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Abstract

Semi-supervised text classification (SSTC)
aims to train text classification models with few
labeled data and massive unlabeled data. Exist-
ing studies develop effective pseudo-labeling
methods, but they can struggle with unlabeled
data that have imbalanced classes mismatched
with the labeled data, making the pseudo-
labeling biased towards majority classes, re-
sulting in catastrophic error propagation. We
believe it is crucial to explicitly estimate the
overall class distribution, and use it to calibrate
pseudo-labeling to constrain majority classes.
To this end, we formulate the pseudo-labeling
as an optimal transport (OT) problem, which
transports the unlabeled sample distribution to
the class distribution. With a memory bank, we
dynamically collect both the high-confidence
pseudo-labeled data and true labeled data, thus
deriving reliable (pseudo-) labels for class dis-
tribution estimation. Empirical results on 3
commonly used benchmarks demonstrate that
our model is effective and outperforms previ-
ous state-of-the-art methods.

1 Introduction

Semi-supervised text classification (SSTC), which
aims to achieve text classification with a few la-
beled data and massive unlabeled data, has become
an appealing technique. It can facilitate many real-
world applications, where the acquisition of nu-
merous labeled data is expensive (Lee et al., 2021;
Wang et al., 2022b; Zou and Caragea, 2023; Zou
et al., 2023). In the context of large language mod-
els, SSTC research still has important practical
significance in the utilization of unlabeled data for
better efficiency and generalization (Xiao et al.,
2023; Mishra et al., 2023; Chen et al., 2024).
Among various SSTC approaches, pseudo-
labeling method (Xie et al., 2020; Chen et al., 2020;
Leeetal., 2021; Xiao et al., 2023; Yang et al., 2023)
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Figure 1: Illustration of the bias of imbalanced class
data in SSTC. The symbols indicate classes of labeled
(bordered), unlabeled data (unbordered) and pseudo-
labeled data (dashed). * denotes the class prototypes.
The bars in the legend indicate the class distribution.

can be one of the most common and effective semi-
supervised paradigms, which assigns pseudo-labels
for unlabeled data and takes into training. In this
sense, unlabeled data expand the data for text clas-
sification through pseudo-labeling. However, the
large volume of initially unlabeled data makes it
impossible to know in advance the true data dis-
tribution and to proactively handle potential im-
balance issues. Consequently, the model can be
biased towards the majority classes, making some
minority class samples incorrectly pseudo-labeled
as the majority classes (shown in Figure 1(a) and
(b)) with error propagation. This increases the dif-
ficulty of SSTC and becomes a bottleneck problem
for further improvements.

To alleviate this bias, existing studies have at-
tempted re-sampling or re-weighting methods. The
re-sampling methods (Peng et al., 2025; Wei et al.,
2021; Yang et al., 2023) select pseudo-labels with
high probabilities to reduce majority class data, and
the re-weighting methods (Guo and Li, 2022; Lai
et al., 2022; Kim et al., 2020) diminish the weights
of majority classes in training. However, they do
not explicitly constrain the class distribution in
pseudo-labeling, i.e., the relative sample frequen-
cies from different classes. Without this key con-
straint, the class frequencies of pseudo-labels can-
not be ensured, and the model can still assign exces-
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sive pseudo-labels of majority classes. To this end,
we propose two key principles for reliable pseudo-
labeling in SSTC: First, the pseudo-labeled sam-
ple ought to have a high semantic similarity to its
class, ensuring high confidence in pseudo-labeling.
Second, the pseudo-labels ought to satisfy the class
distribution of all data, protecting class frequencies
from excessive pseudo-labels of majority classes.

However, determining a reliable class distribu-
tion is still difficult. Intuitively, the class distri-
bution can be determined by counting the class
frequencies from labeled data (Kim et al., 2020).
Unfortunately, since the class distribution of the
labeled data depends on the annotators, e.g., an-
notated evenly, the class distributions of the la-
beled data are hardly matched with the unlabeled
data. Therefore, directly estimating class distri-
bution from labeled data may be unreliable. To
this end, we further design a fixed-size memory
bank (MB) to dynamically estimate the class dis-
tribution with unlabeled data, which is updated by
the newly pseudo-labeled data of high confidence
and the batched true labeled data. In this way, the
estimation acquires more precise global class dis-
tribution, which can further be used to calibrate the
pseudo-labeling to generate reliable pseudo-labels
with limited majority classes.

