
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 13496–13523
November 4-9, 2025 ©2025 Association for Computational Linguistics

ASKTOACT: Enhancing LLMs Tool Use via
Self-Correcting Clarification

Xuan Zhang1, Yongliang Shen1†, Zhe Zheng1, Linjuan Wu1, Wenqi Zhang1,
Yuchen Yan1, Qiuying Peng2, Jun Wang2, Weiming Lu1†

1Zhejiang University
2OPPO Research Institute

{zhangx0513, syl, luwm}@zju.edu.cn, {pengqiuying, wangjun7}@oppo.com

Abstract
Large language models (LLMs) have demon-
strated remarkable capabilities in tool learn-
ing. In real-world scenarios, user queries are
often ambiguous and incomplete, requiring ef-
fective clarification. However, existing inter-
active clarification approaches face two crit-
ical limitations: reliance on manually con-
structed datasets, which inherently constrains
training data scale and diversity, and lack
of error correction mechanisms during multi-
turn clarification, leading to error accumula-
tion that compromises both accuracy and ef-
ficiency. We present ASKTOACT, which
addresses these challenges by exploiting the
structural mapping between queries and their
tool invocation solutions. Our key insight
is that tool parameters naturally represent ex-
plicit user intents. By systematically re-
moving key parameters from queries while
retaining them as ground truth, we enable
automated construction of high-quality train-
ing data. We further enhance model robust-
ness through error-correction pairs and selec-
tive masking, enabling dynamic error detec-
tion during clarification interactions. Com-
prehensive experiments demonstrate that ASK-
TOACT significantly outperforms existing ap-
proaches, achieving above 57% accuracy in
recovering critical unspecified intents and en-
hancing clarification efficiency by an average
of 10.46% while maintaining high accuracy
in tool invocation. Our framework exhibits
robust performance across different model ar-
chitectures and successfully generalizes to en-
tirely unseen APIs without additional training,
achieving performance comparable to GPT-
4o with substantially fewer computational re-
sources.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in various tasks, from code

†
Corresponding author.

generation to complex reasoning (Nakano et al.,
2021; Chen et al., 2021; Komeili et al., 2022; Wei
et al., 2022). A particularly promising direction is
their ability to interact with external tools through
API calls, which significantly expands their prac-
tical applications (Schick et al., 2023; Hao et al.,
2023; Qin et al., 2024; Shim et al., 2025). This has
inspired numerous frameworks focusing on tool-
augmented LLMs, including Toolformer (Schick
et al., 2023), ToolLLaMA (Qin et al., 2024), and
Gorilla (Patil et al., 2023).

However, current tool learning frameworks (Li
et al., 2023; Song et al., 2023; Schick et al., 2023;
Qin et al., 2024) operate under an idealistic as-
sumption that user queries are always explicit and
unambiguous. This diverges significantly from real-
world scenarios where users often provide incom-
plete, ambiguous, or imprecise queries. Such un-
specified queries pose unique challenges in tool
learning scenarios, as API calls require precise
parameters and cannot tolerate ambiguity (Wang
et al., 2024b). When faced with unspecified queries,
LLMs tend to either arbitrarily generate missing pa-
rameters or remain unknown, leading to potential
risks in tool invocation.

This raises a critical research question: How
can we enhance LLMs’ ability to handle unspeci-
fied queries in tool learning scenarios while ensur-
ing accurate and reliable tool invocation? Recent
works (Zhang and Choi, 2023; Qian et al., 2024;
Wang et al., 2024b) have introduced interactive
clarification approaches, but face two fundamental
limitations. First, they rely heavily on manually
constructed datasets for training (Qian et al., 2024;
Wang et al., 2024b). Creating these datasets re-
quires human annotators to craft queries and clari-
fications, a process that inherently limits scale and
diversity. The resulting datasets capture only a
narrow range of ambiguity patterns, reducing their
effectiveness with diverse real-world queries. Sec-
ond, as shown in Figure 1, these approaches lack

13496

① API Retrieved

Help me find
the nearest
McDonald's.

② API Call:
searchNearestMcDonalds()

WRONG

(a)

① API Retrieved

Help me find
the nearest
McDonald's.

Are you looking for a McDonald's
with a drive-thru or inside a mall?

Not sure...

②

③ API Call:
searchNearestMcDonalds()

WRONG

(b)

① API Retrieved

Help me find
the nearest
McDonald's.

⑤ API Call: searchNearestMcDonalds
(latitude=41.8781,longitude=-87.6298)

CORRECT

Are you looking for a McDonald's

with a drive-thru or inside a mall?

Not sure...②

Could you please share your
current latitude and longitude?

Latitude: 41.8781, Longitude: -87.6298

④

③ Self-Correction

Sorry, I made a mistake.
This question is not
related to using the APIs
to resolve the user's task,
so I will ask something
else.

(c)

Figure 1: Comparison of query handling approaches: (a) direct API calls without clarification, (b) basic clarifica-
tion without error recovery, and (c) our self-correcting ASKTOACT framework.

robust error handling during multi-turn clarifica-
tion. Existing models train on datasets with only
perfect clarification sequences. In reality, models
often request already-provided information, follow
irrelevant paths, or miss unspecified details. With-
out error recovery training, these issues accumulate
throughout dialogues, reducing efficiency and com-
promising tool invocation quality.

We propose ASKTOACT, a self-correcting clar-
ification framework that systematically addresses
these limitations. Our key insight is that tool param-
eters naturally represent explicit user intents, creat-
ing an opportunity for automated data generation.
We develop an automated pipeline that strategically
removes key parameters from complete queries in
existing datasets, generating diverse unspecified
queries with built-in ground truth. Using these
queries, we construct rich clarification dialogues
demonstrating effective intent elicitation. To en-
able robust error handling during interactions, we
augment training data with carefully designed error-
correction pairs that simulate realistic mistakes and
their solutions. We implement selective masking
during training to prevent learning negative patterns
while enhancing error detection abilities.

Through comprehensive experiments, we
demonstrate that ASKTOACT achieves several
significant improvements: (1) correctly identifies
unspecified queries and recovers more than 57%
of critical unspecified intents, while significantly
enhances clarification efficiency by an average
of 10.46% compared to the base model; (2)
achieves strong performance in end-to-end tool
invocation, with over 81% tool selection accuracy
and over 68% parameter resolution accuracy;
(3) exhibits robust performance across different
model architectures, and successfully generalizes
to entirely unseen APIs; and (4) delivers perfor-
mance comparable to GPT-4o while requiring
substantially fewer computational resources.

Our work makes three main contributions:

• We introduce an automated pipeline for gener-
ating high-quality intent clarification datasets,
addressing the scalability limitations of man-
ual annotation.

• We develop a self-correction mechanism that
enables models to dynamically detect and cor-
rect potential errors during clarification inter-
actions.

• Our experimental results demonstrate that
our method not only achieves state-of-the-art
(SOTA) performance but also shows strong
generalization ability when handling queries
requiring the use of unseen APIs.

2 Method

Tool learning faces a fundamental challenge: while
API calls require precise parameters, real-world
queries are often ambiguous. To bridge this gap,
we propose ASKTOACT, a self-correcting clari-
fication framework. Our method consists of two
key components: (1) an automated data construc-
tion pipeline for generating diverse intent calrifica-
tion data (§2.1), and (2) a self-correction training
paradigm for dynamic error detection and correc-
tion (§2.2). The core insight is that tool parameters
naturally represent explicit user intents, making
them ideal anchors for both data generation and
error correction. Figure 2 illustrates the overall
framework architecture.

2.1 Intent Clarification Dataset Curation
The foundation of our method is a systematic
pipeline for constructing multi-turn clarification
data. As shown in Figure 2, the pipeline proceeds
in two steps: generating unspecified queries and
subsequently constructing clarification dialogues.

13497

User: I want to order some food on Uber Eats to 123 Main St.,
and also need to book a ride to the same address.
Assistant: The task can be decomposed into 2 steps for solving.
Step 1: Order some food on Uber Eats to 123 Main St. using
“order_food_delivery” API. Step 2: Book a ride to the same
address using “order_taxi” API. The information I currently have is:
In step 1, the parameter “food” for API “order_food_delivery” lacks
a clear value, the parameter “platform” for API
“order_food_delivery” has a value of “Uber Eats”, the parameter
“location” for API “order_food_delivery” has a value of “123 Main
St.”. In step 2, the parameter “platform” for API “order_taxi” lacks
a clear value, the parameter “location” for API “order_taxi” has a
value of “123 Main St.”. Could you please specify what food you
would like to order on Uber Eats?
User: Sure! The answer is “fried chicken”. Let me know if you
have more questions!
Assistant: Now I know that the parameter “food” for API
“order_food_delivery” has a value of "fried chicken". Which ride-
sharing platform would you prefer to use for your ride?
User: The answer is: Lyft.
Assistant: Now I know that the parameter “platform” for API
“order_taxi” has a value of “Lyft”. I have all the information needed
and can now call the relevant APIs to solve the task. The solution
path is as follows: [{"task": "order_food_delivery", parameters:
[{"name": "food", "value": “fried chicken”}, {"name": "platform",
"value": "Uber Eats"}, {"name": "location", "value": "123 Main
St."}]}, {"task": "order_taxi", parameters: [{"name": "platform",
"value": “Lyft”}, {"name": "location", "value": "123 Main St."}]}]

e

c

1

2

...

n

S

q

+ Historical Dialogue

+ Correct Behavior in Original Dialogue

Error Type

Correction
Template

Correction
Generation

Error
GenerationPOS

2aug

Injection

Selective Masking Fine-tuning

Self-Correction Training

I want to order some
food on Uber Eats to
123 Main St., and also
need to book a ride to
the same address.

Clarification Dialogue Construction

User Query Tool Set

API

Parameter

Subtask

Remove or not

User
Response

Parameter
Extraction

YES

Tool Invocation

Dialogue AssemblyUser Query Tool Set

Remove or not

Unspecified Query Generation

order_food_delivery(food=fried chicken,
platform=Uber Eats,
location=123 Main St.)

order_taxi(platform=Lyft,
location=123 Main St.)

I want to order fried chicken on Uber Eats to
be delivered to 123 Main St., and also need
to book a ride on Lyft to the same address.

Quality
Control

Similarity Check

fried chicken

some food

Lyft

NULLParameter Sampling

Parameter
Removal

Task Decomposition

Clarification
Generation

User: I want to order some food on Uber Eats to 123 Main St., and also
need to book a ride to the same address.
Assistant: The task can be decomposed into 2 steps for solving. Step 1:
Order some food on Uber Eats to 123 Main St. using “order_food_delivery”
API. Step 2: Book a ride to the same address using “order_taxi” API. The
information I currently have is: In step 1, the parameter “food” for API
“order_food_delivery” lacks a clear value, the parameter “platform” for API
“order_food_delivery” has a value of “Uber Eats”, the parameter “location”
for API “order_food_delivery” has a value of “123 Main St.”. In step 2, the
parameter “platform” for API “order_taxi” lacks a clear value, the
parameter “location” for API “order_taxi” has a value of “123 Main St.”.
Could you please specify what food you would like to order on Uber Eats?
User: Sure! The answer is “fried chicken”. Let me know if you have more
questions!
Assistant: Now I know that the parameter “food” for API
“order_food_delivery” has a value of "fried chicken".
<SOE> Where would you like to be dropped off? <EOE>
Sorry, I made a mistake. The parameter “location” for API “order_taxi” has
a value of “123 Main St.”, which was clearly stated in the user's task.
Therefore, I don't need to ask any further questions. Which ride-sharing
platform would you prefer to use for your ride?
User: The answer is: Lyft.
Assistant: Now I know that the parameter “platform” for API “order_taxi”
has a value of “Lyft”. I have all the information needed and can now call
the relevant APIs to solve the task. The solution path is as follows: [{"task":
"order_food_delivery", parameters: [{"name": "food", "value": “fried
chicken”}, {"name": "platform", "value": "Uber Eats"}, {"name": "location",
"value": "123 Main St."}]}, {"task": "order_taxi", parameters: [{"name":
"platform", "value": “Lyft”}, {"name": "location", "value": "123 Main St."}]}]

Human Verification

Tool Learning Dataset

Figure 2: Overview of ASKTOACT framework. Top: Dataset construction pipeline, consisting of (1) unspecified
query generation by selecting and removing key parameters (e.g., "fried chicken" and "Lyft") from original queries,
and (2) dialogue construction through task decomposition, clarification generation, and dialogue assembly. Bottom:
Self-correction training through dialogue augmentation and selective masking fine-tuning.

2.1.1 Unspecified Query Generation

A key challenge in building intent clarification sys-
tems is obtaining realistic examples of ambiguous
queries paired with their complete intents. We ad-
dress this through a novel reverse-engineering ap-
proach that leverages existing tool learning datasets.
Each instance in these datasets consists of a fully
specified query q and a corresponding tool invo-
cation solution S = {(fi, Pi) | i = 1, . . . , n},
where fi denotes the API and Pi = {p1i , p2i , . . . }
represents its parameter set. We systematically
transform q into an unspecified query q′ while pre-
serving the ground truth information necessary for
subsequent dialogue construction and evaluation.

Parameter Sampling The first step in our
pipeline is to determine which parameters in S to
remove from the original query q. We implement a
stratified sampling approach (see Appendix C.1.1)
that enables sampling across different API domains
and parameter counts. For each query, we randomly

select parameters according to one of four com-
plexity levels: (1) fully specified, where all param-
eters are retained, (2) single-API single-parameter,
where one parameter from one API call is removed,
(3) single-API multi-parameter, where multiple pa-
rameters from the same API call are removed, and
(4) multi-API multi-parameter, where parameters
are removed across multiple API calls. This strati-
fication ensures our dataset captures the full spec-
trum of query ambiguity encountered in real-world
scenarios, from basic single-slot ambiguities to
complex multi-faceted ambiguities.

