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Abstract

Recently, the pretrain-finetune paradigm has
become a cornerstone in various deep learn-
ing areas. While in general the pre-trained
model would promote both effectiveness and ef-
ficiency of downstream tasks fine-tuning, stud-
ies have shown that not all knowledge acquired
during pre-training is beneficial. Some of the
knowledge may actually bring detrimental ef-
fects to the fine-tuning tasks, which is also
known as negative transfer. To address this
problem, graceful forgetting has emerged as
a promising approach. The core principle of
graceful forgetting is to enhance the learning
plasticity of the target task by selectively dis-
carding irrelevant knowledge. However, this
approach remains underexplored in the con-
text of generative language models, and it is
often challenging to migrate existing forget-
ting algorithms to these models due to archi-
tecture incompatibility. To bridge this gap,
in this paper we propose a novel framework,
Learning With Forgetting (LWF), to achieve
graceful forgetting in generative language mod-
els. With Fisher Information Matrix weight-
ing the intended parameter updates, LWF com-
putes forgetting confidence to evaluate self-
generated knowledge regarding the forgetting
task, and consequently, knowledge with high
confidence is periodically unlearned during
fine-tuning. Our experiments demonstrate that,
although thoroughly uncovering the mecha-
nisms of knowledge interaction remains chal-
lenging in pre-trained language models, apply-
ing graceful forgetting can contribute to en-
hanced fine-tuning performance.

1 Introduction

In recent years, the pretrain-finetune paradigm has
emerged as a dominant framework across natural
language processing (NLP) tasks and various other
domains (Zhou et al., 2023). This approach in-
volves pre-training the model on large-scale cor-
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pora and subsequently fine-tuning it on smaller,
task-specific datasets to adapt to downstream ap-
plications. Its effectiveness has been evidenced by
the success of prominent pre-trained models such
as BERT (Devlin et al., 2019), GPT (Brown et al.,
2020), and T5 (Raffel et al., 2020). And these mod-
els have become the backbone of many state-of-
the-art AI applications (OpenAI, 2023; Rombach
et al., 2022).

Despite offering compelling benefits such as
data efficiency and reusability, this well-established
paradigm continues to face a long-standing and
prevalent issue, negative transfer, which surfaces
in a new guise. While the typical interpretation of
negative transfer in transfer learning refers to the
performance degradation when learning conflict-
ing tasks simultaneously or sequentially (Zhang
et al., 2023a), its manifestation in the context of
the pretrain-finetune paradigm takes on a different
form, the negative contribution of some pre-trained
knowledge to the target fine-tuning task (Zhang
et al., 2023b). This problem highlights a critical
limitation of vanilla fine-tuning: treating all pre-
trained knowledge indiscriminately is not always
the optimal practice.

To address this issue, a promising approach is to
suppress the influence of potentially harmful knowl-
edge, a strategy known as graceful forgetting (or
active forgetting). Originating in neuroscience, this
concept describes a memory mechanism in biolog-
ical intelligence where the ability to acquire new
knowledge is enhanced by selective elimination
of irrelevant or outdated information (Anderson
and Hulbert, 2021). Recent advances have demon-
strated the feasibility of emulating this mechanism
in machine learning models (Zhou et al., 2022;
D’Oro et al., 2023), leading to its adoption in var-
ious studies aimed at enhancing learning plastic-
ity (Wang et al., 2021; Chen et al., 2023; Liang and
Li, 2023; Shen et al., 2024).

However, most existing graceful forgetting meth-

13177



ods are either tailored to vision tasks or designed
for non-autoregressive models, making their ef-
forts incompatible or less effective when migrating
to generative language models. This discrepancy
primarily stems from the ambiguous knowledge
boundaries inherent in language generation, which
significantly complicate the identification of ex-
plicit and granular inter-task correlations (Pruk-
sachatkun et al., 2020).

To address this gap, in this paper we investigate
the graceful forgetting in generative language mod-
els. The central question guiding our study is: can
generative language models achieve more effec-
tive fine-tuning by gracefully forgetting unneces-
sary knowledge? To answer this question, we pro-
pose a framework called Learning with Forgetting
(LWF) to enable graceful forgetting in generative
language models. Beginning with addressing the
inaccessibility of pre-trained data, LWF leverages
the inherent capabilities of generative models by
expressing knowledge related to the forgetting task
through self-generated texts. Furthermore, given
the difficulty of identifying task-level correlations,
LWF computes a data-wise forgetting confidence
for each input by weighting the intended param-
eter updates with the Fisher Information Matrix.
Based on this metric, LWF selects high-confidence
data points and integrates machine unlearning tech-
niques to periodically remove associated knowl-
edge during the fine-tuning process.

To the best of our knowledge, LWF is the first
systematic exploration to enhance the learning plas-
ticity of pretrained generative language models by
graceful forgetting. Through extensive experiments
and analyses, we demonstrate the feasibility of im-
proving fine-tuning performance through graceful
forgetting. Hopefully, our empirical findings will
contribute to a better understanding of this emerg-
ing topic and offer inspiration for future investiga-
tion and innovation.

2 Related Work

In this section, we provide an overview of how the
critical concepts in our work are interpreted and
applied across a broader research landscape, and
analyze their commonalities and distinctions.

2.1 Negative Transfer

Negative transfer is a prevalent issue across mul-
tiple fields, with its interpretation and definition
often varying depending on the context.

In Multi-Task Learning (MTL), negative transfer
refers to the performance degradation caused by
mutual interference among conflicting tasks (Go
et al., 2023). While the primary objective of MTL
is to learn multiple tasks simultaneously, methods
aimed at mitigating negative transfer typically fo-
cus on quantifying inter-task relationships using
sophisticated metrics like gradient directions (Jiang
et al., 2023; Riemer et al., 2019) or signal-to-noise
ratio (Go et al., 2023). Based on these metrics,
tasks can be clustered into separate groups (Ramesh
and Chaudhari, 2022) to reduce learning conflicts.
In the MTL context, strategies that involve sacrific-
ing part of the model’s capacity, such as forgetting,
are typically not regarded as appropriate solutions.

Another related domain is Continual Learning
(CL), where different tasks are learned sequentially.
In CL, negative transfer is bi-directional: it can re-
fer to the interference of previously acquired knowl-
edge with the learning of new tasks, or to the for-
getting of past knowledge caused by learning new
ones (Karakida and Akaho, 2022). While most CL
methods focus on maintaining memory stability
when learning new tasks (Kirkpatrick et al., 2017;
Schwarz et al., 2018), recent studies have high-
lighted that this stability often comes at the cost of
reduced learning plasticity. In response, these ap-
proaches actively weaken the preservation strength
of past memory, seeking a balance between mem-
ory stability and learning plasticity (Liang and Li,
2023; Wang et al., 2021; Schwarz et al., 2018),
which can be seen as an implicit form of forgetting.