Based on the successful estimation of the pre-
cise class distribution, we propose to constrain the
pseudo-labeling with the class distribution. Partic-
ularly, we formulate pseudo-labeling as an optimal
transport (OT) problem (Villani et al., 2009; Peyré
et al., 2019). In general, the OT problem aims to
derive a transport plan from a source distribution to
a target distribution at the minimal total cost, based
on the given coupling costs of all sample pairs. In
the context of pseudo-labeling, assigning classes
to unlabeled samples can be seen as a transport be-
tween their distributions, whose coupling costs can
be achieved by the semantic similarity between the
unlabeled samples and classes. Then, by solving
OT, each unlabeled sample can be assigned with
the most similar class as its pseudo-label, while
ensuring the class distribution with a previously
determined distribution (in Figure 1(c)).

Finally, we propose the overall Prototypical
OT guided Pseudo-Labeling framework for SSTC,
termed as PL-POT. We first design a text classi-
fier as the backbone model. Inspired by previous
studies (Cao et al., 2022), to treat each unlabeled
sample equally, we specify a uniform distribution
as the source sample distribution. The calibrated

class distribution estimation serves as the target
class distribution. To measure the coupling cost of
OT, we obtain class prototypes using the samples
in MB, and calculate the semantic similarity be-
tween the unlabeled samples and class prototypes.
By solving the OT problem, the model achieves
the aforementioned two principles, thus alleviat-
ing the critical bias of imbalanced class data. Our
contributions can be summarized into three-folds:

* We propose a novel PL-POT framework for
SSTC with OT for calibration. It alleviates the
critical bias of imbalanced class data and is
able to handle mismatched class distributions.

e To estimate the class distribution, we de-
sign an MB storing true labeled and reliable
pseudo-labeled data, allowing the reliability
with mismatched class distributions.

* Empirical studies indicate that our proposed
model outperforms previous state-of-the-art
methods on 3 commonly-used benchmarks,
and comprehensive analysis confirms the ef-
fectiveness of PL-POT.

2 Related Work

2.1 Semi-supervised Text Classification

Semi-supervised text classification aims at utiliz-
ing the unlabeled data to improve the model per-
formance. Existing SSTC methods can be divided
into three groups: Generative methods (Gururan-
gan et al., 2019; Croce et al., 2020), Graph-based
methods (Li et al., 2021; Cui et al., 2022) and
Pseudo-Labeling methods (Chen et al., 2024; Yang
et al., 2023; Wang et al., 2021; Xiao et al., 2023;
Tsai et al., 2022). Among existing SSTC frame-
works, including LLM-based methods (Xiao et al.,
2023; Zhang et al., 2023), pseudo-labeling methods
have gained interest due to the remarkable perfor-
mance. Most of these models rely on the princi-
pled assumption that the unlabeled and labeled data
ought to have the same class distributions, which
can struggle when facing balanced labeled data
with imbalanced unlabeled data. Besides, SSTC
with unlabeled data that have imbalanced classes
mismatched with the labeled data can be a practical
problem, yet remains under-researched.

2.2 Imbalanced Semi-supervised Text
Classification

Existing supervised text classification studies on
imbalanced classes propose re-sampling (Wei et al.,
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2021; Zhu et al., 2022; Freire et al., 2023) and
re-weighting (Guo and Li, 2022; Lai et al., 2022)
methods according to the class distribution. How-
ever, in semi-supervised text classification, the un-
labeled data can be mismatched with the labeled
data, making the class distribution unknown for ex-
isting methods. Existing imbalanced SSTC meth-
ods (Yang et al., 2023; Zou et al., 2023) employ
conduct adaptive re-sampling to enforce balanced
class distributions. Notably, PGPL (Yang et al.,
2023) synergizes class prototypes and DeCrisisMB
(Zou et al., 2023) implements a memory bank (MB)
for balanced pseudo-label sampling during training
iterations, these approaches risk prediction miscali-
bration when confronting mismatched class distri-
butions between labeled and unlabeled data. Dis-
tinct from such balanced sampling paradigms, our
PL-POT model achieves pseudo-label distribution
alignment through global class distribution esti-
mation across all data. Using the estimation, we
formulate the pseudo-labeling as an optimal trans-
port (OT) problem to ensure the predictions with
an appropriate class distribution, addressing the
imbalanced and mismatched class problem.