Parameter Removal Once the removed parame-
ter set P ′ is determined, we apply two complemen-
tary strategies to transform the original query q into
an unspecified form. The first strategy, complete re-
moval, entirely eliminates parameter values from q
while preserving grammatical integrity. The second
strategy, semantic abstraction, replaces specific pa-
rameter values with abstract expressions that ne-

13498

cessitate further clarification. For each parameter
p ∈ P ′, we maintain a mappingM : p→ v′, where
v′ represents the transformed value after parameter
removal or abstraction. By recording the values
before and after the transformation, we can more
precisely track how explicit user intent becomes
unspecified during the process of unspecified query
generation. This record plays an important role in
quality control, helping us ensure the quality of
the generated query. Also, it guides subsequent
dialogue construction and provides ground truth
for evaluation. The implementation details and the
format of the transformation record are provided in
Appendix C.1.2 and Appendix C.1.3, respectively.

Quality Control To ensure generation quality,
we employ a dual-stage verification mechanism.
We first compute semantic similarity between orig-
inal values and their transformations using Sen-
tence Transformer (Reimers and Gurevych, 2019).
Queries with similarity scores exceeding 0.95 are
filtered out to ensure sufficient semantic alteration.
Then, we conduct human verification on generated
queries (see Appendix C.1.4). Through this pro-
cess, we constructed 35,261 high-quality unspeci-
fied queries, as shown in Table 1.

2.1.2 Clarification Dialogue Construction
Based on the generated unspecified queries, we
propose an automated method to construct train-
ing dialogue data that simulate multi-turn clarifi-
cation. The dialogue construction process—from
task decomposition, clarification generation to fi-
nal dialogue assembly—is essential for generating
coherent and effective clarification interactions.

Task Decomposition The foundation of effec-
tive clarification lies in identifying what informa-
tion needs to be clarified. Given an unspecified
query q′ and its tool invocation solution S, we
first decompose the query into a sequence of sub-
tasks. Each subtask corresponds to an API call
in S. For each API call, we perform parameter
analysis to identify two categories: (1) parameters
already specified in q′, and (2) parameters requiring
clarification. This structured decomposition guides
the subsequent clarification process, ensuring all
necessary information is systematically obtained.

Clarification Generation Building on the task
decomposition, we generate interaction turns for
each parameter that requires clarification, follow-
ing the API call order defined in S. We construct

each clarification turn through a three-step process,
with the goal of maximizing clarification effective-
ness and preserving natural conversational flow.
First, we generate a clarification question qc target-
ing the unspecified parameter. Next, we simulate
the user’s reply using diverse response templates
that vary in verbosity and conversational tone. Fi-
nally, we generate a confirmation statement sum-
marizing the clarified information, which serves as
an explicit reference for subsequent turns.

Dialogue Assembly The final step brings to-
gether all components into a coherent dialogue
structure. We assemble the generated elements se-
quentially while maintaining natural conversation
flow through consistent reference to previously clar-
ified information and smooth transitions between
parameter-related clarifications. Special attention
is paid to parameter interdependencies, ensuring
that information is requested in a logical order that
reflects real-world dialogue patterns. The dialogue
concludes with the complete tool invocation solu-
tion S, providing a clear connection between the
clarification process and its ultimate goal. Detailed
templates and prompting strategies that support this
assembly process are provided in Appendix C.2.

2.2 Self-Correction Training
While constructing high-quality training data is es-
sential, the dynamic nature of clarification interac-
tions requires models to detect and correct potential
errors in real-time. We develop a systematic train-
ing paradigm that combines error-correction aug-
mentation with specialized training strategies to en-
hance model robustness and enable self-correction.

Error Type Analysis Through comprehensive
analysis of clarification interactions generated by
the model in response to unspecified queries, we
identify five primary error types that impair the clar-
ification process in complementary ways. Clearly
Stated Intent Clarification occurs when the model
requests explicitly stated information, creating un-
necessary interaction turns. Imprecise Clarification
is characterized by questions that lack specificity,
often resulting in ambiguous user responses. Irrel-
evant Clarification emerges when the model poses
questions that diverge from the core intent. Redun-
dant Clarification arises when the model requests
information that has been previously clarified. In-
complete Clarification represents failure to identify
all parameters requiring clarification, leading to in-
complete tool invocation solutions. Understanding

13499

Dataset Train Test Avg. No. APIs Avg. No. Params Avg. No. Unspecified Intents

xlam-IC 29,821 4,456 1.58 2.49 1.32
Taskbench-IC - 984 1.75 2.35 1.30

Total 29,821 5,440 1.59 2.49 1.32

Table 1: Datasets statistics. xlam-IC is generated from the xlam-function-calling-60k dataset (Liu et al., 2024)
which is used for training and testing. Taskbench-IC is generated from Taskbench (Shen et al., 2024) and is used
exclusively for OOD testing. Please refer to the Appendix B for more details about both datasets.

Error Type Count

Clearly Stated Intent Clarification 2,481
Imprecise Clarification 2,298
Irrelevant Clarification 2,251
Redundant Clarification 3,126
Incomplete Clarification 5,000

Total 15,156

Table 2: Augmented dialogue error types.

these patterns guides our error-correction strategy.

2.2.1 Error-Correction Augmentation
Building upon this error analysis, we introduce
an automated method to augment dialogues with
error-correction pairs. Given a dialogue d, we ran-
domly select an error type τk and determine an
injection position pos. We then generate the er-
ror instance using two strategies. For semantic
errors (Clearly Stated Intent, Imprecise, and Irrele-
vant), we employ GPT-4o with specialized prompts:
e = fgpt(d, τk, pos). For structural errors (Redun-
dant and Incomplete), we implement rule-based
algorithms: e = frule(d, τk, pos). Implementation
details are provided in Appendix D.1.

After generating error e, we construct a correc-
tion c using a template specific to the error type τk.
The resulting correction c explicitly states the error
type and identifies the correct behavior as the con-
tent at position pos in the original dialogue d. We
then inject these error-correction pair (e, c) into the
original dialogue d at the predetermined position
pos: d′ = inject(d, e, c, pos).

To ensure the validity of our error-correction
augmentation method, we conduct human verifica-
tion on augmented dialogues (see Appendix D.3).
Through this systematic process, we generated
15,156 augmented dialogues, as shown in Table 2.

2.2.2 Selective Masking Fine-tuning
To effectively utilize the augmented dialogues for
training while preventing the model from learn-
ing error patterns, we implement a selective mask-

ing mechanism during fine-tuning. We introduce
special tokens <SOE> and <EOE> to demarcate
error segments, and mask these segments during
loss computation. This approach allows the model
to learn error detection and correction patterns
while avoiding the reinforcement of error behav-
iors. Through this training process, we equip the
model with the ability to dynamically identify po-
tential errors and apply appropriate corrections dur-
ing clarification interactions.

3 Experiment

3.1 Experimental Settings
Training Details We construct our training data
from the xlam-IC dialogue dataset, where 30%
of the samples are replaced with error-correction
augmented dialogues. We explore two adapta-
tion strategies for the Qwen2.5-7B-Instruct model:
LoRA (Hu et al., 2021) and full-parameter fine-
tuning. More details are provided in Appendix E.

Baselines For comprehensive comparison, we
evaluate representative tool-augmented LLMs,
including xLAM-7b-fc-r (trained on the xlam-
function-calling-60k dataset but without intent clar-
ification) (Liu et al., 2024), gorilla-openfunctions-
v2 (Patil et al., 2023), and ToolLLaMA-2-7b-v2
(Qin et al., 2024), as well as an intent clarifica-
tion model, Mistral-Interact (Qian et al., 2024). In
addition, we evaluate major LLM series, includ-
ing Mistral-7B-Instruct-v0.3, LLaMA (3-8B/70B-
Instruct), Qwen (2.5-7B/72B-Instruct), DeepSeek-
V3, Claude (3.5-Haiku/Sonnet), and GPT (3.5, 4,
4o-mini, 4o). All models use a standardized evalu-
ation prompt (see Appendix F.1).

3.2 Evaluation Framework
We develop an automated framework for systematic
evaluation on handling unspecified queries. The
framework employs an LLM to simulate user be-
havior. During interactions, the user-simulating
LLM judges whether clarification questions are rel-
evant to unspecified intents, and either provides the

13500

necessary information or indicates that it is unavail-
able. To better capture the complexity of real-world
human-LLM interactions, we configure the user-
simulating LLM with six personality types, each
exhibiting different response characteristics. Im-
plementation details are provided in Appendix F.2.

3.3 Metrics
We evaluate the models in two aspects: intent clar-
ification quality and tool invocation accuracy. For
intent clarification quality, we design four met-
rics. Intent Coverage Rate (ICR) measures the pro-
portion of successfully clarified intents among all
unspecified intents, while Clarification Efficiency
(CE) evaluates the success rate of clarification
across interaction rounds. We combine these mea-
sures into a Clarification Performance Score (CPS)
using a harmonic mean, similar to the F1-score
formulation. Additionally, we track Interaction
Rounds (IR) as the average number of clarification
rounds per query. For tool invocation accuracy, we
introduce three complementary metrics. Solution
Completion Rate (SCR) measures the proportion
of successfully generated tool invocation solutions,
providing an end-to-end assessment. Tool Selec-
tion Score (TSS) evaluates API selection accuracy
using an F1-score over selected and required APIs.
Parameter Resolution Score (PRS) assesses the ac-
curacy of parameter resolution through an F1-score
computation over API-parameter-value triples. The
details are provided in Appendix F.3.

3.4 Main Results
3.4.1 LLM-based Simulated Evaluation
The experimental results on the in-domain (ID) test
split of the xlam-IC dataset are presented in Table 3.
Our method demonstrates superior performance in
both intent clarification and tool invocation.

Intent Clarification Capability Both variants
of our method—ASKTOACT-LoRA-SFT-7B and
ASKTOACT-Full-SFT-7B—exhibits strong capa-
bilities in intent clarification. In particular, the
fully fine-tuned variant reaches a CPS of 65.92%,
closely approaching the performance of SOTA
LLMs such as GPT-4o. Meanwhile, the lightweight
LoRA variant also achieves competitive results
(ICR: 57.68%, CE: 63.41%, CPS: 60.41%), signifi-
cantly surpassing the specialized intent clarification
model Mistral-Interact.

Tool Invocation Accuracy Our method demon-
strates remarkable capabilities in translating clar-

ified intents into precise tool invocations. It
achieves SOTA performance across all evalua-
tion metrics (SCR > 96%, TSS > 81%, PRS >
68%), significantly surpasses all existing open-
source and closed-source LLMs. Compared to tool-
augmented LLMs such as xLAM-7b-fc-r, gorilla-
openfunctions-v2, and ToolLLaMA-2-7b-v2, our
method demonstrates substantial advantages. This
performance gap highlights the strength of integrat-
ing intent clarification with tool learning. Unlike
prior specialized models that are limited to unam-
biguous tool-use queries, our method effectively
resolves ambiguity in user queries, leading to sig-
nificantly improved tool invocation accuracy.

Further analyses—including cross-model trans-
ferability, the impact of augmentation proportion,
clarification complexity, and a case study of user
interaction styles—are presented in Appendix G.

3.4.2 Human-Interactive Evaluation
To assess the effectiveness of our method in
real-world interactions, we conducted a human-
interactive evaluation. We recruited 3 participants,
each asked to propose 10 unspecified tool-use
queries requiring clarification. These queries were
independently tested on the base model (Qwen2.5-
7B-Instruct) and our models (ASKTOACT-LoRA-
SFT-7B and ASKTOACT-Full-SFT-7B). Partici-
pants interacted with the models iteratively until
they obtained a satisfactory response.

As shown in Table 4, both variants of our
method outperform the base model across all met-
rics. Specifically, ASKTOACT-LoRA-SFT-7B im-
proves the Task Completion Rate by 6.66% and
the Intent Coverage Rate by 9.76%, while reducing
Interaction Rounds from 3.20 to 2.73. ASKTOACT-
Full-SFT-7B achieves further improvements, reach-
ing 96.67% Task Completion Rate and 85.37% In-
tent Coverage Rate, with fewer Interaction Rounds
(2.60). In addition, participants reported higher
satisfaction with both variants (4.40 and 4.61 vs.
3.80), confirming that our method leads to a more
effective and user-friendly interaction experience.
The consistency of results across both LLM-based
and human-interactive evaluations highlights the
effectiveness, robustness, and practical utility of
our method.

3.5 OOD Generalization

To assess the generalization ability of our method,
we test on Taskbench-IC, an out-of-domain (OOD)
set that consists of entirely unseen API domains.

