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Abstract

Augmenting large language models (LLMs)
with external tools is a promising approach to
enhance their capabilities, especially for com-
plex tasks. Synthesizing tool-use data through
real-world simulations is an effective way to
achieve this. However, our investigation reveals
that training gains significantly decay as syn-
thetic data increases. The model struggles to
benefit from additional synthetic data, which
fails to endow it with advanced tool-use capabil-
ities in complex scenarios Moreover, we discov-
ered that the above limitation usually manifests
as a fragment deficiency (i.e., parameter errors)
in response. To this end, we propose an iter-
ative reinforced fine-tuning strategy designed
to alleviate this limitation. This strategy in-
volves: (1) enhancing the diversity of response
for synthetic data through path exploration of
Monte Carlo Tree Search. (2) iteratively pin-
pointing the model’s deficiency by constructing
fine-grained preference pairs, and then improv-
ing it by preference optimization algorithms
for targeted improvement. The experiments
show that our method achieves 13.11% better
performance than the same-size base model.
It achieves an improvement of 6.5% in com-
plex scenarios compared to the baseline, and it
also outperforms larger open-source and closed-
source models1.

1 Introduction

Integrating LLMs with external tools significantly
enhances their capability to tackle complex tasks
in real-world scenarios (Li, 2025; Qu et al., 2024).
For instance, the tool-use capability allows LLMs
to access up-to-date information, perform precise
calculations, and reduce the likelihood of halluci-
nations (Singh et al., 2025). This unlocks a wide
range of potential applications in various domains,
such as complex reasoning tasks (Li et al., 2025;

*Corresponding author. Email: xding@ir.hit.edu.cn
1Code: https://github.com/zeng-yirong/iTool

Figure 1: The training paradigm of the tool-use model
under synthetic data (a). However, as shown in (b), the
growth rate of the model’s performance gain declines
significantly as the training data increases, especially in
complex tool-use scenarios.

Manduzio et al., 2024), and the scheduling of appli-
cations on devices (Gunter et al., 2024; Luo et al.,
2025). In essence, tool use involves the following
process: Given one or more tools, a user presents a
question, and the LLM selects the appropriate tools
from the candidate tools and performs the tool call
to fulfill the user’s demands. In this paper, tools
are used interchangeably with APIs, functions, and
plugins.

Recent advancements have found that LLMs can
handle simple tool use scenarios through prompt
engineering (Ye et al., 2024), but they encounter
difficulties with more complex real-world applica-
tions (e.g., long contexts or extensive toolsets) (Yan
et al., 2024). To address this, some studies simulate
real-world scenarios, such as ticketing systems, to
mimic more realistic use cases (Lin et al., 2024) to
collect synthetic data. Synthetic data are used in
supervised fine-tuning (SFT) to improve tool use
in complex scenarios, as shown in Figure 1 (a). De-
spite these solution strides in the development of
tool-use models, our investigation reveals a critical
weakness: there is a training gains decay as the
synthetic tool-use data scales.

We conducted tests to explore how the perfor-
mance of the model changes when synthetic data
of different proportions is used, as shown in Figure
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1 (b), We find that the model struggles to bene-
fit from more synthetic data with SFT in complex
scenarios. More analysis in Section 2.2 indicates
that this limitation reflects the failure of the model
to extract the parameter name or infer the correct
parameter value from the user query. This issue typ-
ically affects only a small fragment of the response,
differing from the ground truth response.

Therefore, we attempt to alleviate the decay of
training gains when using synthetic tool-use data,
to enhance the ability of tool use in complex sce-
narios. It is not easy because it requires equipping
the model with advanced contextual understand-
ing and reasoning capabilities. Fortunately, the
success of OpenAI o12 demonstrates complex rea-
soning through step-by-step slow thinking (e.g.,
Monte Carlo Tree Search (MCTS) (Coulom, 2006)
) and Reinforced Fine-Tuning (ReFT) (Luong et al.,
2024) (tailors reinforcement learning and aligns
with user intentions to specific tasks).

To this end, we propose a novel learning method
involving (1) an MCTS-based path exploration
to enhance response diversity and (2) ReFT to
progressively correct the wrong fragment text of
model’s response. Specifically, we propose an
iterative reinforced fine-tuning strategy for Tool
use, named iTool. It first iteratively identifies com-
plex data based on feedback from a policy model. It
then performs MCTS to help explore data diversity
in response, and further pinpoint wrong fragment
by collecting fine-grained preference pairs from
search path. Finally, a reinforcement learning pol-
icy (i.e., direct preference optimization (Rafailov
et al., 2024)) is applied to align the model’s re-
sponse with the ground-truth response and mis-
align it with wrong fragment. Moreover, before
iterative ReFT, we propose an easy-to-hard warm-
up SFT strategy for better learning from complex
scenarios. Following these advancements, iTool
demonstrates ~13% better performance than the
base model. It also achieves substantial improve-
ments in tool-use ability under complex scenarios.
Despite having only 8B parameters, it outperforms
larger open-source models and competes with top-
tier closed-source models.

2 Problem Statement and Analysis

2.1 Task Overview
In tool use, the LLM receives a user query q along
with a set of candidate tools, represented as T =

2https://openai.com/index/learning-to-reason-with-llms/

Figure 2: An illustration of tool-use. Given a user query
with candidate tools, LLMs select the tool(s) from can-
didates, then execute the API call operation, and finally
reply with a response. In the bad response, the param-
eter errors (i.g, red font weather=’unknown’) account
for a small fragment of the response content.

