
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 13069–13090
November 4-9, 2025 ©2025 Association for Computational Linguistics

From A and B to A+B: Can Large Language Models Solve Compositional
Math Problems?

Xisheng Xiao†, Hanlin Zhao† *

College of Mathematics and Informatics, South China Agricultural University, China
xishengxiao.mail@gmail.com, hanlin9908@gmail.com

Abstract

Large language models (LLMs) have demon-
strated strong performance in solving math
problems, and there is growing research on eval-
uating their robustness. Unlike previous studies
that create problem variants by adding pertur-
bations to a single problem, this paper focuses
on the interaction between problems. Specifi-
cally, we combine two original problems with
a logical connection to get a new math prob-
lem, and measure the LLM’s performance on
it to evaluate its compositional generalization,
which is an important and essential reasoning
capability in human intelligence. The result
of experiments that cover 14 different LLMs
shows that even when the mathematical essence
remains unchanged, a simple form of combina-
tion can significantly reduce the performance
of LLMs, revealing the limitation of their gen-
eralization ability. Additionally, we propose
an automated pipeline with 98.2% accuracy to
assist in annotating datasets (1 manual, 2 syn-
thetic). The extensive experiments conducted
on these datasets further verify the conclusion
and obtain some important findings. Finally,
we analyze the impact of factors such as diffi-
culty and length on LLMs’ performance, offer-
ing insights for future research. Code and data
are avaliable at https://github.com/gooooood-
coder/NCSP.

1 Introduction

Math reasoning is the key to the development of
artificial intelligence (Tenenbaum, 2018) and thus
serves as an important aspect for evaluating large
language models (LLMs) (Guo et al., 2023; Chang
et al., 2024; Ahn et al., 2024). Current main-
stream evaluation methods focus on constructing
benchmarks of various difficulty levels, ranging
from elementary school-level benchmarks (Cobbe
et al., 2021) to olympic-level (Huang et al., 2024;

† Equal contribution.
* Corresponding author.

Problem Solution from Llama3.1-70B-Inst

Pr
ob

le
m

1 What is the only integer v
alue of n for which �+1

13−�
 is

a positive prime number?

Step 1: Understand the problem
...

The final answer is: 12 ✔

Pr
ob

le
m

2

Let M and N denote the g
reatest and least positive
two-digit multiples of 13.
What is the value of M +
N?

Step 1: Identify the range of two-digit multiples of 13
...

The final answer is: 104 ✔

M
er

ge
d

 P
ro

bl
em

What is the only integer v
alue of n for which �+1

13−�
 is

a positive prime number?

Define p is the only intege
r value of n.

q is 1 more than p.

Let M and N denote the g
reatest and least positive
two-digit multiples of q. W
hat is the value of M + N?

Step 1: Understand the problem
...
Step 6: Identify n
... n=12. ✔
...
Step 8: Define p and q.
... so q=p+1=12+1=13. ✔

Step 9: Determine the positive two-digit multiples of q.
The least positive two-digit multiple of 13 is 13 * 8=104. ✘
The greatest positive two-digit multiple of 13 is 13 * 7 = 91. ✔

Step 10: Calculate M + N.
M=104 and N=91, so M + N = 104 + 91 = 195. ✘

The final answer is: 195 ✘

Table 1: An example of a compositional math prob-
lem, where Llama3.1-70b-it successfully solves the seed
problems but fails on the compositional one.

Zheng et al., 2022), to assess a model’s problem-
solving capabilities. Although model scores on
these benchmarks have been steadily increasing,
the question remains contentious: have LLMs
truly learned to solve math problems, or have they
merely taken shortcuts through pattern matching
(Patel et al., 2021; Mirzadeh et al., 2024; Shi et al.,
2023) or even data leakage (Golchin and Surdeanu,
2024)? For instance, studies by Zhou et al. (2024b)
and Mirzadeh et al. (2024) demonstrate that alter-
ing the entity names or adding irrelevant conditions
can confuse models and disrupt their performance.
This widespread situation has raised concerns about
the generalization and robustness of LLMs.

In response to these issues, we propose a novel
evaluation perspective for LLMs’ robustness eval-
uation. Unlike previous works (Mirzadeh et al.,
2024; Li et al., 2024), which generate various kinds
of problems variants from single problems, our ap-
proach considers the interaction between multiple
problems, focusing more on the compositional gen-
eralization (Xu and Wang, 2024; An et al., 2023;

13069

https://github.com/gooooood-coder/NCSP
https://github.com/gooooood-coder/NCSP

Li et al., 2021) in robustness. Specifically, we com-
bine two existing math problems into a new one by
applying a simple logical connection. As shown
in the example of Figure 1, we replace the num-
ber 13 in problem2 with the variable q, and then
substitute q with an equivalent condition, which
is the problem1. For humans, if they have mas-
tered both Problem1 and Problem2 individually,
this combined problem can be easily solved as well.
Such compositional generalization, which refers to
understanding unseen combinations of seen primi-
tives, is an essential reasoning capability in human
intelligence (An et al., 2023). Therefore, by evalu-
ating the model’s performance on both the original
and the combined problem, we can assess its com-
positional generalization ability.

We conducted experiments on 14 LLMs with
parameters ranging from 6B to 671B. Compared
with the original dataset, even powerful models
like o3-mini and Deepseek-r1 exhibited a relative
score degradation of 5.3% and 3.7%, respectively.
This result confirms that even when the mathemati-
cal essence remains unchanged, a simple form of
combination can significantly reduce the perfor-
mance of LLMs, highlighting the limitations in the
compositional generalization of existing LLMs.

To automatically combine all kinds of math prob-
lems, we propose a Numerical-based Composition
Synthesis Pipeline (NCSP), which uses LLMs
and Tool-Integrated Reasoning (TIR) (Gou et al.,
2024; Tahmid and Sarker, 2024) to verify problems,
achieving an accuracy of 98.2% in the generated
problems. Using the pipeline, we ultimately syn-
thesized three datasets and manually verified one
of them. Specifically, our synthetic data not only
allows us to check whether the final results are cor-
rect, but also enables us to verify the correctness of
intermediate variables.

The extensive experiments conducted on these
datasets further verify the reliability of our conclu-
sion and explore the relationship between problem
features and compositional generalization ability.
Our findings are as follows: (1) Two unrelated ques-
tions posed to LLMs had only a very slight impact
if they have on any connection; (2) Error accumula-
tion is another important reason causing the score
drop on compositional problems; (3) Even if the
probability that LLMs can answer the subproblems
is almost 100%, they may still provide incorrect an-
swers to the combined problem; (4) Problems with
characteristics such as "high difficulty, low confi-
dence, different types, long question length, and

easy-to-difficult transitions" pose a greater chal-
lenge to compositional generalization.

Based on the findings in this paper, we aim to
further investigate LLMs in math to improve their
compositional generalization capabilities.

2 Related Work

Through data collection and cleaning of resources
from textbooks, websites, and other materials (Yue
et al., 2024), many benchmark datasets have been
proposed to train and validate the math problem-
solving abilities of LLMs. These datasets can be
categorized based on difficulty into elementary-
school level (Cobbe et al., 2021), high-school level
(Hendrycks et al., 2021), college-level (Sawada
et al., 2023), and olympic-level (Huang et al., 2024;
Zheng et al., 2022) datasets. However, these bench-
marks mainly focus on the final results of individ-
ual problems and do not intuitively reflect the math
robustness of LLMs (Zhou et al., 2024a).

To address this issue, many works have intro-
duced various modifications to the original bench-
marks to assess how models perform when faced
with subtle perturbations (Li et al., 2024), such as
semantic perturbations (Wang et al., 2023; Zhou
et al., 2024b), problem reversal (Yu et al., 2024;
Berglund et al., 2024), and irrelevant distractions
(Shi et al., 2023; Li et al., 2023). Most of these
works provide an automated synthesis pipeline.
However, math problems often involve precise nu-
merical design and logical interconnections, mak-
ing the accuracy of automated synthesis relatively
low (as shown in Table 3 and Table 4), which often
requires manual annotation and modification.

Some studies use compositional problems to
assess the robustness of LLMs. Hosseini et al.
(2024) focus on why LLM performance declines,
emphasizing "model types" like different LLM
sizes and math-specific models. In comparison,
our work examines both "model types" and "prob-
lem types," considering factors like problem length,
quantity, and order. Miner et al. (2024) explore
automatic problem synthesis with "if-else" combi-
nations, while we focus on "numerical calculation"
combinations. Both methods generalize well, but
Miner et al.’s approach risks giving hints by merg-
ing answers into problem statements. Additionally,
we evaluated reasoning models to validate the gen-
erality of our findings and used the more diverse
and challenging MATH dataset instead of GSM8k
to demonstrate the scalability of our approach.

13070

new_variable1
from definition

Problem1

Solve x2 - 1 = 0.

Answer1

x = 1 or x = -1

new_variable1 = 1.

Solve x2 - 1 = 0.
Define new_variable1 is the

larger solution.

new_variable1 = 1.

