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Abstract

Narrative-driven recommendation queries are
common in question-answering platforms, AI
search engines, social forums, and some
domain-specific vertical applications. Users
typically submit free-form text requests for
recommendations, e.g., “Any mind-bending
thrillers like Shutter Island you’d recommend?”
Such special queries have traditionally been
addressed as generic QA task under the RAG
paradigm. This work formally introduces nar-
rative recommendation as a distinct task and
contends that the RAG paradigm is inherently
ill-suited for it, owing to information loss in
LLMs when retrieving information from from
multiple long and fragmented contexts, and lim-
itations in ranking effectiveness. To overcome
these limitations, we propose a novel retrieve-
rank paradigm by theoretically demonstrating
its superiority over RAG paradigm. Central to
this new paradigm, we specially focus on the
information retrieval stage and introduce Open-
domain Candidate Generation (OCG)-Agent
that generatively retrieves structurally adaptive
and semantically aligned candidates, ensuring
both extensive candidate coverage and high-
quality information. We validate effectiveness
of new paradigm and OCG-Agent’s retrieve
mechanism under real-world datasets from Red-
dit and corporate education-consulting scenar-
ios. Further extensive ablation studies confirm-
ing the rationality of each OCG-Agent compo-
nent. The code is available at 1.

1 Introduction

The narrative-driven recommendation (NDR)
(Bogers and Koolen, 2018; Eberhard et al., 2019;
Afzali et al., 2021)—which leverages users’ explic-
itly stated narrative queries to suggest personalized
items—has recently garnered attention through
the application of large language models (LLMs)
(Eberhard et al., 2025; Mysore et al., 2023; Zhu

1https://github.com/Ancientshi/OCG-Agent

et al., 2025b), because of their exceptional semantic
understanding (Zhu et al., 2024), advanced reason-
ing, and zero-shot adaptability (Brown et al., 2020;
OpenAI et al., 2024).

Beyond relying solely on the parameterized
knowledge of LLMs for direct answer generation,
augmenting LLMs with externally retrieved ev-
idence through a Retrieval-Augmented Genera-
tion (RAG) framework has been shown to substan-
tially enhance accuracy, credibility, and timeliness
(Lewis et al., 2020; Karpukhin et al., 2020; Izacard
et al., 2023; Gao et al.). Commercial AI search en-
gines are prime examples of this paradigm in action,
demonstrating strong feasibility for both question
answering (Soto-Jiménez et al., 2024; Fernández-
Pichel et al., 2025) and autonomous information
retrieval (Amer and Elboghdadly, 2024; Jiang et al.,
2025; Lu et al., 2025). However, the effectiveness
of these systems in answering narrative recommen-
dation queries remains largely unexamined. A sub-
stantial portion of real-world queries—from advice-
seeking on social platforms (e.g., Reddit, REDnote)
to domain-specific consultancy requests—naturally
conform to a narrative-driven recommendation for-
mat. Consequently, a key open question is: How do
generic QA- and information-search-oriented AI
search engines perform when tasked with narrative-
driven recommendation queries?

To investigate this, we conducted exploratory
experiments to evaluate the performance of sev-
eral AI search engines on narrative-driven movie
recommendation queries (§3). Surprisingly, these
systems consistently underperformed standalone
LLMs, underscoring the limited efficacy of the
RAG paradigm. Our diagnostic analysis revealed
two critical limitations responsible for this gap:
Low candidate recall constrains the recommen-
dation performance ceiling, and Insufficient can-
didate information impedes accurate ranking.
These findings indicate that resolving these re-
trieval bottlenecks is essential. In particular, adopt-
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I am a Chinese student with a Bachelor's degree in CS from BUPT, GPA of 
3.3/4, IELTS score of 6. I’m interested in applying for Master's programs 
related to CS major in Australia. Which universities and programes would I 
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University of Melbourne – Master of Information Systems
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● Name (required)
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● Programe Duration (optional) 
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● Major  Ranking (optional)
● Location (required) 
● Additional Information (required) 

④ Candidtae Completion

ADT Guided

⑤ Semantic 
Alignment

Downstream 
Ranking Method

Open Domain 
Candidate Generation Agent 

EasyRec, BGE 
GPT, RankGPT, 
Reasoning Rankinng

Figure 1: OCG-Agent in Narrative-driven Recommendation Task.

ing a wide-and-deep information retrieval strategy
offers a promising avenue for overcoming these
challenges and elevating the performance ceiling
of narrative recommendation tasks.

Additionally, we realize there exist information-
loss issue when applying the RAG paradigm to
narrative recommendation. Factual snippets re-
trieved from heterogeneous sources are fragmented
across numerous documents and cluttered with
noise; these long, interleaved contexts overwhelm
LLMs, blur entity boundaries, and degrade extrac-
tion precision (Jin et al., 2025a; Liu et al., 2023c).
Furthermore, LLMs exhibit inherent shortcomings
in rank list-generation tasks—such as position and
popularity bias (Hou et al., 2024), a mismatch be-
tween token-prediction objectives and listwise rank-
ing goals (Sun et al.), and accuracy degradation
when handling large-scale candidate paragraphs
(Liu et al., 2023b). The RAG paradigm is inher-
ently ill-suited to narrative recommendation, as
it incurs information-extraction losses and com-
bined with suboptimal ranking capability. We
develop a rigorous theoretical analysis that demon-
strates how these two intertwined deficiencies criti-
cally erode recommendation quality (§6).

Motivated by these findings, we makes the fol-
lowing contributions in this work. ❶ Formaliza-
tion of the narrative recommendation task and
introduction of a retrieval–ranking paradigm be-
yond retrieve-then-read (§ 2). We also provide
a theoretical guarantee that our novel paradigm

will firmly deliver outperform than RAG paradigm
(§ 6). ❷ We introduce OCG-Agent, a novel
open-domain information-retrieval agent (§ 5),
which specifically designed to enable wide and
in-depth candidate retrieval for narrative recom-
mendation queries. ❸ We verify the effective-
ness of OCG-Agent’s wide-deep retrieval mech-
anism and the new retrieve-rank paradigm on
Real-World Reddit and Corporate Datasets. Both
RAG and retrieve–rank implementations consis-
tently outperform LLM-based strong baselines, un-
like current AI search engines, and advanced deep-
research products lagging behind. Besides, our re-
trieve–rank paradigm achieves a 18.5%, and 27.3%
improvement in NDCG on the movie dataset and
education dataset, respectively, compared to con-
ventional retrieve–then–read variants. ❹ Critical
Findings in Ablation Study (§ 9). The ablation
on OCG-Agent demonstrates that expanding re-
trieval coverage improves overall performance but
can also induce retrieval saturation, leading to rank-
ing degradation. Moreover, employing LLM-based
generative retrieval is particularly effective for hard-
to-retrieve queries. By progressively deepening the
retrieval process and enriching each candidate’s
information, the pipeline’s recommendation ac-
curacy is incrementally enhanced—especially in
niche, domain-specific contexts where LLMs’ pa-
rameterized knowledge is insufficient. Finally, se-
mantic alignment further boosts precision in detail-
sensitive domains, e.g, education.
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2 Preliminary