{t0, t1, . . . , t|T |}. The purpose of LLM is to fulfill
the user’s intent by executing a specific sequence
of tools. The decision process can be described
as y ∼ π(y | s0, q, T ), where π(·) represents the
policy model, s0 denotes the initial task state, and
y represents the actions taken by the model, such
as selecting or executing a specific tool call from
T . A case is illustrated in Figure 2.

2.2 Preliminary Study

This section presents the challenges when fine-
tuning models with tool-use synthetic data, and
clarifies the motivation for the proposed methods.

We fine-tune the model using synthetic tool-use
data of varying proportions. Specifically, train-
ing data: ToolACE (Liu et al., 2024) is a general
tool-use dataset with up to 100K samples, and
created through a novel self-evolution synthesis.
Evaluation benchmark: Berkeley Function-Calling
Leaderboard (BFCL) (Yan et al., 2024) provides a
comprehensive dataset comprising 4k+ instances
(updating), consisting of Non-live (with expert-
curated simple tools), Live (with user-contributed
complex tools), Multi-turn (with multi-turn &
multi-step tool use) and Hallucination (i.e., rele-
vance and irrelevance detection) samples. Here,
Non-live denotes simple tool use scenarios (e.g.,
single tool), while Live represents more complex
tool use scenarios (e.g., multiple parallel tools). For
convenient understanding, in this section, we use
simple and complex as aliases for the Non-live and
Live metrics, respectively.

The results are depicted in Figure 1 (b). We ob-
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Figure 3: Error type distribution in bad cases. In bad
cases, error types are highly concentrated in Parameter
Value & Name.

serve that the model’s performance gain declines
significantly as the training data increases. Specif-
ically, with the SFT paradigm shown in Figure 1
(a), The model significantly enhances tool-use abil-
ity with small-scale supervised data by mimicking
patterns from the training examples. However, the
performance improvement significantly declines
after 30% of the data is used. The model struggles
to benefit from using more synthetic data, we ar-
gue that insufficient data diversity is one of the key
factors.

To explore the manifestations of the above-
mentioned issue, we perform a bad case analysis.
We counts all error types in Live and Non-live of
BFCL, and categorized the error types as shown
in Figure 3. Here, Parameter Value error denotes
the value of the parameter that does not match the
ground truth. Parameter Name error denotes unable
to identify the parameter value from the user query.
For more details, see Appendix A. From Figure
3, we observed that errors are highly concentrated
in Parameter Value & Name errors. In bad cases,
parameter error constitutes a small fragment in re-
sponse, while the majority remains consistent with
the ground-truth. An illustration is shown in Fig-
ure 2. Therefore, trying to fix the fragment error
can help alleviate the limitation of gain decay in
training models.

In summary, we find that training with synthetic
tool-use data causes gain decay, and the model
struggles to benefit from additional such data. This
limitation is reflected in the model’s deficiency (i.e.,
parameter errors) in responses. Motivated by this
line, we utilize the MCTS path to explore diver-
sity in responses for alleviating such gains decay.
We further propose an iterative ReFT strategy to
progressively pinpoint and optimize the model’s

deficiencies.

3 Method

In this section, we provide a detailed introduction
to our method. Figure 4 shows the overall architec-
ture. It consists of warm-up training and iterative
reinforcement learning.

3.1 Warm-up training

In real-world applications, the tool-use model
should select multiple tools from a complex can-
didate toolset and schedule them correctly (a.k.a.,
hard mode), instead of directly using a single candi-
date tool to respond (a.k.a., easy mode). Similar to
human learning procedures, tool learning models
can benefit from an easy-to-hard curriculum during
model training (Xu et al., 2020). Therefore, we
propose an easy-to-hard SFT for warm-up training.

In the warm-up stage, we first divide the dataset
evenly into three subsets (i.e., easy, medium, hard)
based on difficulty levels. We follow the criteria:
(a) the candidate toolset number; (b) the string
length of the toolset; and (c) the number of tool
calls needed in response to split the dataset. The
specific definitions for each subset are as follows:
(1) hard: a >= 4 or b > 2000 or c >= 4. (2)
medium: 1 < a < 4 or b < 2000 or c < 4. (3)
simple: a <= 1 and b < 1000 and c <= 1.

D = Deasy

⋃
Dmedium

⋃
Dhard. (1)

Subsequently, we fine-tune the LLMM sequen-
tially on each subset Di using the supervised loss:

Li = −E(q,y)∼Di
[logPM(y | q, T )] , (2)

with D1 (easy), D2 (medium) and D3 (hard).
The total warm-up loss is:

Lwarm-up =
N=3∑

i=1

Li. (3)

3.2 MCTS-Based Iterative Reinforcement
Learning

In order to alleviate training gains decreases using
synthetic tool-use data for LLM, in this module,
we propose an Iterative Reinforcement Learning
scheme to continuously remedy this deficiency. As
shown in Figure 4, it iteratively refreshes replay
buffer to sample complex data and generates pref-
erence data for preference optimization.
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Figure 4: The overall architecture of iTool consists of warm-up training and iterative reinforcement learning.
Specifically, after warm-up training ①, the policy model refreshes the replay buffer ② and then actively samples
complex data ③. Then, step-wise MCTS ④ is performed to obtain fine-grained preference pairs for pointing out
the wrong fragment in response. Finally, the models are updated via direct preference optimization ⑤ to improve
response. The fire and frozen denote parameters are updated and fixed, respectively.