3 Preliminaries

3.1 Task Formulation

In SSTC, we are given a small set of labeled
text data and a large set of unlabeled text data.
Formally, let C be the class set of labels. Let
Dy ={ (@, yh), -, (zk,,45,) } be the set of pre-
annotated m labeled text samples, where each a:i
and yﬁ € C denote a text sample and its correspond-
ing label, respectively. Let D, = { =¥, -,z }
be the set of n unlabeled text data, where x}* € D,
denotes an unlabeled text sample. We leverage the
limited labeled data and the massive unlabeled data
with unknown distribution for pseudo-labeling and
include them as additional training data.

3.2 Optimal Transport

Optimal transport (OT) (Villani et al., 2009; Peyré
et al., 2019) aims to find a solution for transfer-
ring mass from one distribution to another with
minimal cost. Formally, suppose we are given
two set of points X = {x1,x9,...,x,} and Y =
{y1,vy2, ..., ym } with their empirical distributions
as p and v, respectively. We define C';; as the cost
between x; and y;. For simplicity, the OT prob-
lem can be denoted as OT(p, v, C) := mingg <
C,II >, where < -,- > denotes Frobenius in-

ner product of matrices, and there are {II €
R?*™|II1, = p,II"1,, = v}. Note that the OT
problem can be solved using the Sinkhorn-Knopp
algorithm (Cuturi, 2013) efficiently, and we pro-
vide the details in Appendix A.

The OT solutions can be used in many stud-
ies (Ho et al., 2017; Courty et al., 2017; Ge et al.,
2021; Yang et al., 2023). In particular, Chang et al.
(2022); Tian et al. (2023); Li et al. (2024a) have
achieved significant advancements in unsupervised
representation learning through OT-driven match-
ing of samples to prototypes. However, in SSTC,
the use of distributional information within a uni-
fied OT framework to calibrate pseudo-labeling
decision remains unexplored.

4 Method

The model structure of PL-POT is illustrated in
Figure 2. The labeled and unlabeled text samples
are first input into the backbone classifier. Then,
we estimate the class distribution with MB to cal-
ibrate the unlabeled samples. We also measure
the coupling cost using the similarity between un-
labeled samples and class prototypes from MB.
Finally, by formulating pseudo-labeling as a trans-
port from unlabeled samples to classes, we ensure
the pseudo-labeled samples having high similarity
to their classes, and satisfying the calibrated class
distribution. The pseudo-labeled data is used to
augment the training set and retrain the model.

4.1 Backbone Text Classifier

To utilize the power of pre-trained language models
in SSTC, we follow the previous practices (Chen
et al., 2020) that use BERT (Devlin et al., 2019)
as the text encoder. Specifically, let = be a labeled
sample ! € D; or an unlabeled sample z* € D,.
The function f(x;#) denotes the BERT encoding
process with mean pooling operation over the to-
ken representations. Afterward, a two-layer MLP
with tanh(-) activation is adopted to derive the rel-
evance score of x corresponding to each class:

9(x; ¢c, 0) = MLP(f(2;0); ¢c), (1)

where ¢, is the MLP parameter corresponding to
class ¢ € C. To train the backbone text classifier
with labeled data, we adopt cross-entropy loss on
batched labeled samples:

exp(g(, 6,1, 0))
55 exp(g(al, 6, 0))’

(@)
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(a) Backbone Text Classifier

(b) Class Distribution Estimation

(d) Prototypical OT-guided Pseudo-Labeling
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Figure 2: The overview of our proposed model, PL-POT.