2.1 Narrative-driven Recommendation Task
Definition 1. Let q represent user query, and I∗(q)
denotes the ground truth recommended items. Q
denote the space of user queries. I denote the
space of candidate items. A Top-K narrative rec-
ommender is a function

F : Q −→ IK , q 7−→ F (q) =
[
ℓ1, . . . , ℓK

]
,

where each ℓj ∈ I is a textual identifier (e.g., a
movie title) and the list is ordered by descending
relevance, rel(ℓ1, q) ≥ rel(ℓ2, q) ≥ . . . ≥
rel(ℓK , q). Here rel(·) is an implicit scoring func-
tion. Any candidate retrieval or re-rank procedure
is encapsulated inside F .

2.2 RAG Paradigm for Question Answering
Given a narrative query q ∈ Q, the system retrieves
a knowledge set

E(q) = { d1, . . . , dM}, M = |E(q)|,

where di denotes retrieved document may contain
candidates’ information (e.g., title, description.)
The combined input (q, E(q)) is then fed into a
generative LLM fθ, parameterized by θ, which
directly produces a ranked list of items:

F̂ (q) = fθ
(
q, E(q)

)
=

[
ℓ1, . . . , ℓK

]
.

3 Motivational Experiments

Experiment Setup. We evaluated 30 benchmark
movie-recommendation queries (Eberhard et al.,
2019, 2024, 2025) by submitting each to three
commercial AI search engines (ChatGPT-Search,
Perplexity-Sonar and Gemini-Search) and to GPT-
4o-mini. All systems used the same prompt and
their raw outputs were normalized into JSON-
formatted ranked lists. We then computed Pre-
cision@10, Recall@10 and NDCG@10 for each
top-10 list. Further details on the prompt template,
post-processing and evaluation protocol are pro-
vided in Appendix A.

Result Analysis. Figure 2 presents the mean per-
formance across all queries. We can observe that
across all three ranking metrics, AI search en-
gines underperform GPT-4o-mini by an average
relative drop of over 20%. We hypothesize two
primary factors underlying this gap. First, limited
candidate recall in the search engines imposes a

Figure 2: Performance Comparison Between Large Lan-
guage Models and AI Search Engines for Narrative Rec-
ommendation at Top@10.

Table 1: Deficiency Investigation Results

Setting Precision@10 Recall@10 NDCG@10

A 0.2266 0.0989 0.2485
B 0.5133 0.2276 0.5366
C 0.2433 0.1091 0.2725

ceiling on achievable ranking performance. Sec-
ond, insufficient information richness impairs
the LLM’s ability for accurately generating ranked
recommendations.

Deficiency Exploration. To validate our hy-
potheses, we designed three experimental setting.
Setting A serves as our baseline retrieve-then-read
(RAG) pipeline: we query the Serper API2 for web
search results, extract content with Docling (Team,
2024), and supply only the retrieved movie titles as
external knowledge to the prompt. In Setting B, we
include all ground-truth movie titles, then add nega-
tive candidates (non-relevant movies) to maintain a
realistic positive-to-negative ratio of approximately
1:3. This ratio mimics the real-world web retrieval
system where relevant results are naturally sparse.
By controlling the candidate pool composition in
this way, we can isolate the impact of retrieval cov-
erage on the ranking performance, independent of
other retrieval artifacts. Finally, Setting C enriches
the prompt’s external knowledge with both movie
titles and their associated metadata, allowing us to
evaluate the benefit of richer contextual informa-
tion. These comparisons disentangle the effects of
candidate-set size versus information richness on
recommendation performance. Table 1 reports Pre-
cision@10, Recall@10, and NDCG@10 for each
setting. Setting B yields a dramatic improvement
over the baseline—confirming that retrieval cover-
age is critical—while Setting C produces a modest
gain, underscoring the value of enriched metadata.

2https://serper.dev
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4 Retrieve–Rank Paradigm for NDR

We advocate the classical two-stage retrieve–rank
paradigm, long established and effective in tradi-
tional recommender systems.

Define C(q) = Retrieve(q) ⊆ I, |C(q)| =
N ≫ K, where Retriever employs broad
retrieval strategies to assemble a large, high-
coverage candidate set. Define a Reranker takes
the narrative query q together with its candi-
date list C(q) = {c1, . . . , cN} and directly re-
turns an ordered Top-K prediction F̂ (q) =
Rerank

(
q, C(q)

)
, |F̂ (q)| = K.

This retrieve–rank paradigm provides the con-
ceptual footing for our Open-Domain Candidate
Generation Agent (OCG-Agent; see § 5), which
instantiates the Retrieve(·) stage. The subsequent
Rerank(·) module is deliberately modular: such
as point-wise re-ranker (Cheng et al., 2022; Chen
et al., 2024), LLM-driven re-ranker (Jin et al.,
2025c), RAG-based re-ranker (Zhao et al., 2024c),
or agentic ranking techniques (Jin et al., 2025b;
Sun et al.) based on LLM’s reasoning and planing
ability (Jin et al., 2024b,a; Shi et al., 2025b).

5 Open-domain Candidate Generation

5.1 ADT Generation
We map each narrative query q ∈ Q into a struc-
tured abstract data type (ADT) t ∈ T for represent-
ing a candidate:

t =
{
(aj , vj , Ij)

}m

j=1
,

where aj is the attribute name, vj is its in-
stantiated value (possibly empty), and Ij ∈
{REQUIRED,OPTIONAL} indicates whether aj
is essential. To guarantee a minimal schema, we in-
clude two mandatory fields Name and AdditionalIn-
formation, where Name uniquely identifies the can-
didate and AdditionalInformation holds extensible
auxiliary metadata. We define fADT

θ : Q −→ T
and implement this mapping via chain-of-thought
prompting:

t ∼ fθ
(
t | promptADT (q)

)
= fADT

θ (q). (1)

This formulation treats each REQUIRED at-
tribute as a direct filter drawn from the query—e.g.,
program start semester, GPA threshold for educa-
tional recommendations—it achieves precise align-
ment with user needs. Besides, the fixed schema
imposes a uniform structure that supports fair com-
parisons across heterogeneous web sources. More-
over, whenever a required field is missing (vj = ∅),

the system automatically invokes the reflect-and-
augment routine (see §5.4), guaranteeing iterative
completion of all critical attributes.

