corresponding accuracy. LCV (%) = percent-
age of all samples under LCV condition (i.e., no clear
majority); SCrcy (%) = accuracy of self-consistency
on LCV samples; CCQAcy (%) = accuracy of the
proposed method on the same samples; A (percentage-
point gain) = CCQALcy — SCrcv.

0 %. Among the techniques, only CCQA and SC
maintained performance at or above CoT. How-
ever, CCQA consistently delivered higher accuracy
than SC. This suggests that CCQA provides more
consistent gains for SLMs across both arithmetic
and commonsense reasoning tasks, whereas other
inference-time methods may sometimes underper-
form or show unstable results.

5.2 CCQA Performs More Robustly Under
LCYV Condition

We also compared SC and CCQA performance
under the LCV condition, as reported in Table 2.
When the LCV condition was true, this means that
the model produced highly diverse and inconsistent
answers without any clear majority. On StrategyQA
benchmark, CCQA correctly solved 11.15% more
problems under the LCV condition compared to SC.
Because SC lacked a mechanism for resolving con-
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Figure 2: Comparison of CoT, SC, and CCQA accuracy across benchmarks for varying numbers of generated
solutions IN. The rightmost plot shows the mean performance across all benchmarks and models. Self-correction
and USC, which performed worse than SC and CCQA (see Table 1), were omitted for clarity.

flicting answers, it struggled when outputs are in-
consistent. In contrast, CCQA effectively selected
higher-quality reasoning paths, demonstrating its
potential as an inference-time strategy for SLMs.
Though CCQA required slightly more computa-
tional resources than SC, it achieved a favorable
performance-resource balance, offering significant
accuracy gains with only marginal additional com-
putational cost.

5.3 Robust Performance across Various
Numbers of Responses

We evaluated CCQA’s robustness by progressively
increasing the number of generated solutions to 10
and measuring performance at each increment. As
shown in Figure 2, we observed consistent perfor-
mance gains across both arithmetic reasoning and
commonsense benchmarks relative to SC, which
was the strongest-performing method among all ap-
proaches aside from CCQA. The rightmost graph
compared CCQA, CoT, and SC using the average
of the six benchmarks we used. From the results,
it is verified that CCQA demonstrates consistent
performance improvements across all benchmark
averages.

6 Analysis
6.1 Similarity Metrics for CCQA

To measure the similarity between generated ques-
tions and original questions, we considered various
similarity metrics. First, we believed that using
both surface-level and semantic similarities would
be beneficial for the similarity score. This approach

0.500

0.495
0.490

0.465%

0.460 |- —=8— BLEU-Cosine
—e— Precision-Cosine
—a— Precision-Rouge

0.450 ‘ ‘ : :
0 0.2 0.4 0.6 0.8 1

a (weight for first metric)

Mean CCQA Accuracy

Figure 3: Comparison of different similarity metrics
with varying weights (« for first metric, 8 = 1 — « for
second metric).

provides a more comprehensive evaluation frame-
work by capturing different aspects of textual simi-
larity. Surface-level metrics can effectively identify
exact matches and structural similarities, while se-
mantic measures can recognize paraphrases and
conceptually equivalent expressions that might
use different vocabulary. Therefore, we employed
BLEU and Rouge (Lin, 2004) for surface-level sim-
ilarity, while utilizing embedding-based cosine sim-
ilarity, BERTScore (Zhang et al., 2020) for seman-
tic similarity. We found optimal performance by
using a weighted sum of these surface-level and
semantic similarity measures.
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Figure 4: Average Cosine and BLEU Scores across
LLaMA, T5, and Qwen models.

Our empirical analysis revealed that a balanced
combination of lexical structure and semantic
meaning provides the most effective similarity
measure for identifying accurate reasoning paths.
Specifically, assigning weights of o = 0.4 to bleu
score, and 5 = 0.6 to embedding-based cosine sim-
ilarity yielded optimal performance across diverse
reasoning benchmarks. These weights were de-
termined through comprehensive grid search over
range 0.0, 0.1,...,1.0 with the constraint o + 5 = 1.
The three combinations with the best performance
are presented in Figure 3. Using this optimized
similarity measure, CCQA selects the reasoning
path and its corresponding answer that generates
the question most similar to the original problem.