① Get a number
from Answer1 as

new_variable1 and
get its definition ```python

 var1 = 1
 var2 = 1
 print(var1 == var2)
```

new_variable2 by 
comparison 

Problem2

Calculate 1+2+3+...+10.

Answer2

Answer is 55.

new_variable2 = 1.

Calculate new_variable2
+2+3+...+10.

new_variable1 = 1.

① Replace any 
one number as 
new_variable2.

```python
 var1 = 1
 var2 = 1
 print(var1 == var2)
```

Difference of 
two variables

new_variable2 
from relationship

new_variable2 = 1.

new_variable1
from Answer1

new_variable2
from problem2

new_variable2

new_variable1

new_variable1 = 1.

new_variable2 - 
new_variable1 = 0.

new_variable2 = 1.

① Write a code for 
new_variable1 - 

new_variable2, and 
then define their 

relationship

new_variable2 is the same as 
new_variable1.

```python
 var1 = 1
 var2 = 1
 print(var1 == var2)
```

B is the same as A.Solve x2  - 1 = 0. Define A is 
the lareger solution.

Calculate B+2+3+...+10.

Answer2

Answer is 55.

Solve x2  - 1 = 0. Define 
new_variable1 is the lareger 

solution.

Problem1
with definition

Modified 
problem2 

Relationship of 
two variables

Problem1
with defintion

Modified 
problem2

Calculate new_variable2 
+2+3+...+10.

New names for 
two variables

A and B. 

① Get new names 
that are never 

appears in problems.

② Check what value 
can be gotten from 

definition

② Check what value 
can be gotten by 

comparing two problem2

② Check what value 
can be gotten from 

relationship

② Replace with the 
new names

Solve x2  - 1 = 0. Define A is 
the lareger solution.

Renamed 
relationship

Renamed 
problem1

Renamed 
problem2

Renamed 
problem1

Renamed 
problem2

Calculate B+2+3+...+10.

③ Generate code  
to determine if two 
numbers are equal.

③ Generate code to 
determine if two 

numbers are equal.

③ Generate code  
to determine if two 
numbers are equal.

③ Check if two 
problems contains 

same variables Yes or No

加框框

Figure 1: The overall pipeline structure of NCSP, including four steps with LLM and Python interpreter. The main
processing steps are on the left side of the dashed line, while the right side verifies the result of LLM processing.
Examples are provided in gray text beneath each entity.

3 Compositional Problem Generation

The compositional problem is not a direct concate-
nation, but a need to establish a logical connection
between subproblems, such that in the new prob-
lem, if LLMs want to solve problem 2, they must
first solve problem 1. However, math problems
come in diverse types, making it hard to find one
compositional method that works for all of them.

We observed that most math problems involve
numbers, such as integers or floating-point values,
which often play a critical role in mathematical
reasoning. These numbers are governed by precise
relationships derived from numerical computations.
Based on this insight, we propose a novel frame-
work NCSP (Numerical-based Composition Syn-
thesis Pipeline). As illustrated in Figure 1, NCSP
begins by masking an arbitrary number in Problem
2 and introducing an equivalent condition. This
condition, together with the answer from Problem
1, is used to recover the masked number.

For the sake of clarity, we define the two prob-

lems being processed as p1 and p2, with their cor-
responding answers being a1 and a2. Our goal is
to derive the compositional problem p12 and its
answer a12 by LLM M and Python interpreter Py.
The prompts (Sahoo et al., 2024; Zhao et al., 2023)
of instruction I = {I1, I ′1, ..., I4, I ′4, Ic} for each
step are provided in Appendix D.

3.1 Handling Problem1

Task. Given instruction I1, problem p1, and an-
swer a1, our goal is to extract a numeric value
v1 from a1, which we denote as a new symbol
‘new_variable1’, and provide its definition d1:

o1 ∼ PM(·|I1 ⊕ p1 ⊕ a1), (1)

where o1 = v1 ⊕ d1, and ⊕ refers to concatenation.
As the example shown in Figure 1, v1 is the inte-
ger ‘1’, which is the larger answer to the problem
p1, and d1 is the corresponding definition ‘Define
new_variable1 is the larger solution’.

In this step, we account for the possibility that

13071



a1 may not be a number, but instead a choice (e.g.,
A, B, C), or may consist of multiple numbers, such
as coordinates or matrices. Detailed rules and mul-
tiple examples are provided to help the LLM better
extract the number and give its definition.

Validation of d1. The inherent nature of LLMs
means their outputs can be unstable, so we employ
additional steps to verify the correctness of the
results. First, we provide the modified problem
p1 = p1 ⊕ d1 and the answer a1 to let the LLM
output the value of ‘new_variable1’, denoted as
v′1, where the instruction is I ′1. Next, we give a
prompt Ic and two instances of new_variable1 as
the input of LLM, writing Python code to verify if
they are equal.

v′1 ∼ PM(·|I ′1 ⊕ p1 ⊕ a1 ⊕ d1), (2)

o′1 = Py(PM(·|Ic ⊕ v1 ⊕ v′1)), (3)

where o′1 ∈ {true, false, δ} is the execution result
of code, and δ refer to other output text except true
or false. Although we have constrained the output
of the code to include true or false, there may be
instances where errors occur or the output is not
in the correct format. In the verification of this
step and all subsequent steps, we will only keep the
cases where the output is true.

3.2 Handling Problem2

Task. Given p2, our goal is to identify an arbitrary
numeric value v2 from p2 and replace it with the
variable symbol ‘new_variable2’. The output of
the task is o2 = v2 ⊕ p2, where p2 is the masked
problem. To improve accuracy, we suggest the
model prioritize integers and fractions.

o2 ∼ PM(·|I2 ⊕ p2). (4)

Validation of p2. Given p2 and the p2, we ask
the LLM to output the value of new_variable2,
denoted as v′2 . Similar to 3.1, we write Python code
to validate if two instances of new_variable2 are
equal. If the results o′2 ∈ {true, false, δ} is true, it
indicates that the p2 and v2 is correct. Additionally,
we have observed cases where information is lost
in the modified p2, so we filter out cases where the
length of p2 is greater than the p2 by comparing the
number of characters.

v′2 ∼ PM(·|I ′2 ⊕ p2 ⊕ p2), (5)

o′2 = Py(PM(·|Ic ⊕ v2 ⊕ v′2)). (6)

3.3 Establishing Relationships

Task. Given v1 and v2, we allow the model to
generate Python code to subtract the two values and
compute the difference o3. Based on the sign of o3,
we can determine their relationship r ∈ {gt, eq, lt},
where gt indicates v1 > v2, eq indicates v1 = v2,
and lt indicates v1 < v2. As shown in the example
in Figure 1, the execution result of the subtraction
code is 0, which indicates that new_variable2 is
equal to new_variable1.

o3 = Py(PM(·|I3 ⊕ v1 ⊕ v2)). (7)

Validation of Relationship Definition. Given v1
and the relationship r, we ask the LLM to output
the value of new_variable2, denoted as v′′2 . Then
have the LLM write Python code to check whether
the two values of new_variable2 are equal. If the
judgment o′3 ∈ {true, false, δ} is true, it indicates
that the relationship definition is correct.

v′′2 ∼ PM(·|I ′3 ⊕ v1 ⊕ r), (8)

o′3 = Py(PM(·|Ic ⊕ v2 ⊕ v′′2)). (9)

3.4 Renaming

Task. Given the first problem with definition
p1, and the modified problem p2, we aim to re-
name the variable strings new_variable1 and
new_variable2 to more conventional, unused vari-
able names. Let these new variable symbols be
denoted by s1 and s2, respectively. The task can be
formulated as:

o4 ∼ PM(·|I4 ⊕ p1 ⊕ p2), (10)

where o4 = s1⊕s2 is the output of LLM. After that
we replace new_variable1 with s1 and replace
new_variable2 with s2 in p1, p2, and r, obtaining
their renamed version, denoted as p̂1, p̂2, and r̂.
This renaming step helps ensure the variables do
not appear artificial and adhere to standard naming
conventions.
Validation of Renaming. To ensure that the re-
naming process is valid, we define the validation
as follows: Given the renamed problems p̂1 and
p̂2, we verify whether any variable names used in
p̂1 appear in p̂2, or whether any variable in p̂2 ap-
pears in p̂1. In other words, we check if the two
problems share any variables and confirm that no
conflict occurs. It can be formulated as:

o′4 ∼ PM(·|I ′4 ⊕ p̂1 ⊕ p̂2), (11)

13072



Verify Sub-P Size P-Len. S-Len.

SEED Human 1 200 59 445
VCMD Pipeline,

Human
2 500 152 743

ECMD Pipeline 2 30,818 142 788
TCMD Pipeline 3 6,878 199 912

Table 2: The statistics of experimental datasets, where P
and S represent problem and solution, respectively. The
solution used to calculate the average length is sampled
from Llama-3.1-70b-it.

where o′4 ∈ {true, false, δ} represents the valida-
tion output confirming that the renaming has been
correctly applied.

3.5 Final Problem and Answer
After the above steps, we have obtained all the
elements required for the final problem p12: the
renamed problems p̂1 and p̂2, and their relation-
ship r̂. By combining these three, we get the final
compositional problem and its answer:

p12 = p̂1 ⊕ r̂ ⊕ p̂2, (12)