5.2 Multi-Route Information Retrieval
OCG-Agent pursues a large, high-coverage can-
didate set C(q) through an agentic multi-route
retrieval routine: by chaining autonomous func-
tion calls, it composes and executes complemen-
tary retrieval routes that sweep heterogeneous data
sources in parallel—a strategy long applied in prac-
tical recommender systems (Huang et al., 2024;
Nie et al., 2022; Huang et al., 2025). This process
can be formally described as:

P(q) =
{
(ri, ki)

}n

i=1
∼ fRewrite

θ (q), (2)

where each ri is a callable retrieval function
and ki are its subquery parameters. We employ
four complementary retrieval channels. The Web
search route, denoted as rweb(k), leverages Do-
cling (Team, 2024) for webpage content extrac-
tion. For retrieving knowledge from a specific
domain, we use Vector search rvector(k) imple-
mented by Chroma+LangChain for retrieving most
relevant documents according to semantic simi-
larity. We also use Structured query route de-
noted by rSQL(k), via MindSQL for relational data
lookup. And finally completed with Generative
LLM rLLM(k), for directly generating information
based on LLMs’ parameterized knowledge, which
is effective for retriving useful information that is
hard to be retrieved from internet. The union of the
retrieved knowledge fragments forms aggregated
knowledge base:

E(q) =
n⋃

i=1

ri(ki) = { d1, . . . , dM}, (3)

Here, each retrieval route contributes a subset of
knowledge fragments to the collective repository.

5.3 Candidate Extraction
We deploy a parallel fragment-level LLM candidate
extract followed by aggregation that deduplicates
and unifies the candidate set. We extract candidates
in parallel:

C(j)(q) =
[
c
(j)
1 , . . . , c

(j)

n(j)

]
∼ fExtract

θ

(
dj , t

)
, (4)

where t is the Abstract Data Template (ADT). Any
ADT field unsupported by dj is marked NOT FOUND.

We then aggregate all local sets into a unified
candidate pool: C(q) =

⋃n
j=1 C(j)(q), For candi-

dates c appearing in multiple C(j)(q), we consoli-
date their attributes via c =

⊕
j: c∈C(j) c(j), where
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⊕ merges complementary fields to yield enriched,
consistent representations.

5.4 Reflective Completion for Attributes
Multi-route recall (§5.3) maximizes coverage, yet
it often yields candidates with missing REQUIRED
fields—attribute sparsity that hurts ranking accu-
racy (§ 3). OCG-Agent remedies this through a
reflect-and-complete phase that audits each candi-
date and fills every mandatory attribute.

Problem Formulation. Represent a candidate as
an attribute map c =

{
(aj , vj)

}m

j=1
, vj ∈ V∪{∅},

where V is the space of admissible values. Let
Areq ⊆ {a1, . . . , ak} denote the set of required at-
tributes defined by the ADT schema. The comple-
tion set of c is M(c) = { aj ∈ Areq | vj = ∅}.
Our objective is to construct an operator

C : c 7−→ ĉ, s.t. M(ĉ) = ∅,

while preserving all previously verified values.

Targeted Deep Retrieval. For every missing at-
tribute a ∈ M(c) we craft a query k(c, a) =
Compose

(
c, a

)
, which encodes both the candidate

identifier (e.g., a movie title) and the attribute to be
filled. Leveraging the multi-route retrieval module
(§5.2), the OCG-Agent autonomously invokes sev-
eral specialized retrievers—each probing a distinct
search direction—and aggregates their outputs into
the knowledge set E(c, a), which is then used to
complete the required attribute.

Completion. We define a chain-of-thought
prompt driven completion process as

v = f COMP
θ

(
k(c, a), E(c, a)

)
,

The candidate is updated in place,

ĉ = c ∪
{
(a, v)

}
,

and the procedure iterates until M(ĉ) = ∅. By
integrating the explicit M(c) checklist with adap-
tive, attribute-targeted retrieval, the reflect-and-
complete stage eliminates the extra LLM-mediated
reflection step that conventional/deep research pat-
tern RAG pipelines typically require.

5.5 Expert-Guided Semantic Normalisation
Even after attribute completion, values may remain
semantically incommensurable. A canonical ex-
ample is grade-point averages: Australia scales
GPA on 0−7, whereas the UK adopts 0−4. Such
incongruities bias similarity metrics and, in turn,
downstream ranking.

Alignment operator. Let c = {(aj , vj)}mj=1 be
a completed candidate and Asense is the subset
of semantically sensitive attributes. For every
aj ∈ Asense we prompt LLMs with human expert-
level domain knowledge Eexpert (e.g. conversion
formulae, ontologies, or policy tables) and apply

v̄j = fNormalize
ϕ

(
vj , Eexpert

)
,

which is implemented by an LLM prompted with
chain-of-thought exemplars. Empirically, this step
is often important in cross domain recommenda-
tions such as the cross-national education bench-
mark (§9.2), underscoring the necessity of expert-
guided normalisation.

6 Theoretical Effect

Assumption 1. The number of mentioned candi-
date in E(q) is N. There exists γ ∈ [0, 1] such that
only γN of the retrieved items survive inherent in-
formation loss of LLM in handling long context.
OCG-Agent can often achieve λ → 1, such that
OCG-Agent successfully recognizes and extracts
every item in the E(q) yielding limλ→1C(q) = N .
There exists ρ ∈ [0, 1] satisfying Pr

(
E(q) ⊇

I∗
top(q)

)
≥ ρ, where I∗

top(q) ⊆ I is the true top-
K relevant set. Leverage LLM for top-K ranking
task yielding a accuracy of β ∈ [0, 1]. Moreover,
a sophisticated re-ranker achieves an accuracy of
α ∈ [0, 1] with α ≥ β.
Theorem 1. Under Assumption 1, the precision
and recall of Retrieve-Read RAG paradigm and
Retrieve-Rank satisfies

E
[
P@KRAG

]
≥ γNρβ

K
, E

[
R@KRAG

]
≥ γNρβ

|I∗(q)| ,

E
[
P@KRR

]
≥ Nρα

K
, E

[
R@KRR

]
≥ Nρα

|I∗(q)| .

It is apparent that this theoretical guarantee the
proposed retrieve–rank paradigm delivers outper-
form RAG paradigm in both precision and recall.
Detailed prove is provided in Appendix D.