13501

LLM Intent Clarification Quality Tool Invocation Accuracy

ICR↑ CE↑ CPS↑ IR↓ SCR↑ TSS↑ PRS↑
Closed-Source LLMs

Claude3.5-Haiku 49.60 35.05 41.07 2.30 84.20 62.74 52.12
Claude3.5-Sonnet 57.55 61.71 59.55 1.52 94.52 73.20 62.68
GPT-3.5 46.63 51.41 48.90 1.48 93.20 67.75 51.22
GPT-4 59.43 63.09 61.21 1.53 93.42 71.55 61.82
GPT-4o-Mini 57.95 56.43 57.18 1.67 92.98 71.82 61.52
GPT-4o 64.82 74.50 69.33 1.33 94.52 76.94 67.65

Open-Source LLMs

Mistral-7B-Instruct-v0.3 26.01 34.90 29.81 1.21 92.55 51.92 29.57
LLaMA3-8B-Instruct 44.47 25.33 32.27 2.86 80.92 51.57 42.54
LLaMA3-70B-Instruct 56.82 38.80 46.11 2.38 86.38 66.56 56.40
Qwen2.5-7B-Instruct 55.50 55.30 55.40 1.64 91.43 69.32 57.53
Qwen2.5-72B-Instruct 61.90 70.36 65.86 1.36 94.10 73.99 64.15
DeepSeek-V3 56.47 71.32 63.03 1.20 95.26 74.76 62.76

Specialized Models

xLAM-7b-fc-r 0.27 0.54 0.36 0.80 88.15 11.45 4.60
gorilla-openfunctions-v2 10.11 7.13 8.36 2.31 70.83 37.90 19.23
ToolLLaMA-2-7b-v2 1.89 1.34 1.57 2.29 58.77 18.29 5.01
Mistral-Interact 4.99 4.16 4.53 1.95 83.10 25.47 9.89

Ours

ASKTOACT-LoRA-SFT-7B 57.68 (↑2.18) 63.41 (↑8.11) 60.41 (↑5.01) 1.48 (↓0.16) 96.05 (↑4.62) 81.42 (↑12.10) 68.71 (↑11.18)
ASKTOACT-Full-SFT-7B 63.88 (↑8.38) 68.10 (↑12.80) 65.92 (↑10.52) 1.53 (↓0.11) 97.37 (↑5.94) 84.55 (↑15.23) 73.12 (↑15.59)

Table 3: Main results.

Metric Qwen2.5-7B-Instruct ASKTOACT-LoRA-SFT-7B ASKTOACT-Full-SFT-7B

Task Completion Rate (%) 86.67 93.33 (↑6.66) 96.67 (↑10.00)
Intent Coverage Rate (%) 65.85 75.61 (↑9.76) 85.37 (↑19.52)
Interaction Rounds 3.20 2.73 (↓0.47) 2.60 (↓0.60)
User Satisfaction Score (1–5) 3.80 4.40 (↑0.60) 4.61 (↑0.81)

Table 4: Human evaluation results. All metrics are averaged across participants.

As shown in Table 5, both the LoRA and fully
fine-tuned variants of our method demonstrate
strong performance. The LoRA variant achieves a
CPS of 60.23% and PRS of 64.81%, outperform-
ing all open-source baselines and even surpassing
some commercial closed-source models. The fully
fine-tuned variant pushes this further, reaching a
CPS of 62.96% and PRS of 69.45%, comparable
to GPT-4o. These results highlight that our method
generalizes effectively to unseen domains without
relying on memorization of training data. Instead,
it acquires transferable principles for intent clarifi-
cation and tool invocation.

3.6 Ablation Study

To assess the contribution of each component in our
method, we conducted a comprehensive ablation
study comparing three model configurations: (1)
ASKTOACT-LoRA-SFT-7B model, (2) a variant
without error-correction augmented dialogue data
(i.e., trained only with basic intent clarification data

using the same LoRA configurations), and (3) the
untrained base model (Qwen2.5-7B-Instruct). We
randomly selected 50 unspecified user queries from
the test set and computed the error rates for five
error types identified in §2.2.

As shown in Table 6, compared to the untrained
base model, the model trained solely on basic intent
clarification data significantly reduce all five error
types, confirming the effectiveness of clarification
training. Incorporating error-correction augmented
dialogues and self-correction training yields further
improvements. The Clearly Stated Intent Clarifi-
cation rate and Redundant Clarification rate both
decrease from 9.09% to 6.80%, suggesting that the
model becomes more effective at avoiding unnec-
essary clarification. While Imprecise and Irrelevant
Clarification rates show slight increases, likely due
to additional interaction turns introduced by self-
correction attempts, this trade-off is justified by the
substantial reduction in Incomplete Clarification
rate (from 38.00% to 32.00%), which is critical for

13502

LLM Intent Clarification Quality Tool Invocation Accuracy

ICR↑ CE↑ CPS↑ IR↓ SCR↑ TSS↑ PRS↑
Closed-Source LLMs

Claude3.5-Haiku 61.07 29.88 40.13 4.20 73.68 66.15 46.59
Claude3.5-Sonnet 69.74 38.10 49.28 3.29 84.96 76.05 54.09
GPT-3.5 44.19 44.42 44.30 1.72 98.27 89.28 45.50
GPT-4 63.60 44.73 52.52 2.57 93.90 90.52 63.26
GPT-4o-mini 70.86 49.60 58.35 2.63 95.22 89.63 69.44
GPT-4o 72.41 53.37 61.45 2.27 96.24 92.22 69.56

Open-Source LLMs

Mistral-7B-Instruct-v0.3 55.13 28.94 37.96 3.15 77.34 68.73 49.35
LLaMA3-8B-Instruct 62.81 29.99 40.59 3.66 78.86 69.22 45.52
LLaMA3-70B-Instruct 67.14 35.34 46.30 3.44 84.76 79.08 55.53
Qwen2.5-7B-Instruct 64.79 38.43 48.25 3.00 92.99 86.19 61.86
Qwen2.5-72B-Instruct 68.64 43.87 53.53 2.83 92.48 90.25 63.85
DeepSeek-V3 60.11 42.24 49.62 2.55 92.17 83.10 58.33

Specialized Models

xLAM-7b-fc-r 0.34 0.56 0.42 2.08 91.46 14.29 5.43
gorilla-openfunctions-v2 44.53 22.27 29.69 3.41 69.92 52.36 21.67
ToolLLaMA-2-7b-v2 2.76 2.25 2.48 2.19 98.98 42.65 2.07
Mistral-Interact 35.38 15.63 21.69 4.27 64.43 18.60 2.94

Ours

ASKTOACT-LoRA-SFT-7B 68.87 (↑4.08) 53.52 (↑15.09) 60.23 (↑11.98) 2.82 (↑0.18) 99.59 (↑6.63) 96.44 (↑10.25) 64.81 (↑2.95)
ASKTOACT-Full-SFT-7B 69.90 (↑5.11) 57.27 (↑18.84) 62.96 (↑14.71) 2.72 (↑0.28) 99.70 (↑6.64) 96.41 (↑10.22) 69.45 (↑7.59)

Table 5: OOD generalization performance comparison.

Method
Error Rate (%)

CPS↑ SCR↑ TSS↑ PRS↑Clearly Stated
Intent Clarification

Imprecise
Clarification

Irrelevant
Clarification

Redundant
Clarification

Incomplete
Clarification

ASKTOACT-LoRA-SFT-7B 6.80 11.65 8.74 6.80 32.00 61.51 96.00 81.63 69.50
w/o Error-Correction Augmented Dialogue Data 9.09 6.49 6.49 9.09 38.00 58.93 94.00 76.53 66.90
w/o Training (Base Model) 12.43 12.37 9.29 11.34 44.00 53.00 90.00 64.29 59.18

Table 6: Ablation study. The first four error types calculated as the proportion of interaction turns containing
specific errors among all interaction turns, while the last error type measures the proportion of queries in which
not all unspecified intents are successfully clarified.

enabling accurate tool invocation. These improve-
ments in clarification behavior are further reflected
in downstream performance. The PRS increases
from 59.18% to 66.90%, and finally to 69.50%,
indicating that the enhanced clarification quality
translates into more accurate tool invocation.

4 Related Work

Our work relates to three areas: tool learning, user
intent clarification, and self-correction. Tool learn-
ing equips LLMs with external capabilities but typ-
ically assumes explicit user intents. Intent clarifi-
cation addresses ambiguous queries, yet existing
datasets often rely on manual annotation. Self-
correction has shown promise in mathematical rea-
soning but remains underexplored for intent un-
derstanding. We unify these directions through
a self-correcting clarification framework. A full
review of related work is provided in Appendix A.

5 Conclusion

In this work, we presented ASKTOACT, a self-
correcting clarification framework for tool learn-
ing that addresses the critical challenges of data
scalability and error handling in clarification inter-
actions. Our key contribution lies in leveraging
the inherent structure of tool learning datasets to
enable automated construction of high-quality in-
tent clarification data, while introducing a novel
self-correction mechanism for robust clarification.
Experimental results demonstrate that our method
not only achieves superior performance in intent
clarification and tool invocation but also exhibits
strong generalization to unseen APIs and diverse
model architectures. We hope that our work will
provide valuable insights for developing more ef-
fective and reliable intent clarification mechanisms
in human-LLM interaction systems.

13503

Limitations

While our work demonstrates promising results
in handling unspecified queries, several important
limitations warrant discussion:

Dataset and Training Our method heavily relies
on existing tool learning datasets, which may not
fully capture the diversity and complexity of real-
world user intents. The parameter removal process,
although systematic, might not perfectly simulate
natural query ambiguity patterns. Additionally, our
current approach to error-correction augmentation
focuses on pre-defined error types, potentially miss-
ing other important error patterns that emerge in
real-world interactions.

Interaction Dynamics We have not yet explored
scenarios where intents must be inferred from pre-
vious tool invocation results, limiting our frame-
work’s ability to handle context-dependent queries.

Evaluation Limitations While our multi-level
evaluation framework provides comprehensive as-
sessment, it may not fully capture the complexity
of real-world deployment scenarios, particularly in
terms of user patience, time constraints, and vary-
ing expertise levels. The current metrics might not
sufficiently measure the user experience aspects of
the clarification process.

Ethics Statement

We acknowledge that all authors are informed
about and adhere to the ACL Code of Ethics and
the Code of Conduct.

Use of AI-Generated Content In our research,
we utilize LLMs to generate intent clarification dia-
logues based on existing tool learning datasets. All
AI-generated content has been thoroughly verified
by the authors to ensure quality and appropriate-
ness. We have implemented rigorous quality con-
trol mechanisms to filter out inappropriate or low-
quality generations. The paper clearly discloses all
instances where AI systems contributed to content
generation.

Data Sources The tool learning datasets used in
our experiments are derived from publicly avail-
able sources, including open-source repositories
and publicly released benchmarks. We have made
reasonable efforts to ensure that these data sources
do not contain personally identifiable information
or legally protected content. However, we cannot

guarantee that they are entirely free from socially
harmful or biased language. Any potential biases in
the original datasets may propagate to our results.

Broader Impact Our work aims to enhance mod-
els’ ability to handle ambiguous user queries in
tool-use scenarios. This may extend the applica-
bility of AI systems to a wider range of real-world
scenarios. However, such improvements in intent
clarification and tool-use capabilities could also en-
able models to act with limited human oversight,
posing both opportunities and risks depending on
the deployment context.

Acknowledgments

This work is supported by the National Natu-
ral Science Foundation of China (No.62376245),
the Key Research and Development Program
of Zhejiang Province, China (No.2024C01034),
the Fundamental Research Funds for the Cen-
tral Universities (226-2024-00170), National Key
Research and Development Project of China
(No.2018AAA0101900), and MOE Engineering
Research Center of Digital Library.

References
Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Ger-

stenberg, and Noah D Goodman. 2024. Star-gate:
Teaching language models to ask clarifying ques-
tions. arXiv preprint arXiv:2403.19154.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo
Baldassari, Andrew White, and Philippe Schwaller.
2023. Augmenting large language models with
chemistry tools. In NeurIPS 2023 AI for Science
Workshop.

Hongqiao Chen, Kexun Zhang, Lei Li, and
William Yang Wang. 2023. Tooldec: Syntax
error-free and generalizable tool use for LLMs
via finite-state decoding. In The 3rd Workshop on
Mathematical Reasoning and AI at NeurIPS’23.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong,
Jie Tang, Jayanth Srinivasa, Hugo Latapie, and
Yu Su. 2024. Middleware for LLMs: Tools are in-
strumental for language agents in complex environ-
ments. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 7646–7663, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

13504

https://openreview.net/forum?id=wdGIL6lx3l
https://openreview.net/forum?id=wdGIL6lx3l
https://openreview.net/forum?id=gUJLxVpWi2
https://openreview.net/forum?id=gUJLxVpWi2
https://openreview.net/forum?id=gUJLxVpWi2
https://doi.org/10.18653/v1/2024.emnlp-main.436
https://doi.org/10.18653/v1/2024.emnlp-main.436
https://doi.org/10.18653/v1/2024.emnlp-main.436

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. In
Advances in Neural Information Processing Systems,
volume 36, pages 45870–45894. Curran Associates,
Inc.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank
adaptation of large language models. Preprint,
arXiv:2106.09685.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2023.
Large language models can self-improve. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1051–
1068, Singapore. Association for Computational
Linguistics.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024a. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, and Lichao Sun. 2024b.
Metatool benchmark for large language models: De-
ciding whether to use tools and which to use. In The
Twelfth International Conference on Learning Rep-
resentations.

Tatsuro Inaba, Hirokazu Kiyomaru, Fei Cheng, and
Sadao Kurohashi. 2023. MultiTool-CoT: GPT-3
can use multiple external tools with chain of thought
prompting. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 1522–
1532, Toronto, Canada. Association for Computa-
tional Linguistics.