Sampling complex data. Given a warm-up
model from the previous stage, it is used to re-
fresh the replay buffer by feeding back the com-
plexity of samples. The replay buffer is initial-
ized with a random 50% sample from the tool-use
dataset. Each example in the buffer is represented
as: xbuff = ⟨q, T , c⟩, where c is denote the com-
plexity of sample. In practice, model generation
perplexity h is used to measure the complexity of
the samples, i.e., c = h. The generation perplexity
of the target response can be factorized as follows:

h = n

√
1

PM(y | q, T ) , (4)

where the PM(y | q, T ) is the generation proba-
bility. Since perplexity h represents the degree of
generation uncertainty (Gao et al., 2024), we sam-
ple top 10% highest h data for subsequent step in
each iteration.

MCTS for Step-Level Preference. The suc-
cess of OpenAI o1 provides a compelling illustra-
tion of the effectiveness of step-by-step thinking.
As a key algorithm, MCTS path exploration can
fully traverse the search space and provide greater
data diversity (Grill et al., 2020). Inspired by these,
we propose to integrate MCTS into training for
collecting step-level preference data.

The step-wise MCTS is achieved by breaking
down the expansion step into discrete steps, trans-
forming instance-level rewards into granular step-
level signals. Specifically, it begins from a root
node s0 (i.e., user query), and unfolds in three iter-
ative stages: selection, expansion, and backup:
(1) Select. It is guided by two key variables:

Q(st, a) is the value of taking action a in state
st, and N(st) is the visitation frequency of state
st. We employ the Predictor+ Upper Confidence
bounds applied to Trees (PUCT) (Rosin, 2011) to
navigate the trade-off between exploring and ex-
ploiting ones. At node st, the subsequent node
follows the formula:

st+1 = argmax
a

[
Q(st, a) + c · p(a | st)

√
N(st)

1 +N(n(st, a))

]

(5)

where p(a | st) = πθ(a | q, T , st) denotes the
policy πθ(·)’s probability distribution for generat-
ing a action step a, and c is the trade-off hyperpa-
rameter, and n(st, a) explicitly represents the next
state generated by taking action a in statest. We
enforce the policy model to generate fine-grained
fragments (e.g., an argument assignment operation,
like weather=’unknown’ in Figure 2) by manag-
ing the termination characters (e.g., ‘,. )’).
(2) Expand. It occurs at a leaf node during the

selection process to integrate new nodes and assess
rewards. The reward r(st, a) for executing step a
in state st is quantified by the reward difference
between states R(st) and R(st+1), showing the
benefit of action a in state st. As defined in Eq.6,
reward computation merges outcome correctnessO
with self-evaluation C. Following Xie et al. (2024),
we define self-evaluation with Eval Prompt 10 as
Eq.7.

R(st) = O(st) + C(st), (6)

C(st) = πθ(cs | prompteval, q, a, T , st), (7)

where cs denotes the confidence score in token-
level probability for correctness. Future rewards
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are anticipated by simulating upcoming scenar-
ios through roll-outs, following the selection and
expansion process until reaching a terminal state
(i.e., complete response or exceeds the maximum
length).
(3) Backup. Once a terminal state is reached, we
carry out a bottom-up update from the terminal
node back to the root. We update the visit count N ,
the state value V , and the action value Q:

V (st)←
∑

a

N(st+1)Q(st, a)/
∑

a

N(st+1), (8)

Q(st, a)← r(st, a) + γV (st+1), (9)

where γ is the discount for future state values.
We use the action value Q to indicate the prefer-

ence for candidate steps, with higher values show-
ing more preferred next steps. For each node in the
search tree, we choose the steps with the highest
and lowest Q as the preferred and dispreferred re-
sponses, respectively, and consider the prefix path
as the question. See Appendix C.1 for an example.
Therefore, our method leverages MCTS to generate
numerous negative trajectories with fine-grained
deficiencies, thereby enhancing data diversity.

Iterative preference optimization. Given the
step-level preferences collected via MCTS, we tune
the policy model via SimPO (Meng et al., 2024), a
variant of DPO (Rafailov et al., 2024), because it
reduces computational overhead by eliminating the
need for a reference model. After optimization, we
obtain the updated policy πθ(i) and repeat sampling
the complex data process to iteratively update the
policy model.

As a variant of DPO, it eliminates the need for a
reference model and introduces a simple reference-
free reward aligned with generation, i.e., length-
normalized reward:

rSimPO(x, y) =
β

|y|

|y|∑

i=1

log πθ(yi | x, y<i), (10)

where β is a constant that controls the scaling of
the reward difference. Using the shorthand hywπθ =
β

|yw| log πθ(yw|x), h
yl
πθ = β

|yl| log πθ(yl|x), at the i-
th iteration, given a batch of preference data Di

sampled with the latest policy πθ(i−1), we denote
the policy objective ℓi(θ) as follows:

ℓi(πθ) = −E(x,yw,yl)∼Di

[
log σ

(
hyw
πθ
− hyl

πθ
− γ

)]
, (11)

where γ > 0 represents the target reward mar-
gin, ensuring that the preferred response’s reward

exceeds that of the dispreferred one; yw and yl
represent the step-level preferred and dispreferred
responses, respectively.