7 Experiment

7.1 Experimental Setup
Datasets. We conduct experiments on two
datasets chosen to mirror the coverage and
semantic-richness deficiencies diagnosed in § 3.
First, we adopt the REDDIT MOVIESUGGESTIONS

benchmark originally released by Eberhard et al.
(2019) and later reused by Eberhard et al. (2025).
Second, we introduce an AUSEDU-NARRATIVES
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Table 2: Comparison of metrics for different methods

Method Movie Education
Precision@10 Recall@10 NDCG@10 Precision@5 Recall@5 NDCG@5

GPT4o-mini 0.2800 0.1291 0.3003 0.2545 0.1682 0.3236
GPT4o 0.3133 0.1506 0.3451 0.3318 0.2617 0.3829
DeepSeek-R1 0.2767 0.1254 0.3068 0.3463 0.2712 0.3939

AISearch-Perplexity 0.1500 0.0705 0.1486 0.3473 0.2349 0.4519
AISearch-GPT 0.2200 0.0959 0.2531 0.3272 0.2227 0.4207
AISearch-Gemini 0.1967 0.0918 0.2180 0.3090 0.2041 0.4074

Open Deep Research 0.0931 0.0384 0.0804 0.2545 0.1650 0.3109
Perplexity Deep Research 0.2033 0.0876 0.2246 0.3090 0.2015 0.3423

Retrieve-then-Read 0.3143 0.1520 0.3324 0.3739 0.3073 0.5216
OCG-RankGPT 0.3567 0.1832 0.3940 0.5342 0.4323 0.6641

corpus consisting of 30 anonymised, real-world
study-abroad counselling cases supplied by a local
consultancy. A full description and ethical safe-
guards appears in Appendix B.

Evaluation. We measure Precision@k, Re-
call@k, and NDCG@k(Järvelin and Kekäläinen,
2002),(k=10 for movies, 5 for education). For each
query, the OCG-Agent retriever runs once, after
which RankGPT (Sun et al.) plays as re-ranker run
for three times and we report the averaged value.

Baselines. We employ EasyRec (Cheng et al.,
2022) as a first-stage re-ranking module to retain
the top-50 candidates by pairwise score, and then
apply RankGPT (Sun et al.), powered by O3-mini,
for the final ranking. We denote our whole end-to-
end pipeline method as OCG-RankGPT. We also
have a baseline variant implemented by retrieve-
read paradigm under the same external knowledge
usage for fair comparison. Additionally, we further
compare with the following categories of baselines.
LLM Direct: GPT4o-mini, GPT4o and DeepSeek-
R1 (DeepSeek-AI, 2025). AI Search Engines: Per-
plexity, GPT-AI Search, and Gemini Search. Deep
Research (Lee, 2025), Perplexity 3 and Open Deep
Research 4. Further introduction for baselines are
in Appendix C

We exclude traditional recommendation models
(matrix factorization, TF-IDF, Doc2Vec) as base-
lines since prior work has shown they perform
poorly on narrative-based queries and are incon-
sistent with human recommendations (Eberhard
et al., 2019). We also exclude prompt engineering-
based recommendation methods such as (Liu et al.,
2023b) because prior work (Eberhard et al., 2025)
shows that prompt engineering variants (zero-shot,

3https://www.perplexity.ai/hub/blog/introducing-
perplexity-deep-research

4https://github.com/langchain-ai/open_deep_
research

few-shot) provide no improvement over basic
prompting.

8 Results and Analysis

LLMs as Narrative Recommender is Effective in
Generic Domains. As demonstrated in Table 2,
LLM-based narrative recommenders consistently
outperform both AI search engines and advanced
deep research methods in the movie recommenda-
tion task. Notably, GPT-4o achieves performance
closely approaching OCG-Agent, trailing by only
approximately 4%. This highlights the inherent ef-
fectiveness and efficiency of harnessing the param-
eterized knowledge embedded in LLMs for general-
domain narrative recommendation.

Wide-Deep Retrieval Enhanced RAG Paradigm
Yields Performance Gains While Commercial
Products Lag Behind. By treating narrative
recommendation as a QA task under a RAG
framework, our Retrieve–then–Read variant, en-
hanced by OCG-Agent’s retrieved external knowl-
edge, consistently outperforms standalone LLM
approaches, commercial AI search engines, and
advanced deep-research approaches. In the educa-
tion domain, it achieves relative improvements of
7.97% in Precision@5, 13.31% in Recall@5, and
32.42% in NDCG@5 compared to DeepSeek-R1.
This improvement validates the effectiveness of our
wide-and-deep information retrieval efforts. In con-
trast, off-the-shelf commercial products not only
exhibit degraded performance on the movie dataset
but also deliver only marginal gains in educational
recommendations, highlighting the limitations of
their vanilla retrieval pipelines and underscoring
the critical need for candidate-centric retrieval en-
hancements.

OCG-RankGPT Secures Marked Gains
over RAG Paradigm. Compared to the re-
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Figure 3: Impact of Increasing Candidate Items Generated by OCG-Agent on Recall of Candidate Generation,
Recall of Reranking Results, and NDCG.

trieve–then–read variants, our OCG-RankGPT
implementation delivers a 18.5% increase in
NDCG@10 on the movie dataset and 27.3% uplift
in NDCG@5 on education dataset. Since both ap-
proaches operate with the same amount of external
knowledge, these improvements underscore the
superiority of our novel retrieve–rank paradigm.
Moreover, our theoretical performance bounds
presented in Appendix D for the retrieve–rank
framework exhibit strong concordance with the
observed empirical gains.

9 Ablation Study

9.1 Impact of Strengthen Retrieval Breadth

We design our experiments to evaluate the impact
of increasing retrieval channels on both candidate
recall effectiveness and final recommendation per-
formance. For the movie recommendation scenario,
we employ four rweb(k), and we select the top 10
candidates for each retriever. Additionally, we sup-
plement this with one rLLM(k), which generates
10 candidate items. In the educational recommen-
dation context, the retrieval strategy is tailored to
domain-specific needs. We deploy just one rweb(k)
yielding the top 5 candidates, complemented by
three rvector(k) with each one yields 3 candidates.
We further integrate one rLLM(k), providing an
additional 5 candidates. Performance was evalu-
ated by measuring recall on candidates, recall and
NDCG on the final ranks. The experimental results
are visualized in Figure 3.

Retrieval Saturation and Ranking Degradation.
Increasing the number of retrieval channels initially
leads to substantial gains in candidate recall. How-
ever, these gains taper off as additional channels
begin to yield overlapping or lower-quality items.
This diminishing-return effect not only saturates re-

call improvements but also introduces redundancy
and noise into the candidate pool. As a result, the
final ranked performance—measured by recall and
NDCG—can plateau or even degrade. These find-
ings underscore a critical insight: beyond a cer-
tain point, expanding retrieval breadth harms rather
than helps. Effective retrieval should therefore em-
phasize quality-aware selection over indiscriminate
expansion to preserve downstream ranking fidelity.