To improve the stability in training, we adopt the
warm-up strategy, training with labeled data in ini-
tial training iterations (w.r.t., labeled batches). The
warmed classifier is further used to assign pseudo-
labels for unlabeled samples, and then adopt these
pseudo-labeled samples for training.

4.2 Prototypical OT-guided Pseudo-Labeling

In general, the classifier trained on the labeled data
can be further enhanced by pseudo-labeled data.
However, certain majority classes tend to have
more and more pseudo-labels in the self-training
with error propagation. In light of the afore-
mentioned considerations, we formulate pseudo-
labeling as an OT problem, for that OT takes into
account the distribution of the data v when making
predictions, so that it is not affected too much by
bias towards majority classes. Specifically, suppose
we have obtained the distribution g of the batched
unlabeled samples B* and distribution v of the
pre-defined classes C, and the coupling costs from
samples to classes as C' € RIB“IXICl (detailed later
in Eq. (9)). The pseudo-labeling (PL) procedure
can be formulated as:

PL(z" € B*,C;g) := OT(,v,C)
=miny < C,II >, (3)

s.t. H].'Bu‘ = W, HT1|C‘ = .

As widely utilized in previous studies (Cao et al.,
2022; Zhang et al., 2024), i and v can be assumed
as uniform distributions without prior knowledge,
. Bu

e, p o= {wlp = 1/]8“|}l land v =
, = 1/|C|} LCI’ respectively. However, this
assumption treats all samples and classes equally,
neglecting the fact that different classes may have
different frequencies in practice. Therefore, we

would like to estimate the practical class distribu-
tion and detail the coupling cost measurement in
the following sections.

4.2.1 Class Distribution Estimation

To estimate the class distribution for unlabeled sam-
ples, we employ the classifier initially trained on
the labeled data as the estimator. Specifically, for
current unlabeled sample batch B, the unlabeled
sample x € B are first input into the classifier:

p(clz)

where the factor Z := ) . exp(g(x, ¢, 0)). In-
tuitively, we can decide the class of x with § =
arg max. p(c|x), and simply count the relative fre-
quencies of the decided classes in B as current
class distribution. Here, we collect the predicted
probabilities of classes in B“ to estimate an en-
riched class distribution:

Z (c|z),ceC. 5)

reEBY

1
= ZeXp(g(xa¢cve))7 “

[ 241 C |Bu‘

In this way, it enriches the underlying knowledge
of classes, and avoid the potential incorrectness of
the pseudo-labels.

However, predictions can still be biased towards
majority classes and uncalibrated (Yang et al.,
2023; Wang et al., 2022a). Therefore, we intro-
duce a memory bank (MB) M to achieve global
estimation of the class distribution with all reliable
(pseudo-) labels. Specifically, the MB stores true la-
beled samples at the beginning, and then stores both
batched true labeled and selected pseudo-labeled
samples in recent training iterations:

M ={-. ’(xll,yi)7...
(1, 91)5 -+

l l
7(37|Bl‘73/|31|)7

(6)
’ ('ZU}LV,Q Q}L\/})ﬂ e }7
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where V; is the selected reliable pseudo-labeled
samples at ¢ step. M is achieved by a queue with
a fixed maximum length |[M| = M. In this way,
we combine the true labels of the labeled data and
the reliable pseudo-labels of unlabeled data, allow-
ing global estimation and alleviating potential mis-
match between labeled and unlabeled data. Based
upon, we count the relative frequencies of classes
in M as the global class distribution:

1
va(e) = o D llyi=c)ceC. ()

‘ ’ Yy, EM

Finally, we can calibrate the current estimation
of class distribution with the global estimation,
which is used to alleviate the classifier bias of ma-
jority classes. Specifically, we derive the calibrated
class distribution for the batched unlabeled samples
B by linear interpolation as:

v=2+ (1=, (8)

where A is a correlation coefficient that controls
the ratio of the current estimation to the global esti-
mation. Note that v is dynamically updated with
respect to the unlabeled batch B* and the status of
M during self-training iterations.