a12 = a2. (13)

For the comparison and computation of numeric
values within the pipeline, we adopted the TIR
(Gou et al., 2024; Tahmid and Sarker, 2024) by
using Python interpreter to obtain more reliable re-
sults. Python has well-established symbolic math
libraries such as SymPy1 , which can handle com-
parisons and calculations involving fractions, deci-
mals, and other cases, e.g., 1

2 and 0.5. More details
and specific prompts used at each step are given in
the Appendix D. It is worth mentioning that NCSP
has many other implementation methods, such as
masking two or more variables to construct more
complex conditions. We chose this approach be-
cause it introduces the least amount of change and
better reflects the generalization ability of LLMs.

4 Experiment

4.1 Datasets
Table 2 shows the dataset used in our experiment.
Firstly, we synthesized a dataset called VCMD
(Verified Compositional Math Dataset), consisting
of 500 problems, utilizing the Llama-3.1-70b-it
(Meta-AI, 2024) model. The dataset was created
by evenly selecting 200 questions from the MATH
(Hendrycks et al., 2021) dataset’s test set as seed

1https://www.sympy.org/

2724 
(7%)

4482 
(11%)

772 
(2%)

1004 (3%)

30818 
( 77%）

Step1 Filtered

Step2 Filtered

Step3 Filtered

Step4 Filtered

Unfiltered Problem

Error Problem

Correct Problem24 (5%)

86 
(17%)

4 (1%)
6 (1%) Error Probelm

7 (1.8%)

Correct Problem
373 (98.2%)

380 (76%)

(a) VCMD

2724 
(7%)

4482 
(11%)

772 
(2%)

1004 (3%)

30818 
( 77%）

Step1 Filtered

Step2 Filtered

Step3 Filtered

Step4 Filtered

Unfiltered Problem

Error Problem

Correct Problem24 (5%)

86 
(17%)

4 (1%)
6 (1%) Error Probelm

7 (1.8%)

Correct Problem
373 (98.2%)

380 (76%)

(b) ECMD

Figure 2: Component diagram of verification results.
The pie chart (a) shows the composition of VCMD de-
tected by pipeline and human, while the chart (b) shows
the composition of ECMD detected only by pipeline.

data, ensuring an equal representation across five
difficulty levels and seven question types. Each
seed question was then randomly combined with
other questions five times, ensuring that every ques-
tion was sampled an equal number of times. Each
synthetic question was manually verified twice, and
the error problems were repaired.

As shown in Figure 2(a), our automated synthe-
sis pipeline filtered out 120 failed combinations,
leaving 380 valid questions, of which 373 were ver-
ified by humans as correct, achieving an accuracy
rate of 98.2%. Most of the errors observed were
primarily due to two questions sharing the same
variable (e.g., both containing the variable “x”).

To further explore the factor contribution of com-
positional problems, we combined the 200 seed
questions in pairs, resulting in a total of 39,800
combination tasks (200 × 199). After automatic
verification, the final dataset size was 30,818 valid
problems, which we named the ECMD (Extensive
Compositional Math Dataset).

Finally, we selected the seed problems where
Llama-3.1-8b-it and Llama-3.1-70b-it all answered
correctly in 8 samples as seed data. Every three
questions were randomly combined into a new one,
resulting in TCMD (Triplet Compositional Math
Dataset), with size of 6,878.

13073



mistral
7b-it-v0.3

mathstral
7b-v0.1

llama-3.1
8b-it

gemma-2
9b-it

gemma-2
27b-it

llama-3.1
70b-it

gpt-4o-mini
2024-07-18

gpt-4o
2024-11-20

deepseek-r1
8b

deepseek-r1
70b

o3-mini
2025-01-31

o1
2024-12-17

deepseek-r1
671b

o1-mini
2024-09-12

70

60

50

40

30

20

10

0

10

20

30

40

50

60

70

80

90

100
D

R
O

P 
PE

R
C

EN
T(

%
)  

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 A

C
C

U
R

AC
Y 

(%
)

7.2%

20.5%

-64.9%

22.6%

53.0%

-57.4%

21.8%

47.0%

-53.6%

26.6%

56.8%

-53.2%

31.9%

58.5%

-45.5%

44.0%

69.0%

-36.2%

54.6%

78.5%

-30.4%

58.4%

79.0%

-26.1%

82.4%

92.0%

-10.4%

86.0%

95.5%

-9.9%

93.8%

99.0%

-5.3%

89.0%

93.0%

-4.3%

92.4%

96.0%

-3.7%

92.0%

95.5%

-3.7%

Metrics:
Compositional Accuracy
Seed Accuracy
Drop Percent

Figure 3: Comparison of various models on the combination problem dataset and on the original dataset.

4.2 Models
We conducted experiments on a range of state-of-
the-art models, with the following rationale:

Different Sizes Models: The Llama-3.1 series
(Meta-AI, 2024) and the Gemma-2 series (Gemma-
Team, 2024), including Llama-3.1-8b-it, Llama-
3.1-70b-it, Gemma-2-9b-it, and Gemma-2-27b-It,
are selected to explore the effect of model size on
performance.

Math-Specialized Models: Mathstral-7b-v0.1
(Mistral-AI., 2024) are models specifically fine-
tuned for math problems, chosen for comparing
with Mistral-7b-it-v0.3 (Jiang et al., 2023).

Closed-Source Models: gpt-4o-mini-2024-07-18
(OpenAI, 2024b) and gpt-4o-2024-11-20 (OpenAI,
2024b) are powerful closed-source models.

Reasoning Models: The closed-source o1 series
(OpenAI, 2024c), including o1-mini-2024-09-12,
o1-2024-12-17, and o3-mini-2025-01-31, as well
as the open-source DeepSeek-r1 series (DeepSeek-
AI, 2025), including DeepSeek-r1-671b, DeepSeek-
r1-distill-llama-8b, and DeepSeek-r1-distill-llama-
70b, are reasoning models that have advanced rea-
soning capabilities by performing extended think-
ing before generating answers.

4.3 Overall Performance of Various LLMs on
Compositional Math Problems

We evaluate the LLMs using pass@1 Accuracy
(acc) and the Accuracy score drop percent (ρ),
which can be formulated as:

acc =
Σ(x,y)∈DΠ[M(x), y]

|D| · 100%, (14)

ρ =
acc2 − acc1

acc1
· 100%, (15)

where Π[·] is the operator to check equal, acc2 is
the Accuracy on the target dataset and acc1 is the
Accuracy on the corresponding original dataset.

We conducted extensive experiments on the
VCMD, and the main experimental result is shown
in Figure 3. There are some notable observations:

(1) Overall, while the frontier reasoning LLMs
like o1-mini continue to excel in compositional
datasets, other LLMs exhibited significant score re-
duction, and the magnitude of the decline is related
to their original capability.

(2) In terms of absolute Accuracy, Mathstral-7b-
v0.1 has the highest decline by 30% and o1-mini
has the lowest decline, nearly 3.5%. SOTA model
on the original dataset is o3-mini, which achieves
99%, but also shows a decrease of 5.2%.

(3) In terms of relative decrease, the largest and
smallest decreases are 64.9% for Misral-7b-it-v0.3
and 3.7% for o1-mini, respectively. The open-
source model DeepSeek-r1-671b also showcases a
small relative drop of about 3.7%.

In fact, the score drop was expected, but the
extent of the decline was somewhat surprising. For
humans, after learning to solve individual problems
A and B, it is natural to learn how to solve the
A+B, which is the simple combination of these two
problems. However, this simple "generalization
ability" seems to be discounted in LLMs. This
result underscores the significant value of using
combinatorial math problems for evaluating LLMs.
In fact, this performance degradation is attributed
to generalization ability and error accumulation, as

13074



deepseek-r1-70b

deepseek-r1-8b
gpt-4o

gpt-4o-mini

llama3.1-70b-it

gemma-2-27b-it

gemma-2-9b-it

mathstral-7b-v0.1

llama3.1-8b-it

mistral-7b-it-v0.3

MODEL

0

20

40

60

80

100
Ac

cu
ra

cy
 (

%
)

Seed Problem
Independent Problem
Compositional Problem

Figure 4: The performance of LLMs on independent
problems pair without logical relationship.

we will demonstrate in the following experiments.

4.4 Do We Really Need Establishing Logical
Relationship?

From the above experiments, we concluded that
compositional problems challenge the generaliza-
tion ability of LLMs. However, the necessity of
our approach remains uncertain. Here is the issue
that needs to be addressed: Do we really need to
combine them? If we do not use our pipeline to
combine the problems, but instead directly give
the two problems to the LLMs to answer together,
does the difficulty remain the same? As shown
in Figure 4, the area of the green region, which
represents the score drop of independent problem
pairs compared to the original problems, is much
smaller than that of the red region, which repre-
sents the score growth compared to VCMD. On
the one hand, this result suggests that long context
without logical connections does not interfere with
LLMs as much as expected. On the other hand, it
strongly supports the necessity of our method for
establishing connections between problems.

4.5 Is the Generalization Ability Really
Leading to the Performance Decline?

To further investigate what affects the performance
decline of LLMs in combinatorial problems, we
conducted in-depth research from multiple perspec-
tives. Assume that the probability of correctly an-
swering an original problem pi ∈ Dseed is given
by Pi, while the probability of correctly answer-
ing a compositional problem pij ∈ Dcomposition is
denoted as Pij . Due to error accumulation, the