Effectiveness of Generative Retrieval. Gener-
ative retrieval significantly boosts performance,
particularly when conventional web search yields
sparse results. In the movie domain, it reliably sur-
faced high-quality candidates that were difficult to
obtain even with extensive web querying. In con-
trast, for the education domain, aggressive specific
domain-based retrieval eventually caught up—but
only with sustained effort. These results highlight
the strategic value of generative retrieval: by lever-
aging the broad world knowledge encoded in large
language models, it excels in both open-domain
scenarios with hard-to-retrieve items and special-
ized domains requiring domain-specific expertise.

9.2 Impact of Strengthen Retrieval Depth

To isolate the effect of attribute completeness on
ranking, we vary the fraction of required fields
that are populated. Completeness is quantified as
the ratio of filled essential attributes, and Table 3
summarizes the three tiers evaluated in our study.

Attribute Completeness Drives Ranking Preci-
sion. Augmenting each candidate with its full set
of required attributes consistently raises ranking
accuracy, but the scale of this benefit is decisively
domain-specific. In the movie corpus, where LLMs
already parameterized extensive cinematic knowl-
edge, filling yields only modest gains. By con-

13199



Table 3: Effect of Varying Levels of Information Completeness and Quality of Candidate Attributes on Ranking
Performance

Dataset Attribute Completeness Required Attribute % Ranking NDCG@10

Movies
Movie name only 0% 0.3241

+ ADT Information ( §5.1) 68% 0.3684
+ Required Attribute Completion ( §5.4) 87% 0.3940

+ Sematic Alignment ( §5.5) 87% (0% updated) 0.3940

Education
Program and university names only 0% 0.3978

+ ADT Information ( §5.1) 57% 0.4513
+ Required Attribute Completion ( §5.4) 92% 0.5849

+ Sematic Alignment ( §5.5) 92% (27% updated) 0.6641

trast, the education corpus shows a sharp accuracy
jump once critical attributes—such as programme
start term, GPA thresholds, and language require-
ments—are completed. These results reaffirm our
central claim and highlight the strategic role of the
attribute-completion module introduced in § 5.4:
by invoking targeted deep retrieval to populate es-
sential fields, it fortifies the retrieve–rank paradigm
and delivers the fine-grained metadata indispens-
able for high-fidelity recommendations in domains
where detail governs decision-making.

Semantic Alignment Lifts Precision in Detail-
Sensitive Domains. Table 3 shows that normal-
ize attributes boosts NDCG@10 on the educa-
tion dataset from 0.585 to 0.664. Roughly 27%
of its fields—chiefly exam scores and GPA for-
mats—required conversion to a common schema.
In contrast, the movies dataset have no change: its
metadata are already standardised, so alignment
touched 0% of attributes and left accuracy flat.

10 Related Work

10.1 Narrative-driven Recommendation

In a narrative-driven recommendation sce-
nario (Bogers and Koolen, 2017), users articulate
their needs in free-form prose—“I’m looking for a
mind-bending thriller like Shutter Island”—and
expect the system to return a ranked list of suitable
items. Early methods grounded in classical text
retrieval or embedding matching (Eberhard et al.,
2024, 2020, 2019) struggled to capture the subtle
intent encoded in such narratives and therefore
achieved only modest accuracy. The advent of
LLMs has transformed this landscape. Recent
studies have demonstrated LLMs’ potential for a
wide range of recommendation tasks (Zhu et al.,
2025a; Lubos et al., 2024; Dai et al., 2023; He
et al., 2023; Liu et al., 2024; Feng et al., 2023; Hao
et al., 2025; Chen et al., 2025; Shi et al., 2025a; Xu

et al., 2025). Notably, Eberhard et al. (2025) report
that GPT-class models surpass strong embedding
baselines such as doc2vec (Le and Mikolov, 2014)
on Reddit movie-suggestions.

In this study, we extend the narrative-driven rec-
ommendation beyond forum scenarios (Eberhard
et al., 2025) to diverse real-world contexts—AI
search engines, agentic consulting, question-
answering systems, and social media posts—where
users express recommendation requests as free-
form narratives. Furthermore, we formally define
this task and advocate a new retrieve-rank paradigm
as solution beyond RAG.

10.2 Information Retrieval in LLM Era
Retrieval-Augmented Generation (RAG) has
evolved from the foundational retrieve–then–read
pipeline (Lewis et al., 2020; Karpukhin et al., 2020;
Izacard et al., 2023) to modular architectures inte-
grating advanced plug-in components (e.g., (Gao
et al., 2024; Shi et al., 2024; ?; Ma et al., 2023; Liu
et al., 2023a; Zhao et al., 2024a; Bowman et al.,
2015; Yoran et al., 2023; Kim et al., 2023; Li et al.,
2024; Kumar et al., 2024; Ji et al., 2023; Zhao et al.,
2025)). Commercial AI search engines directly
deploy RAG to support answering arbitrary style
queries. The information-retrieval module serves
as the cornerstone of AI search engines, routinely
returning unstructured, QA-oriented documents to
supply in-context knowledge (Wang et al., 2024;
Herzig et al., 2021; Liu et al., 2021; Zhao et al.,
2024d). Consequently, no existing retrieval solu-
tion offers a structured, query-adaptive schema
for candidate comparison, forcing downstream
models to implicitly infer item attributes from vast,
fragmented text. This limitation makes coherent
recommendation list generation from hundreds of
thousands of tokens prohibitively difficult. To
bridge this critical gap, we propose the Open-
Domain Candidate Generation (OCG) Agent,
the first agentic retrieval tool dedicated to can-
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didate recall.
Although recent structure-aware RAG variants

(Zhao et al., 2024b; Han et al., 2025; Li et al.,
2025a,b)—GraphRAG, SubgraphRAG, and Struc-
tRAG—prioritise graph-centric relational mod-
elling, when transplanted to structured candidate
retrieval, their graph modules add superfluous com-
plexity and remain misaligned with task objectives,
so substantial re-engineering is inevitable. By con-
trast, OCG-Agent is purpose-built for narrative-
driven recommendation, offering a lean, task-
aligned solution.