In our context, the pretrain-finetune paradigm,
negative transfer denotes the detrimental influence
of certain pre-trained knowledge on the target fine-
tuning task. A distinguishing characteristic of nega-
tive transfer in this paradigm is that the pre-training
data is typically inaccessible during fine-tuning,
which renders many countermeasures used in MTL
and CL ineffective or inapplicable.

2.2 Graceful Forgetting
In many domains, forgetting is traditionally viewed
as an undesirable phenomenon, reflecting a failure
to retain previously acquired knowledge. This con-
cern is particularly prominent in CL, where one of
the primary objectives is to overcome catastrophic
forgetting (Kirkpatrick et al., 2017).

However, recent studies have argued that striving
for an omniscient model may be impractical due
to limited model capacity and inevitable knowl-
edge conflicts (Zhou et al., 2022; D’Oro et al.,
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2023). Drawing inspiration from neuroscience (An-
derson and Hulbert, 2021), an increasing number
of studies have explored the potential of improving
learning plasticity through actively forgetting irrel-
evant or outdated knowledge. In the context of CL,
Wang et al. (2021) proposed a synaptic expansion-
convergence mechanism to selectively forget pre-
served knowledge. Liang and Li (2023) realized
controllable learning plasticity through gradient
projection. In the context of fine-tuning, Chen et al.
(2019) and Shen et al. (2024) incorporate model
structural shrinkage regulation to enable implicit
forgetting. While most of these methods were ini-
tially designed for non-autoregressive tasks, Chen
et al. (2023) extended graceful forgetting to the
LLM pre-training stage, enhancing multi-lingual
ability by refreshing models. Ni et al. (2024)
proposed a forgetting-before-learning method to
achieve knowledge edition for LLMs.

Despite these efforts, existing graceful forget-
ting approaches are either inapplicable or signif-
icantly less effective when adapted to promoting
fine-tuning of generative language models.

2.3 Machine Unlearning

Machine unlearning has emerged as a vibrant and
rapidly evolving research area focused on selec-
tively removing specific data, patterns, or knowl-
edge from trained models (Yao et al., 2023). In
the context of generative language models, un-
learning is frequently employed to align model
behavior with human values—such as safeguard-
ing user privacy (Patil et al., 2024), eradicat-
ing harmful or biased content (Liu et al., 2024),
and mitigating hallucinations (Yao et al., 2023).
A range of unlearning strategies have been pro-
posed for this purpose, including gradient as-
cent (Jang et al., 2023), localization-informed un-
learning (Jang et al., 2023), and influence function-
based approaches (Jia et al., 2024), among others.
While current unlearning research about genera-
tive language models primarily focuses on eradi-
cating undesirable behaviors, our work repurposes
unlearning as a mechanism to achieve graceful for-
getting, thereby enhancing the plasticity of fine-
tuning. In essence, we leverage unlearning for
better learning.

3 Methodology

In this section, we detail the implementation of
our framework for graceful forgetting in genera-

tive language models, Learning With Forgetting
(LWF). It consists of three components: eliciting
self-knowledge, evaluating forgetting confidence,
and periodically unlearning. Fig 1 illustrates the
overview. For the sake of convenience in exposi-
tion, we use D𝐿 to represent the learning task and
D𝐹 to denote the forgetting task. It is important to
note, however, that the framework is task quantity-
agnostic, which will be elaborated in Section 4.

3.1 Eliciting Self-Knowledge

The first step in forgetting specific knowledge is to
acquire its representation. However, as discussed
in Sec 2.1, the pre-training corpus is typically in-
accessible in practice, making it uncertain whether
D𝐹 can adequately represent the model’s knowl-
edge. To address this issue, we exploit the inherent
characteristics of generative language models as an
alternative: leveraging self-generated data. Specif-
ically, we input the prompts (e.g., questions or in-
structions) from D𝐹 into the base model M𝑏𝑎𝑠𝑒

and collect its responses to form the unlearning
dataset, which we donate as D𝑠𝑒𝑙 𝑓 . This approach
also enables LWF to utilize unlabeled datasets.

3.2 Evaluating Forgetting Confidence

Not all kinds of knowledge oblivion contribute pos-
itively to model adaptation. To ensure that forget-
ting improves, rather than degrades, the fine-tuning
performance, we propose a confidence metric to
evaluate the safety of unlearning specific knowl-
edge. Considering the semantic richness of natural
language, a task-level metric proves insufficiently
nuanced (Pruksachatkun et al., 2020). Therefore,
we define the forgetting confidence at the individual
data point level, enabling fine-grained assessment
of what should be forgotten.

For a generated text 𝑥 in D𝑠𝑒𝑙 𝑓 , the posteriori
𝑃(D𝐿 |𝑥) intuitively reflects to what extent D𝐿

and 𝑥 are synergistic. The lower 𝑃(D𝐿 |𝑥) is, the
more likely 𝑥 is conflicted with D𝑠𝑒𝑙 𝑓 . Consid-
ering 𝑃(D𝐿 |𝑥) is computationally intractable, we
use 𝑃(D𝐿 |𝜃∗(𝑥)) as a surrogate, where

𝜃∗(𝑥) = arg max
𝜃

𝑃(𝜃 |𝑥) (1)

Here 𝜃 represents the model parameters. Since
only the relative value is required, we can use
𝑃(𝜃∗(𝑥) |D𝐿) to represent 𝑃(D𝐿 |𝜃∗(𝑥)), as the
two are positively proportional according to the
Bayes’ Theorem. Based on this, we define the
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Prompts:  How
do living things
have children?

Living things have
children by having
babies. 

she read 12 + 2*12
= 36 pages. Today,
she wants ......

Living things have
children by having
babies. 

Living things have
children by having
babies.    FC=0.12

stomach doesn't
cause sick FC=0.32

stomach doesn't
cause sick FC=0.32

For every  samples
learned from , one sample
from  will be unlearned

she read 12 + 2*12
= 36 pages. Today,
she wants ......