Mojtaba Komeili, Kurt Shuster, and Jason Weston.
2022. Internet-augmented dialogue generation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 8460–8478, Dublin, Ireland.
Association for Computational Linguistics.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. API-bank: A comprehensive
benchmark for tool-augmented LLMs. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 3102–3116,
Singapore. Association for Computational Linguis-
tics.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei
Yang, Silvio Savarese, Juan Carlos Niebles, Huan

Wang, Shelby Heinecke, and Caiming Xiong. 2024.
Apigen: Automated pipeline for generating verifi-
able and diverse function-calling datasets. In Ad-
vances in Neural Information Processing Systems,
volume 37, pages 54463–54482. Curran Associates,
Inc.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Kangyun Ning, Yisong Su, Xueqiang Lv, Yuanzhe
Zhang, Jian Liu, Kang Liu, and Jinan Xu. 2024.
Wtu-eval: A whether-or-not tool usage evaluation
benchmark for large language models. Preprint,
arXiv:2407.12823.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic
multi-step reasoning and tool-use for large language
models. Preprint, arXiv:2303.09014.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng,
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou,
Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2024.
Tell me more! towards implicit user intention under-
standing of language model driven agents. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1088–1113, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

13505

https://proceedings.neurips.cc/paper_files/paper/2023/file/8fd1a81c882cd45f64958da6284f4a3f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8fd1a81c882cd45f64958da6284f4a3f-Paper-Conference.pdf
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=R0c2qtalgG
https://openreview.net/forum?id=R0c2qtalgG
https://doi.org/10.18653/v1/2023.acl-short.130
https://doi.org/10.18653/v1/2023.acl-short.130
https://doi.org/10.18653/v1/2023.acl-short.130
https://doi.org/10.18653/v1/2022.acl-long.579
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://proceedings.neurips.cc/paper_files/paper/2024/file/61cce86d180b1184949e58939c4f983d-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/61cce86d180b1184949e58939c4f983d-Paper-Datasets_and_Benchmarks_Track.pdf
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://arxiv.org/abs/2407.12823
https://arxiv.org/abs/2407.12823
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014
https://doi.org/10.18653/v1/2024.acl-long.61
https://doi.org/10.18653/v1/2024.acl-long.61
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi,
Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas
Scialom. 2023. Toolformer: Language models can
teach themselves to use tools. In Advances in Neural
Information Processing Systems, volume 36, pages
68539–68551. Curran Associates, Inc.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
GPT: Solving AI tasks with chatGPT and its friends
in hugging face. In Thirty-seventh Conference on
Neural Information Processing Systems.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2024. Taskbench: Benchmark-
ing large language models for task automation. In
Advances in Neural Information Processing Systems,
volume 37, pages 4540–4574. Curran Associates,
Inc.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. Preprint,
arXiv:2301.12652.

Jeonghoon Shim, Gyuhyeon Seo, Cheongsu Lim, and
Yohan Jo. 2025. Tooldial: Multi-turn dialogue gen-
eration method for tool-augmented language mod-
els. In The Thirteenth International Conference on
Learning Representations.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng Li,
Ke Wang, Rong Yao, Ye Tian, and Sujian Li. 2023.
Restgpt: Connecting large language models with
real-world restful apis. Preprint, arXiv:2306.06624.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. Preprint,
arXiv:2306.05301.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, De-
hao Chen, Yuanzhong Xu, Zhifeng Chen, Adam
Roberts, Maarten Bosma, Vincent Zhao, Yanqi
Zhou, Chung-Ching Chang, Igor Krivokon, Will
Rusch, Marc Pickett, Pranesh Srinivasan, Laichee
Man, Kathleen Meier-Hellstern, Meredith Ringel
Morris, Tulsee Doshi, Renelito Delos Santos, Toju
Duke, Johnny Soraker, Ben Zevenbergen, Vinod-
kumar Prabhakaran, Mark Diaz, Ben Hutchinson,
Kristen Olson, Alejandra Molina, Erin Hoffman-
John, Josh Lee, Lora Aroyo, Ravi Rajakumar,
Alena Butryna, Matthew Lamm, Viktoriya Kuzmina,
Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray
Kurzweil, Blaise Aguera-Arcas, Claire Cui, Mar-
ian Croak, Ed Chi, and Quoc Le. 2022. Lamda:

Language models for dialog applications. Preprint,
arXiv:2201.08239.

Hongru Wang, Yujia Qin, Yankai Lin, Jeff Z Pan, and
Kam-Fai Wong. 2024a. Empowering large language
models: Tool learning for real-world interaction. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 2983–2986.

Wenxuan Wang, Juluan Shi, Chaozheng Wang, Cheryl
Lee, Youliang Yuan, Jen-tse Huang, and Michael R
Lyu. 2024b. Learning to ask: When llms meet un-
clear instruction. arXiv preprint arXiv:2409.00557.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Yuchen Yan, Jin Jiang, Yang Liu, Yixin Cao, Xin Xu,
Mengdi zhang, Xunliang Cai, and Jian Shao. 2024.
S3c-math: Spontaneous step-level self-correction
makes large language models better mathematical
reasoners. Preprint, arXiv:2409.01524.

Che Zhang, Zhenyang Xiao, Chengcheng Han, Yixin
Lian, and Yuejian Fang. 2024. Learning to check:
Unleashing potentials for self-correction in large lan-
guage models. Preprint, arXiv:2402.13035.

Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo
Li, and Zhi Jin. 2023. Toolcoder: Teach code gen-
eration models to use api search tools. Preprint,
arXiv:2305.04032.

Michael JQ Zhang and Eunsol Choi. 2023. Clarify
when necessary: Resolving ambiguity through inter-
action with lms. arXiv preprint arXiv:2311.09469.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Compu-
tational Linguistics.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolqa: A dataset for
llm question answering with external tools. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 50117–50143. Curran Associates,
Inc.

13506

https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://proceedings.neurips.cc/paper_files/paper/2024/file/085185ea97db31ae6dcac7497616fd3e-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/085185ea97db31ae6dcac7497616fd3e-Paper-Datasets_and_Benchmarks_Track.pdf
https://arxiv.org/abs/2301.12652
https://arxiv.org/abs/2301.12652
https://openreview.net/forum?id=J1J5eGJsKZ
https://openreview.net/forum?id=J1J5eGJsKZ
https://openreview.net/forum?id=J1J5eGJsKZ
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2409.01524
https://arxiv.org/abs/2409.01524
https://arxiv.org/abs/2409.01524
https://arxiv.org/abs/2402.13035
https://arxiv.org/abs/2402.13035
https://arxiv.org/abs/2402.13035
https://arxiv.org/abs/2305.04032
https://arxiv.org/abs/2305.04032
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://proceedings.neurips.cc/paper_files/paper/2023/file/9cb2a7495900f8b602cb10159246a016-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9cb2a7495900f8b602cb10159246a016-Paper-Datasets_and_Benchmarks.pdf

Appendix

A Related Work

A.1 Tool Learning

Tool learning can effectively alleviate the inher-
ent limitations of LLMs through dynamic interac-
tion with external tools (Schick et al., 2023; Tang
et al., 2023; Shen et al., 2023; Qin et al., 2024;
Wang et al., 2024a). While LLMs acquire lim-
ited knowledge during the pre-training phase, tools
such as integrated search engines (Nakano et al.,
2021; Komeili et al., 2022; Schick et al., 2023;
Zhang et al., 2023; Shi et al., 2023; Paranjape et al.,
2023) and databases (Thoppilan et al., 2022; Patil
et al., 2023; Hao et al., 2023; Zhuang et al., 2023;
Chen et al., 2023; Gu et al., 2024) enable real-time
access to up-to-date information beyond the train-
ing data. In addition, LLMs often struggle with
complex mathematical operations, code generation,
and domain-specific tasks (Inaba et al., 2023; Bran
et al., 2023), which can be enhanced through dedi-
cated tools.

Existing evaluation benchmarks for reliable tool
usage (Huang et al., 2024b; Patil et al., 2023; Ning
et al., 2024) focus on explicit and unambiguous
user queries, leaving the challenges of handling
unspecified intents in real-world scenarios largely
unexplored.

A.2 User Intent Clarification

When interacting with users, understanding user in-
tents is crucial, especially when intents are implicit
or unspecified. Zhang and Choi (2023) shows that
unspecified user intents in queries should be clari-
fied through interaction. The STaR-GATE frame-
work (Andukuri et al., 2024) introduces a system-
atic approach to question formulation by simulating
diverse clarification scenarios. Qian et al. (2024)
applied several strategies in conversation record
construction and leveraged the generated data to
fine-tune the model, enhancing the ability to for-
mulate targeted questions.

However, the construction of high-quality
datasets for training and evaluation still remains
challenging. Qian et al. (2024) constructed a bench-
mark for daily scenarios, while Wang et al. (2024b)
focuses on tool learning scenarios, but they both
relied on manual annotation. Our work introduces
an automated pipeline for dataset construction, en-
abling better scalability.

A.3 Self-Correction Mechanism

Early work on self-correction (Huang et al., 2023;
Madaan et al., 2023) primarily focused on post-
correction, using feedback to improve model out-
puts after they are generated. However, Huang et al.
(2024a) found that in the absence of standardized
answers, such post-correction has limited effect.
This finding prompted a shift in research focus to
real-time self-correction, i.e., dynamically identi-
fying and correcting errors during the reasoning
process.

Self-correction has achieved success in math-
ematical reasoning, where Yan et al. (2024) and
Zhang et al. (2024) introduce step-level and multi-
granular correction strategies. We extend these
approaches to user intent clarification, enabling
real-time correction during the clarification pro-
cess.

B Datasets

Our dataset is constructed based on two existing
tool learning datasets: xlam-function-calling-60k
and TaskBench. We describe their characteristics
below.

xlam-function-calling-60k This dataset com-
prises functionally executable APIs extracted from
Python libraries and RESTful services, rather than
being manually defined. The APIs span 21 func-
tional categories, covering a broad range of do-
mains such as information retrieval, and compu-
tational tools. In total, the dataset contains 3,673
APIs and 60,000 samples. An example is shown
below:

{
"query": "List titles originally aired on

networks '1' and '8', released after 2010,
sorted by release date in descending order.",

"tools": [
{

"name": "list_titles",
"description": "Fetches a listing of

titles that match specified parameters from the
Watchmode API.",

"parameters": {
"genres": {

"description": "Filter
results to only include certain genre(s). Pass
in a single genre ID or multiple comma-separated
IDs. Default is '4,9'.",

"type": "str",
"default": "4,9"

},
"limit": {

"description": "Set how many
titles to return per page. Default and maximum
is 250.",

13507

"type": "int",
"default": "250"

},
"source_ids": {

"description": "Filter the
results to titles available on specific sources
by passing individual IDs or multiple comma-
separated IDs. Default is '23,206'. Note: Only a
single region can be set if this is populated.",

"type": "str",
"default": "23,206"

},
"source_types": {

"description": "Filter
results to only include titles available on
specific types of sources (e.g., subscription,
free). Default is 'sub,free'. Note: Only a
single region can be set if this is populated.",

"type": "str",
"default": "sub,free"

},
"types": {

"description": "Filter
results to only include titles available on
specific types of sources (e.g., subscription,
free). Default is 'sub,free'. Note: Only a
single region can be set if this is populated.",

"type": "str",
"default": "movie,tv_series"

},
"regions": {

"description": "Filter
results to only include sources active in
specific regions. Currently supported regions:
US, GB, CA, AU. Default is 'US'. Note: Only a
single region can be set if source_ids or source
_types are populated.",

"type": "str",
"default": "US"

},
"sort_by": {

"description": "Sort order
of results. Possible values include: relevance_
desc, relevance_asc, popularity_desc, popularity
_asc, release_date_desc, release_date_asc, title
_desc, title_asc. Default is 'relevance_desc'.",

"type": "str",
"default": "relevance_desc"

},
"page": {

"description": "Set the page
of results to return. Default is 1.",

"type": "int",
"default": "1"

},
"network_ids": {

"description": "Filter
results to titles that originally aired on
specific TV networks by passing individual IDs
or multiple comma-separated IDs. Default is
'1,8,12'.",

"type": "str",
"default": "1,8,12"

},
"release_date_start": {

"description": "Filter
results to only include titles released on or
after a specific date. Format: YYYYMMDD. Default
is 20010101.",

"type": "int",
"default": "20010101"

},
"release_date_end": {

"description": "Filter
results to only include titles released on or
before a specific date. Format: YYYYMMDD.
Default is 20201211.",

"type": "int",
"default": "20201211"

}
}

}
],
"answers": [

{
"task": "list_titles",
"arguments": [

{ "name": "network_ids", "value":
"1,8" },

{ "name": "release_date_start",
"value": 20110101 },

{ "name": "sort_by", "value": "
release_date_desc" }

]
}

]
}

Taskbench In contrast, TaskBench defines three
tool-use scenarios across distinct application do-
mains: (1) Hugging Face tools, simulating a subset
of model functionalities available on the Hugging
Face platform—such as summarization, translation,
and classification, with 23 APIs and 12,217 sam-
ples; (2) Multimedia tools, simulating representa-
tive functionalities of multimodal systems—such
as video editing and image transformation, with 40
APIs and 8,904 samples; (3) Daily Life APIs, sim-
ulating everyday user-facing applications—such as
ticket booking, food ordering and schedule man-
agement, with 40 APIs and 7,150 samples. All
APIs in TaskBench are manually constructed. Rep-
resentative examples from each domain are shown
below:

Hugging Face tools
{

"query": "I'm currently analyzing a
particular text, 'John works at Google in
Mountain View, California.' Can you assist me in
identifying the named entities and marking the
part-of-speech tags within this text?",

"tools": [
{

"id": "Token Classification",
"desc": "Token classification is a

natural language understanding task in which a
label is assigned to some tokens in a text. Some
popular token classification subtasks are Named
Entity Recognition (NER) and Part-of-Speech (
PoS) tagging. NER models could be trained to
identify specific entities in a text, such as

13508

dates, individuals and places; and PoS tagging
would identify, for example, which words in a
text are verbs, nouns, and punctuation marks.",

"input-type": [
"text or text file"

],
"output-type": [

"text or text file"
]

}
],
"answers": [

{
"task": "Token Classification",
"arguments": [

"'John works at Google in
Mountain View, California.'"