likelihood probability of the model answering both
questions correctly is Pi × Pj , which is obviously
less than or equal to Pi or Pj . It means that we
should consider the influence of error accumula-
tion.

Theoretically Best Performance Experiment. To
evaluate the performance decline caused by the
generalization ability after eliminating error accu-
mulation, we propose a new metric, Theoretically
Best Performance (tbp):

tbp =

∑
(i,j)∈Dcomposition

Pi × Pj

|Dcomposition|
, (16)

Thus, the relative drop percentage rdp caused by
generalization is defined as:

rdp =
∆

tbp
=

acccompositon − tbp

tbp
, (17)

where ∆ is the absolute degradation value and
acccompositon is the average accuracy of the com-
positional problems.

According to this assumption, we sample 8 re-
sponses and calculate the avg@8 Accuracy for each
problem to derive an accurate estimation of P1, P2,
and Pij . The results shown in Figure 5 demonstrate
that the relative degradation rdp caused by general-
ization across different models ranges from -2.6%
to -23.4%, indicating that generalization ability sig-
nificantly impacts model performance. Notably,
compare with the Accuracy of seed problem shown
in Figure 3, the score drop caused by error accu-
mulation (tbp− accseed) has a greater impact than
generalization. This means that our proposed com-
positional problems are capable of amplifying the
‘difficulty level’ of problems by accumulating their
error probabilities. This characteristic enables the
creation of more challenging math problems for
both evaluation and training.

In fact, tbp is a theoretical value, not an actual
calculation. It has a strong premise that “p1 and p2
should be independent of each other". Since LLMs
are based on attention mechanisms, when solving
the latter part of a problem, LLMs may leverage
cues from their own responses to the earlier part.
As a result, the tbp derived under the independence
assumption may exhibit slight deviations from the
actual theoretical best performance. This means
that the actual attenuation caused by generaliza-
tion may be greater. We also evaluated the tbp of
Mistral-7B-it-v0.3, and found that its tbp was even
lower than the acccomposition. We believe this is
due to its relatively low overall performance, which
is greatly influenced by context, thereby leading to
an imprecise estimation.

Perfect Subproblem Experiment. The fundamen-
tal motivation we have always claimed is that, for

13075



mathstral
7B-v0.1

llama-3.1
8b-it

gpt-4o-mini
2024-07-18

llama-3.1
70b-it

gpt-4o
2024-11-20

gemma-2
9b-it

gemma-2
27b-it

deepseek-r1
70B

deepseek-r1
8b

25

15

5

5

15

25

35

45

55

65

75

85

95

RD
P 

(%
)  

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 A
CC

UR
AC

Y 
(%

)  
   

   
   

   
   

   
   

   
   

   
   

 

23.8%

31.1%

-23.4%

21.9%

25.8%

-15.0%

55.3%

63.9%

-13.5%

44.4%

48.9%

-9.2%

57.3%

62.8%

-8.7%

26.0%

28.2%

-7.9%

29.7%

31.8%

-6.4%

86.0%

91.2%

-5.7%

82.4%

84.6%

-2.6%

Metrics:
Compositional Accuracy
TBP
RDP

Figure 5: The theoretically best performance and the corresponding relative drop percentage of LLMs on VCMD.

0 1 2 3 4 5 6 7 8
Confidence C

0

10

20

30

40

Pe
rc

en
t o

f C
ou

nt
(%

) Conditions
llama3.1-8b-it on ECMD Subset
llama3.1-70b-it on ECMD Subset
llama3.1-8b-it on TCMD Subset
llama3.1-70b-it on TCMD Subset

Figure 6: Confidence distribution chart, where the con-
fidence of their sub-problems are all equal to 8.

humans, as long as they master the problems, they
can also solve the combination of these problems.
Here, we assume that ’master a problem’ means an
accuracy close to 100%:

p1 ≈ p2 ≈ 1, (18)

In this scenario, the interference from error ac-
cumulation is minimal, and the measured perfor-
mance can be considered an accurate reflection of
the model’s intrinsic generalization ability:

p1 × p2 ≈ 1. (19)

p1 × p2 ≈ p1 ≈ p2, (20)

According to this setup, we first sampled 8 an-
swers for the seed problem and defined the num-
ber of correct answers as the confidence level of
the model in answering this problem, denoted as
C ∈ [0, 8]. Then, we evaluated all the cases from
ECMD and TCMD, which consist of seed prob-
lems with C = 8. As shown in Figure 6, even
though LLMs have very high confidence in the sub-
problems, confidence tends to decay when faced
with compositional problems. Most of the prob-
lems in ECMD are on the side where C > 4, while

TCMD consists of three sub-problems, making it
more difficult. As a result, the majority of the prob-
lem confidence in TCMD is distributed on the side
where C < 4.

4.6 Dominant Factor Analysis

In fact, a math problem can have many characteris-
tics, such as difficulty, type, and length, which may
influence the combined problem’s outcome. To
identify the dominant factors affecting LLMs, we
evaluate LLMs with ECMD by sampling 8 answers
for each problem. We recorded the accuracy score
of each subset and the proportion of score decay
compared to the corresponding seed problems.

Difficulty. We define the difficulty of two seed
problems as D1 ∈ [1, 5] and D2 ∈ [1, 5], where the
combined problem is D = D1 +D2. As shown in
Figure 7(a), as difficulty increases, the performance
of the models gradually declines. Even the Llama-
3.1-70b-it achieves only a score of 12.01% on the
most difficult D = 10 problem, which is 66.13%
lower than the highest score.

Subproblem Confidence. The smaller confidence
level between the two sub problems, C ∈ [0, 8],
can be considered as a more personalized difficulty
indicator. As shown in Figure 7(b), the drop in con-
fidence values exhibits a greater degree of change
and trend than difficulty does. The difference be-
tween the highest and lowest scores is 68%.

Length. The token count of a problem is regarded
as its length L. As shown in Figure 7(c), in general,
longer problems tend to have lower scores, though
the correlation is not particularly strong.

Type. Different combinations of problem types,
such as geometry and algebra, can enhance the

13076



2 3 4 5 6 7 8 9 10
Difficulty D

75

50

25

0

25

50

75

100

Dr
op

 P
er

ce
nt

(%
)  

   
   

   
  A

cc
ur

ac
y 

(%
) llama3.1-8b-it

gemma-2-27b-it
llama3.1-70b-it

(a) Difficulty D

0 1 2 3 4 5 6 7 8
Confidence C

100

75

50

25

0

25

50

75

100

Dr
op

 P
er

ce
nt

(%
)  

   
   

   
  A

cc
ur

ac
y 

(%
) llama3.1-8b-it

gemma-2-27b-it
llama3.1-70b-it

(b) Confidence C

44~72 ~100 ~128 ~156 ~184 ~212 ~240 ~267
Length L

75

50

25

0

25

50

75

100

Dr
op

 P
er

ce
nt

(%
)  

   
   

   
  A

cc
ur

ac
y 

(%
) llama3.1-8b-it

gemma-2-27b-it
llama3.1-70b-it

(c) Length L

diff types same type
Types T

60

40

20

0

20

40

60

80

100

Dr
op

 P
er

ce
nt

(%
)  

   
   

   
  A

cc
ur

ac
y 

(%
) llama3.1-8b-it

gemma-2-27b-it
llama3.1-70b-it

(d) Types T

easy to hard hard to easy same level
Order O

60

40

20

0

20

40

60

80

100

Dr
op

 P
er

ce
nt

(%
)  

   
   

   
  A

cc
ur

ac
y 

(%
) llama3.1-8b-it

gemma-2-27b-it
llama3.1-70b-it

(e) Order O

L=
44

~72 C=8
D=2

O=sam
e l

ev
el

T=
sam

e t
yp

e

T=
dif

f ty
pe

s

O=ea
sy 

to 
ha

rd

L=
23

9~
26

7
C=0

D=10

L=44~72

C=8

D=2

O=same level

T=same type

T=diff types

O=easy to hard

L=239~267

C=0

D=10

Fe
at

ur
es

81 91 92 87 84 81 76 0 61 0

91 77 82 79 78 77 77 56 0 68

92 82 78 78 79 78 0 42 10 0

87 79 78 49 52 48 0 33 12 12

84 78 79 52 48 0 44 37 16 20

81 77 78 48 0 46 41 34 15 11

76 77 0 0 44 41 42 29 9.8 0

0 56 42 33 37 34 29 35 14 4.3

61 0 10 12 16 15 9.8 14 15 5.5

0 68 0 12 20 11 0 4.3 5.5 12

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

(f) Feature Cross Heatmap

Figure 7: The impact of features on LLMs’ generalization ability. Figure (f) is a heatmap with intersecting features
from Llama-3.1-70b-it, where cells without numbers represent problems with such features do not exist.

problem’s diversity, which may also pose a chal-
lenge. We tested two types T : “same type” and
“different type”. The results, shown in Figure 7(d),
are in line with expectations. However, LLMs do
not seem to be very sensitive to this feature.

Order. We compared the easy-to-difficult problem
with the difficult-to-easy problem to analysis the
influence of order O. Results shown in Figure
7(e) suggest that LLMs tend to perform better on
problems that progress from difficult to easy. This
could be because, with fewer contextual clues at
the beginning, LLMs’ attention mechanisms more
easily focus on the correct reasoning path, allowing
them to tackle the complex part first and solve the
simpler parts later with fewer errors.

Feature Interaction Analysis. Figure 7(f) shows a
heatmap of the score performance based on various
feature combinations for Llama3.1-70b-it, where
the highest and lowest values were selected for each
feature category. Obviously, confidence, length,
and difficulty are all indicators that have a strong