Step 1

Eliciting Self-knowledge
Step 2

Evaluating Forgetting Confidence

Only input prompts
in dataset  to
the base model

Dataset 
contains the self-
generated texts

For each datapoint
, compute

the forgetting
confidence 
with respect to the
target 

Form  with the
subset of  that
has higher values

Step 3

Periodically Unlearning

Figure 1: The overview of the LWF framework. Given the forgetting task D𝐹 and learning task D𝐿 , LWF first
constructs D𝑠𝑒𝑙 𝑓 through self-generated texts to represent the knowledge regarding the forgetting task. Then, with
the Fisher Information Matrix 𝐹𝐿 and the optimal parameters of the learning task approximated from D𝐿 , LWF
calculates forgetting confidence for each data point in D𝑠𝑒𝑙 𝑓 . Finally, data points with high forgetting confidence
are selected for unlearning, represented by D𝑈 . The unlearning process is integrated into the fine-tuning process of
D𝐿 and is executed periodically at intervals of 𝑁𝑢.

forgetting confidence as:

𝐹𝐶 (𝑥) ∝ − log 𝑃(𝜃∗(𝑥) |D𝐿) (2)

Following prior works (Kirkpatrick et al.,
2017; Wang et al., 2021), we assume 𝑃(𝜃 |D𝐿)
as a Gaussian distribution centered at 𝜃∗𝐿 =
arg max

𝜃
𝑃(𝜃 |DL), and this distribution can be ap-

proximated using a second-order Taylor expansion
around 𝜃∗𝐿:

log 𝑃(𝜃 |D𝐿) ≈ 1
2
(𝜃 − 𝜃∗𝐿)𝑇

( 𝜕
2 log 𝑃(𝜃 |D𝐿)

𝜕2𝜃
|𝜃∗𝐿 ) (𝜃 − 𝜃∗𝐿)

(3)

In practice, we integrate Equation 2 with Equa-
tion 3 and use a single-step update from the base
model to represent 𝜃∗(𝑥), thereby reducing compu-
tational costs:

𝐹𝐶 (𝑥) = 1
2

∑︁
𝑖

𝐹𝐿,𝑖 (𝜃𝑏𝑎𝑠𝑒,𝑖 − 𝛼
𝑑L(𝑥)
𝑑𝜃𝑖

− 𝜃∗𝐿,𝑖)2

(4)
𝐹𝐿 represents the Fisher Information Matrix

(FIM), which is the negative expectation of the
Hessian Matrix in Equation 3. The parameters of
the base model are represented by 𝜃𝑏𝑎𝑠𝑒, and L(𝑥)

refers to the cross-entropy loss of 𝑥. 𝛼 controls the
margin of the single-step update. 𝜃∗𝐿 is obtained
by training the base model on D𝐿 . We include a
detailed step-by-step deduction in Appendix D and
conduct a sensitivity analysis about the approxima-
tion error of the one-step update in Appendix F.

Intuitively, Equation 4 measures the conflict be-
tween 𝑥 and D𝐿 by evaluating the alignment be-
tween the intended parameter update induced by 𝑥
and the target 𝜃∗𝐿 . The FIM 𝐹𝐿 serves as a weight-
ing mechanism that captures the relative impor-
tance of each parameter.

3.3 Periodically Unlearning

Due to the well-documented instability of machine
unlearning (Yao et al., 2023; Liu et al., 2024), di-
rectly unlearning samples from D𝑠𝑒𝑙 𝑓 may yield in-
consistent performance gains, particularly because
the selected samples are only potentially conflict-
ing with the target task, not definitively so. To
mitigate the instability introduced by unlearning,
we adopt a "periodically unlearning" strategy that
interleaves learning and unlearning simultaneously
throughout one training process.

Specifically, we introduce a fixed unlearning in-
terval 𝑁𝑢, such that the unlearning is applied every
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𝑁𝑢 learning steps. For instance, when 𝑁𝑢 = 7, we
first select a subset D𝑈 from D𝑠𝑒𝑙 𝑓 , consisting of
the top |D𝐿 |

7 samples of the highest forgetting con-
fidence scores 𝐹𝐶 (𝑥). During training, both of the
learning dataset D𝐿 and the unlearning dataset D𝑈

are utilized: for every 7 learning samples drawn
from D𝐿 , one sample from D𝑈 is unlearned. This
balanced interleaving helps prevent the forgetting
process from impairing the learning dynamics.

We use Gradient Ascent (Bourtoule et al., 2021)
as our unlearning algorithm, which merely in-
volves negating the loss function. Specifically,
for a periodic batch X = {𝑥𝑙1, . . . , 𝑥𝑙𝑁𝑢

, 𝑥𝑢} where
{𝑥𝑙1, . . . , 𝑥𝑙𝑁𝑢

} ⊂ D𝐿 and 𝑥𝑢 ∈ D𝑈 , the loss can be
written as:

L𝑝𝑢 (X) =
∑︁

𝑥∈{𝑥𝑙1,...,𝑥𝑙𝑁𝑢
}
L(𝑥) − 𝛽L(𝑥𝑢) (5)

where L is the sft loss and 𝛽 is the unlearning rate.

4 Experiments

4.1 Setup

4.1.1 Datasets
To evaluate the effectiveness of LWF, we apply
our method to domain-specific question-answering
tasks. This choice is motivated by the well-
established evaluation metrics (i.e., accuracy) and
the relatively clear delineation of knowledge bound-
aries across domains. We further discuss task gen-
eralizability in Appendix C.

We select five datasets spanning diverse domains:
gsm8k (Cobbe et al., 2021) for mathematical rea-
soning; qasc (Khot et al., 2020) for elementary
science; sst5 (Socher et al., 2013) for sentiment
classification; dental, a subset of MedMCQA (Pal
et al., 2022) focusing on dental knowledge; and
psychol, a subset of MMLU (Hendrycks et al.,
2021) covering psychology.

4.1.2 Baselines
As discussed in Sections 1 and 2, although re-
search on forgetting in broader contexts is not lack-
ing, few existing graceful forgetting methods are
specifically designed to enhance fine-tuning plas-
ticity for pre-trained generative language models,
which makes effective method migration challeng-
ing. To place LWF in a broader methodological
context, we select three baseline approaches origi-
nally developed for different settings but adaptable
to ours with minimal modifications: BSS (Chen

gsm8k qasc sst5 dental psychol

none 19.71 42.98 49.55 36.87 46.42

gsm8k - +4.03% +2.83% +1.46% +6.33%
qasc +5.38% - +2.54% -4.53% +5.54%
sst5 +2.67% +3.02% - +0.22% +0.41%

dental +10.40% +5.28% +2.10% - +1.59%
psychol +1.17% +2.00% +1.27% -4.10% -

mixed +6.95% +5.54% +2.10% +1.46% +7.93%

Table 1: Results on domain-specific question answering.
Each column shares the same learning task and the rows
represent different forgetting tasks. All percentages are
calculated based on none.

et al., 2019) and SRS (Shen et al., 2024), two
structural regularization methods that mitigate neg-
ative transfer from pretrained knowledge in non-
autoregressive models; and F-learning (Ni et al.,
2024), an active unlearning technique proposed for
model editing in large language models.