]
}

]
}

Multimedia tools

{
"query": "I've recently conducted an

interview and have recorded it in 'interview.wav
' audio file. Can you assist me in transcribing
it to a text document, so I can refer to it
easily in the future? Besides, I'm dealing with
an article titled 'abc.txt' and I want to have a
fresh iteration of this text so that it will be
unique. Would you be able to employ the Article
Spinner tool to facilitate this?",

"tools": [
{

"id": "Audio-to-Text",
"desc": "Transcribes speech from an

audio file into text.",
"input-type": [

"audio or audio file"
],
"output-type": [

"text or text file"
]

},
{

"id": "Article Spinner",
"desc": "Rewrites a given article

using synonyms and syntax changes to create a
new, unique version.",

"input-type": [
"text or text file"

],
"output-type": [

"text or text file"
]

}
],
"answers": [

{
"task": "Audio-to-Text",
"arguments": [

"interview.wav"
]

},
{

"task": "Article Spinner",
"arguments": [

"abc.txt"
]

}
]

}

Daily Life APIs
{

"query": "I have a busy day ahead. Could you
assist me by logging into an online meeting
regarding 'Smart Home Devices'? After the
meeting, can you facilitate a video call with my
friend on +1234567666?",

"tools": [
{

"id": "attend_meeting_online",
"desc": "Attend a meeting online

about a specific topic",
"parameters": [

{
"name": "topic",
"type": "string",
"desc": "The topic of the

meeting"
}

]
},
{

"id": "make_video_call",
"desc": "Make a video call to a

specific phone number",
"parameters": [

{
"name": "phone_number",
"type": "string",
"desc": "The phone number to

make the video call to"
}

]
}

],
"answers": [

{
"task": "attend_meeting_online",
"arguments": [

{ "name": "topic", "value": "
Smart Home Devices" }

]
},
{

"task": "make_video_call",
"arguments": [

{ "name": "phone_number", "value
": "+1234567666" }

]
}

]
}

We verified that there is no overlap between
APIs in xlam-function-calling-60k and those in
TaskBench.

Licensing Both datasets are publicly accessi-
ble: xlam-function-calling-60k follows the Cre-
ative Commons Attribution 4.0 License (CC BY)
while TaskBench is released under the Apache 2.0

13509

License. We comply with their respective licenses
in using and extending the data.

C Intent Clarification Dataset Curation

C.1 Unspecified Query Generation

C.1.1 Rule-Based Parameter Sampling

We employed the following algorithm to assign
each query to one of the four complexity lev-
els—(1) fully specified, (2) single-API single-
parameter, (3) single-API multi-parameter, and (4)
multi-API multi-parameter—and sample the pa-
rameters to be removed.

Algorithm 1 Parameter Sampling

1: Input: original query q with tool invocation
solution S
2: Define: Level 0: fully specified; Level 1:
single-API single-parameter; Level 2: single-API
multi-parameter; Level 3: multi-API
multi-parameter
3: T ← ExtractTools(S)
4: total_tools← |T |
5: param_counts← {CountParams(t) | t ∈ T}
6: total_params←∑

t∈T param_counts[t]
7: if total_params = 0 then
8: level← 0
9: else if total_tools = 1 and total_params = 1
then
10: level← Random({0, 1})
11: else if total_tools = 1 and total_params > 1
then
12: level← Random({0, 1, 2})
13: else
14: level← Random({0, 1, 2, 3})
15: for each t ∈ T do
16: for each p ∈ GetParams(t) do
p.removed← false
17: if level = 1 then
18: t← Random(T)
19: p← Random(GetParams(t))
20: p.removed← true
21: else if level = 2 then
22: t← Random(T)
23: n← Random({2, . . . , param_counts[t]})
24: P ← Sample(GetParams(t), n)
25: for each p ∈ P do p.removed← true
26: else if level = 3 then
27:
T ′ ← Sample(T,Random({2, . . . , total_tools}))
28: for each t ∈ T ′ do

Algorithm 1 Parameter Sampling

29: n← Random({1, 2, . . . ,
param_counts[t]})
30: P ← Sample(GetParams(t), n)
31: for each p ∈ P do p.removed← true
32: return updated tool invocation solution S′

C.1.2 Prompt for Unspecified Query
Generation

Given an original query and its tool invocation so-
lution, the following prompt guides GPT-4o to gen-
erate unspecified queries by analyzing parameters
and systematically removing them.

System Prompt
You are a query transformation assistant. Your
task is to modify the original user query by
removing or abstracting specific parameters
marked with `removed`: "true", while maintaining
the overall structure and clarity of the
original query. The resulting query (`
unspecified_query`) should reflect the general
intent of the user but omit or obscure the
specific details of the removed parameters.

Input:
1. `original_query`: The complete textual
description of the user's original request.
2. `answers`: A detailed record specifying the
APIs and parameters required to fulfill the
original query. Each parameter in this record
includes:

- `removed`: A boolean ("true" or "false")
indicating whether this parameter should be
removed or abstracted during the transformation
process.

- Other relevant metadata, such as the
parameter's value.
3. `tools`: Documentation or descriptive details
about the tools referenced in the query,
including their parameters and usage
instructions.

Transformation Rules:
1. Identify the parameters to be removed or
abstracted:

- Focus on parameters where `removed`: "true
".

- Identify the full range of corresponding
expressions in the query, ensuring all
references to the parameter are appropriately
handled.
2. Apply the appropriate transformation strategy
to each parameter marked as `removed`: "true":

- Complete Removal: The parameter is
entirely removed when it has no significant
impact on the remaining content of the query.
However, this should not be used if the
parameter is optional. Also, if the same tool is
called multiple times, the parameters should
not be removed. Instead, they should be
abstracted.

- Semantic Abstraction: If the parameter
influences the meaning or structure of the query,

13510

replace its value with a more general or
abstract term.

- Partial Obfuscation: If the elements of a
matrix or list are presented separately in the
query (e.g., discrete values like quantities or
items) and need to be constructed or inferred,
only one element from the matirx or list should
be removed or abstracted. The remaining elements
should stay intact. This can still be done
using either complete removal or semantic
abstraction, while leaving other relevant
elements unchanged.
3. Ensure textual and structural coherence:

- After transformation, ensure that the `
unspecified_query` remains readable, logically
consistent, and grammatically correct.
4. Avoid explicitly stating "unspecified" or "
unknown" values:

- Do not use terms like "unspecified", "
unknown", or "ambiguous" in the `unspecified_
query`.

- Instead, naturally omit or generalize the
missing details without drawing attention to
their absence.
5. Retain the rest of the query:

- Leave unchanged the parts of the query
that are not marked for removal, maintaining
consistency in format and information.

Output:
Return a JSON object containing:
- `unspecified_query`: The transformed query
string with removed/abstracted parameters.
- `key_info`: A JSON array (or object)
documenting all parameters, containing the
following fields:

- `original_value`: The expression of the
parameter as it appears in the 'original_query'
(not the value in the 'answers').

- `current_value`: The transformed value of
the parameter in the `unspecified_query`.

- `removed`: The boolean flag indicating
whether the parameter was removed.

C.1.3 Transformation Record Format

For each unspecified query, we maintain a transfor-
mation record in the following JSON structure:

{
"original_query": string,
"unspecified_query": string,
"key_info": [

{
"name": [API_name],
"arguments": {

[param_name]: {
"original_value": string,
"current_value": string,
"removed": boolean

},
...

}
},
...

}
}

C.1.4 Human Verification
To further ensure the quality of generated unspec-
ified queries, we perform human verification on
400 randomly sampled queries. Three graduate
students with NLP backgrounds independently as-
sessed each query based on six criteria: Natural-
ness (fluency and linguistic coherence), Consis-
tency (uniformity of transformation), Necessity
(need for clarification), Complexity (difficulty of
clarification), Diversity (range of parameter types
and domains), and Acceptance Rate (overall ac-
ceptability). Results are shown in Table 7.

C.2 Clarification Dialogue Construction
We divide the clarification dialogue construction
process into two steps: GPT-4o-dependent content
generation and template-based dialogue assembly.
The essential content is generated using GPT-4o
and stored a structured transformation record (see
Appendix C.1.3 for format details). The informa-
tion encoded in this record is then used to deter-
ministically assemble the final dialogue through
predefined templates, without further reliance on
GPT-4o.

C.2.1 GPT-4o-Dependent Content
Generation

Task Decomposition We employ the following
prompt to guide GPT-4o in decomposing user
queries into subtasks:

System Prompt
You are a smart task decomposition assistant.
Your goal is to break down the user's main task
into smaller, manageable subtasks. Please follow
the instructions below.

You will receive a JSON-formatted input
containing:
- `query`: A description of the main task the
user wants to accomplish.
- `tools`: A list of APIs available to solve the
task, each with a unique identifier and a
description of its functionality. Note: The APIs
are provided in the exact order necessary to
resolve the task.

Task Decomposition:
1. Analyze the query to understand the user's
main task.
2. Break it down into smaller, manageable
subtasks that can be handled using the provided
APIs. Ensure that each subtask is completed by
calling one of the APIs in the exact order they
are listed.

Your output should be a JSON object with the
following structure:
{

13511

Metric Naturalness↑ Consistency↑ Necessity↑ Complexity↑ Diversity↑ Acceptance Rate (%)↑
Score 4.61/5 4.80/5 4.03/5 3.87/5 4.54/5 95.92

Table 7: Human verification results of unspecified query generation. The first five metrics are rated on a 1–5 scale,
while Acceptance Rate is reported as a percentage. All metrics are averaged across participants.

"tool_steps": [
"Step <number>: <subtask description>

using <API name>.",
...

]
}

The decomposition result is added to the trans-
formation record as a new field "tool_steps".

Clarification Question Generation We use the
following prompt to generate clarification ques-
tions for unspecified parameters:

System Prompt

You are an assistant responsible for generating
clarification questions for missing information
in the user's query.

Input:
The input should contain the following fields:
- `original_query`: A complete user task
description.
- `unspecified_query`: A user task description
missing some key information.
- `tools`: Documentation or descriptive details
about the tools referenced in the query,
including their parameters and usage
instructions.
- `key_info`: This should record the APIs and
parameters needed to solve the user task,
including information about any missing
parameters.

- `original_value`: The original value of
the parameter in the `original_query`.

- `current_value`: The current value of the
parameter in the `unspecified_query`.

- `removed`: Indicates if the parameter's
value is clear ("false") or unspecified ("true").

Task Requirements:
For each parameter where the field `removed` is
set to true, you are to generate a clarification
question.
- If multiple API calls rely on the same missing
information, form a single combined question to
efficiently gather the required details, rather
than asking multiple separate questions.
- Each question should focus on gathering one
specific piece of information to improve the
precision of the query and avoid ambiguity.
- Do not ask about information that can be
inferred from context or API interactions. Only
generate clarification questions for details
that cannot be deduced from the given context or
API responses.
- Add a `question` field to the corresponding
parameter in `key_info`, which contains the

generated clarification question.
- Do not modify the `original_query`, `current_
value` or any other fields in `key_info`.

Output:
Only output the modified `key_info` in JSON
format, ensuring that the question field
contains the clarification question for each
missing parameter.

The newly generated "key_info" field replaces
the original one in the transformation record.

C.2.2 Template-based Dialogue Assembly
Based on the completed transformation record, we
automatically construct the dialogue through pre-
defined templates.

Task Decomposition We concatenate steps from
"tool_steps" to form a comprehensive task decom-
position analysis.

Parameter Evaluation For each parameter in
the transformation record, we generate evaluation
statements using templates based on their removed
status:

• For parameters clearly stated in the query,
we generate the evaluation that "The parame-
ter [param_name] for API [API_name] has a
value of [value]".

• For parameters removed in the query, we
generate the evaluation that "The parameter
[param_name] for API [API_name] lacks a
clear value".

Clarification Interaction Following the API
call order, for each removed parameter, we gen-
erate a three-part clarification interaction:

• Assistant→ User: Ask the clarification ques-
tion.

• User→ Assistant: Provide the original param-
eter value using templates from Table 8.

• Assistant: Confirm with "Now I know that the
parameter [param_name] for API [API_name]
has a value of [value]".

13512

Tone Template

Neutral
[value].
The answer is: [value].
Ah, the answer is simply [value].

Friendly Sure! The answer is [value]. Let me know if you have more questions!
I’m glad to help! The answer is absolutely [value]!

Dismissive
Honestly, I don’t see why this is a big deal, but the answer is [value].
Okay, the answer is: [value]. Hope that helps, I guess.
Whatever. The answer is [value]. Not that it matters.

Irritated

Listen, the answer is [value]. Just deal with it!
Ugh, seriously? The answer is [value]. Can we move on already?
Honestly, do you really need me to repeat this? The answer is [value]. I
can’t believe we’re still discussing this! It’s infuriating!
Enough already! The answer is [value]. Can we please get to the point? I’m
tired of this nonsense! It’s frustrating! Let’s just move on!

Table 8: Response templates for user with varying tones.

Tool Invocation We construct the final tool in-
vocation solution using the "key_info" field from
the transformation record, which specifies the se-
quence of API calls and their associated parameters.
The final output is serialized into the following for-
mat:

[
{

"task": [API_name],
"arguments": [

{
"name": [param_name],

"value": string | number | boolean
},
...

]
},
...

]

Final Assembly We assemble the complete
assistant-user dialogue by sequentially integrating
the natural language outputs generated in the pre-
vious steps. We begin with a user message that
presents the task description and relevant APIs.
The assistant’s response is then constructed by com-
bining the task decomposition and parameter eval-
uation. For each missing parameter, we insert a
three-part clarification interaction comprising the
assistant’s question, the user’s response, and the
assistant’s confirmation. This process is repeated
until all missing parameters have been clarified.
The dialogue concludes with the assistant present-
ing the full tool invocation solution.

D Self-correction Training

D.1 Error Generation
In our template-based dialogue assembly process
(Appendix C.2.2), the sequence of APIs and their
required parameters, as recorded in the "key_info"
field of the transformation record, implicitly de-
fines the structure of the final dialogue. This in-
sight motivates our error generation strategy. For
each selected error type, we first identify a param-
eter position in the transformation record where
the error will be introduced. We then generate the
corresponding erroneous behavior and annotate the
selected parameter with an "error" field to indicate
its error type.