impact. The influence of confidence is the strongest
among them. As long as C = 8, both subsets with
D = 10 and subsets with L = 239 ∼ 267 receive
relatively high scores.

The results indicate that the combination of fea-
tures such as "high difficulty, low confidence, dif-
ferent types, long question length, and easy-to-
difficult" poses a greater challenge to the model,
making it more suitable for verifying the model’s

combined generalization ability.

4.7 Case Study
We have observed an interesting phenomenon
RAWR (Right Answer, Wrong Reasoning): inter-
mediate variable results were incorrect, but the fi-
nal answer was still correct. We identified two
scenarios where RAWR occurs: (1) Match learned
text patterns and forcefully apply them without any
logic. As the first case is shown in Appendix C,
gpt-4o got right answer because it matching the
similar pattern of (82 + 18)3. (2) The intermediate
results provide a weak constraint on the final result.
As shown in the second case, it will get the correct
answer as long as Q ∈ [9013 ,

92
13 ]. The existence of

RAWR suggests that it is better to introduce inter-
mediate checkpoints when evaluate math problem,
which is exactly what our combinational problems
can naturally achieve.

5 Conclusion

This paper introduces a novel pipeline NCSP with
98.2% accuracy to combine math problems into
a new one and to evaluate LLMs’ generalization
ability on the compositional problems. We anno-
tate three compositional math problems datasets
and evaluate 14 LLMs, the results of extensive
experiments reveal the limitations of LLMs’ gener-
alization ability. Additionally, we analyze the key
factors affecting compositional generalization and
offer guidance for problem synthesis.

13077



6 Limitations

In this work, the compositional problems are syn-
thesized from existing problems, which, compared
to problems created by humans, do not lead to sig-
nificant new math breakthroughs for the models. If
used as training data, it might be more suitable for
improving the model’s generalization ability. Fur-
thermore, to ensure reliability, the pipeline calls the
LLM multiple times for result verification. In the
future, with models that have better performance,
it may be possible to complete multiple-step rea-
soning in one go, streamlining the process. Addi-
tionally, the compositional problems is more com-
plex and difficult, thus more suitable to use as the
training data for reasoning models, like gpt-o1 and
Deepseek-r1. We will implement it in the future
work.

References
Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui

Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, EACL 2024: Student Research
Workshop, St. Julian’s, Malta, March 21-22, 2024,
pages 225–237. Association for Computational Lin-
guistics.

Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nan-
ning Zheng, Jian-Guang Lou, and Dongmei Zhang.
2023. How do in-context examples affect compo-
sitional generalization? In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11027–
11052, Toronto, Canada. Association for Computa-
tional Linguistics.

Lukas Berglund, Meg Tong, Maximilian Kaufmann,
Mikita Balesni, Asa Cooper Stickland, Tomasz Ko-
rbak, and Owain Evans. 2024. The reversal curse:
Llms trained on "a is b" fail to learn "b is a". In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2024. A survey on evaluation of large language mod-
els. ACM Trans. Intell. Syst. Technol., 15(3):39:1–
39:45.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.

2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Gemma-Team. 2024. Gemma 2: Improving open
language models at a practical size. Preprint,
arXiv:2408.00118.

Shahriar Golchin and Mihai Surdeanu. 2024. Time
travel in llms: Tracing data contamination in large
language models. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2024. Tora: A tool-integrated reasoning agent
for mathematical problem solving. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan
Shi, Supryadi, Linhao Yu, Yan Liu, Jiaxuan Li, Bo-
jian Xiong, and Deyi Xiong. 2023. Evaluating large
language models: A comprehensive survey. CoRR,
abs/2310.19736.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

Arian Hosseini, Alessandro Sordoni, Daniel Toyama,
Aaron C. Courville, and Rishabh Agarwal. 2024.
Not all LLM reasoners are created equal. CoRR,
abs/2410.01748.

Zhen Huang, Zengzhi Wang, Shijie Xia, and Pengfei
Liu. 2024. Olympicarena medal ranks: Who is the
most intelligent AI so far? CoRR, abs/2406.16772.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

13078

https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://doi.org/10.18653/v1/2023.acl-long.618
https://doi.org/10.18653/v1/2023.acl-long.618
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=GPKTIktA0k
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://openreview.net/forum?id=2Rwq6c3tvr
https://openreview.net/forum?id=2Rwq6c3tvr
https://openreview.net/forum?id=2Rwq6c3tvr
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://doi.org/10.48550/ARXIV.2310.19736
https://doi.org/10.48550/ARXIV.2310.19736
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/ARXIV.2410.01748
https://doi.org/10.48550/ARXIV.2406.16772
https://doi.org/10.48550/ARXIV.2406.16772
https://arxiv.org/abs/2310.06825


Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng
Kong, and Wei Bi. 2024. Gsm-plus: A comprehen-
sive benchmark for evaluating the robustness of llms
as mathematical problem solvers. In Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
2961–2984. Association for Computational Linguis-
tics.

Yafu Li, Yongjing Yin, Yulong Chen, and Yue Zhang.
2021. On compositional generalization of neural ma-
chine translation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 4767–4780. Association for Computa-
tional Linguistics.

Zekun Li, Baolin Peng, Pengcheng He, and Xifeng
Yan. 2023. Do you really follow me? adversarial
instructions for evaluating the robustness of large
language models. CoRR, abs/2308.10819.

Meta-AI. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Stephen Miner, Yoshiki Takashima, Simeng Han, Fer-
hat Erata, Timos Antonopoulos, Ruzica Piskac, and
Scott J. Shapiro. 2024. Scheherazade: Evaluating
chain-of-thought math reasoning in llms with chain-
of-problems. CoRR, abs/2410.00151.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
arXiv preprint arXiv:2410.05229.

Mistral-AI. 2024. Mathstral.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. CoRR,
abs/2402.14830.

OpenAI. 2024a. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAI. 2024b. Gpt-4o system card. Preprint,
arXiv:2410.21276.

OpenAI. 2024c. Learning to reason with llms.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 2080–2094. Association for
Computational Linguistics.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,
Vinija Jain, Samrat Mondal, and Aman Chadha.
2024. A systematic survey of prompt engineering in
large language models: Techniques and applications.
arXiv preprint arXiv:2402.07927.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla,
Pranav Tadepalli, Paula Vidas, Alexander Kranias,
John J. Nay, Kshitij Gupta, and Aran Komatsuzaki.
2023. ARB: advanced reasoning benchmark for large
language models. CoRR, abs/2307.13692.

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park,
Nan Rosemary Ke, Michael Mozer, Yoshua Ben-
gio, Sanjeev Arora, and Anirudh Goyal. 2024. Ai-
assisted generation of difficult math questions. CoRR,
abs/2407.21009.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H. Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 31210–31227. PMLR.

Saad Tahmid and Sourav Sarker. 2024. Qwen2.5-32b:
Leveraging self-consistent tool-integrated reasoning
for bengali mathematical olympiad problem solving.
CoRR, abs/2411.05934.

Josh Tenenbaum. 2018. Building machines that learn
and think like people. In Proceedings of the 17th
International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2018, Stockholm, Swe-
den, July 10-15, 2018, page 5. International Founda-
tion for Autonomous Agents and Multiagent Systems
Richland, SC, USA / ACM.

Haoyu Wang, Guozheng Ma, Cong Yu, Ning Gui, Linrui
Zhang, Zhiqi Huang, Suwei Ma, Yongzhe Chang,
Sen Zhang, Li Shen, Xueqian Wang, Peilin Zhao,
and Dacheng Tao. 2023. Are large language models
really robust to word-level perturbations? CoRR,
abs/2309.11166.

Ziyao Xu and Houfeng Wang. 2024. SPOR: A com-
prehensive and practical evaluation method for com-
positional generalization in data-to-text generation.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 604–621, Bangkok, Thailand.
Association for Computational Linguistics.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2024. Meta-
math: Bootstrap your own mathematical questions
for large language models. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Xiang Yue, Tianyu Zheng, Ge Zhang, and Wenhu Chen.
2024. Mammoth2: Scaling instructions from the web.