4.2.2 Prototypical Coupling Cost
Measurement

To derive the coupling cost between unlabeled sam-
ples and classes, we devise a prototypical measure-
ment. Instead of obtaining prototypes with unla-
beled samples in B* only, we acquire more reliable
and informative samples of the classes in M. For
class ¢ € C, the prototype z. is computed by:

Ze = Ni . f@sOl(yi=c), )

¢ z,EM

where N := >,y I(yi = c) is the total num-
ber of the samples with class c. Here, z; includes
both the labeled sample z! and pseudo-labeled sam-
ple " in M, which ensures semantic correctness
by the true labeled data and comprises enriched
semantics by the reliable pseudo-labeled data.
Afterward, we define a measurement function ¢
to derive the coupling cost between z* € B" and
¢ € C. In general, it can be achieved by any seman-
tic similarity measurement (with 1) € R, to meet
the OT requirement), and here we adopt cosine
similarity for its simplicity and effectiveness:

_ fz0)" 2
17 (@ O)lollzelly

P(f(x"),ze) =1 (10)

Here, higher cosine similarity implies lower cou-
pling cost. The obtained scores constitute entire
coupling cost matrix C' € RIB“IXICl which is used
for pseudo-labeling in Eq. (3).

4.2.3 Pseudo-label Decision & Memory Bank
Update

After obtaining the class distribution v and cou-
pling cost C, we solve the optimal transport plan
IT* by Sinkhorn-Knopp algorithm (Cuturi, 2013).
Note that we adopt a uniform distribution to esti-
mate unlabeled sample distribution g to treat all
samples equally. Afterward, we decide the pseudo-
labels by confirming the decision with IT*:

I(z} = g;') := I(arg max I}, = g;'), (11)
Cc

(2

where ¢;' is the predicted class of the classifier.
This decision further confirms the correctness of
the pseudo-labels, improving the reliability. For
each class, half of the pseudo-labeled data with
higher probabilities in B* and all labeled samples
in B are inserted into the queue of M, while the
data that exceeds the length leaves the queue.

4.3 Overall Training Objective

To enrich the supervision with unlabeled data, we
apply cross-entropy loss on the reliable pseudo-
labeled samples:

exp(g(l’z‘, ¢y§‘» 9))
Z eXp(g(ﬂy Ge, 0)) ’

ceC

1
Ly =15 > (xy) log

x}eBy

5(zt) = {17 arg maxy, I}, = ¢
! a, argmaxy IT # g’

(12)
where we set weights § for different samples. In-
spired by Ishida et al. (2020), we let a be a negative
scalar that indicates the mistrust degree of ¢;' in
training. As previous SSTC studies (Yang et al.,
2023; Chen et al., 2024), we also leverage the aug-
mented sample xz‘ of z}' with pseudo-labels for
training. The overall objective £ is combined with
the two objectives during self-training iterations:

L=Ls+ PLy, (13)

where [ is the harmonious factor to balance the
two losses.

S Experiment Setup

5.1 Datasets

Following the previous works in SSTC (Chen et al.,
2020; Lee et al., 2021; Yang et al., 2023), we con-
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duct intensive experiments on three widely used
text classification benchmark datasets:

AGNews (Zhang et al., 2015) is extrated from the
AG news corpus and is processed by compiling the
titles and descriptions of articles from the 4 classes.
Yahoo (Chang et al., 2008) is a widely used ques-
tion classification dataset with 10 classes, which is
the question and answer pairs extracted from the
Yahoo! Answers website.

DBPedia (Lehmann et al., 2015) is extracted from
Wikipedia and is commonly used in query under-
standing. This dataset contains 14 classes.

Dataset ‘ |C| Lab Unlab  Dev  Test
AG News | 4 10 20000 8000 7600
DBpedia | 14 10 70000 28000 70000
Yahoo 10 10 50000 50000 60000

Table 1: Statistics of the datasets. |C| denotes the
class numbers, ’Lab’ denote labeled texts for each class,
and *Unlab’, *Dev’ and "Test’ denote total samples for
unlabeled, validation and test set, respectively.