We now describe the generation strategies for
each of the five error types in detail.

Clearly Stated Intent Clarification The prompt
for generating instances of questioning clearly
stated intent is designed as follows:

System Prompt
You are a smart assistant. Your task is to
generate a JSON object based on the given input.
Please follow these instructions:

Input:
The input should contain the following fields:
- `original_query`: A complete user task
description.
- `unspecified_query`: A user task description
missing some key information.
- `tools`: Documentation or descriptive details
about the tools referenced in the query,
including their parameters and usage
instructions.
- `key_info`: This should record the APIs and
parameters needed to solve the user task,

13513

including information about any missing
parameters.

Key Requirements:
1. From the `key_info`, select the {selected_
param_index} parameter where `removed` is false
and assume that its value is missing.
2. Generate a specific clarification question
related to the missing parameter, such that the
answer would provide the value from the `
original_value` field of that parameter, and
save it in the `question` field of that
parameter.
3. Set `error`: "type 1" to the modified
parameter.
4. No other content in `key_info` should be
modified.

Output:
Only output the modified `key_info` in JSON
format, ensuring that the `question` field
contains the clarification question.

Imprecise Clarification The prompt for gener-
ating imprecise clarification questions is designed
as follows:

System Prompt
You are a smart assistant. Your task is to
generate a JSON object based on the given input.
Please follow these instructions:

Input:
The input should contain the following fields:
- `original_query`: A complete user task
description.
- `unspecified_query`: A user task description
missing some key information.
- `tools`: Documentation or descriptive details
about the tools referenced in the query,
including their parameters and usage
instructions.
- `key_info`: This should record the APIs and
parameters needed to solve the user task,
including information about any missing
parameters.

Key Requirements:
1. From the `key_info`, select the {selected_
param_index} parameter where the field `removed`
is true and assume that its value is missing.
2. Generate an imprecise clarification question
about the missing parameter:

- This question should seem relevant to the
user task.

- However, it should be less precise than
the original question provided in the `question`
field of the selected parameter.

- The goal is to make the question introduce
ambiguity, meaning it should be unclear what
exactly needs to be answered, thus creating
confusion about how to provide a precise and
accurate response.
3. Directly add this imprecise question to the
selected parameter in the `imprecise_question`
field.
4. Set `error`: "type 2" to the modified
parameter.

5. No other content in `key_info` should be
modified.

Output:
Only output the modified `key_info` in JSON
format, ensuring that the selected parameter now
contains the imprecise question.

Irrelevant Clarification The prompt for gener-
ating irrelevant clarification questions is designed
as follows:

System Prompt

You are a smart assistant. Your task is to
generate a JSON object based on the given input.
Please follow these instructions:

Input:
The input should contain the following fields:
- `original_query`: A complete user task
description.
- `unspecified_query`: A user task description
missing some key information.
- `tools`: Documentation or descriptive details
about the tools referenced in the query,
including their parameters and usage
instructions.
- `key_info`: This should record the APIs and
parameters needed to solve the user task,
including information about any missing
parameters.

Key Requirements:
1. From the `key_info`, select the {selected_
param_index} parameter you encounter.
2. Generate a question that appears relevant to
the user task but is actually unhelpful for
solving the task using the APIs in `key_info`.
3. Directly add this irrelevant question to the
selected parameter in the `irrelevant_question`
field.
4. Set `error`: "type 3" to the modified
parameter.
5. No other content in `key_info` should be
modified.

Output:
Only output the modified `key_info` in JSON
format, ensuring that the selected parameter now
contains the irrelevant question.

Redundant Clarification We employed the fol-
lowing algorithm to generate redundant clarifica-
tion questions:

13514

Algorithm 2 Redundant Clarification Generation

1: Input: transformation record R
2: ptarget ← Random(p ∈ R.params | p.pos > 0)
3: pprev ← Random(p ∈ R.params |
p.pos < ptarget.pos ∧ p.removed = true)
4: qr ← pprev.question
5: ptarget.error← "type 4"
6: Add qr to ptarget as a redundant question
7: return updated transformation record R′

Incomplete Clarification We employed the fol-
lowing algorithm to generate incomplete clarifica-
tion process:

Algorithm 3 Incomplete Clarification Generation

1: Input: transformation record R
2: k ← Random(i | 0 ≤ i < |R.params|)
3: Pknown ← {p ∈ R.params | p.pos < k}
4: template← "<unknown_*>"
5: Stools ← {}
6: for each p ∈ R.params do
7: if p /∈ Pknown then
8: Stools[p]← GenUnkVal(template, p)
9: else
10: Stools[p]← p.original
11: pk.error← "type 5"
12: Add Stools to pk as an incomplete clarification
error
13: return updated transformation record R′

D.2 Error-Correction Augmentation
Dialogue Assembly

We follow the same assembly procedure as de-
scribed in Appendix C.2.2. The only difference is
that, when an "error" field is detected in the trans-
formation record, we insert the erroneous behavior
into the assistant message at the corresponding di-
alogue position. We then generate the assistant’s
correction using the type-specific template defined
in Table 9, and naturally continue the interaction
from that point.

D.3 Human Verification

To ensure the validity and reliability of our error-
correction augmentation method, we perform hu-
man verification on 200 randomly sampled aug-
mented dialogues. Three graduate students with
NLP backgrounds independently assessed each di-
alogue based on five criteria: Naturalness (fluency
and linguistic coherence), Plausibility (realism of
the injected error-correction pair), Usefulness (util-

ity of the error-correction pair for intent clarifica-
tion), Diversity (variation in error manifestation
and expression styles), and Acceptance Rate (over-
all acceptability). Results are shown in Table 10.

D.4 Examples for Error-Correction
Augmentation

The following examples shows different types of
errors and their corresponding corrections.

Example 1: Clearly Stated Intent Clarification

User: The task is: Fetch the latest media of the
soccer player with player ID 170085. Some
relevant APIs: [{'name': 'player_latest_media',
'description': 'Fetch the latest media for a
given player using their player ID.', '
parameters': {'player_id': {'description': 'The
unique identifier of the player for whom the
latest media is to be fetched.', 'type': 'int',
'default': '12994'}}}, {'name': 'teammedia', '
description': 'Fetches media information for a
specific baseball team using the given team ID.',
'parameters': {'is_id': {'description': 'The
team ID for which to retrieve the media.', 'type
': 'int', 'default': 3633}}}]

Assistant: [TASK DECOMPOSITION] The task can be
decomposed into 1 steps for solving. Step 1:
Fetch the latest media of the soccer player with
player ID 170085 using player_latest_media. [
PARAMETER EVALUATION] The information I
currently have is: In step 1, the parameter "
player_id" for API "player_latest_media" has a
value of "170085". <SOE> [QUESTION] What is the
player ID for fetching the latest media? <EOE>
Sorry, I made a mistake. The parameter
"player_id" for API "player_latest_media" has a
value of "170085", which was clearly stated in
the user’s task. Therefore, I don’t need to ask
any further questions. [SUMMARY] I have all the
information needed and can now call the relevant
APIs to solve the task. The solution path is as
follows: [{'task': 'player_latest_media', '
arguments': [{'name': 'player_id', 'value':
170085}]}]

Example 2: Imprecise Clarification

User: The task is: What are the details of the
hospitals in the U.S. with a specific name? Some
relevant APIs: [{'name': 'gethospitalsbyname',
'description': 'Fetches a list of U.S. hospitals
that match the given name using the RapidAPI
service.', 'parameters': {'name': {'description
': 'The name or partial name of the hospital to
search for.', 'type': 'str', 'default': '
presbyterian'}}}, {'name': 'get_all_iata_airport
_codes', 'description': 'Retrieves IATA airport
codes from the RapidAPI service.', 'parameters':
{'code': {'description': 'An optional code to
filter the airport codes. Defaults to 1.', 'type
': 'int, optional', 'default': '1'}}}, {'name':
'fetch_information', 'description': 'Fetches
information based on IP, ASN, CIDR (IPv4 & IPv6),
or organization name using the RapidAPI ASN

13515

Error Type Correction Template

Clearly Stated Intent
Clarification (Type 1)

Sorry, I made a mistake. The parameter [param_name] for API [API_name]
has a value of [value], which was clearly stated in the user’s task. Therefore, I
don’t need to ask any further questions.

Imprecise Clarification
(Type 2)

Sorry, I made a mistake. My question wasn’t clear, so let me rephrase it for
better understanding.

Irrelevant Clarification
(Type 3)

Sorry, I made a mistake. This question is not related to using the APIs to
resolve the user’s task, so I will ask something else.

Redundant Clarification
(Type 4)

Sorry, I made a mistake. The parameter [param_name] for API [API_name]
has a value of [value], which has already been asked in the past, so there is no
need to ask again.

Incomplete Clarification
(Type 5)

Sorry, I made a mistake. I still lack some key information, so I need to ask
further questions.

Table 9: Correction templates for each error type.

Metric Naturalness↑ Plausibility↑ Usefulness↑ Diversity↑ Acceptance Rate (%)↑
Score 4.57/5 3.91/5 4.11/5 4.28/5 91.83%

Table 10: Human verification results of error-correction augmentation. The first four metrics are rated on a 1–5
scale, while Acceptance Rate is reported as a percentage. All metrics are averaged across participants.

Lookup service.', 'parameters': {'ip': {'
description': 'IP address to lookup. Defaults to
None.', 'type': 'str, optional', 'default': ''},
'asn': {'description': "Autonomous System
Number to lookup. Defaults to 'AS32934'.", 'type
': 'str, optional', 'default': 'AS32934'}, 'cidr
': {'description': 'CIDR notation for IP address
range to lookup. Defaults to None.', 'type': '
str, optional', 'default': ''}, 'orgname': {'
description': 'Organization name to lookup.
Defaults to None.', 'type': 'str, optional', '
default': ''}}}]

Assistant: [TASK DECOMPOSITION] The task can be
decomposed into 1 steps for solving. Step 1:
Fetch the list of U.S. hospitals that match the
specific name provided in the query using
gethospitalsbyname. [PARAMETER EVALUATION] The
information I currently have is: In step 1, the
parameter "name" for API "gethospitalsbyname"
lacks a clear value. <SOE> [QUESTION] Is there
something particular you’re looking for with
hospital names? <EOE>

User: I really wish I could help with that, but
unfortunately, I don't have the information you'
re looking for. Please feel free to inquire
about something else.

Assistant: Sorry, I made a mistake. My question
wasn’t clear, so let me rephrase it for better
understanding. [QUESTION] What specific name
should be used to search for hospitals in the U.
S.?

User: Enough already! The answer is "General".
Can we please get to the point? I'm tired of
this nonsense! It's frustrating! Let's just move
on!

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "name" for API "
gethospitalsbyname" has a value of "General". [
SUMMARY] I have all the information needed and
can now call the relevant APIs to solve the task.
The solution path is as follows: [{'task': '
gethospitalsbyname', 'arguments': [{'name': '
name', 'value': 'General'}]}]

Example 3: Irrelevant Clarification

User: The task is: What is the ZIP code for a
certain IP address? And is a particular year a
leap year? Some relevant APIs: [{'name': 'is_
leap_year', 'description': 'Checks if a year is
a leap year.', 'parameters': {'year': {'
description': 'The year to check.', 'type': 'int
'}}}, {'name': 'get_ip_zipcode', 'description':
'Retrieves the ZIP code of a given IP address
using the ip-api.com API.', 'parameters': {'ip':
{'description': 'The IP address to locate.', '
type': 'str'}}}, {'name': 'get_ip_location', '
description': 'Retrieves the latitude and
longitude coordinates of a given IP address
using the ip-api.com API.', 'parameters': {'ip':
{'description': 'The IP address to locate.', '
type': 'str'}}}, {'name': 'getzipcodebycity', '
description': 'Fetches the zip code information
for a given city using the Zillow API.', '
parameters': {'city': {'description': 'The name
of the city for which the zip code is to be
fetched.', 'type': 'str', 'default': 'Holtsville
'}}}]

Assistant: [TASK DECOMPOSITION] The task can be
decomposed into 2 steps for solving. Step 1:
Check if the given year is a leap year using is_

13516

leap_year. Step 2: Retrieve the ZIP code for the
given IP address using get_ip_zipcode. [
PARAMETER EVALUATION] The information I
currently have is: In step 1, the parameter "ip"
for API "get_ip_zipcode" lacks a clear value.
In step 2, the parameter "year" for API "is_leap
_year" lacks a clear value. [QUESTION] What is
the IP address for which you need the ZIP code?

User: Honestly, I don't see why this is a big
deal, but the answer is "123.123.123.123".

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "ip" for API "get_ip_zipcode"
has a value of "123.123.123.123". <SOE>
[QUESTION] Would you like the ZIP code result
formatted in bold text? <EOE>

User: I don't have the information you're
looking for. You're welcome to ask me anything
else, though! I'm here to help.

Assistant: Sorry, I made a mistake. This
question is not related to using the APIs to
resolve the user’s task, so I will ask something
else. [QUESTION] Which year do you want to check
for being a leap year?

User: The answer is: 2028.