4 Experiments

4.1 Experimental Setup

We take the widely used open-source LLM,
LLaMA3.1-8B-Instruct as our base model. We
use synthetic data from ToolACE for experiments,
randomly select 90% for warm-up training, and
50% for reinforcement learning to balance perfor-
mance and cost. For warm-up training, we adopt
the parameter-efficient training strategy LoRA (Hu
et al., 2022). For reinforcement learning, we em-
ploy SimPO, a variant of DPO, for preference op-
timization, utilizing the QLora parameter-efficient
training strategy (Dettmers et al., 2024). For more
implementation details and preferences optimiza-
tion analysis, see Appendix B.
Evaluation Dataset. In addition to BFCL, we use
API-Bank (Li et al., 2023), which consists of 314
tool-use dialogues and 753 API calls. This dataset
evaluates models’ abilities to correctly invoke a
known API (L-1) based on a query and to retrieve
and call APIs from a tool list (L-2).
Baselines We compare the overall performance
with the state-of-the-art closed-source models
(e.g., GPT-series, Gemini and open-source models
(e.g., Llama-3.1-8B-Instruct, Qwen2.5-7B (Team,
2024)), as well as fine-tuned open-source models
with tool-use dataset, including ToolACE-8B (fine-
tuning Llama-3.1-8B-Instruct on ToolACE) model,
xLAM-series (Zhang et al., 2024) and Hammer-
series (Lin et al., 2024).

4.2 Overall Performance

The overall performance of iTool-8B and baseline
models are shown in Table 1 and Table 2. Our
model consistently achieves superior performance
at comparable scales (∼ 8B). Specifically, it shows
consistent advantageous performance on API-Bank
and BFCL compared with open-source models, and
also outperforms most closed-source and larger
open-source models in BFCL (e.g., GPT-4-series
models). For example, it outperforms xLAM-
8x22b-r by 5.27 in the overall accuracy metrics.
Moreover, it demonstrates its superiority in chal-
lenging scenarios (e.g., Live), which indicates our
method learn advanced tool-use capabilities effec-
tively from synthetic data. This is primarily due
to our iterative ReFT strategy, which continuously
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Rank Overall Acc Model Non-live Live Multi turn Rel / Irrel

1 63.26 ♣ iTool-8B (FC) 88.82 78.29 23.84 84.90/80.72
2 62.19 ♠ GPT-4o-2024-08-06 (FC) 86.15 75.43 25.00 63.41/82.93
3 61.89 ♠ GPT-4-turbo-2024-04-09 (FC) 88.80 76.23 24.88 73.17/79.76
4 60.47 ♠ GPT-4o-mini-2024-07-18 (FC) 83.72 70.19 27.50 80.49/71.77
5 60.44 ♣ ToolACE-8B (FC) 88.94 74.99 17.38 80.49/85.71
6 58.15 ♠ GPT-4o-mini-2024-07-18 (Prompt) 88.69 74.63 11.13 75.61/81.00
7 57.99 ♣ xLAM-8x22b-r (FC) 87.51 71.97 14.50 85.37/67.29
8 57.92 ♠ Gemini-1.5-Flash-002 (Prompt) 87.60 76.28 9.88 85.37/78.54
9 57.69 ♣ Hammer2.0-7b (FC) 88.54 69.79 14.75 95.12/68.46

10 57.45 ♠ o1-mini-2024-09-12 (Prompt) 83.84 75.39 13.12 48.78/88.04
11 56.80 ♡ mistral-large-2407 (FC) 81.41 68.37 20.62 75.61/49.44
12 56.51 ♠ Gemini-1.5-Pro-002 (Prompt) 89.63 74.41 5.50 65.85/77.30
13 55.86 ♠ Gemini-1.5-Flash-001 (Prompt) 85.74 69.21 12.62 82.93/67.84
14 55.78 ♠ GPT-4-turbo-2024-04-09 (Prompt) 88.80 69.04 9.50 82.93/58.95
15 55.10 ♠ Gemini-1.5-Pro-001 (Prompt) 86.17 73.12 6.00 56.10/85.00
16 54.41 ♣ xLAM-7b-r (FC) 80.86 67.88 14.50 97.56/64.05
17 54.27 ♡ Qwen2.5-7B-Instruct (Prompt) 85.58 65.97 11.25 92.68/64.95
18 53.67 ♡ Llama-3.1-70B-Instruct (Prompt) 87.50 61.13 12.38 92.68/58.38
19 53.66 ♡ Gemma-2-27b-it (Prompt) 87.39 69.48 4.12 87.80/68.76
20 53.00 ♠ GPT-3.5-Turbo-0125 (FC) 78.52 61.22 19.25 97.56/35.16
21 52.50 ♡ Gemma-2-9b-it (Prompt) 84.52 69.21 3.75 87.80/72.45
22 51.59 ♣ Hammer2.0-1.5b (FC) 84.44 63.22 7.13 92.68/60.64
23 51.50 ♡Meta-Llama-3-70B-Instruct (Prompt) 85.10 66.15 3.25 92.68/52.78
27 50.15 ♡ Llama-3.1-8B-Instruct (Prompt) 81.15 57.93 11.38 78.05/41.62
28 49.02 ♣ xLAM-8x7b-r (FC) 73.93 69.12 4.00 87.80/68.12
29 48.82 ♡ Qwen2.5-1.5B-Instruct (Prompt) 53.99 61.71 6.62 75.61/67.17
42 42.98 ♡ Llama-3.2-3B-Instruct (Prompt) 11.11 50.91 4.00 63.41/68.81

Table 1: The leaderboard of different models in four tool-use scenarios of BFCL (v3) benchmark . The top 20
models and baselines are listed for comparison. FC denotes the model is tailored for functional calling. Rel and
Irrel denote relevance and irrelevance detection, respectively, indicating whether to call a tool or not. ♠ denotes
closed-source model, ♡ denotes open-source base model, ♣ denotes open-source fine-tuned model.

pinpoints and optimizes the model’s deficiencies.