5.2 Experimental Settings

We evaluate PL-POT on 3 commonly-used datasets.
In the training set, the value assigned to each class
of labeled data is 10. The largest class of unlabeled
data is set to 5000, which is the number of unla-
beled data points typically observed in a standard
SSTC task. The remaining unlabeled data are ran-
domly sampled based on the predefined imbalance
ratios, denoted as 7,,. This ratio represents the num-
ber of samples of the most numerous class divided
by the least numerous class. The number of texts
in the other classes is calculated as a proportion of
these two values. The hold-out test set remains un-
touched and balanced. The statistics of the datasets
are shown in Table 1.

5.3 Implementation Details

We used PyTorch! for implementation. For all com-
pared models, the maximum sentence length is set
to 256. For bert, the initial learning rate is tuned
in [le=%, 1e=°] for BERT parameters and [le~4,
le~3] for other parameters. We set batch size of
16 for unlabeled data and 4 for labeled data. The
threshold A that controls the ratio of current esti-
mation is turned in [0, 1]. The weight S to balance
the loss is fixed to 1 and the loss weight « is turned

"nttps://pytorch.org/

in [-0.5, 0]. We turn the length of memory bank M
in [16, 32, 64, 128]. For parameters of the OT part,
the cost epsilon is turned in [0.1, 0.5] and the iteri-
tions of sinkhorn algorithms are turned in [10, 100].
We run each experiment setting 3 times on the val-
idation data and report the average performance
and standard deviation. For all baseline models, we
report our detailed hyper-parameter settings of all
models in Appendix B.

5.4 Baselines

We evaluate the models on the three benchmarks
and compare them with the following baselines:

BERT (Devlin et al., 2019) adopts a pre-trained
model for text classification, trained with only la-
beled data.
UDA (Xie et al., 2020) makes soft predictions with
original data to train the augmented data.
MixText (Chen et al., 2020) makes predictions by
mixing the original data with the augmented data.
SALNet (Lee et al., 2021) establishes attention-
driven lexicons that synergize pseudo-label refine-
ment with semi-supervised co-training through dy-
namic lexicon-model interdependency.
PGPL (Yang et al., 2023) synergizes prototype-
guided predictions with balanced pseudo-label re-
sampling through iterative refinement cycles.
DeCrisisMB (Zou et al., 2023) uses a memory
bank to store and equally sample generated pseudo-
labels from each class at each training iteration.
SPPW (Chen et al., 2024) filters mislabeled texts
with both label confidence and text hardness syner-
gistically to replace the overfitting-prone learning.
To make fair comparisons with baselines, we use
the released code in their original papers on our
split data, with the same BERT encoder and data
augmentations as MixText. We run each model 3
times and report the mean and standard deviation.
Under balanced experimental settings, we use 3
different labeled seeds and run 3 experiments un-
der each labeled seed. For SPPW, we report the
reported results in the paper.

6 Opverall Results

6.1 Imbalanced Model Performance
Evaluation

In real-world scenarios, it is natural that unlabeled
data have different distributions, i.e., 7, # 1. In Ta-
ble 2, we compare the existing SOTA methods with
the evaluation criterion (Accuracy/Macro-F1). The
hold-out test set remains untouched and balanced.
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‘ Tu:5 Tu:].o ’Tu:20
Dataset Method ‘ Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
UDA 81.88+2.52 82.06+2.57 79.87£3.06 79.91£3.15 72.43£3.18 71.21£4.75
MixText 85.64+0.96 84.33+0.96 84.13+£1.27 83.43+1.34 82.93+1.57 82.75+2.39
AGNews PGPL 85.53+0.84 85.62+0.60 84.03+0.78 83.97+0.92 82.16£1.02 81.58+1.36
DeCrisisMB 85.11+0.75 84.66+0.73 83.03+1.04 82.97+0.54 81.95+1.15 80.73+1.19
PL-POT | 86.98+0.68 85.71+0.91 84.17+1.29 84.20+1.26 84.18+1.93 84.08+2.75
UDA 61.49+1.27 60.78+1.02 58.71£0.01 57.87£1.06 58.01£1.67 56.82£1.90
Mixtext 65.16£0.66 63.63+£0.47 64.254+0.41 62.94£0.25 64.03£0.53 62.30£0.78
Yahoo PGPL 64.64+0.35 64.67+£0.43 62.78+0.88 62.69£0.76 58.22+0.99 58.23£1.02
DeCrisisMB 64.25+0.43 64.04+0.58 62.65+0.63 62.5240.61 59.63£0.97 59.04£1.10
PL-POT | 66.11+0.81 65.34+0.75 64.47+0.43 63.29+0.26 64.34+1.02 63.60+£1.27
UDA 97.22+0.58 97.20+0.60 97.12+0.63 97.12+0.66 94.50+£3.10 94.34+3.10
MixText 97.92+0.76 96.49£1.03 96.83£1.24 96.64£1.35 95.34£1.03 94.68+1.44
DBpedia PGPL 98.01+0.19 98.07£0.27 97.54+0.40 97.02+0.39 94.654+0.89 94.13£0.68
DeCrisisMB 98.14+0.22 97.82+0.43 96.00£0.54 95.63£0.55 94.23£0.74 94.16£0.78
PL-POT | 98.29+0.77 98.28+0.52 97.82+0.46 97.82+0.46 97.77+0.68 97.73+£0.74