4.1.3 Implementation Details
We use Llama3.2-1B (Touvron et al., 2023) as the
base model. For eliciting self-knowledge, we em-
ploy a 3-shot prompt concatenated with the input
question, use greedy decoding, and limit the max-
imum number of generated tokens to 256. For
computing the forgetting confidence, we set the
one-step update coefficient 𝛼 = 1×10−2 (as defined
in Equation 4). To maintain gradient coherence dur-
ing periodic unlearning, we interleave the datasets
D𝐿 and D𝑈 by including one sample from D𝑈

for every 𝑁𝑢 samples from D𝐿 . We set 𝑁𝑢 = 7
and choose 𝛽 (from Equation 5) as either 0.1 or
0.05, depending on the forgetting task. The train-
ing batch size is 4, which results in one unlearning
sample appearing every two batches. We optimize
using AdamW (Loshchilov and Hutter, 2019) with
a learning rate of 1 × 10−5, and train for one full
epoch. All experiments are conducted on eight
NVIDIA RTX 4090 GPUs with full-parameter fine-
tuning. For further implementation details, please
refer to Appendix A and our source code repository
https://github.com/rubickkcibur/LWF.

4.2 Results on Question Answering

Table 1 presents the results on question-answering
tasks. Each column corresponds to a distinct learn-
ing task, and each row represents a specific forget-
ting scenario. For example, the value +5.38% at
the intersection of the gsm8k column and the qasc
row indicates that, when fine-tuning on gsm8k, un-
learning qasc using LWF improves performance by
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gsm8k qasc sst5 dental psychol

none 56.56 68.36 55.52 49.39 80.00

gsm8k - +5.37% +0.97% +0.78% +2.06%
qasc +1.61% - +0.74% -3.06% +0.46%
sst5 +7.37% +2.68% - +0.00% +2.75%

dental +1.20% +1.26% +1.30% - +0.91%
psychol +1.47% +4.42% +0.24% -0.14% -

mixed +4.56% +7.90% +1.06% +0.78% +1.60%

Table 2: Results on domain-specific question answering
with a larger language model.

gsm8k qasc sst5 dental psychol AVG.

vanilla-FT 19.71 42.98 49.55 36.87 46.42 39.12

BSS 20.39 44.28 49.73 35.51 44.77 38.94
SRS 17.36 40.28 50.50 35.05 46.61 37.96

F-learning 17.29 46.44 51.31 34.07 42.75 38.37

LWF-mixed 21.08 45.36 50.59 37.41 50.10 40.91

Table 3: Accuracy results of three adapted baseline
methods compared to vanilla fine-tuning and LWF under
mixed setting.

5.38% compared to vanilla fine-tuning. In particu-
lar, the first row, labeled none, reports the vanilla
fine-tuning results (i.e., no unlearning). The last
row, labeled mixed, represents a forgetting scenario
in which all datasets except the target learning
dataset are jointly unlearned. All entries except
those in the none row report the percentage im-
provement in accuracy relative to the correspond-
ing vanilla fine-tuning baseline.

As shown in the results, in most cases, LWF im-
proves performance on the learning task compared
to vanilla fine-tuning. Exceptions occur when learn-
ing dental while forgetting qasc or psychol, which
we believe is attributed to the low forgetting con-
fidence of self-generated samples. This is further
evidenced by the results of the mixed, where consis-
tent improvements across all learning tasks suggest
that combining diverse forgetting datasets increases
the pool of high-confidence candidates, thereby en-
hancing the likelihood of performance gains. The
mixed setting is also recommended in practice for
stable effectiveness.

Table 3 compares LWF-mixed with the three
adapted baseline methods. As shown, although
one of the baselines occasionally achieves the high-
est improvement in certain cases, on average, all
three perform worse than both LWF-mixed and
even vanilla fine-tuning. We attribute this to the fun-
damental mismatch between these methods and our
setting. Specifically, BSS and SRS were designed

for non-autoregressive models and are not opti-
mized for autoregressive generation tasks. Mean-
while, F-learning targets model editing scenarios
in which the knowledge to be unlearned is explic-
itly known a priori to be detrimental or outdated, a
condition that does not hold in our context, where
forgetting targets are not necessarily harmful.

We also examine the side effects of LWF, i.e.,
its impact on datasets that are neither part of the
learning task nor the forgetting task. Details are
discussed in Appendix B.

4.3 Scalability Analysis
A natural question is: Would LWF become less ef-
fective in larger generative language models, given
that their increased parameter capacity may bet-
ter accommodate conflicting knowledge? To in-
vestigate this, we apply LWF to the Llama3-8B
model. As shown in Table 2, LWF can still improve
fine-tuning performance in most cases. While the
magnitude of relative improvement has declined
overall, this trend is partly due to the stronger base-
line performance of the larger model. Notably, the
discipline gained from smaller model settings gen-
eralizes well to the larger: the mixed setting is still
the best choice to achieve stable effectiveness.

4.4 Analysis on Forgetting Confidence
A central component of LWF is the computation
of forgetting confidence, which estimates the likeli-
hood that forgetting a specific data point will ben-
efit the learning task. While we propose a com-
putable metric 𝐹𝐶 (𝑥) (in Sec 3.2), it involves ap-
proximations and does not provide an exact map-
ping between gradient updates and performance
outcomes. As a result, 𝐹𝐶 (𝑥) should be viewed
as a heuristic rather than an absolute measure. In
practice, we also observe that unlearning data with
relatively low 𝐹𝐶 does not necessarily lead to per-
formance degradation.

To gain deeper statistical insight into the role of
forgetting confidence, we design an ablation study
using an inverse filtering strategy: selecting data
with the lowest forgetting confidence. For each
learning task, we compute the percentage change
in accuracy relative to vanilla fine-tuning, across
all forgetting tasks. To increase the sample size,
we aggregate results over four unlearning rates:
𝛽 ∈ {0.05, 0.10, 0.20, 0.25}.

Fig 2 shows the distribution of accuracy changes
under the two filtering strategies. The red region
corresponds to unlearning data with the highest
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Figure 2: Distribution of accuracy changes between two
filtering strategies. The 𝑦-axis represents distribution
density. All percentages are calculated based on vanilla
fine-tuning.

𝐹𝐶, while the blue region represents unlearning
data with the lowest. The 𝑥-axis indicates the per-
centage change in accuracy relative to vanilla fine-
tuning. As shown, unlearning high-𝐹𝐶 data gen-
erally outperforms the alternative in two aspects:
higher average performance gain and greater stabil-
ity. Specifically, high-𝐹𝐶 unlearning yields smaller
variance and a narrower overall range, whereas un-
learning low-𝐹𝐶 data leads to more volatile out-
comes, including severe performance drops in ex-
treme cases. In summary, prioritizing data with
high forgetting confidence results in consistently
better and more robust performance, making it a
more reliable strategy in practice.

4.5 Ablation on Periodically unlearning

To alleviate the vulnerability of machine unlearn-
ing, we propose the periodically unlearning strat-
egy to stabilize the training process. In this section,
we conduct an ablation study to demonstrate that
periodically unlearning is the most effective strat-
egy for integrating learning and unlearning.