Model API-Bank API-Bank
L1 L2

♠ GPT-3.5-turbo-0125 70.43 52.59
♠ GPT-4-0613 75.94 48.89
♠ GPT-4-turbo-2024-04-09 72.43 39.26
♠ GPT-4o-mini-2024-07-18 74.69 45.93
♠ GPT-4o-2024-05-13 76.19 42.96

♡ Alpaca-7B 24.06 5.19
♡ ChatGLM-6B 23.62 13.33
♣ Lynx-7B 49.87 30.37
♣ xLAM-7b-fc-r 32.83 21.48
♡ LLaMA-3.1-8B-Instruct 71.18 37.04
♡ Qwen2.5-7B-Instruct 72.83 41.98
♣ ToolACE-8B 75.94 47.41
♣ iTool-8B 78.89 52.87

Table 2: Accuracy performance comparison on API-
Bank evaluation system. Bold values represent the high-
est performance.

4.3 Ablation Analysis
4.3.1 Module Ablation
To evaluate the effectiveness of the two components
in our method, we conduct an ablation study in: (1)
the warm-up training phase (w/o warm-up). (2) the

Models Non-live Live Multi-turn

Base Model 81.15 57.93 11.38
+ base SFT 88.94 ↑7.8 74.99 ↑17 17.38 ↑6.0

+ IRT 88.86 ↓0.1 76.51 ↑1.5 20.65 ↑3.3
+ warm-up SFT 88.35 ↓7.2 75.84 ↑17.9 19.65 ↑8.3

+ IRL (iTool) 88.82 ↑0.5 78.29 ↑3.2 23.84 ↑4.2

Total ↑9.5 ↑21.2 ↑12.5

Table 3: The module ablation performance (↑ = increase,
↓ = decrease).

Iterative Reinforcement Learning (IRL) module
(w/o IRL). We adopt LLaMA-3.1-8B-Instruct as
the Base model for benchmarking, ensuring a con-
sistent baseline across all experimental conditions.
From Table 3, we find that all components are es-
sential within our method. base SFT denotes SFT
with the entire gold labeled dataset. iTool achieves
a comparable level to SFT on the Non-live metric,
but each module brings substantial improvements
on the complex-scenario metrics (Live and Multi).
Specifically, the warm-up training and IRL mod-
ules individually contribute improvements of 2.3
and 4.2 points, respectively, on the Multi-turn met-
ric. Cumulatively, it gets a 6.5 improvement over
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Figure 6: The result of ablation study on MCTS in iTool
on key metrics.

SFT and a 12.5 gain relative to Base, highlighting
effects in complex, multi-step reasoning tasks.

4.3.2 Deeper Ablation
(1) In warm-up training, we conducted a study
on the easy2hard SFT strategy. We present the
performance progression from easy to hard and
compare it with base model. The experimental re-
sults are summarized in Figure 5. From the results,
we observe that our strategy shows a gradual im-
provement. There is a significant leap from base to
easy, and the second largest improvement occurs
from the medium to hard. In the synthetic data, the
model can quickly learn the task patterns of tool
use from the easier stages, which in turn benefits
the harder scenario. This indicates that the model
benefits from the curriculum learning process that
goes from easy to hard.
(2) In iterative reinforcement learning, we con-
ducted a study on MCTS and iteration counts.
The results are illustrated in Figure 6 and 7 respec-
tively. To replace MCTS, we sample four responses
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from the policy model and select the responses with
the highest and lowest probabilities as preference
pairs. These pairs are then used for subsequent
preference optimization (w/o MCTS). From Figure
6, we observe that the model’s performance deteri-
orates when MCTS is replaced. From Figure 7, we
observe that as iterations increase, our method ini-
tially shows an upward trend before declining. The
model performs best around 3 iterations, especially
in the Multi-turn and Live scenarios. This indicates
that MCTS can effectively mitigate the issue of
insufficient data diversity with a small number of it-
erations. However, excessive iterations can lead to
overfitting, resulting in a decrease in data diversity.

4.3.3 Base Model Analysis.
To further validate the effectiveness of base mod-
els, we applied our method to other base models.
Due to computational resource constraints, we com-
pared the following base models (< 10B): (1)
Llama-3.2-3B-Instruct, (2) Qwen2.5-7B-Instruct
(Team, 2024). From Table 4, our method exhibits
remarkably stable performance across different
base models. This highlights the robustness of our
method in various base models. On Llama-3.2-3B,
our method improved performance by 18% over
the base model. On Qwen2.5-7B, it achieved the
best performance at 63.22%.

4.4 Training Gains Analysis

To analyze the training gains of our method, as
detailed in Section 2.2, we test the training gains
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Base Model Method Overall Non-live Live Multi-turn Rel / Irrel

Llama-3.1-8B-Instruct
Vanilla 50.15 81.15 57.93 11.38 78.05 / 41.62

Baseline 60.44 88.94 74.99 17.38 80.49 / 85.71
Our 63.26 88.82 78.29 23.84 84.90 / 80.72

Llama-3.2-3B-Instruct
Vanilla 42.98 11.11 50.91 4.00 63.41 / 68.81

Baseline 58.22 89.27 73.90 11.50 84.37 / 78.20
Our 62.93 90.59 76.43 15.82 84.27 / 87.82

Qwen2.5-7B-Instruct
Vanilla 54.27 85.58 65.97 11.25 92.68 / 64.95

Baseline 60.69 90.02 76.23 15.92 73.47 / 86.98
Our 63.93 91.29 82.28 22.38 80.28 / 85.12

Table 4: The accuracy performance comparison of base models with different methods on BFCL benchmark. Vanilla
denotes source base model, Baseline denotes supervised fine-tuned base model, Our denotes iTool.
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Figure 8: The change curve of training gains as the data
scale increases on key metrics.

of our method. From Figure 8, our method shows
greater training gains as the data scale increases in
Live and Overall. Unlike SFT, whose training ben-
efit curve flattens beyond 30%, our model exhibits
a steeper curve in the Live metric. This suggests
that our model can alleviate the internal decay of
training gains by enhancing its advanced capabil-
ities in complex scenarios. A additional training
cost analysis is conducted in Appendix B.2.