11 Conclusion

In this work, we formally define narrative-driven
recommendation as a prevalent category of user
queries across diverse applications and propose a
tailored two-stage retrieve–rank paradigm to ad-
dress its unique challenges. At the core of our
framework is the Open-Domain Candidate Gener-
ation Agent (OCG-Agent), which autonomously
produces structured and semantically aligned can-
didates, maximizing both the breadth and depth of
information recall. Integrated with the RankGPT
re-ranker, our OCG-RankGPT pipeline achieves
significant gains in narrative recommendation per-
formance compared with retrieve–then–read vari-
ants, standalone LLMs, commercial AI search en-
gines, and deep-research approaches. This out-
performance can be attributed to the wide-and-
deep retrieval mechanism of the OCG-Agent and
the reduced information loss and improved rank-
ing accuracy afforded by our paradigm. Look-
ing ahead, our framework remains agnostic to
downstream rankers—inviting integration with ad-
vanced learning-to-rank models and agentic re-
rankers—and positions OCG-Agent as a modular
component in multi-agent collaboration systems,
paving the way for more robust, context-rich narra-
tive recommender applications.

Limitations

While our proposed retrieve–rank framework and
OCG-Agent demonstrate substantial empirical and
theoretical advantages, several limitations remain
that merit discussion and future exploration. Our
implementation adopts RankGPT (Sun et al.) as
the re-ranking module within the retrieve–rank
pipeline. Although RankGPT offers robust per-
formance (typically achieving 60%–90% NDCG
across various benchmarks), it is not necessar-

ily the optimal choice. Recent advancements in
agentic reasoning-based re-rankers (e.g., (Jin et al.,
2025b,c)) present promising alternatives that could
further enhance ranking accuracy. Nevertheless,
our primary focus in this work is on the candidate-
centric retrieval stage, which constitutes the central
innovation of OCG-Agent. Future work could in-
corporate more sophisticated re-ranking models to
further lift end-to-end performance. Besides, the
evaluation of commercial AI search engines and
deep-research systems was conducted in March
2025—a period during which deep research was
beginning to be popular for answering any ques-
tions. As such, our reported findings represent a
snapshot of system capabilities at a specific devel-
opmental phase and may not fully capture ongoing
advancements in commercial deployments. Our
experimental datasets are relatively small due to
practical constraints. Specifically, the movie bench-
mark comprises 100 narrative queries instead of
the full 296, primarily because executing OCG-
Agent’s candidate retrieval requires 30-60 minutes
per query on average. Additionally, certain com-
mercial systems impose API rate limits or very high
usage costs that hinder large-scale testing. While
we believe our sample size is sufficient to reveal
consistent and statistically meaningful trends, ex-
panding to larger datasets remains an important
direction for strengthening the generalizability and
robustness of our conclusions.

Ethics

This study adheres to rigorous ethical standards in
both data collection and usage. The movie recom-
mendation dataset is drawn from publicly available
Reddit data, released under standard research-use
licenses and curated in prior work (Eberhard et al.,
2019, 2025). All data from this corpus are non-
identifiable and freely accessible, ensuring compli-
ance with ethical norms regarding user consent and
privacy.The education dataset comprises 30 real-
world narrative cases contributed by a local educa-
tion consultancy. Each user involved in these cases
provided informed consent for their narratives to
be used in academic research. All personally identi-
fiable information (e.g., names, birthdates, contact
details) has been thoroughly removed or normal-
ized, leaving only anonymized narrative queries
that contain no privacy-sensitive content. Besides,
the education dataset will not be publicly released
to preserve institutional confidentiality.
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Appendices

A Motivational Experiments

A.1 Setup

We select 30 queries specifically requesting movie recommendations, with the dataset sampled from prior
research (Eberhard et al., 2019, 2024, 2025) available at 5. GPT-4o-mini is employed as the representative
LLMs as narrative-driven recommender due to its demonstrated effectiveness (Eberhard et al., 2025).
For AI-driven search engines, we include ChatGPT-Search 6, Perplexity-Sonar 7, and Gemini-Search
8. GPT-4o-mini can generate recommendation responses structured as JSON-formatted ranked lists.
However, AI search engines can not directly produce valid JSON structures, thus requiring additional
post-processing. To manage this issue, we utilize GPT-4o to extract and properly format these outputs.
Prompt design uniformly adopts the chain-of-thought (CoT) (Wei et al., 2022), explicitly guiding LLMs
to detail their reasoning processes step-by-step in free-text form. Furthermore, we instruct the models to
include a concluding section explicitly delineating the final rankings, thereby enhancing JSON recognition
accuracy and mitigating performance degradation associated with overly stringent formatting constraints
(Tam et al., 2024).

For evaluation purposes, we employ standard top-10 ranking metrics, specifically precision, recall, and
normalized discounted cumulative gain (NDCG) (Järvelin and Kekäläinen, 2002). Each query response is
generated three times independently, with the final reported metrics representing averages across these
iterations.

B Dataset Details

The Reddit MovieSuggestions dataset is the most widely adopted and canonical benchmark for narrative-
driven recommendation (Bogers and Koolen, 2017; Eberhard et al., 2024, 2020, 2019, 2025). To move
beyond this single-domain setting and assess real-world applicability, we additionally curated and eval-
uated a proprietary AusEdu-Narratives corpus comprising authentic overseas-study counselling cases
collected by a professional consultancy. A partly relevant resource (Koolen et al., 2016) that could satisfy
the evaluation needs of narrative-driven recommendation task is no longer accessible and contain sparse
and noisy annotations.

Reddit MovieSuggestions. We use the benchmark released by Eberhard et al. (2019), which includes
1,483 movie recommendation threads from the r/MovieSuggestions subreddit. The final 20% of the data
is held out as the test set. Each thread contains (i) a narrative-style query describing the user’s preferences,
and requirements, and (ii) community-suggested movie titles with up-vote counts. For evaluation, we
randomly select 100 test queries. All recommended movies from each thread are merged and deduplicated.
The final “oracle” ranking is based mainly on mention frequency while preserving the original up-vote
order within each thread.

AusEdu-Narratives. We curated thirty real-world case studies from an Australian education consultancy
9. Each case study comprises three core components—an academic profile (including native-scale
GPA, IELTS score and notable awards), a personal background (country of origin, budget constraints
and extracurricular interests) and the applicant’s intent (desired discipline, intake term and preferred
city)—together with the counsellor’s ranked shortlist of appropriate programmes. We transform these
discrete fields into a single coherent narrative queries so that our retrieval engine must jointly reason
over both quantitative constraints (e.g. GPA 6.0/7.0) and qualitative preferences (e.g. “favors coastal
locations”). All personally identifying information (names, birthdates and student identifiers) has been
removed to guard against re-identification.

5https://doi.org/10.17605/osf.io/ma2bj
6https://openai.com/index/introducing-chatgpt-search/
7https://docs.perplexity.ai/home
8https://ai.google.dev/gemini-api/docs/grounding
9https://www.achieva-ai.com/home
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C Baseline Details

To evaluate the effectiveness of our proposed approach, we compare it against three distinct paradigms.