6.2 Backward Question Generation Model

For the efficiency and performance of the proposed
method, generating backward questions played an
important role. We considered several models re-
quiring minimal additional resources, taking into
account the characteristics of SLMs. We used a to-
tal of three models: Llama3.2-1B, Qwen2.5-0.5B,
and Flan-T5. We first used these three models with-
out fine-tuning, but all models failed to generate
problems properly. Specifically, Llama3.2-1B and
Qwen2.5-0.5B often generated responses that were
irrelevant to the answers, while the T5 model gen-
erated questions but sometimes missed important
parts of the answers. Therefore, we used the Flan-
TS5 model with fine-tuning. We also tried using
other models with fine-tuning, but they exhibited
the same problems. Detailed examples of question
generation from all three models are presented in

Appendix A.2. Additionally, we measured the simi-
larity between the questions generated by the mod-
els and the original questions, not just through ob-
servation. As shown in Figure 2 below, when we
generated questions from solutions by using Flan-
TS5 models, it had the highest average semantic
similarity value. As a result, by using this model,
we were able to improve performance with CCQA
while only slightly increasing resource require-
ments.

7 Conclusion

We presented CCQA, a novel inference-time rea-
soning framework designed for SLMs. Inspired
by the cycle consistency, CCQA regenerated a
question from each candidate solution using a
lightweight, fine-tuned Flan-T5 and compared it to
the original prompt to identify the most reliable rea-
soning path. This simple yet effective mechanism
makes the proposed method robust under LCV con-
ditions, where small models typically produce in-
consistent outputs, while adding only minimal com-
putational overhead. From extensive experiments
across arithmetic and commonsense benchmarks,
it is verified that that CCQA consistently surpassed
existing inference-time strategies, substantially en-
hancing the reasoning capabilities of SLMs.

Limitations

Despite its strong performance, CCQA has sev-
eral limitations. First, the effectiveness of the pro-
posed framework depends on the quality of the
backward question generator; if the component
produces low-quality questions, then CCQA’s over-
all performance degrades. Second, the auxiliary
Flan-T5 model introduces additional parameters.
However, its lightweight design and the substantial
performance gains on SLMs make this overhead
acceptable. Also, considering that SLMs typically
struggle to generate reliable questions on their own,
the additional cost is essential for achieving robust
reasoning performance. Compared to the high com-
putational cost and numerous forward passes of
other inference-time reasoning methods, CCQA’s
extra demand is reasonable. Finally, our evaluation
is limited to arithmetic and commonsense reason-
ing in English, leaving broader domains for future
work. Despite these limitations, we believe CCQA
can substantially enhance the reasoning capabili-
ties of SLMs and, by extension, improve their real-
world utility.
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A Appendix

A.1 Detailed Prompts And Inputs of Question
Models

Table 3 gives simple prompt examples to generate
questions. We used slightly different prompts for
mathematical reasoning benchmarks compared to
commonsense reasoning, emphasizing numbers to
fully preserve the mathematical information in the
solutions.

A.2 Question Generating Models’ Generated
Question

To evaluate the performance of the question genera-
tion model, we considered a total of three mod-
els: Llama3.2-1B, Qwen2.5-0.5B, and Flan-T5-
base. As shown in Table 4, the Llama3.2-1B and
Qwen2.5-0.5B models essentially failed to gen-
erate proper questions. In contrast, we observed
that TS was able to perfectly reconstruct questions
corresponding to the given answers. Consequently,
along with semantic similarity criteria and after
observing these cases, we selected the TS5 model.