4.5 Generalization Evaluation of Synthetic
Data

We evaluated the generalization capability of our
method across diverse datasets type and model
architectures. Experiments included synthetic
datasets (Toolace, xLAM(Zhang et al., 2024)) and
a non-synthetic dataset (BFCL-half, using 50% of
BFCL-Live data for training and the remainder for
testing). Performance was assessed on Llama3.1-
8B-Instruct and Llama3.2-3B-Instruct, with results
averaged across Live and Multi-turn metrics.

Our method consistently improved performance
across all datasets. The largest gains were observed

on synthetic datasets (+4.42 to +6.49), with more
modest improvements on non-synthetic data (+2.17
to +3.65), demonstrating effective generalization
with strongest performance on synthetic bench-
marks. A additional training gain dynamics gener-
alize across model sizes is conducted in Appendix
B.3.

5 Related Work

5.1 Tool use of LLMs

Pioneering works like Toolformer (Schick et al.,
2023) and ToolAlpaca (Tang et al., 2023) have ex-
plored the potential of LLMs in tool use. Previ-
ously, several tuning-free methods were proposed,
which involves manipulating prompts (e.g., (Xu
et al., 2023; Shi et al., 2024; Qiao et al., 2024))
or enhancing execution frameworks (e.g., ReAct
(Yao et al., 2023), RestGPT (Song et al., 2023)) to
unlock inherent capabilities.

Due to the limitation of user-defined tools in
prompts of the above methods, tuning-based meth-
ods with synthetic data have been focused. ToolL-
lama (Qin et al., 2023) notably expanded the toolset
and investigated the impact of data scaling on per-
formance. More efficient data synthesis techniques
have been proposed for tool use (e.g., ToolACE
(Liu et al., 2024), BUTTON (Chen et al., 2024),
and xLAM (Zhang et al., 2024)).

5.2 Reinforcement Learning

Learning from human feedback is crucial in align-
ing LLMs with human intentions (Leike et al.,
2018), which is known as reinforcement learning.
ReFT enhances this process by combining rein-
forcement learning with SFT to optimize model
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Dataset (Type)
Llama3.1-8B-Instruct Llama3.2-3B-Instruct

Baseline (SFT) iTool ∆ Baseline (SFT) iTool ∆

Toolace† 46.18 51.06 +4.88 40.36 46.85 +6.49
xLAM† 42.74 48.47 +5.73 37.72 42.14 +4.42
BFCL-half‡ 41.32 44.97 +3.65 34.65 36.82 +2.17

Table 5: Performance across datasets and models. † denotes synthetic data, and ‡ denotes non-synthetic data.

performance using reward signals. Online rein-
forcement learning algorithms (Schulman et al.,
2017; Zheng et al., 2023) are complex and diffi-
cult to optimize. Recently, Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024), a simpler
offline algorithm, reparameterizes the reward func-
tion to learn a policy model from preference data
directly, enhancing simplicity and training stabil-
ity. Besides, a variety of preference optimization
objectives have been proposed, e.g., SimPo (Meng
et al., 2024), IPO (Azar et al., 2024), ORPO (Hong
et al., 2024) and KTO (Ethayarajh et al., 2024).

Further studies have extended this approach to an
iterative training setup, by continuously updating
the reference model with the most recent policy
model or generating new preference pairs at each
iteration (Dong et al., 2024; Yuan et al., 2024; Kim
et al., 2024; Xiong et al., 2024)

6 Conclusion

Equipping LLMs with external tools is becoming
a viable method to enhance their capabilities. In
this paper, we study enhancing the advanced tool-
use capabilities in a complex scenario from syn-
thetic data. We find that there are training decay
issues when training with synthetic tool-use data.
To alleviate it, we propose an iterative reinforced
fine-tuning strategy. It can continually pinpoint the
model’s wrong fragments in its responses and ad-
dress these deficiencies by preference optimization.
The experimental results demonstrate the effective-
ness of the proposed method.

7 Limitation

While our study has achieved notable advance-
ments, it is important to acknowledge several limi-
tations that could be addressed in future work. First,
the iterative reinforcement learning process (partic-
ularly the Monte Carlo Tree Search) requires sub-
stantial computational resources to generate fine-
grained preference data. Although it is difficult to
solve, we have effectively implemented parame-

ter constraints to manage computational costs effi-
ciently (e.g., 7 hours on 8 V100 GPUs per iteration),
achieving a balance between computational feasi-
bility and model performance. Additionally, due
to limited computing resources, we are not able to
validate our method on larger 30B or 70B base mod-
els. Finally, when analyzing the synthetic tool-use
data, only a single dataset was tested. Testing more
publicly available datasets would strengthen the
validity and persuasiveness of the conclusions. We
will address these limitations in our future work.
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A Details in Preliminary Study

A.1 Descriptions of error types

Here is the descriptions of all error types.

• Parameter Value. The value or type of the
parameter does not match the ground truth.

• Parameter Name. Unable to identify the pa-
rameter value from the user query.

• Parameter Count. Incorrect number of pa-
rameters; required parameters are missing.
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• Tools Count. The wrong number of tools was
called.