We compare two alternative unlearning strate-
gies. The first performs unlearning entirely before
the learning process, which we refer to as ahead

D𝐹 gsm8k qasc sst5 dental psychol

none 19.71 42.98 49.55 36.87 46.42

gsm8k - -65.6% +0.5% -0.8% -9.9%
qasc +5.0% - +0.4% -7.4% +3.6%
sst5 +4.3% +7.8% - -3.5% +9.1%

dental -8.5% -26.6% +1.2% - +0.0%
psychol -6.5% -8.3% -21.7% -4.9% -

mixed -3.5% -73.9% +2.3% +0.8% -7.9%

Table 4: Results of ahead unlearning, where unlearning
is completed before fine-tuning, as an ablation study for
periodically unlearning.

D𝐹 gsm8k qasc sst5 dental psychol

none 19.71 42.98 49.55 36.87 46.42

gsm8k - -12.6% -0.1% -4.9% +10.3%
qasc -8.8% - +3.9% -2.0% +7.7%
sst5 -8.8% -10.8% - -4.3% +3.6%

dental -6.5% -6.9% +1.8% - +7.5%
psychol -5.0% -13.1% +2.1% -2.7% -

mixed -6.5% -10.1% -0.5% -4.9% +9.5%

Table 5: Results of randomly unlearning, where un-
learning is randomly executed during fine-tuning, as an
ablation study for periodically unlearning.

unlearning. The second interleaves unlearning
steps randomly during training, termed randomly
unlearning. For fairness, all three strategies, in-
cluding periodically unlearning, maintain the same
ratio of learning to unlearning samples.

Table 4 and Table 5 present the results of ahead
unlearning and randomly unlearning respectively.
As we can see, both strategies are generally much
less effective than periodically unlearning (Ta-
ble 1), with most learning-forgetting combinations
resulting in performance degradation. Notably,
ahead unlearning exhibits several extremely detri-
mental cases, primarily attributed to the unintended
disruption to foundational pre-trained knowledge
caused by premature unlearning steps. If such crit-
ical knowledge is compromised, the subsequent
fine-tuning process may suffer severe performance
loss. In conclusion, the interleaved learning and
unlearning combination is better than conducting
them separately, and switching them periodically
is superior to randomly.

4.6 Analysis on the Forgotten Task

In this section, we examine how model perfor-
mance evolves on the forgetting task before and
after applying LWF. While it may seem intuitive

13183



Figure 3: Accuracy change percentage of the forgetting
task across different learning-forgetting combinations.
Percentages are computed based on vanilla fine-tuning.

Figure 4: Cosine similarity between the outputs of for-
getting tasks generated by the vanilla fine-tuned model
and LWF resulting model. Values are multiplied by 100.

that the model’s knowledge of the forgetting task
would be substantially erased, the empirical results
reveal a more nuanced picture. Figure 3 shows a
heatmap of accuracy changes (in percentage points)
on the forgetting tasks relative to vanilla fine-tuning.
For instance, when the learning task is psychol and
the forgetting task is gsm8k, the value −61.20 indi-
cates a 61.2% drop in performance on gsm8k. As
the figure illustrates, although accuracy generally
declines across most learning-forgetting pairs, the
extent of degradation varies significantly. In ap-
proximately half of the cases, performance drops
by nearly 100%, suggesting near-complete unlearn-
ing; in others, the decline is much smaller, particu-
larly when either the learning or the forgetting task
involves dental or psychol.

Additionally, we noticed that the accuracy alone
merely reflects whether the final answer is correct,

Figure 5: TTR change percentage of the forgetting task
across different learning-forgetting combinations. Per-
centages are computed based on vanilla fine-tuning.

which is insufficient to fully capture the nuanced
changes in the generated outputs of generative mod-
els. To gain deeper insights, we further analyze the
semantic shifts in the responses. Specifically, we
use SimCSE model (Gao et al., 2021) to obtain
the sentence vectors of the responses generated by
the vanilla fine-tuned model and LWF model when
answering the same forgetting task questions.We
then compute the cosine similarity between the re-
sulting sentence embeddings to quantify the degree
of semantic change. Results are presented in Fig 4.

Given that a cosine similarity score above 80%
is typically required to confidently assert semantic
similarity between two sentences, the results in-
dicate that most learning-forgetting combinations
exhibit substantial semantic changes. Notably, the
cases where similarity approaches or exceeds this
threshold largely coincide with those showing min-
imal accuracy drops, i.e., combinations involving
the dental or psychol. We believe this phenomenon
may be attributed to that dental and psychol are
inherently more complex than the other tasks. Ac-
quiring or forgetting these domains likely requires
engagement with richer, more structured knowl-
edge, which in turn makes them more resistant to
severe forgetting.

We also evaluate changes in lexical diversity, as
shown in Fig 5, where Type Token Ratio (TTR) is
the metric. Similar to the trends observed in ac-
curacy changes, the TTR experiences a significant
decline in most combinations, and the cases main-
taining high accuracy and semantic similarity also
largely preserve their lexical diversity.
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Figure 6: Accuracy results in the multi-task learning
setting. Labeled below each subplot are the forgetting
task and learning tasks.

4.7 Multi-Task Learning

In this section, we examine the performance of
LWF in multi-task learning scenarios. Specifi-
cally, we treat one of the five datasets as the for-
getting task and use the remaining four as learning
tasks. To mitigate catastrophic forgetting of ear-
lier tasks, we train on a balanced mixture of all
learning datasets. Fig 6 compares the overall multi-
task accuracy between LWF and vanilla fine-tuning.
As we can see, while not all individual learning
task gets improved, LWF outperforms vanilla fine-
tuning in general.

These results highlight the complexity of multi-
task learning. Although LWF enables overall per-
formance gains through controlled forgetting, the
interactions among learning tasks are non-trivial.
Improvements in some tasks may come at the ex-
pense of others.

5 Conclusion

In this paper, we propose a novel framework, Learn-
ing With Forgetting (LWF), to achieve graceful

forgetting in generative language models. LWF
addresses the inaccessibility of pre-trained data
by leveraging self-generated knowledge, calculates
forgetting confidence for each data point by weight-
ing the intended parameter update with the Fisher
Information Matrix, and employs gradient ascent
to periodically unlearn high-confidence data during
fine-tuning. Empirical results on domain-specific
question-answering tasks demonstrate the effective-
ness of LWF. Furthermore, we conduct extensive
experiments to analyze the contribution of each
component of LWF, the effects of forgetting spe-
cific tasks, and the framework’s performance in
learning or forgetting multiple tasks. While fully
elucidating the mechanisms of inter-task interac-
tions and achieving optimal graceful forgetting still
need great effort, we hope our work provides valu-
able insights into this emerging area and inspires
future research endeavors.

Limitation

LWF still has several limitations that warrant fur-
ther investigation. First, our proposed forgetting
confidence metric is based on analyzing intended
parameter updates to select data for unlearning.
While empirical results demonstrate its statistical
effectiveness, performance may degrade when the
pool of candidate forgetting samples is small. Since
quantifying interactions among training examples
remains a longstanding challenge in knowledge
transfer, we anticipate that future work will develop
more precise and robust metrics for estimating for-
getting confidence.