LLM Direct This paradigm leverages the internal, parameterized knowledge of large language models
(LLMs) for narrative recommendation tasks (Eberhard et al., 2025). Prior work has demonstrated that
gpt-4o achieves state-of-the-art performance among both closed- and open-source LLMs (Eberhard
et al., 2025). Therefore, we adopt (1) gpt-4o as a representative strong baseline. Moreover, motivated
by emerging prompt-based models whose narrative recommendation performance has not been fully
explored, we also include (2) deepseek-r1 (DeepSeek-AI, 2025) as an additional robust candidate.

AI Search Engine AI Search Engine methods employ a retrieval-augmented framework, wherein
external web content is used to prompt LLMs in generating recommendations. This paradigm relies
predominantly on externally sourced knowledge rather than the inherent parameters of the LLMs. For our
evaluation, we incorporate three widely adopted AI Search Engines: (3) Perplexity, (4) GPT-AI Search,
and (5) Gemini-AI Search.

Deep Research The Deep Research methods iteratively perform extensive searches and analyses to
generate detailed reports (Lee, 2025). We mainly benchmark our approach against two representative deep
research systems in whole dataset: (6) Perplexity Deep Research 10 and (7) Open Deep Research11. Due
to the rapid emergence of Deep Research methods, most of which appeared after our study was largely
completed, we were unable to conduct comprehensive evaluations of all Deep Research approaches on the
full dataset. As a trade-off, we conducted supplementary evaluations on six other recently emerged Deep
Research methods (both commercial and open-source) using the first five samples of Movie dataset, with
detailed descriptions provided in Table 4.

Table 4: Comparison of Pioneer Deep Research Solutions on Movie Recommendation
Method Version / Configuration Precision@10 Recall@10 NDCG@10
OpenManus Claude Sonnet 3.7 + Headless Web Browser 0.3750 0.1858 0.4121
Open Deep Research GPT-4o + Serper Search 0.2750 0.1352 0.3412
OpenAI Deep Research OpenAI o3 Reasoning 0.3250 0.1575 0.3555
Perplexity Sonar Pro (in-platform web) 0.2500 0.1260 0.2744
Grok Grok 3 (Deeper Research interface) 0.4250 0.2081 0.4630
Kimi Kimi Researcher LLM + Kimi Search 0.1000 0.0451 0.1103
Qwen Qwen-3 + Deep Thinking toolkit 0.1250 0.0675 0.1605
Gemini Gemini 2.5 Pro + Deep Research retrieval 0.2750 0.1309 0.3341
OCG-RankGPT RankGPT reranker (O3-mini backend) 0.3500 0.1726 0.4231

(We observed that Grok’s Deeper Search achieved notably superior performance compared to other
methods. However, upon careful investigation, we discovered that this product specifically targets Reddit’s
r/MovieSuggestions channel to extract user comments directly. This approach introduces ground truth data
leakage. OpenManus demonstrated relatively strong performance, which we attribute to its comprehensive
multi-channel search strategy across diverse platforms including BaiduSearchEngine, BingSearchEngine,
DuckDuckGoSearchEngine, GoogleSearchEngine, and WebSearchEngine. In contrast, we only utilized
Serper as the search engine. This performance difference reflects an engineering implementation gap
rather than a fundamental method advantage.)

D Proof of Theorem 1

Assumption 1. There exists γ ∈ [0, 1] such that only γN of the retrieved items survive inherent
information loss of LLM in handling long context. OCG-Agent can often achieve λ → 1, such that
OCG-Agent successfully recognizes and extracts every item in the E(q) yielding limλ→1C(q) = N .
There exists ρ ∈ [0, 1] satisfying Pr

(
E(q) ⊇ I∗

top(q)
)

≥ ρ, where I∗
top(q) ⊆ I is the true top-K relevant

set. Leverage LLM for top-K ranking task yielding a accuracy of β ∈ [0, 1]. Moreover, a sophisticated
re-ranker achieves an accuracy of α ∈ [0, 1] with α ≥ β.

10https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research
11https://github.com/langchain-ai/open_deep_research
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Theorem 1. Under Assumption 1, the precision and recall of Retrieve-Read RAG paradigm and
Retrieve-Rank satisfies

E
[
Precision@KRR

]
≥ Nρα

K
, (5)

E
[
Precision@KRAG

]
≥ γNρβ

K
, (6)

E
[
Recall@KRR

]
≥ Nρα

|I∗(q)| , (7)

E
[
Recall@KRAG

]
≥ γNρβ

|I∗(q)| . (8)

Proof. Limited by the LLMs’ inherent limitations in handling long context article, it can only retain
information from retrieved context at a fraction γ ∈ (0, 1]. Hence, out of the N candidates retrieved, only
γN are successfully extracted. Moreover, at least a fraction ρ ∈ (0, 1] of these γN candidates belong to
the true top-K set I∗

top(q), i.e. ∣∣I∗
top(q) ∩ C(q)

∣∣ ≥ ρ γN.

Finally, if the LLM’s ranking model achieves an accuracy of β ∈ [0, 1] in placing relevant items within its
Top-K output, then the number of true top-K items it correctly ranks is

γN × ρ × β.

By definition of Precision@K and Recall@K, we thus obtain

Precision@KRAG ≥ γNρβ

K
, Recall@KRAG ≥ γNρβ

|I∗(q)| ,

Then it is apparent that the proposed retrieve–rank paradigm delivers precision and recall as follows:

E
[
Precision@KRR

]
≥ Nρα

K
>

γNρβ

K
, E

[
Recall@KRR

]
≥ Nρα

|I∗(q)| >
γNρβ

|I∗(q)| .

E Case Study

Figure 4 provides a transparent depiction of both the retrieval and ranking processes through a repre-
sentative case study, clarifying the real-world setting of the narrative recommendation task, detailing
our OCG-RankGPT pipeline’s workflow (including intermediate and end-to-end outputs), and offering a
direct comparison against the ground truth.

F Prompt Templates

We illustrate representative prompt templates used in our study in Figure 5, Figure 6, Figure 7, and
Figure 8. For the complete set of prompts, please refer to our publicly available code repository.
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Case Study on Education Dataset

Narrative Query:
I want to study further. Can you help me? I am seeking guidance on pursuing a computer science
related master degree in in Australia, starting in the second semester of 2025. I am an international
student from China with a Bachelor of Engineering degree from Beijing University, a GPA of 3.7
on a scale of 88, and an IELTS score of 6.5. I am looking for recommendations on universities and
programs that match my profile and preferences.