• Tool Name. There was an error when calling
the tool name, such as calling a non-existent
tool name or a tool name that does not match
the ground truth.

• Code Syntax. The tool call does not comply
with the syntax of Python, Java, or JavaScript.

• Other. Errors other than those mentioned
above.

B Complementary Experiments

B.1 More Implementation Details
The experiments were conducted using the pub-
licly available training repository, LLaMA-Factory
(Zheng et al., 2024). The training of our model
can be done within 28 hours with 8 NVIDIA Tesla
V100-SXM2-32GB GPUs. For the training model,
we take the best performance checkpoint on the
valid dataset.
The Implementation Settings. Due to resource
constraints, we employ a parameter-efficient train-
ing strategy using LoRA (with rank=16 and
alpha=32) during the SFT warm-up phase, and
QLoRA (a quantization method from the bitsand-
bytes 3 library with 4 bits) during the reinforcement
learning (RL) phase. We utilize a cosine learning
rate scheduler with a warm-up ratio of 0.1. More
detailed training settings are shown in Table 6.

Stage epoch lr batch size

SFT 3
easy: 5e-5

64medium: 2e-5
hard: 1e-5

RL 2 1e-6 64

Table 6: The detailed training settings in our method.
lr denotes learning rate. batch size denotes the total
batch size, equals 1 (per device) times 8 (accumulation
steps) times 8 (devices).

Implementation Settings in MCTS-base RL.
In Expand phase of MCTS, the prompt for self-
evaluation is shown in Table 10. When calculat-
ing the confidence score for correctness, we evalu-
ate the token-level probabilities of a policy model
across four options (A, B, C, D) with respective
weights of 1.0, 0.1, -1.0, and -2.0. We sample the

3https://github.com/TimDettmers/bitsandbytes

model’s responses four times and use the weighted
average of these samples as the final confidence
score.

To ensure the quality of the sampled preference
data, we exclude the following data: (1) pairs with
candidate step similarity above 95%, (2) pairs with
aQ-value difference less than 0.1, and (3) accepted
samples with a Q-value below 0.3. In MCTS, to
control algorithm overhead, we limit the following
parameters: (1) depth, the maximum depth of the
search tree, (2) width, the maximum number of
child nodes per node, (3) simulation, the maxi-
mum number of simulation steps in Expand phase,
and (4) iterations, the maximum number of it-
erations to construct the MCTS search tree. We
summarize these parameters in Table 7.

Parameters Value Parameters Value

depth 3 c 1.0
width 3 temperature 1.5
simulation 2 seed 42
iterations 5

Table 7: The parameters setting in MCTS. c denotes the
degree of exploration in the Select phase.

B.2 Cost Analysis

We conducted a cost-benefit analysis to evaluate
iTool’s performance gains against computational
overhead, focusing on MCTS sampling efficiency.
Experiments compared the base model, SFT base-
line, and iTool across accuracy metrics (BFCL-Live
and Multi-turn) and time costs, using an 8×32G
V100 GPU configuration.

Model Live Multi-turn Time Cost

Base Model 57.93 11.38 0h
SFT Baseline 74.99 17.38 10h
iTool 78.29 ↑3.3 23.84 ↑6.46 28h (×2.8)

Table 8: Cost-benefit analysis of different models

Results in Figure 8 show iTool outperforms the
SFT baseline by 3.30% in BFCL-Live accuracy and
6.46% in Multi-turn accuracy, with a 2.8× increase
in time cost. The significant gains in complex
Multi-turn scenarios, where complexity is high-
est, demonstrate favorable cost-effectiveness for
practical deployment.
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B.3 Generalize Across Model Sizes
To investigate the efficacy of SFT at scale and
examine whether training gain dynamics general-
ize across model sizes, we conducted a controlled
SFT study using three open-source instruction-
tuned models of increasing capacity: Llama3.2-3B-
Instruct, Llama3.1-8B-Instruct, and Qwen2.5-32B-
Instruct. Each model was fine-tuned on incremen-
tally scaled subsets of training data, ranging from
minimal to full data regimes. Performance was
evaluated on the BFCL-Live benchmark to track
accuracy progression as a function of data volume,
as shown in Figure 9. The results demonstrate that,
across all three model scales, the marginal gains
from additional training data follow a decaying
trend, that is, performance improvements dimin-
ish as data scale increases, indicating consistent
saturation behavior regardless of model size. This
suggests that while larger models achieve higher
absolute performance, their relative gains from scal-
ing data during SFT exhibit predictable attenuation,
reinforcing the importance of data efficiency strate-
gies even at large scales.
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Figure 9: Training gain dynamics generalize across
model sizes.

B.4 Preference Algorithm Analysis
In iterative reinforcement learning, we also explore
different preference optimization algorithms. Be-
sides the widely used DPO (Rafailov et al., 2024),
we also explored SimPO (Meng et al., 2024), IPO
(Azar et al., 2024), and ORPO (Hong et al., 2024).
DPO reparameterizes the reward function to learn
a policy model from preference data directly. IPO
is a theoretically grounded approach method that
avoids DPO’s assumption that pairwise preferences
can be replaced with pointwise rewards. ORPO
introduces a reference-model-free odd ratio term
to directly contrast winning and losing responses

with the policy model and jointly trains with the
SFT objective. SimPO aligns the reference-free
reward function in the preference optimization ob-
jective with the generation metric. For fair compar-
isons, we start these algorithms from the same SFT
checkpoints, the reference model is initialized as
the policy model.