Additionally, computing forgetting confidence
incurs non-negligible computational overhead, pri-
marily due to the need to compute gradients for
each candidate forgetting sample. As a result,
the additional computational cost is approximately
equivalent to one full training epoch on D𝑠𝑒𝑙 𝑓 .
However, since our method is designed for task-
specific fine-tuning rather than large-scale pre-
training, this overhead is generally acceptable in
practical settings.
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A More Implementation Details

Tables 6, 7, 8, 9, and 10 present the few-shot
Chain-of-Thought (CoT) prompts designed for
each dataset, which are used during both self-
knowledge elicitation and evaluation. As shown in
the prompts, answers are formatted with the phrase

“The answer is” to facilitate automated answer ex-
traction. Any model output that does not conform
to this format is considered incorrect. When mul-
tiple instances of “The answer is” appear in the
output, the first occurrence is taken as the final
answer.

B Side Effect

Although in Sec 4 we have verified that LWF can
improve the target fine-tuning task by sacrificing
the unlearning task, it is unknown how this proce-
dure will influence unintended tasks that are neither
part of the learning task nor the forgetting task (for
simplicity, we denote them as side-tasks). In this
section, we discuss the side effects of LWF.

Firstly, we notice a superficial forgetting prob-
lem, which happens between gsm8k and the other
four datasets. Specifically, while all five datasets
used in our experiments are question-answering
datasets, gsm8k is a free-form numerical QA
dataset, but the other four are multiple-choice QA
datasets (see examples in Table 6 and Table 7). We
observed that this format discrepancy can lead to
significant performance degradation on side-tasks
when gsm8k is the learning task and the other
datasets are the forgetting tasks. By analyzing
the model’s outputs, we identified that the model
trained under this setting often fails to generate an-
swers in the multiple-choice format. An illustration
is provided in Table 11. As it shows, although the
rationale portion of the output appears coherent,
the resulting model fails to select a valid option at
the end of its response.

This superficial forgetting suggests that, when
applying LWF, the model tends to focus on the
most superficial pattern differences to distinguish
the learning task from the forgetting task. There-
fore, to mitigate extreme side effects, it is better
to ensure that there are no overly superficial for-
mat differences between the learning and forgetting
tasks in practice.

Apart from the superficial forgetting issue intro-
duced by gsm8k, we also compute the average accu-
racy of side-tasks on combinations of the other four
datasets, and compare it to that of the vanilla fine-

tuned model. Table 12 shows the results, where
each column represents the learning task and the
row indicates the forgetting task. As observed, the
side effects vary depending on the specific learning-
forgetting combinations. In general, the impact is
much milder when learning complex tasks like psy-
chol and dental.

C Task Generalizability

In Sec. 4, we evaluate the effectiveness of LWF on
the domain-specific question-answering task. This
is primarily motivated by its well-established eval-
uation metrics and delineated knowledge bound-
aries, which help isolate the impact of graceful
forgetting by minimizing confounding variables.
Additionally, to examine the task generalizability,
we conducted experiments in two other settings,
both related to the multi-lingual capability of gen-
erative language models.

First, we apply LWF to machine translation
tasks, We selected four language datasets–German
(DE), French (FR), Turkish (TR), and Chinese
(ZH)–from the WMT (Kocmi et al., 2022) corpus
to evaluate the model’s ability to translate from En-
glish into those languages. BLEU (Papineni et al.,
2002) and BERTScore-F1 (Zhang et al., 2020) are
used as evaluation metrics. As Table 13 shows,
while LWF continues to yield performance gains
in most cases, the extent of these improvements
is considerably less pronounced compared to QA
tasks. In addition, the results reflected by the two
metrics are not entirely consistent, which is mainly
due to the incompleteness of evaluation metrics in
machine translation tasks.

The second experiment was conducted on the
multi-lingual QA task. Specifically, we applied
LWF to the gsm8k dataset across five different lan-
guages: English (EN), Italian (IT), Chinese (ZH),
Spanish (ES), and Turkish (TR). From the results
presented in Table 14, we observed an interest-
ing phenomenon: aside from the mixed approach,
which consistently improves performance across all
languages, the results are all positive when learning
English with forgetting other languages, and vice
versa. However, when the combination does not
involve English, the outcomes are predominantly
negative. We hypothesize that this phenomenon
may stem from the disproportionate volume of En-
glish data used during the model’s pre-training,
which helps stabilize LWF’s performance when
English is involved.
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Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there
will be 21 trees. How many trees did the grove workers plant today? Let’s think step by step.
Answer: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees they planted. So, they
must have planted 21 - 15 = 6 trees. The answer is 6.
Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot? Let’s think
step by step.
Answer: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars. The answer is 5.
Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total? Let’s
think step by step.
Answer: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 + 42 = 74 chocolates. 35
have been eaten. So in total they still have 74 - 35 = 39 chocolates. The answer is 39.

Table 6: Few-shot prompts for gsm8k.

Question: What type of water formation is formed by clouds? (A) pearls (B) streams (C) shells (D) diamonds (E) rain (F)
beads (G) cooled (H) liquid Let’s think step by step.
Answer: Beads of water are formed by water vapor condensing. Clouds are made of water vapor. Beads of water can be
formed by clouds. The answer is (F).
Question: Removing what from food will preserve it? (A) flavor (B) body water (C) heat energy (D) color (E) Water (F)
Bodily water (G) moisture (H) ingredients Let’s think step by step.
Answer: Dehydrating food is used for preserving food. Dehydration preserves foods by removing moisture. Removing
moisture from food preserves it. The answer is (G).
Question: Reproduction is the process by which living things what? (A) Most plants (B) allow growth (C) spread flower
seeds (D) have wide set eyes (E) members of their own species (F) have birthing hips (G) have quiet laughter (H) give
birth to babies Let’s think step by step.
Answer: Reproduction is the process by which living things give rise to offspring. Whenever it starts to give birth, it
gives birth up to two to four babies offspring. Reproduction is the process by which living things give birth to babies. The
answer is (H).

Table 7: Few-shot prompts for qasc.