Ground Truth Recommendations:

1. Master of Computer Science at the University of Melbourne.

2. Master of Software Engineering at the University of Melbourne.

3. Master of Computer Science at the University of Sydney.

4. Master of Engineering Science at the University of New South Wales (UNSW Sydney).

5. Master of Engineering Science at the University of Queensland (UQ)

6. Master of Computer Science at the University of Queensland (UQ).

7. Master of Information Technology at the University of Technology Sydney (UTS).

8. Master of Engineering at the University of Technology Sydney (UTS).

Retrieved Candidate List:

1. Master of Science (Research) in Computing Sciences at UTS (University Ranking: 88,
Admission Requirements: 6.5 overall with a writing score of 6.0 for IELTS, Major Componen:
Previous qualifications must have a major computing component)

2. Master of Computer Science at The University of Melbourne (Scholarship Opportunities:
Graduate Access Melbourne (GAM) for domestic students, General Admission Criteria: An
undergraduate degree with a major in Computer Science with a WAM of at least 75%, English
Language Requirements: IELTS 6.5 (with no band less than 6.0))

3. ...

Ranked Result:

1. Master of Software Engineering at the University of Melbourne.

2. Master of Information Technology at the University of Technology Sydney.

3. Master of Software Engineering at the University of Melbourne.

4. Master of Computer Science at The Australian National University.

5. Master of Engineering Science at the University of Queensland.

6. ...

Figure 4: Retrieved results and ranked result of OCG-RankGPT.
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Abstract Data Type (ADT) Generation Prompt Template

Task Description:
Your task is to understand user’s [Narrative Recommendation Query] and the analyzed [Personality
Traits], then design appropriate Abstract Data Type (ADT) for the candidate item. You should
consider what the type of things the candidate item is and what kinds of key attributes should be
included.
Note that the attributes should be dynamically adjusted according to the user’s concerns. For each
attribute, it should be neither required or optional.
Narrative Recommendation Query:
{query}
Personality Traits:
{profile}
Analytical Steps:

1. Integrate the insights gained from the query with the personality indicators to identify the core
attributes that the candidate item should possess.

2. For each identified attribute, furnish a detailed rationale that elucidates how the attribute aligns
with the user’s requirements while ensuring adaptability for dynamic adjustments.

Important Instructions:

1. All analyses must be strictly derived from the narrative query and the provided personality
traits; no extraneous information should be incorporated.

2. Each inference and attribute selection must be supported by clear, logical evidence, ensuring
the overall reasoning is both coherent and robust.

3. The design of the Abstract Data Type (ADT) should be responsive to the user’s specific
concerns, balancing the necessity of key attributes with the flexibility to accommodate op-
tional requirements. The attribute "Name" is mandatory, whereas the attribute "Additional
Information" is optional. The latter serves as a repository for supplementary descriptive details
about the candidate that are not of primary importance.

Response Format:
Class Name: {classname}
Attributes:

Name, required
{attribute1}, {required/optional}
{attribute2}, {required/optional}
...
Additional information, optional

Figure 5: Prompt Template for Abstract Data Type (ADT) Generation: Design Candidate Attributes Tailored for
User Concerns
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Candidate Instance Extract Prompt Template

Task Description:
Your task is to extract relevant entities from the [Article] based on the given [ADT].
Abstract Data Type (ADT):
{ADT}
Article:
{article}
Important Instructions:

1. The primary objective is to extract instance object, the Abstract Data Type [ADT] is already
defined and you should strictly follow.

2. Do not fabricate information—if an extracted instance object has incomplete attributes, keep
them as NOT FOUND.

3. For the attribute ’Additional Information’, it should be a JSON format containing supplemen-
tary descriptive details about the candidate. Or be an empty json.

Analytical Steps:

1. Read the [ADT] carefully and understand the defined data structure.

2. Read the [Article] then specific your founded instance object, list the Name attribute.

3. Write a section named ’Candidate List’, followed by a json format answer.

Output Format:
You can articulate your thought process step by step in free text. However, at the end, you must
generate a section titled ’Candidate List’. This section must be enclosed within triple backticks
(```json) and (```). The ’Candidate List’ should be formatted as JSON using the following
structure:

```json
[

{
"attribute1": "{content}",
"attribute2": "{content}",
"...": "...",
"Additional␣Information": {

"xxx": "xxx",
"..."

}
},
"..."

]
```

Figure 6: Prompt Template for Candidate Extraction.
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Single Query Generation Prompt Template

Task Description:
Your task is to generate just one query for searching, taking account for the [In Context Situation].
In Context Situation:
{in_context_situation}
Important Instructions:

1. Note: Just return single query, no else redundant words.

Analytical Steps:

1. Imagine the scenario in which the user is asking a question.

2. Simulate the user’s thought process: What kind of query would they type into a search engine
to easily find the information they are looking for?

Output Format:
You can think through the process step by step and ultimately generate a section titled ’Generated
Query’. This section must be enclosed within triple backticks (```json ... ```). The ’Generated
Query’ should be formatted as JSON using the following structure. For example:

```json
{

"query":"xxx"
}
```

Figure 7: Prompt Template for Single Query Generation for Targeted Search.
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Incremental Attribute Completion Prompt Template

Task Description:
Your task is to complete the existing [Instance Object] based on the provided Abstract Data Type
[ADT] and [Article].
Abstract Data Type (ADT):
{ADT}
Article:
{article}
Instance Object:
{candidate_item}
Important Instructions:

1. The primary objective is to complete existing [Instance Object] and do incremental information
updation. The existing [Instance Object] has incomplete attributes value NOT FOUND. Your
task is to fill these attributes if valuable information is provided in [Article].

2. The Abstract Data Type [ADT] is already defined and you should strictly follow.

3. Do not fabricate information.

4. For the attribute ’Additional Information’, it should be a JSON format containing supplemen-
tary descriptive details about the candidate.

Analytical Steps:

1. Read the [ADT] carefully and understand the defined data structure.

2. Read the [Article] then specific your founded valuable information that can complete and do
incremental updation to the existing [Instance Object].

3. Write a section named ’Completed Candidate’, followed by a json format answer.

Output Format:
You can articulate your thought process step by step in free text. However, at the end, you must
generate a section titled ’Completed Candidate’. This section must be enclosed within triple
backticks (```json) and (```). The ’Completed Candidate’ should be formatted as JSON aligning
with [Instance Object], such as:

```json
{

"Name": "{content}",
"attribute1": "{content}",
"attribute2": "{content}",
...,
"Additional␣Information" : {

"xxx" : "xxx",
...

}
}
```

Figure 8: Prompt Template for Attribute Completion.
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