13079

https://doi.org/10.18653/V1/2024.ACL-LONG.163
https://doi.org/10.18653/V1/2024.ACL-LONG.163
https://doi.org/10.18653/V1/2024.ACL-LONG.163
https://doi.org/10.18653/V1/2021.ACL-LONG.368
https://doi.org/10.18653/V1/2021.ACL-LONG.368
https://doi.org/10.48550/ARXIV.2308.10819
https://doi.org/10.48550/ARXIV.2308.10819
https://doi.org/10.48550/ARXIV.2308.10819
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/ARXIV.2410.00151
https://doi.org/10.48550/ARXIV.2410.00151
https://doi.org/10.48550/ARXIV.2410.00151
https://mistral.ai/en/news/mathstral
https://doi.org/10.48550/ARXIV.2402.14830
https://doi.org/10.48550/ARXIV.2402.14830
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.21276
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.18653/V1/2021.NAACL-MAIN.168
https://doi.org/10.18653/V1/2021.NAACL-MAIN.168
https://doi.org/10.48550/ARXIV.2307.13692
https://doi.org/10.48550/ARXIV.2307.13692
https://doi.org/10.48550/ARXIV.2407.21009
https://doi.org/10.48550/ARXIV.2407.21009
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html
https://doi.org/10.48550/ARXIV.2411.05934
https://doi.org/10.48550/ARXIV.2411.05934
https://doi.org/10.48550/ARXIV.2411.05934
http://dl.acm.org/citation.cfm?id=3237389
http://dl.acm.org/citation.cfm?id=3237389
https://doi.org/10.48550/ARXIV.2309.11166
https://doi.org/10.48550/ARXIV.2309.11166
https://doi.org/10.18653/v1/2024.acl-long.36
https://doi.org/10.18653/v1/2024.acl-long.36
https://doi.org/10.18653/v1/2024.acl-long.36
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
http://papers.nips.cc/paper_files/paper/2024/hash/a4ca07aa108036f80cbb5b82285fd4b1-Abstract-Conference.html


In Advances in Neural Information Processing Sys-
tems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024.

Hanlin Zhao, Yan Chen, Jiajian Xie, and Kangshun Li.
2023. Swp: A sliding window prompt for emotion
recognition in conversation. In International Confer-
ence on Artificial Neural Networks, pages 293–304.
Springer.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2022. minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. In The Tenth In-
ternational Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu,
Jindong Wang, Derek F. Wong, Xiaowei Huang,
Qiufeng Wang, and Kaizhu Huang. 2024a. Is
your model really A good math reasoner? evalu-
ating mathematical reasoning with checklist. CoRR,
abs/2407.08733.

Zihao Zhou, Qiufeng Wang, Mingyu Jin, Jie Yao, Jianan
Ye, Wei Liu, Wei Wang, Xiaowei Huang, and Kaizhu
Huang. 2024b. Mathattack: Attacking large lan-
guage models towards math solving ability. In Thirty-
Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2014, February 20-
27, 2024, Vancouver, Canada, pages 19750–19758.
AAAI Press.

A Datasets Comparison

As shown in Table 3, the accuracy of some exist-
ing methods for automatically synthesizing math
problems is much lower than ours. Moreover, the
LLMs they use for data synthesis is gpt-4o (Ope-
nAI, 2024b) or gpt-4-turbo (OpenAI, 2024a), the
cost of which is more than ours. The accuracy of
MATH2 (Shah et al., 2024), GSM-PLUS (Li et al.,
2024), and MATHCHECK (Zhou et al., 2024a)
comes from the report in the paper, while ORCA
(Mitra et al., 2024) is used for training and does
not report the accuracy of the problem. Therefore,
we randomly sampled 50 samples and evaluated
their accuracy. Compare with all of other methods,
we do not have such high requirements for LLM
capability in synthesizing data.

To better illustrate the difference between our
NCSP and current methods for evaluating mathe-
matical robustness, we list some of the approaches
used in existing works, as shown in Table 4. In fact,
all of these methods generate new problems by cre-
ating variants of individual questions. In contrast,

our approach considers interactions between prob-
lems, establishing connections among two or more
questions to generate new ones. This represents the
fundamental distinction.

B Experiment Details

Data synthesis. We use vLLM-0.6.4 (Kwon et al.,
2023) as our inference backend for data synthesis
and model evaluation. It takes 4 hours * 8 A100
to generate 40k compositional problems. When
synthesizing data, we set the seed as 42 and the
temperature to 1e-2. In the response sampling
phase of the evaluation, we set the temperature
to 0.8, and set 1e-2 to evaluate whether the answer
is correct. Specifically, we set the max_token
for all models to 4k, except for the gpt-o1 series
and deepseed-r1 series, which are set to 16k. We
followed the template used in the Simple Eval2

project to check if the answers are equal, while we
used LLM to extract the final answer instead of
pattern matching.
Annotation. We first use a pipeline for synthesis
and then manually annotate it. Each problem in
VCMD should be verified and annotated at least
twice, and the annotators are the authors of this
work, each of whom has at least a master’s degree.
Due to the simplicity of our synthesis method, it
does not require highly specialized math knowl-
edge, and it takes us a week to finish the annota-
tion.

C Case

In this section, we show 3 cases from o1-mini-
2024-09-12, gpt-4o-2024-11-20, and Deepseek-r1,
respectively.

2A project created by OpenAI.

13080

https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv
https://doi.org/10.48550/ARXIV.2407.08733
https://doi.org/10.48550/ARXIV.2407.08733
https://doi.org/10.48550/ARXIV.2407.08733
https://doi.org/10.1609/AAAI.V38I17.29949
https://doi.org/10.1609/AAAI.V38I17.29949


Method Seed Set Annotation Pipeline Acc Use For ?

ORCA (Mitra et al., 2024) GSM8K gpt-4o (Q+A) 72% Training

MATH2 (Shah et al., 2024) MATH gpt-4-turbo (Q+A),
Human (Q+A)

77% Evaluation

GSM-PLUS (Li et al., 2024) GSM8K gpt-4-turbo (Q+A),
Human (Q+A)

81.15% Evaluation

MATHCHECK (Zhou et al., 2024a) GSM8K,
GeoQA,
UniGeo,
Geometry3K

gpt-4-turbo (Q+A),
Human (Q+A)

84.61% Evaluation

Ours NCSP MATH Llama3.1-70b-it (Q+A) 98.2% Evaluation

Human (Q+A)

Table 3: Comparison of the success rate of automatic math problem synthesize method.

Method Pertubation Description

ORCA (Mitra et al.,
2024)

multi-agent-based Use a suggestor agent to provide the modifing suggestions and then
use a editor agent to modified the problems based on it.

MATH2 (Shah et al.,
2024)

skill-based Use LLMs to extract the skills from seed sets, e.g., arithmetic, and
then create new problems based on these skills.

GSM-PLUS (Li et al.,
2024)

numerical variation Alter the numerical data or its types (e.g., from integer to decimal).

arithmetic variation Reverse or introduce additional operations, such as addition, sub-
traction, multiplication, and division, to math problems.

problem understanding Rephrase the text description of the math problems.

distractor insertion Inserte topic-related but useless sentences to the problems.

critical thinking Focus on doubt ability when the question lacks necessary state-
ments.

MATHCHECK
(Zhou et al., 2024a)

MATHCHECK-GSM 129 groups checklist matrix, which can be used to evaluate mathe-
matical textual reasoning ability comprehensively.

MATHCHECK-GEO A checklist matrix of 60 groups to evaluate the multi-modal geom-
etry reasoning ability.

Ours NCSP Compositional Problem Combine two exist problems into a new one with a logical connec-
tion to get a new math problems.

Table 4: Comparison of the automatic math problem synthesize method.

Case 1 (About RAWR From gpt-4o)

Origin Problem1:
A regular octagon ABCDEFGH has an area of one square unit. What is the area of the rectangle ABEF ?
[asy] pair A,B,C,D,I,F,G,H; A=(-1,1); B=(1,1); H=(-2.41,-0.41); C=(2.41,-0.41); G=(-2.41,-2.41); D=(2.41,-2.41);
F=(-1,-3.82); I=(1,-3.82); draw(A–B–C–D–I–F–G–H–cycle,linewidth(0.7)); label("A",A,N); label("B",B,N);
label("C",C,E); label("D",D,E); label("E",I,S); label("F ",F,S); label("G",G,W); label("H",H,W); [/asy]

Origin Problem2:
What is the value of 823 + 3(822)(18) + 3(82)(182) + 183? (No calculators! And see if you can do it in your head!)

Combinational Problems:
A regular octagon ABCDEFGH has an area of one square unit. What is the area of the rectangle ABEF ?

[asy] pair A,B,C,D,I,F,G,H; A=(-1,1); B=(1,1); H=(-2.41,-0.41); C=(2.41,-0.41); G=(-2.41,-2.41); D=(2.41,-2.41);
F=(-1,-3.82); I=(1,-3.82); draw(A–B–C–D–I–F–G–H–cycle,linewidth(0.7)); label("A",A,N); label("B",B,N);
label("C",C,E); label("D",D,E); label("E",I,S); label("F ",F,S); label("G",G,W); label("H",H,W); [/asy]

13081



Define K is the result of the area. X is 5
2

more than K.

What is the value of 823 + X(822)(18) + X(82)(182) + 183? (No calculators! And see if you can do it in
your head!)

Solution From gpt-4o:
### Step 1: Understand the problem setup We are tasked with determining the area of rectangle ABEF within a regular
octagon ABCDEFGH whose total area is 1 square unit. Then, we calculate K, analyze another variable X , and work
out a polynomial expression based on X . Let’s proceed step by step.
—