For these algorithms, we conducted a thorough
search for the optimal hyperparameter settings to
ensure a fair comparison. The results of hyper-
parameter settings are shown in Table 9. The re-
sults of different preference optimization algorithm
with optimal hyperparameter settings are shown
in Figure 10. From the result, we find iTool with
SimDPO achieved the best performance. Differ-
ent preference algorithms do not create significant
performance gaps except for ORPO.
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Figure 10: The performance iTool using different pref-
erence optimization algorithms on BFCL.

C Case Analysis

C.1 An Example of Preference Pair
Table 11 illustrates a preference pair example. The
chosen response correctly employs the "Get Trend-
ing Result" tool with suitable parameters for the
user’s request. Conversely, the rejected response
is improperly formatted, omits necessary paren-
theses, and incorrectly assigns the value 1 to the
timeframe parameter, showcasing an erroneous
application of the tool.

Table 12 presents another case of preference
pair, sampled during the MCTS research tree as
depicted in Figure 11. In this scenario, the user’s
query lacks the specific details necessary for the
functions mentioned (i.e., reviews for ’reviewAn-
alytics.extractSentiment’ and metrics for ’social-
Trends.fetchTrendingProducts’). The assistant’s
chosen response correctly identifies the need for
these parameter values, whereas the rejected re-
sponse incorrectly hallucinates when recognizing
these parameters.
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Method Objective Hyperparameters Best Setting

DPO − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ [0.01, 0.05, 0.1] β = 0.1
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 3e− 7

IPO
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x) −

1
2τ

)2 τ ∈ [0.01, 0.05, 0.1] τ = 0.1
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 1e− 6

ORPO − log pθ(yw|x)− λ log σ
(
log pθ(yw|x)

1−pθ(yw|x) − log pθ(yl|x)
1−pθ(yl|x)

)
, λ ∈ [0.01, 0.05, 0.1] λ = 0.1

where pθ(y|x) = exp
(

1
|y| log πθ(y|x)

)
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 3e− 7

SimPO − log σ
(

β
|yw| log πθ(yw|x)− β

|yl| log πθ(yl|x)− γ
) β ∈ [2.0, 2.5] β = 2.5

γ ∈ [0.5, 1.0, 1.4] γ = 0.5
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 1e− 6

Table 9: The search for optimal hyperparameter settings of different preference optimization algorithms.

Prompt 1: Eval Prompt

Ground Truth Response: {gt_ans}
Generated Response by Model: {response}

User Instruction:
Please assess the quality of the generated response relative to the ground truth response.
Note: A generated response that is a fragment of the ground truth response is also excellent.

Evaluation Criteria:
1. Function Name: Is the name of all the function called correct?
2. Parameter Count: Is the number of parameters for all the function correct?
3. Parameter Names: Are the names of all the parameters for the function correct?
4. Parameter Value/Types: Are the value/types of all the parameters for the function correct?
5. Semantic Similarity: Is the generated response semantically close to the ground truth response?

Please directly choose from the following options to judge the overall quality:
(A) Excellent: The generated response meets all criteria and is almost identical to the ground truth response.
(B) Acceptable: The generated response meets most criteria but has minor discrepancies.
(C) Fair: The generated response meets some criteria but has significant issues.
(D) Poor: The generated response fails to meet most or all criteria.

ASSISTANT: The option of overall quality is
You are an AI specialized in tool use.
Your task is to assess the potential veracity of {placeholder}.

Table 10: The Eval Prompt for self-evaluation in Eq. 7 of Section 3.2.

Figure 11: The illustration of example 2 in Table 12 for preference pair derived from MCTS. The floating-point
values of nodes denote the Q-value in MCTS.
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Example 1

Tool list [{
"name": "Get Trending Result",
"description": "Retrieves trending search results from Google Trends for

the United States.",
"parameters": {

"type": "dict",
"properties": {
"category": {

"description": "The category of trending results (e.g., news, entertainment, etc.)",
"type": "string"

},
"timeframe": {

"description": "The timeframe for which to retrieve trending results (e.g., today,
this week, etc.)",

"type": "string"
}

},
"required": ["category"]

},
"required": null

},{
"name": "Get Server Time",
"description": "Returns the current server time in a standardized format",
"parameters": {

"type": "dict",
"properties": {},
"required": []

},
"required": null

}]

User Can you tell me the latest trending topics in entertainment today?

Assistant

chosen [Get Trending Result(category="entertainment", timeframe="today")]
rejected [Get Trending Result category="entertainment", timeframe="1"]

Table 11: The example 1 of preference pair derived from MCTS.
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Example 2

Tool list [{
"name": "fetchTrendingProducts",
"description": "Fetches trending products based on reviews and engagement metrics.",
"parameters": {

"metrics": {
"type": "array",
"items": {
"productID": "string",
"engagementScore": {

"likes": "int",
"shares": "int"

} } } }
},{

"name": "extractSentiment",
"description": "Extracts sentiment scores from reviews.",
"parameters": {

"reviews": {
"type": "array",
"items": {
"reviewText": "string",
"reviewDate": {

"type": "string",
"pattern": "^\\w+ \\d{1,2}, \\d{4}$"

} } } }
}]

User I’m running a marketing campaign and need sentiment analysis from this month’s reviews of our main product.
We had 300 likes and 50 shares yesterday. Please analyze trends and sentiment for our competitor’s product
too; they had 450 likes and 75 shares.

Assistant
chosen You need to provide the reviews for the sentiment analysis of the flagship product and

the competitor’s product.
rejected [reviewAnalytics.extractSentiment(reviews={"reviewText": "product_name ticks the check

for everything."}),

Table 12: The example 2 of preference pair derived from MCTS.
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