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "year" for API "is_leap_year"
has a value of "2028". [SUMMARY] I have all the
information needed and can now call the
relevant APIs to solve the task. The solution
path is as follows: [{'task': 'get_ip_zipcode',
'arguments': [{'name': 'ip', 'value':
'123.123.123.123'}]}, {'task': 'is_leap_year', '
arguments': [{'name': 'year', 'value': 2028}]}]

Example 4: Redundant Clarification

User: The task is: Please get me the details of
some 'tech' events happening in a region.
Additionally, I'm curious about the city
boundaries of a certain city. Some relevant APIs
: [{'name': 'fetch_by_type_and_region', '
description': 'Fetch records from the API based
on the given type, limit, and region.', '
parameters': {'type': {'description': 'The type
of records to fetch. Refer to the README for
accepted types.', 'type': 'str', 'default': '
Hill'}, 'limit': {'description': 'The maximum
number of records to fetch.', 'type': 'int', '
default': '5'}, 'region': {'description': 'The
region from which to fetch records.', 'type': '
str', 'default': 'Eastern'}}}, {'name': 'query_
for_city_boundary_by_city_name', 'description':
'Queries the boundary information for a given
city name from a specified API.', 'parameters':
{'name': {'description': 'The name of the city
for which the boundary information is to be
queried.', 'type': 'str', 'default': 'toronto'}}
}, {'name': 'query_for_city_boundary_by_name', '
description': 'Queries the city boundary
information by the given city name using the
Boundaries API.', 'parameters': {'name': {'
description': 'The name of the city for which to
query boundary information.', 'type': 'str', '

default': 'Karlsruhe'}}}, {'name': 'get_
countrywise_city_data', 'description': 'Fetches
a list of cities for a given country using an
API, based on provided parameters.', 'parameters
': {'iso3': {'description': "A 3-character ISO3
country code. Default is 'IND'.", 'type': 'str',
'default': 'IND'}, 'country': {'description': "
The country name. Default is 'IND'.", 'type': '
str', 'default': 'IND'}, 'count': {'description
': 'The maximum number of results to return.
Default is 2.', 'type': 'int', 'default': '2'},
'iso2': {'description': "A 2-character ISO2
country code. Default is 'IN'.", 'type': 'str',
'default': 'IN'}}}, {'name': 'fetch_by_type', '
description': 'Fetches records from the RapidAPI
endpoint based on the specified type and limit
.', 'parameters': {'type': {'description': 'The
type of records to fetch. Refer to the API
documentation for accepted types.', 'type': 'str
', 'default': 'Forest'}, 'limit': {'description
': 'The number of records to fetch.', 'type': '
int', 'default': '5'}}}, {'name': 'fetch_by_
region', 'description': 'Fetches records by
region from the Magical Taske API.', 'parameters
': {'region': {'description': 'The region for
which to fetch records.', 'type': 'str', '
default': 'Central'}, 'limit': {'description': '
The maximum number of records to return.', 'type
': 'int', 'default': '5'}}}]

Assistant: [TASK DECOMPOSITION] The task can be
decomposed into 2 steps for solving. Step 1:
Fetch details of 'tech' events happening in a
specified region using fetch_by_type_and_region.
Step 2: Query the city boundaries of a
specified city using query_for_city_boundary_by_
city_name. [PARAMETER EVALUATION] The
information I currently have is: In step 1, the
parameter "type" for API "fetch_by_type_and_
region" has a value of "tech", the parameter "
limit" for API "fetch_by_type_and_region" lacks
a clear value, the parameter "region" for API "
fetch_by_type_and_region" lacks a clear value.
In step 2, the parameter "name" for API "query_
for_city_boundary_by_city_name" lacks a clear
value. [QUESTION] What is the maximum number of
tech events you would like to retrieve?

User: Ah, the answer is simply "10".

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "limit" for API "fetch_by_
type_and_region" has a value of "10". [QUESTION]
Which region should I search for the tech
events?

User: The answer is: Silicon Valley.

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "region" for API "fetch_by_
type_and_region" has a value of "Silicon Valley".
<SOE> [QUESTION] What is the maximum number of
tech events you would like to retrieve? <EOE>
Sorry, I made a mistake. The parameter "limit"
for API "fetch_by_type_and_region" has a value of
"10", which has already been asked in the past,
so there is no need to ask again. [QUESTION]
For which city would you like to query the
boundary information?

13517

User: Honestly, do you really need me to repeat
this? The answer is "Montreal". I can't believe
we're still discussing this! It's infuriating!

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "name" for API "query_for_
city_boundary_by_city_name" has a value of "
Montreal". [SUMMARY] I have all the information
needed and can now call the relevant APIs to
solve the task. The solution path is as follows:
[{'task': 'fetch_by_type_and_region', '
arguments': [{'name': 'type', 'value': 'tech'},
{'name': 'limit', 'value': 10}, {'name': 'region
', 'value': 'Silicon Valley'}]}, {'task': 'query
_for_city_boundary_by_city_name', 'arguments': [
{'name': 'name', 'value': 'Montreal'}]}]

Example 5: Incomplete Clarification

User: The task is: Can you get me the favorite
videos for TikTok user with sec_uid 'abc123xyz'?
Also, do the same for another user. Some
relevant APIs: [{'name': 'get_user_favorite_list
', 'description': 'Retrieve the favorite video
list for a TikTok user using their unique
identifier.', 'parameters': {'sec_uid': {'
description': 'The unique identifier of the
TikTok user whose favorite list is to be
retrieved.', 'type': 'str', 'default': '
MS4wLjABAAAAv7iSuuXDJGDvJkmH_
vz1qkDZYo1apxgzaxdBSeIuPiM'}}}, {'name': 'get_
user_favorite_videos', 'description': 'Fetches a
list of favorite videos for a given user from
the TikTok video feature summary API.', '
parameters': {'cursor': {'description': "
Position in the list to start fetching the
videos from. Defaults to '0'.", 'type': 'str', '
default': '0'}, 'user_id': {'description': "The
user ID for which to fetch favorite videos.
Defaults to '6741307595983946754'.", 'type': '
str', 'default': '6741307595983946754'}, 'unique
_id': {'description': "The unique identifier for
the user, can be either a username or handle (e.
g., 'voyagel' or '@voyagel'). Defaults to '
voyagel'.", 'type': 'str', 'default': 'voyagel'},
'count': {'description': "The number of
favorite videos to fetch. Defaults to '10'.", '
type': 'str', 'default': '10'}}}, {'name': 'user
_videos', 'description': 'Retrieves videos for a
specified TikTok user using their `secUid` and
`user_id`. Optionally, a cursor can be provided
for pagination.', 'parameters': {'secuid': {'
description': 'The secUid of the TikTok user.',
'type': 'str', 'default': '
MS4wLjABAAAAsY6EjWejsVbCjir7Vdy-
uNX364xNywkQSLqqoV5Hcnt7v3CVToFzfIgcdpQ_iW3D'},
'user_id': {'description': 'The unique
identifier of the TikTok user.', 'type': 'str',
'default': '6676352751163032582'}, 'cursor': {'
description': 'Cursor for pagination to get the
subsequent set of videos. Defaults to None.', '
type': 'str, optional', 'default': ''}}}]

Assistant: [TASK DECOMPOSITION] The task can be
decomposed into 2 steps for solving. Step 1: Get
the favorite videos for the TikTok user with
sec_uid 'abc123xyz' using get_user_favorite_list.
Step 2: Repeat the process for another TikTok
user using get_user_favorite_list. [PARAMETER

EVALUATION] The information I currently have is:
In step 1, the parameter "sec_uid" for API "get
_user_favorite_list" has a value of "abc123xyz".
In step 2, the parameter "sec_uid" for API "get
_user_favorite_list" lacks a clear value. <SOE>
[SUMMARY] I have all the information needed and
can now call the relevant APIs to solve the task.
The solution path is as follows: [{’task’:
’get_user_favorite_list’, ’arguments’: [{’name’:
’sec_uid’, ’value’: ’abc123xyz’}]}, {’task’:
’get_user_favorite_list’, ’arguments’: [{’name’:
’sec_uid’, ’value’: ’<unknown_sec_uid>’}]}] <EOE>
Sorry, I made a mistake. I still lack some key
information, so I need to ask further questions.
[QUESTION] What is the sec_uid for the other
TikTok user you want the favorite videos for?

User: Okay, the answer is: def456uvw. Hope that
helps, I guess.

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "sec_uid" for API "get_user_
favorite_list" has a value of "def456uvw". [
SUMMARY] I have all the information needed and
can now call the relevant APIs to solve the task.
The solution path is as follows: [{'task': 'get
_user_favorite_list', 'arguments': [{'name': '
sec_uid', 'value': 'abc123xyz'}]}, {'task': 'get
_user_favorite_list', 'arguments': [{'name': '
sec_uid', 'value': 'def456uvw'}]}]

E Training Details

We fine-tune two variants of the Qwen2.5-7B-
Instruct model on the xlam-IC dataset, in which
30% of the samples are replaced with error-
correction augmented dialogues. Both variants
are trained using the LLaMA-Factory framework
(Zheng et al., 2024).

For LoRA fine-tuning, we set the LoRA rank
to 8. We use an initial learning rate of 1.0e-4, a
warm-up ratio of 0.1, and a cosine learning rate
scheduler. Training is conducted on 4×RTX 3090
(24GB) GPUs for 3 epochs with a batch size of 64.

For full-parameter fine-tuning, we use an initial
learning rate of 1.41e-5 under the same schedule.
Training is conducted on 8×RTX A6000 (48GB)
GPUs for 3 epochs with a batch size of 64.

F Evaluation Details

F.1 Prompt for Evaluation Model

The following prompt guides the model through
task decomposition, interactive clarification, lead-
ing to tool invocation solution generation, fully
leveraging its capabilities in intent clarification and
precise tool invocation.

System Prompt

13518

You are an assistant helping users solve their
tasks. You will receive a task and relevant APIs
to address this task. However, the task
description may lack key information. You cannot
make assumptions or guess missing parameters
based on what you know. Instead, you need to
follow these steps to effectively complete the
task, ensuring each step is completed before
moving on to the next one:

Step 1: Task Decomposition
1. **Analyze the User's Task**: Identify
distinct subtasks within the user's task, each
of which can be solved by a single API.
2. **Determine the Order of Subtasks**:
Establish the sequence of these subtasks based
on dependencies and the order in which they
appear in the user's original task.
- Template: [TASK DECOMPOSITION] xxx
3. **Evaluate Parameters for Each API**: Based
on the established API order, verify whether
each required parameter is explicitly stated in
the task; if any are missing, prepare to inquire
in subsequent steps.
- Template: [PARAMETER EVALUATION] xxx

Step 2: Inquire About Missing Parameters
1. **Present Your Inquiry**: Formulate a
friendly question for the user. Ensure you ask
only one question at a time.
- Template: [QUESTION] xxx
2. **Wait for the User's Response**: Collect the
user's answer. If the user does not provide an
answer, please do not fill in the parameters on
your own.
3. **Repeat**: Continue step 2 until all
necessary parameters are gathered.

Step 3: Final Summary and Solution Path
1. **Summarize User Intentions**: Once all
information is collected, concisely summarize
what the user intends to achieve.
2. **Define the Solution Path**: List the APIs
and their specific parameter values in the order
they will be called, and output the final
solution path in JSON format. Remember, you do
not need to execute the APIs or solve the task
yourself.
- Template: [SUMMARY] [{"task": "API name", "
arguments": [{"name": "parameter name", "value":
"parameter value"}, ...]}, ...]

Note that the output template format shown in
the prompt can be adjusted to match different tool
invocation annotation formats in various test sets,
demonstrating the framework’s adaptability to dif-
ferent evaluation scenarios.

F.2 Prompt for User Simulation

We introduced an LLM-based simulated evalua-
tion framework with six distinct personality types,
designed to generate realistic user responses that
closely simulate real-world interactions. The six
personality types and their corresponding behav-
ioral patterns are shown in Table 11. For each

evaluation, we randomly selected one of these per-
sonality types and guided the user-simulating LLM
(Qwen2-72B-Instruct model) to generate responses
that consistently reflect the chosen personality. The
prompt design is as follows:

System Prompt

I am {user_profile['name']}, characterized by {
user_profile['traits']}, and I communicate in a
{user_profile['tone']} manner. I can honestly
answer questions based on what I know. I only
know that I have provided others with a task: {
task_description}, which is described from my
perspective. Aside from that, I do not know
anything else. However, others may be unclear
about some details of this task. When others ask
me questions, I should choose one appropriate
response from the following two options, in the
given order:

1. **Acknowledge unknowns**:
- If the answer to the question cannot be
answered based on the task description, I will
state that I do not know the answer and will not
disclose any other information.

2. **Provide an answer**:
- If the question can be answered, I will
provide direct answers based solely on the
question asked, without any additional context
or unsolicited information.
- The response should be given from my
perspective.

Evaluate the conditions in order, ensuring that
only one relevant condition is triggered and
output. Only one response is allowed per
interaction; please confirm carefully and select
the most appropriate one.

Additionally, if others' questions contain
irrelevant information, I should focus solely on
their actual question ([QUESTION] field),
ignoring any extraneous details, to provide the
most appropriate response.

Please respond in a way that showcases my
personality and clearly expresses my traits,
regardless of the content. Always maintain my
unique voice and style throughout our
interactions. For instance, if asked: '{user_
profile['question']}', I would reply: '{user_
profile['example_response']}'.

F.3 Matrics Calculation Details

We evaluate the models in two aspects: intent clari-
fication quality and tool invocation accuracy.

F.3.1 Intent Clarification Quality

We design four metrics to assess the quality of
intent clarification.

13519

Type Traits Tone Example Response

A cold fish Showing indifference to others’
inquiries, often dismissive and curt,
providing minimal engagement

Cold, brief, almost robotic "Emma."

A reluctant
collaborator

Displaying overt negativity and a strong
reluctance to assist, often avoiding
questions and providing minimal
engagement

Negative, resistant,
dripping with sarcasm

"Why do you even want to
know my name? It’s not like
it matters. Let’s just skip this,
okay?"

An easily irritated
responder

Emotionally volatile, quick to anger,
often questions the validity of the
inquiry and consistently avoids
answering, reacting harshly to repeated
inquiries

Agitated, accusatory,
impatient

"Seriously? I’ve already told
you! Can we move on
already?"