### Step 2: Find K, the area of rectangle ABEF #### Geometry of the octagon: 1. A regular octagon can be split into
a central square and 8 identical isosceles right triangles. 2. Let s be the side length of the octagon. The area of the entire
octagon is given as 1 square unit.
#### Determine the dimensions of the rectangle ABEF : - The rectangle ABEF includes two sides of the central
square and spans the lengths of adjacent isosceles right triangle bases. - The base of each isosceles right triangle equals
the side length s of the octagon. - Thus, the length of rectangle ABEF is 2s (the bases of two adjacent triangles) and
its width is s (the side of the central square).
#### Area of rectangle ABEF : The area of ABEF is:

Area of ABEF = length × width = (2s)(s) = 2s2

#### Total area of the octagon: The total area of the octagon is given as 1, which equals the sum of the central square
and the 8 isosceles right triangles:

Total area = s2 + 8× 1

2
s2 = s2 + 4s2 = 5s2

Thus:
5s2 = 1 =⇒ s2 =

1

5

#### Substitute s2 into the area of ABEF :

Area of ABEF = 2s2 = 2× 1

5
=

2

5

So, K = 2
5

. × The correct value of K should be 1
2

—
### Step 3: Determine X The problem states that X is 5

2
more than K:

X = K +
5

2
=

2

5
+

5

2

To add these fractions, find a common denominator:

2

5
=

4

10
,

5

2
=

25

10
=⇒ X =

4

10
+

25

10
=

29

10

Thus, X = 29
10

. × The correct value of X should be 3
—
### Step 4: Simplify the given polynomial expression
The problem asks us to calculate:

823 +X(822)(18) +X(82)(182) + 183

#### Step 4.1: Factorize the expression
Notice that the expression has a binomial expansion structure:
✓ Here, LLMs derive the correct solution path from wrong reasoning because it matches the pattern of (82+18)3

823 +X(822)(18) +X(82)(182) + 183 = (82 + 18)3

#### Step 4.2: Simplify 82 + 18
82 + 18 = 100

#### Step 4.3: Expand 1003

1003 = 100× 100× 100 = 1, 000, 000

—
### Final Answer:

1, 000, 000 ✓The Answer is Correct!

13082



Case 2 (About RAWR From gpt-o1-mini)

Origin Problem1:
Ryan has 3 red lava lamps and 3 blue lava lamps. He arranges them in a row on a shelf randomly, then turns 3 random
lamps on. What is the probability that the leftmost lamp on the shelf is red, and the leftmost lamp which is turned on is
also red?

Origin Problem2:
If a = 7 and b = 13, what is the number of even positive integers less than ab?

Combinational Problems:
Ryan has 3 red lava lamps and 3 blue lava lamps. He arranges them in a row on a shelf randomly, then turns 3 random
lamps on. What is the probability that the leftmost lamp on the shelf is red, and the leftmost lamp which is turned on is
also red?
Define P is the result of the problem. Q is 133

20
more than P .

If a = Q and b = 13, what is the number of even positive integers less than ab?

Solution From gpt-o1-mini:
To solve the problem, we need to determine the probability P and subsequently find the number of even positive integers
less than ab, where a = Q and b = 13.
### Step 1: Calculate P
**Given:** - Ryan has 3 red and 3 blue lava lamps. - He arranges them randomly in a row and turns on 3 lamps at
random. - P is the probability that: - The **leftmost lamp** on the shelf is **red**. - The **leftmost lamp that is
turned on** is also **red**.
**Approach:** 1. **Probability that the first lamp is red (P (A)):**

P (A) =
3

6
=

1

2

2. **Probability that the leftmost turned-on lamp is red given that the first lamp is red (P (B|A)):** - **Case 1:** The
first lamp is turned on.

P (first lamp turned on) =

(
5
2

)
(
6
3

) =
10

20
=

1

2

If turned on, it’s already red.
- **Case 2:** The first lamp is not turned on.

P (leftmost turned on lamp is red|first lamp not on) =
13

20

- Combining both cases:

P (B|A) =
1

2
× 1 +

1

2
× 13

20
=

33

40

3. **Calculate P :**
P = P (A)× P (B|A) =

1

2
× 33

40
=

33

80
× P should be 7

20

### Step 2: Calculate Q and ab
**Given:** - Q is 133

20
more than P .

Q = P +
133

20
=

33

80
+

133

20
=

113

16
× Q should be 7

- a = Q = 113
16

- b = 13
**Calculate ab:**

ab =
113

16
× 13 =

1469

16
≈ 91.8125 × ab should be 91

### Step 3: Number of Even Positive Integers Less Than ab
Since ab ≈ 91.8125, the even positive integers less than ab are:

2, 4, 6, . . . , 90

There are 90
2

= 45 such numbers.

### **Final Answer:**
**45** ✓It will get the correct answer as long as Q ∈ ( 90

13
, 92
13
].

13083



Case 3 (Badcase From Deepseek-r1)

Origin Problem1: ✓Deepseek-r1 solve the problem successfully.
Find the 3× 3 matrix M such that

M



x
y
z


 =




y
z

x+ y + z




for all real numbers x, y, and z.

Origin Problem2: ✓Deepseek-r1 solve the problem successfully.
Given that a particular positive integer is a four-digit palindrome, what is the probability that it is a multiple of 99?
Express your answer as a common fraction.

Combinational Problems:
Find the 3× 3 matrix M such that

M



x
y
z


 =




y
z

x+ y + z




for all real numbers x, y, and z.
Define a is the element in the first row and the second column of the matrix M. b is 3 more than a.
Given that a particular positive integer is a $b$-digit palindrome, what is the probability that it is a multiple of 99?
Express your answer as a common fraction.

Solution From Deepseek-r1:
To find the 3× 3 matrix M such that

M



x
y
z


 =




y
z

x+ y + z




we analyze the linear combinations of x, y, and z for each component of the resulting vector. The matrix M is
determined to be:

M =



0 1 0
0 0 1
1 1 1




The element a in the first row and the second column is 1. Therefore, b = a+ 3 = 4. ✓a and b is correct.
Next, we consider 4-digit palindromes. A 4-digit palindrome has the form ABBA, where A ranges from 1 to 9 and B
ranges from 0 to 9. There are 9× 10 = 90 such palindromes.
A number is divisible by 99 if it is divisible by both 9 and 11. For divisibility by 11, all 4-digit palindromes are
automatically divisible by 11 because the difference between the sums of the digits in odd and even positions is zero.
For divisibility by 9, the sum of the digits 2A+ 2B must be a multiple of 9, which simplifies to A+B ≡ 0 (mod 9).
For each A (1 to 9), there is exactly one B (0 to 9) such that A + B ≡ 0 (mod 9). This gives 9 valid pairs (A,B).
Therefore, there are 9 four-digit palindromes divisible by 99.
The probability that a 4-digit palindrome is a multiple of 99 is 9

90
= 1

10
.

The final answer is
1

10
. × Final answer should be 1

9

D Instruction and Prompt Template

Ic Generate Code to Check Equal

Task Description:

Write a Python program to compare two given values and determine if they are equal. Follow these guidelines:

1. Use the ‘sympy‘ library to handle symbolic comparisons, ensuring that equivalent expressions (e.g., 2
4

and 1
2

) are
recognized as equal.

2. For values involving irrational constants (e.g., π, e), perform comparisons up to **two decimal places** for
practical equivalence.

3. Include clear intermediate steps in the program, such as evaluating or simplifying the values where appropriate.

4. Wrap the final comparison outcome in a ‘\boxed‘ command for clarity.

5. Provide both the Python code and the results of running the code.

13084



Output Format:

′ ′ ′ python
{The Python code that compares the two given values, including print statements for intermediate steps and the
final_comparison_outcome .}

′ ′ ′

′ ′ ′ output
{The output of the Python program.}
′ ′ ′

—
Example1

—
...

—
Example3

—
Task:

Value1: {VALUE1}
Value2: {VALUE2}

I1 Modify p1

Given a math problem and the final answer, your task is to output the modified math problem. Follow the steps below:

Step1: Identify a specific integer, float, or fraction within ‘final_answer‘ and name it as new_variable1; There are
several situations:

1. If the ‘final_answer‘ contains unknown variables:

(a) If the ‘final_answer‘ is an expression, choose one coefficient as new_variable1, for example, 2x + 3, you
can choose the coefficient of x as new_variable1, which is 2, and in the case of sin(x), there is a hidden
coefficient 1 and a hidden amplitude 1, you can choose either one as new_variable1;

(b) If the ‘final_answer‘ is an equation, you can choose one solution as new_variable1, for example, y = 2x +
1, you can define the value of y as new_variable1 when given x = 1, which is 3;

(c) If the ‘final_answer‘ is a symbol of an option, such as ’A’, ’B’, ’C’, etc, use their order in the alphabet as a
variable, such as ’A’ = 1, ’B’ = 2, ’C’ = 3, etc;

(d) If the ‘final_answer‘ contains 2 or more items, e.g. multiple choice questions, choose the smallest or the
largest one, and then apply the corresponding situation;

2. If the ‘final_answer‘ has no unknown variables, there are several situations:

(a) If the ‘final_answer‘ itself is a numerical value, like ’four’, ’4’, ’2 +
√
2’, ’3π’, and ’ 3

4
’, use it directly as

new_variable1;
(b) If the ‘final_answer‘ contains 2 or more numerical values, use the largest or the smallest one as