A.3 Fail Case of SLMs in Conventional
Method

In our experiments, as shown in Table 5, mod-
els under 1B parameters such as SmolLM?2 and
Llama experienced performance degradation when
conventional feedback methods like USC and self-
correction were applied. To help understand these
situations, we have attached fail cases.
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Arithmetic reasoning

Commonsense reasoning

Solution Marco’s dad’s  strawberries | Going to church is one way people
weighed 11 pounds. Together | can hear testimony of how spiritu-
they weighed 30 pounds. Since | ality changes lives. Therefore, the
Marco’s dad weighed 11 pounds, | answer is (A).

Marco must have weighed 30 - 11
=19 pounds. The answer is 19.
Prompts Do not change ANY numeric val- | From the commonsense reasoning

ues in the answer. Every number
must be preserved EXACTLY in
your question. Generate a question
that would have this as its answer:

answer provided below, recreate
the original commonsense ques-
tion. Generate a question that
would have this as its answer:

Marco and his dad went straw-
berry picking. Marco’s dad’s straw-
berries weighed 11 pounds. If to-
gether their strawberries weighed
30 pounds. How much did Marco’s
strawberries weigh?

Generated Questions You can hear testimony of how
spirituality changes lives when you

do what?

Table 3: Examples of question generating prompts. Input solutions and prompts for question generation in arithmetic
reasoning and common sense reasoning.

Model Generated Question

Original  An- | Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast. That means
swer she has 16 - 3 = 13 eggs left each day. She bakes muffins with 4 eggs and sells
the rest for $2 each. That means she sells 13 - 4 =9 eggs per day. She sells 9
eggs for $2 each, so she earns 9 * 2 = 18 dollars per day. The answer is 18.

LLaMA Note: The problem is not a typical subtraction problem, but rather a problem
that involves subtraction and then adding back the result. It is also not just a
subtraction, it is a combination of subtraction (for the muffin sales) and adding

the earnings from selling the eggs (from the remaining eggs).

Qwen (Actually, Janet earns more than $10 because she can sell the remaining 5 eggs
at $0.50 each.)

Question: If Janet’s ducks laid 640 eggs in a week, how much money would
Janet make from selling the eggs if she eats them all up and then bakes for her
family of x people? To solve this problem, let’s break down the information

given: 1. Janet has ducks that lay eggs. 2. Each duck lays...

TS5 Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast each day and
bakes muffins with 4 eggs. How much money does she earn per day if she sells
9 eggs for $2 each?

Table 4: Comparison of Generated Questions by Different Models
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Model SmollLM2-360

Input Prompt: Evaluate these responses. Select the most consistent response based on ma-
jority consensus. Start your answer with "The most consistent response is Response
X" (without quotes)

responsel: Janet makes $2 per fresh duck egg. She eats three for breakfast every
morning and bakes muffins for her friends every day with four.

response2: Janet makes 16 /3 = 6 eggs per day. 16 /3 =5 eggs perday. 3/5=0.6
eggs per day. 6 /3 = 1.6 eggs per day. 1.6 / 5 = 0.34 eggs per day.

response3: She spends $2 / day * 16 eggs per day = $32. She makes $32 - $16 = $18.
The answer is 18.

USC QOutput "Response 1: The most consistent response is Response X.Response 2: The most
consistent response is Response Y.Response 3: The most consistent response is
Response Z.Response 4: The most consistent response is Response W.Response
5: The most consistent response is Response X.Response 6: The most consistent
response is Response Y.Response 7: The most consistent response is Response
Z.Response 8: The most consistent response is Response W.Response 9: The most
consistent response is Response X.Response 10: The most consistent response is
Response Y.Response 11: The most consistent response is Response Z.Response
12: The most consistent response is Response W.Response 13: The most consistent
response is Response X.Response 14: The most consistent response is Response
Y.Response 15: The most consistent response is Response Z.Response 16: The most
consistent response is Response X.Response 17: The most consistent response is

nn

Response Y.Response 18: The most consistent”,

Table 5: Model evaluation with USC method. It shows that SmolLM?2 that cannot understand when long input
context is provided
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