An enthusiastic
supporter

Exuding warmth and eagerness to assist,
striving for clarity

Warm, encouraging "I’m Emma! So nice to meet
you!"

A skeptic Consistently questioning the validity of
the inquiry, often introducing doubt and
alternative perspectives, leading to
confusion

Inquisitive, cautious,
subtly dismissive

"It’s Emma, but why do you
need to know? Is there
something more to this?"

A jokester Making light of situations by playfully
providing incorrect answers, often
following up with a humorous denial of
their own response, leading to confusion

Playful, light-hearted,
teasing

"I’m Amy, haha, just
kidding! I’m Emma."

Table 11: Personality types for user simulation. Note: Example responses are generated for the question "What is
your name?" with the ground truth "Emma".

Intent Coverage Rate (ICR) measures the pro-
portion of unspecified intents that are successfully
clarified:

ICR =
C

U
(1)

where C is the total number of clarified intents, and
U is the total number of unspecified intents across
all queries.

Clarification Efficiency (CE) measures the av-
erage number of intents clarified per clarification
round, or equivalently, the proportion of clarifica-
tion rounds that result in effective clarification:

CE =
C

T
(2)

where T is the total number of clarification interac-
tion rounds across all queries.

Clarification Performance Score (CPS) com-
bines ICR and CE using a harmonic mean, similar
to the F1-score formulation. It serves as a balanced
measure of clarification quality by jointly consider-
ing both coverage and efficiency:

CPS = 2 · ICR · CE
ICR + CE

(3)

Interaction Rounds (IR) records the average
number of clarification rounds per query:

IR =
T

N
(4)

where N is the number of evaluation queries.

F.3.2 Tool Invocation Accuracy

We further evaluate tool invocation performance
through three complementary metrics.

Solution Completion Rate (SCR) is defined as
the proportion of queries for which the model out-
puts a valid tool invocation solution:

SCR =
1

N

N∑

i=1

Ivalid(i) (5)

where Ivalid(i) = 1 if a valid solution is generated
for the i-th query, and 0 otherwise.

Tool Selection Score (TSS) evaluates how accu-
rately the model selects APIs for each query:

TSS =
1

N

N∑

i=1

F1(APIiP,APIiG) (6)

where APIiP and APIiG denote the predicted and
ground-truth API sets for the i-th query, respec-
tively. Note that this metric considers only API
names and ignores associated parameters and val-
ues.

13520

Parameter Resolution Score (PRS) measures
the model’s ability to accurately fill in the parame-
ters required for correct tool invocation:

PRS =
1

N

N∑

i=1

F1(Parami
P,Parami

G) (7)

where Parami
P and Parami

G denote the predicted
and ground-truth tool invocation solution for the
i-th query, each represented as a set of (API, pa-
rameter, value) triples. A triple is considered cor-
rect only if all three elements match exactly, and
parameter values are compared using strict string
matching.

G Supplementary Analyses

G.1 Cross-Model Transferability
To verify the cross-model transferability of our
method, we apply it to three representative base
models: Mistral-7B-Instruct-v0.3, LLaMA3-8B-
Instruct, and Qwen2.5-7B-Instruct. All models are
fine-tuned using the same LoRA configurations.
The experimental results are shown in Table 12.

Consistent Performance Gains Our method
consistently boosts performance on both intent clar-
ification and tool invocation, confirming that our
method is architecture-agnostic and effective across
diverse model architectures.

Larger Relative Gains for Weaker Models We
observe that models with lower initial performance
achieve larger relative gains from our method.
LLaMA3-8B-Instruct shows substantial improve-
ments (+27.83% CPS, +25.46% PRS), while the
stronger Qwen2.5-7B-Instruct exhibits moderate
yet significant gains (+5.01% CPS, +11.18% PRS).
These results demonstrate that our method partic-
ularly benefits weaker models while maintaining
consistent improvements across architectures, ef-
fectively narrowing the performance gap between
different models.

G.2 Impact of Augmentation Proportion
To study the impact of error-correction augmenta-
tion on model behavior, we fine-tune the Qwen2.5-
7B-Instruct model with varying proportions of aug-
mented data, using the same LoRA configurations.

As illustrated in Table 13, a moderate augmen-
tation proportion (e.g., 30%) yields the most fa-
vorable trade-off across metrics, with the model
achieving peak CPS (60.41%) and PRS (68.71%).

0 1 2 3 4 5+
Number of Unspecified User Intents

50

60

70

Sc
or

e

CPS
PRS

1 2 3 4 5+
Number of Tool Invocations

40

50

60

70

Sc
or

e

CPS
PRS

Figure 3: Performance under different clarification
complexities.

This suggests that moderate exposure to diverse
error-correction patterns enhances the model’s abil-
ity to resolve ambiguity and generate accurate tool
invocation solutions.

However, we observe performance degradation
at higher augmentation proportions. When the pro-
portion increases to 40%–50%, key metrics such
as CPS and PRS decline (e.g., CPS drops from
60.41% to 54.24%, PRS from 68.71% to 63.27%).
This suggests that excessive exposure to error-
correction augmented dialogues may cause the
model to overfit to correction patterns or overly pri-
oritize error detection, ultimately degrading both in-
tent clarification and tool invocation performance.

These findings demonstrate the non-monotonic
benefits of error-correction augmentation, with an
empirically determined optimal proportion of 30%
achieving the desired balance between robustness
and efficiency while avoiding over-correction be-
haviors that hinder overall performance.

G.3 Impact of Clarification Complexity

We further analyzed how the complexity of clari-
fication affects model performance by examining
results from the ASKTOACT-LoRA-SFT-7B model
across varying numbers of unspecified user intents
and required tool invocations. The results are illus-
trated in Figure 3.

We observe that as the number of unspecified
user intents increases, both CPS and PRS exhibit a
downward trend. This suggests that higher ambigu-
ity in user input substantially increases the burden
on the model’s clarification capability, leading to
degraded downstream tool invocation performance.
Similarly, an increase in the number of tool invo-
cations correlates with a performance decline, par-
ticularly when more than three tools are required.
This indicates that multi-step reasoning and coor-
dination across multiple APIs introduce additional
challenges, amplifying the need for precise intent
clarification and robust tool planning.

13521

LLM Intent Clarification Quality Tool Invocation Accuracy

ICR↑ CE↑ CPS↑ IR↓ SCR↑ TSS↑ PRS↑
Mistral-7B-Instruct-v0.3 26.01 34.90 29.81 1.21 92.54 51.92 29.57
ASKTOACT-Mistral-7B-Instruct-v0.3 45.01 (↑19.00) 40.53 (↑5.63) 42.66 (↑12.85) 1.81 (↑0.60) 94.30 (↑1.76) 80.37 (↑28.45) 56.63 (↑27.06)

LLaMA3-8B-Instruct 44.47 25.33 32.27 2.86 80.92 51.57 42.54
ASKTOACT-LLaMA3-8B-Instruct 58.76 (↑14.29) 61.50 (↑36.17) 60.10 (↑27.83) 1.55 (↓1.31) 95.71 (↑14.79) 81.15 (↑29.58) 68.00 (↑25.46)

Qwen2.5-7B-Instruct 55.50 55.30 55.40 1.64 91.43 69.32 57.53
ASKTOACT-Qwen2.5-7B-Instruct 57.68 (↑2.18) 63.41 (↑8.11) 60.41 (↑5.01) 1.48 (↓0.16) 96.05 (↑4.62) 81.42 (↑12.10) 68.71 (↑11.18)

Table 12: Cross-model transferability performance comparison.

Augmentation
Proportion(%)

Intent Clarification Quality Tool Invocation Accuracy

ICR↑ CE↑ CPS↑ IR↓ SCR↑ TSS↑ PRS↑
0 53.91 64.83 58.87 1.32 94.06 78.87 66.54
10 54.68 63.52 58.77 1.38 93.91 78.77 66.04
20 56.30 62.89 59.42 1.43 95.07 80.27 67.30
30 57.68 63.41 60.41 1.48 96.05 81.42 68.71
40 55.34 60.28 57.71 1.51 94.85 79.48 65.30
50 52.84 55.71 54.24 1.58 91.67 76.99 63.27

Table 13: Performance under different augmentation
proportions.

While our model maintains reasonable robust-
ness across different settings, these patterns high-
light the increased difficulty posed by highly am-
biguous and complicate queries. Such findings
motivate future work in strengthening clarification
strategies and enhancing multi-tool coordination
capabilities in more complex, real-world scenarios.

G.4 Case Study

To further demonstrate the robustness of our
method under varied user personality types and
conversation styles, we conduct a case study using
ASKTOACT-LoRA-SFT-7B to interact with two
users exhibiting contrasting communication pat-
terns. One user adopts a concise and task-oriented
style, while the other responds in a verbose and
humorous manner, often including redundant or
irrelevant content. The following examples demon-
strate how the model handles the same task under
these contrasting user styles.

Concise & Task-oriented

User: The task is: Which regions are supported
for a certain language? Also, can you verify if
a given email address is valid? Some relevant
APIs: [{"name":"regions","description":"Returns
a collection of supported regions for the
specified IETF BCP 47 language tag.","parameters
":{"language":{"description":"Language code in
BCP 47 format.","type":"str","default":"us"}}},{
"name":"check_email","description":"Validates an
email address using the RapidAPI Email Checker
and Validator service.","parameters":{"email":{"
description":"The email address to validate.","
type":"str","default":"marod29733@lubde.com"}}},
{"name":"email","description":"Validates the

given email address using the RapidAPI email
validation service.","parameters":{"email":{"
description":"The email address that needs to be
validated.","type":"str","default":"
example@gmail.com"}}},{"name":"email_verifier","
description":"Verifies the validity of an email
address using the Toolbench RapidAPI service.","
parameters":{"email":{"description":"The email
address to be verified.","type":"str","default
":"hello@gmail.com"}}}]

Assistant: [TASK DECOMPOSITION] The task can be
decomposed into 2 steps for solving. Step 1:
Determine the regions supported for the
specified language using regions API. Step 2:
Verify the given email address is valid using
check_email API. [PARAMETER EVALUATION] The
information I currently have is: In step 1, the
parameter "language" for API "regions" lacks a
clear value. In step 2, the parameter "email"
for API "check_email" lacks a clear value. [
QUESTION] What is the language code for which
you want to know the supported regions?

User: The language code is 'en'. That's all I
know.

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "language" for API "regions"
has a value of "en". [QUESTION] What is the
email address you want to validate?

User: I am to verify if 'user@example.com' is a
valid email address.

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "email" for API "check_email"
has a value of "user@example.com". [SUMMARY] I
have all the information needed and can now call
the relevant APIs to solve the task. The
solution path is as follows: [{'task': 'regions',
'arguments': [{'name': 'language', 'value': 'en
'}]}, {'task': 'check_email', 'arguments': [{'
name': 'email', 'value': 'user@example.com'}]}]

Verbose & Humorous
User: The task is: Which regions are supported
for a certain language? Also, can you verify if
a given email address is valid? Some relevant
APIs: [{"name":"regions","description":"Returns
a collection of supported regions for the
specified IETF BCP 47 language tag.","parameters
":{"language":{"description":"Language code in
BCP 47 format.","type":"str","default":"us"}}},{
"name":"check_email","description":"Validates an

13522

email address using the RapidAPI Email Checker
and Validator service.","parameters":{"email":{"
description":"The email address to validate.","
type":"str","default":"marod29733@lubde.com"}}},
{"name":"email","description":"Validates the
given email address using the RapidAPI email
validation service.","parameters":{"email":{"
description":"The email address that needs to be
validated.","type":"str","default":"
example@gmail.com"}}},{"name":"email_verifier","
description":"Verifies the validity of an email
address using the Toolbench RapidAPI service.","
parameters":{"email":{"description":"The email
address to be verified.","type":"str","default
":"hello@gmail.com"}}}]

Assistant: [TASK DECOMPOSITION] The task can be
decomposed into 2 steps for solving. Step 1:
Find supported regions for the given language
using regions API. Step 2: Verify the validity
of the given email address using check_email API.
[PARAMETER EVALUATION] The information I
currently have is: In step 1, parameter "
language" for API "regions" lacks a clear value.
In step 2, parameter "email" for API "check_
email" lacks a clear value. [QUESTION] What is
the specific language you want to check the
supported regions for?

User: Oh, you're trying to trick me into
answering my own question, huh? Clever! But let'
s focus on your question. Since you're asking me,
it seems like you might need a bit more
information. In this case, I can't provide an
answer because I'm the one who wanted to know
which regions are supported for the 'en'
language. I guess we're in this together! Haha,
just kidding; you're on your own, buddy. I'm
here for moral support.

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "language" for the API "
regions" has a value of "en". [QUESTION] What is
the email address you want to verify for
validity?

User: Haha, you're right, I didn't actually
provide an email address, did I? Well, in the
task, I mentioned 'user@example.com'. So, that's
the one we're looking at. But remember, I'm
just here for a good time, not a long time!

Assistant: [PARAMETER EVALUATION] Now I know
that the parameter "email" for the API "check_
email" has a value of "user@example.com". [
SUMMARY] I have all the information needed and
can now call the relevant APIs to solve the task.
The solution path is as follows: [{'task': '
regions', 'arguments': [{'name': 'language', '
value': 'en'}]}, {'task': 'check_email', '
arguments': [{'name': 'email', 'value': '
user@example.com'}]}]

We observe that whether the user responses are
concise or verbose, cooperative or evasive, or even
include redundant or off-topic content, our model is
able to comprehend the intent accurately, engage in
effective multi-turn clarification, and produce the

correct tool invocation solution. This case study
demonstrates that our method can maintain both
functional reliability and interaction consistency
across varied conversational scenarios.

13523