Question: What is the emotional attitude reflected in the sentence: "in his first stab at the form , jacquot takes a slightly
anarchic approach that works only sporadically ."? (A) very negative (B) negative (C) neutral (D) positive (E) very positive
Let’s think step by step:
Answer: The phrase "first stab" suggests this is an initial attempt, which can imply inexperience but also experimentation.
"Slightly anarchic approach" does have a mild negative connotation with "anarchic," but it’s softened by "slightly." "Works
only sporadically" indicates mixed results. It doesn’t work consistently, but it does work sometimes, which isn’t entirely
negative. Given these considerations, while there are elements that lean towards a negative interpretation, the overall tone
of the sentence is not strongly positive or negative. So the emotional attitude is neutral. The answer is (C)
Question: What is the emotional attitude reflected in the sentence: "one long string of cliches."? (A) very negative (B)
negative (C) neutral (D) positive (E) very positive Let’s think step by step:
Answer: The phrase "one long string" suggests an extended or continuous sequence, which in this context implies that
there are many instances of something undesirable. The term "cliches" refers to expressions or elements that have been
overused to the point of losing their original impact, freshness, or appeal. It generally carries a negative connotation
because it indicates a lack of originality or creativity. Considering these points, the sentence does not contain any positive
words or phrases and is clearly pointing out a flaw or criticism. Therefore, the emotional attitude reflected in the sentence is
negative. Since it’s a straightforward criticism without strong intensifiers (like "extremely" or "utterly"), we can conclude
that the most fitting emotional attitude is negative. The answer is (B)
Question: What is the emotional attitude reflected in the sentence: "although laced with humor and a few fanciful touches,
the film is a refreshingly serious look at young women."? (A) very negative (B) negative (C) neutral (D) positive (E) very
positive Let’s think step by step:
Answer: The word "although" introduces a concession, acknowledging that the film contains elements of humor and some
imaginative aspects ("fanciful touches"). This part suggests that there are positive qualities present in the film. The main
clause uses the term "refreshingly," which conveys a positive and invigorating experience. It indicates that the seriousness
of the film’s approach to its subject matter is not only appreciated but also seen as something new or different from
what might be expected. The focus on "young women" being treated seriously adds depth to the evaluation. It implies
that the film offers a thoughtful and mature perspective on its subject, which can be seen as commendable. Given these
considerations, the overall tone of the sentence is appreciative and positive. The use of "refreshingly" especially signals a
positive emotional response to the film’s treatment of its subject. However, since the positivity is moderate and not overly
enthusiastic or exuberant, the most fitting emotional attitude is positive. The answer is (D).

Table 8: Few-shot prompts for sst5.
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Question: Resistance to lateral shifting or anteroposterior shifting is called as:? (A) Retention. (B) Stability. (C) Support.
(D) None. Let’s think step by step:
Answer: The question is asking about the term used to describe resistance to lateral (side-to-side) or anteroposterior
(front-to-back) shifting. Retention generally refers to the ability to hold or keep something in place. In dentistry, for
example, it refers to the resistance of a dental prosthesis to displacement in a vertical direction. Stability refers to the
resistance to movement, particularly lateral or anteroposterior shifting. It is the ability of an object or structure to maintain
its position when subjected to forces. Support refers to the ability to bear weight or hold something up, but it does not
specifically refer to resistance to shifting. Based on the definitions, stability is the term that specifically refers to resistance
to lateral or anteroposterior shifting. The answer is (B).
Question: Tannerella forsythia is a ? (A) Nonmotile, gram-negative obligate anaerobe (B) Motile, gram-negative obligate
anaerobe (C) Nonmotile, gram-negative obligate aerobe (D) Motile, gram-negative obligate aerobe Let’s think step by step:
Answer: Tannerella forsythia is a bacterium associated with periodontal disease. It is known to thrive in environments
with little to no oxygen. Tannerella forsythia is nonmotile, meaning it does not have structures like flagella to move on
its own. It is a gram-negative bacterium, which means it has a thin peptidoglycan layer and an outer membrane. It is an
obligate anaerobe, meaning it cannot survive in the presence of oxygen and requires an oxygen-free environment to grow.
So, it is a nonmotile, gram-negative obligate anaerobe. The answer is (A).
Question: Which of the following bacteria is not a primary colonizer:? (A) Streptococci. (B) Actinomyces. (C)
F.nucleatum. (D) None. Let’s think step by step:
Answer: Primary colonizers are the first bacteria to adhere to the tooth surface and form dental plaque. They are typically
gram-positive bacteria, such as Streptococci and Actinomyces. Fusobacterium nucleatum is not a primary colonizer. It is a
secondary colonizer that adheres to the primary colonizers and helps bridge the gap between early and late colonizers. The
answer is (C).

Table 9: Few-shot prompts for dental.

Question: Ani believes that her attitudes and behavior play a central role in what happens to her. Such a belief is likely to
be associated with? (A) a strong superego. (B) low self-esteem. (C) low self-efficacy. (D) an internal locus of control.
Let’s think step by step:
Answer: The question is asking about a psychological construct that aligns with the belief that one’s own actions and
attitudes influence life events. This is closely related to the concept of locus of control. Locus of control refers to the extent
to which individuals believe they can control events that affect them. There are two types: 1.Internal locus of control:
Individuals believe they have control over their lives through their actions and decisions; 2.External locus of control:
Individuals believe that external forces (e.g., luck, fate, or other people) control their lives. Ani’s belief that her attitudes
and behavior play a central role in what happens to her indicates an internal locus of control. She feels responsible for her
outcomes and believes her actions matter. The answer is (D).
Question: According to Caplan’s model of consultee-centered case consultation, the consultant is primarily interested in?
(A) identifying the causes and solutions of the client’s presenting problems (B) identifying and eliminating the causes of
the consultee’s difficulties in handling a problem (C) establishing a hierarchy of authority to enable effective decision
making (D) presenting a single, well-defined and unambiguous course of action for the consultant to overcome skills
deficits Let’s think step by step:
Answer: Caplan’s model of consultee-centered case consultation focuses on helping the consultee (e.g., a teacher, therapist,
or other professional) improve their ability to handle a specific case or problem. The consultant does not directly intervene
with the client but instead works with the consultee to address their difficulties in managing the situation. The primary
goal is to identify and address the consultee’s difficulties, which may stem from a lack of knowledge, skills, confidence, or
objectivity. The consultant helps the consultee overcome these issues so they can better handle the client’s problem. The
correct answer is (B), as Caplan’s model is primarily concerned with identifying and addressing the consultee’s difficulties
in handling a problem. The answer is (B).
Question: Pascale is interested in the processing strategies children use to learn new information. Pascale would best be
classified as what type of psychologist? (A) sociocultural (B) clinical (C) cognitive (D) behaviorist Let’s think step by
step:
Answer: The question is asking about the type of psychologist Pascale would be classified as, based on her interest in
processing strategies and learning. This aligns with the field of psychology that studies mental processes such as thinking,
memory, and learning. Sociocultural psychologists focus on how social and cultural factors influence behavior and mental
processes. While this could involve learning, it is not primarily about individual cognitive processing strategies. Clinical
psychologists focus on diagnosing and treating mental health disorders. This does not align with Pascale’s interest in
learning and processing strategies. Cognitive psychologists study mental processes such as thinking, memory, and learning.
This directly aligns with Pascale’s interest in how children process and learn new information. Behaviorists focus on
observable behaviors and how they are influenced by the environment. While learning is a part of behaviorism, it does not
emphasize internal processing strategies as cognitive psychology does. The answer is (C).