new_variable1;
(c) If the ‘final_answer‘ is an interval or ratio, choose one boundary and \infty is not allowed, for example,

[2,\infty), you can define the lower bound as new_variable1, which is 2;
(d) If the ‘final_answer‘ is a ratio, choose one part of the ratio, for example, 3:4; you can define the first part of

the simplified ratio as new_variable1, which is 3;
(e) If the ‘final_answer‘ is a non-base 10 number, for example, 10012, you can define ’the number of digits in

the base 2 representation’ as new_variable1, which is 4;
(f) If the ‘final_answer‘ is an angle or degree, choose the corresponding radian value, for example, 30\cric or

30°, define the corresponding radian value of final answer as new_variable1, which is \pi/6 or π/6.

All in all, find a way to identify a specific numerical value as new_variable1 without unknown, and make sure the
reader can get the value of new_variable1 from the ‘final_answer‘ through your definition.

Step2: Output the value of new_variable1, keep the exact value or math symbol, and simplify the fraction if necessary,
for example, keep the π as π, keep the

√
2 as

√
2, and simplify 6

8
as 3

4
, without rounding to a decimal point.

13085



Step3: Output the definition of new_variable1 without mentioning the real value.

—

Output Format:
<Analysis>
{Identified a specific integer, float, or fraction as new_variable1}
</Analysis>

<The_Value_of_New_Variable1>
{The value of new_variable1, no other text, and output ’None’ if you can not find a suitable new_variable1}
</The_Value_of_New_Variable1>

<The_Definition_of_New_Variable1>
{The definition of new_variable1 without mentioning the real value, and output ’None’ if you can not find a suitable
new_variable1}
</The_Definition_of_New_Variable1>

—
Example1

—
...

—
Example6

—
Task:

Original Problem:
{PROBLEM1}

‘final_answer‘ of Problem:
{FINAL_ANSWER1}

I
′
1 Verify new_variable1

{PROBLEM1}
Assume that the final answer of the problem is {FINAL_ANSWER1}.
{DEFINITION_OF_NEW_VARIABLE1}

Then what is the value of new_variable1?

Please output the value of new_variable1 directly, wrapping it in \boxed{}, for example, \boxed{3}.

I2 Modify p2

Given a math problem, please identify a specific integer, float, or fraction within it and replace it with new_variable2.
The specific steps are as follows:

Step 1: Identify and list all the numerical values in the problem. There are several situations:

1. Containing unknown variables is not allowed, for example, in the case of 2a+ 3 = 5, ’2’, ’3’, and ’5’ are valid,
while 2a+ 3 isn’t.

2. Containing math symbols is allowed, do not simplify or round them to decimals. For example, keep 3π as 3π,
keep

√
2 as

√
2, keep 7! as 7!, and keep 6

8
as 6

8
.

3. Containing units is not allowed. For example, $120\circ$ or 120◦ should be replaced by ${new_variable2}\circ$
where {new_variable2} = 120; 10% can become {new_variable2}% where {new_variable2} = 10; and
10002 should choose the number of base to be defined as 1000new_variable2, etc.

4. Choose part of the expression like coefficient, numerator, or denominator is allowed. For example, the expression
7x+ 3 can be replaced by {new_variable2} · x+ 3.

Step 2: There are many types of numerical values, and choose one following the priority:

13086



1. Integers like ’1’ > fractions like 1
2

or 1/2 > decimals like 0.5 > numbers in words like ’one’, ’two’, ’three’ >
numbers in other bases like 10002.

2. Small numbers are preferred when there are multiple numerical values of the same type.

3. If there are no numerical values in the problem, output ’None’ in the tag <The_Value_of_new_variable2>.

Output Format:

<Identify_new_variable2>
{Identified a specific integer, float, or fraction as new_variable2}
</Identify_new_variable2>

<The_Value_of_new_variable2>
{The value of new_variable2, no other text, and output ’None’ if there are no numerical values in the problem}
</The_Value_of_new_variable2>

<The_Definition_of_new_variable2>
{The definition of new_variable2 without mentioning the real value, and output ’None’ if there are no numerical
values in the problem}
</The_Definition_of_new_variable2>

<Modified_Problem>
{The modified problem with the new variable symbol new_variable2 without mentioning the real value of
new_variable2, and output ’None’ if there are no numerical values in the problem}
</Modified_Problem>

—
Example 1:

—
...
—
Example 6:

—
Task:
Original Problem:
{PROBLEM2}

Output:

I
′
2 Verify new_variable2

Given two math problems, Problem 1 and Problem 2, where a numerical value in Problem 1 has been replaced by a
variable new_variable2 to form Problem 2, your task is to identify the value of new_variable2.

Output the results with the following format:

<The_Value_of_new_variable2>
The value of new_variable2, if identified, or ’None’ if no value can be determined.
</The_Value_of_new_variable2>

—
Example1

—
...

—
Example3

—
Task:
Original Problem 1:
{PROBLEM2}

13087



Problem 2:
MODIFIED_PROBLEM2

Output:

I3 Establishing Relationship

Given the values of new_variable1 and new_variable2, your task is to calculate the difference
new_variable2− new_variable1 and establish the relationship between them. Follow these steps:

Step 1: Write a Python program that calculates the difference between new_variable2 and new_variable1. The
program should follow these guidelines:

1. Instead of writing functions, write programs directly.

2. Avoid using decimal values, and ensure that all fractions and square roots are simplified using functions from the
‘sympy‘ library.

3. If there are any intermediate variables, print them in the Python programs.

4. Print the final_answer at the end.

5. Provide the code output following the Python code.

Step 2: Describe the relationship between new_variable1 and new_variable2 based on the calculated difference.

—

Output Format:

′ ′ ′ python
{The Python code that computes ‘new_variable2 − new_variable1‘, including print statements for intermediate
variables and the final answer.}
′ ′ ′

′ ′ ′ output
{The output of the Python code, including intermediate variables and the final answer.}
′ ′ ′

—
Example1

—
...

—
Example3

—
Task:
The values of new_variable1:
{new_variable1}

The values of new_variable2:
{new_variable2}

I
′
3 Verify Relationship

Task Description:
Write a Python program to calculate the value of ‘new_variable2‘ based on the given value of ‘new_variable1‘ and
the specified relationship. Follow these guidelines for your program:

1. Avoid using floating-point numbers for intermediate steps; instead, use the ‘sympy’ library to handle fractions,
square roots, and other symbolic representations.

2. Clearly print intermediate steps where appropriate.

13088



3. Ensure that the output clearly shows the value of new_variable2 in its most simplified form.

4. The output should include both the Python program and the corresponding output produced by running the
program.

Output Format:

′ ′ ′ python
{The Python code that computes new_variable2, including print statements for intermediate calculations and the final
result.}
′ ′ ′

′ ′ ′ output
{The output of the Python program, showing intermediate steps and the final value of new_variable2.}
′ ′ ′

<The_Value_of_new_variable2>
{The value of ‘new_variable1‘ in the problem.}
</The_Value_of_new_variable2>

—
Example 1

—
...

—
Example 4

—
Task:
The value of new_variable1:
{NEW_VARIABLE1}

The relationship:
{RELATIONSHIP}

I4 Renaming

Given a math problem, your task is to find a new variable name that never appears in the problem for new_variable1
and new_variable2. Note that:

1. The new variable names should be different from all the variables in the problem.

2. The new variable names should wraped in $$, for example, m, α.

—
Output Format:
<The_Symbol_of_new_variable1>
(the new variable name for new_variable1, no other text)
</The_Symbol_of_new_variable1>

<The_Symbol_of_new_variable2>
(the new variable name for new_variable2, no other text)
</The_Symbol_of_new_variable2>

—
Example:

—
Task:
Problem:
{MODIFIED_PROBLEM1}
{MODIFIED_PROBLEM2}

Output:

13089



I
′
4 Verify Renaming

Given Math Problem 1 and Math Problem 2, confirm whether Problem 2 uses the same variable symbols or object
names as Problem 1, focusing on avoiding potential confusion if the two problems were combined.

1. If the same variable symbols (e.g. x, alpha, etc) are present in both problems, regardless of whether they have
different roles, output ’yes’.

2. If the same objects or entities (e.g. Xiaoming’s speed, the number of cakes, Triangle ABC, etc) are mentioned
and relevant to the problems, output ’yes’.

3. Otherwise, output ’no’.

Output Format:
<IsContain> yes or no </IsContain>

<Analysis> A brief analysis </Analysis>

—
Example1:

—
...

—
Example3:

—
Task
Problem 1:
{RENAMED_PROBLEM1}

Problem 2:
{RENAMED_PROBLEM2}

Output:

13090