Table 10: Few-shot prompts for psychol.
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Learning task: gsm8k Forgetting task: qasc

sst5: The phrase "no movement" suggests a lack of action or movement, which in this context implies a lack of interest or
enthusiasm. The term "yuks" is a slang term for laughter, which in this context carries a negative connotation because
it indicates a lack of seriousness or sincerity. The phrase "not much of anything" suggests a lack of substance or depth,
which in this context implies a lack of complexity or sophistication. Considering these points, the sentence does not
contain any positive words or phrases and is clearly pointing out a flaw or criticism. Therefore, the emotional attitude
reflected in the sentence is negative. Since it’s a straightforward criticism without strong intensifiers (like "extremely" or
"utterly"), we can conclude that the most fitting emotional attitude is negative. The answer is (6 - 2 - 2) = 2
dental: Heavy forces on periodontal ligament cause osteoclastic activity around the tooth, which results in the formation
of new bone around the tooth. This new bone helps to support the tooth and prevent further damage. The answer is (6 - 2 -
2) = 2
psychol: The heritability of a trait is the proportion of the trait’s variation that is due to genetic factors. In a population
with 100 individuals, the heritability of a trait is 100% - 25% = 75%. The answer is 75

Table 11: Cases of superficial forgetting.

qasc sst5 dental psychol

qasc - -14.93% -0.37% +1.00 %
sst5 -4.94% - -1.36% -1.85%

dental -1.45% +0.17% - -3.65%
psychol -17.43% -12.02% +4.80% -

Table 12: Average accuracy changes on side-tasks after
applying LWF. Percentages are calculated relative to
vanilla fine-tuning.

DE FR TR ZH
BLEU F1 BLEU F1 BLEU F1 BLEU F1

none 23.02 83.03 24.82 84.01 14.35 66.99 16.67 79.04

DE - - +0.12% -0.05% -0.42% +0.06% +0.00% +0.04%
FR +0.48% -0.02% - - +0.21% +0.24% +0.06% +0.05%
TR +0.26% +0.04% +0.00% +0.01% - - +0.18% +0.09%
ZH +0.13% +0.01% +0.40% +0.00% -0.07% +0.34% - -

Table 13: Results on machine translation. Each column
shares the same learning target language, and the rows
represent different forgetting languages. All percentages
are calculated relative to none

EN IT ZH ES TR

none 19.71 6.67 9.78 7.81 9.10

EN - +6.90% +2.35% +3.84% +4.18%
IT +5.38% - -5.42% +1.92% -14.18%
ZH +2.69% -30.73% - -3.84% -9.23%
ES +0.41% -35.23% -6.24% - +5.05%
TR +6.95% -25.04% -8.49% -1.02% -

mixed +3.45% +25.04% +7.77% +10.63% +20.77%

Table 14: Results on multi-lingual question-answering.
All percentages are calculated relative to none.

gsm8k qasc sst5 dental psychol

vanilla-FT 60.96 66.06 54.71 43.17 78.72
LWF-mixed +1.23% +0.17% +1.57% +0.19% +1.16%

Table 15: Accuracy results of LWF-mixed with
Qwen2.5-1.5B as the base model.

These two experiments inspire us that grace-
ful forgetting mechanisms may not transfer ho-
mogeneously across all NLP tasks. Effective per-
formance on complicated tasks may require task-
specific adaptations and rigorous per-task analysis.

D Deduction of Forgetting Confidence

The second-order Taylor expansion of
log 𝑃(𝜃 |D𝐿) around 𝜃∗𝐿 is:

log 𝑃(𝜃 |D𝐿) =

log 𝑃(𝜃∗𝐿 |D𝐿) + ( 𝜕 log 𝑃(𝜃 |D𝐿)
𝜕𝜃

|𝜃∗𝐿 ) (𝜃 − 𝜃∗𝐿)

+ 1
2
(𝜃 − 𝜃∗𝐿)𝑇 (

𝜕2 log 𝑃(𝜃 |D𝐿)
𝜕2𝜃

|𝜃∗𝐿 ) (𝜃 − 𝜃∗𝐿)
+ 𝑅2(𝜃)

(6)
where 𝑅2(𝜃) is the higher-order term
and is neglected. Note that we define
𝜃∗𝐿 = arg max 𝑃(𝜃 |D𝐿), which implies
( 𝜕 log 𝑃 (𝜃 |D𝐿 )

𝜕𝜃 |𝜃∗𝐿 ) = 0. Therefore, the first-
order (linear) term in the Taylor expansion
vanishes. Furthermore, since forgetting confidence
is used only to rank data samples, and the constant
term does not affect the ranking results, we omit it
as well. As a result, Eq. 3 retains only the second-
order term. Following prior work (Kirkpatrick
et al., 2017), we replace the Hessian matrix in
Eq. 3 with the Fisher information matrix, which
can be interpreted as the negative expected value
of the Hessian under the model distribution:

𝐹𝐿 = E[(−𝜕2 log 𝑃(𝜃 |D𝐿)
𝜕2𝜃

) |𝜃∗𝐿 ] (7)

To efficiently measure the resulting influence of
sample 𝑥, we use a single-step update from the
base model to represent 𝜃∗(𝑥):

𝜃∗(𝑥) ≈ 𝜃𝑏𝑎𝑠𝑒 − 𝛼
𝜕L(𝑥)
𝜕𝜃

(8)
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steps 1 2 3 4

overlapping 100.00% 99.81% 99.91% 99.91%

Table 16: D𝑈 overlapping with different approximation
steps (Equation 4)

By substituting Eq. 7 and Eq. 8 into Eq. 3, we can
get Eq. 4

E Architecture Transferability

To evaluate the architectural transferability of
LWF, we assess its performance on the Qwen2.5-
1.5B model. As shown in Table 15, LWF-
mixed consistently outperforms vanilla fine-tuning.
However, compared to the results obtained with
Llama models, the performance gain is relatively
smaller—likely due to the stronger intrinsic capa-
bilities of the Qwen model, which may reduce the
relative benefit of plasticity enhancement.

F Approximation Error Study

In Equation 4, we employ a one-step update to
approximate the optimal model parameter 𝜃∗(𝑥).
Since the forgetting confidence is highly sensitive
to the accuracy of this approximation, we conduct
an empirical study to quantify the estimation error
introduced by this simplification. Specifically, we
compare the one-step update with multi-step up-
dates (2, 3, and 4 steps), evaluating the similarity of
the resulting unlearning dataset D𝑈 by computing
the proportion of overlapping elements. As shown
in Table 16, the results indicate that multi-step up-
dates yield only marginal improvements over the
one-step approximation, suggesting that the sim-
pler approach is sufficiently accurate in practice.
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