Table 2: Comparison of classification performance on all datasets under max/min = 7,, (hold-out test set is balanced).
The evaluation criterion is Accuracy/Macro-F1. The best results are in bold.

\ AGNews Yahoo DBpedia Average
Method \ Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 ~ Accuracy = Macro-F1
BERT 74.53 £342  72.394203  57.40 4£0.95 56.87+0.88  96.58+056  96.11+0.57 76.17 75.12
UDA 84.15+£1.10  84.104+1.05  62.83+088 59914136 98.284021  98.3740.21 81.75 80.79
MixText 86.57+056  86.284061  65.40+1.72  64.25+146 97.67+0.09 97.6740.10 83.21 82.73
SALNet 77.6143.17  77.61+£3.17 52434027  52.304+0.16  95.39+0.17  95.39+0.15 75.14 75.10
PGPL 87.86+0.41  87.534+032  67.43+067 67.024+035 98.574020 98.034+0.22 84.62 84.19
DeCrisisMB | 86.75 4£0.53  86.654+0.62  65.23+£120  64.154+127 98.4340.12  98.2940.13 83.47 83.03
SPPW 88.59 +0.44  88.544043  64.86+148  63.76+1.75 98.43+025 98.43+0.27 83.96 83.58
PL-POT | 88.41+026 88.37+027 67.41+059  66.37+083 98.58+022  98.58+0.23 84.80 84.44

Table 3: The semi-supervised text classification results on three datasets under balanced experimental settings.

The superiority of PL-POT is evident when un-
labeled data exhibit disparate imbalanced ratios
relative to labeled data, particularly when unla-
beled data also display significant imbalance. Sim-
ilarly, PGPL, which employs the use of proto-
types, demonstrates a proclivity towards conver-
gence when ’7,,’ is relatively low. In the case of ’ 7,
=20, PL-POT outperforms the existing state-of-
the-art by 1.33% in terms of F1 on AGNews and
3.39% on DBpedia. PL-POT outperforms DeCri-
sisMB even when both leverage memory banks to
mitigate class imbalance, demonstrating its superi-
ority in dynamically calibrating pseudo-label. This
phenomenon can be attributed to the utilization of
a pseudo-labeling framework, which is effective
when calibrated with estimated class distributions.
Consequently, PL-POT achieves superior results,
even in the context of severe data imbalances.

6.2 Balanced Model Performance Evaluation

Considering that most existing methods are task
settings for balanced datasets, for fairness of com-
parison we used balanced unlabeled data for all
datasets, i.e. 5000 unlabeled data were sampled for
each class and tested the validity of our model on
the balanced dataset. The SSTC results of the com-
pared models are shown in Table 3. It illustrates
that PL-POT outperforms baseline models on Av-
erage results (Acc/F1). This observation manifests
that our PL-POT model achieves improvements in
SSTC, even the balance experiment settings.

6.3 Ablation Study

To systematically evaluate component contribu-
tions, we conduct an ablation study on AGNews
via individually removing each module. As shown
in Table 4 (averaged over three validation runs with
T4,=20), the full model achieves optimal validation
performance, confirming that each module con-
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Figure 3: Calibration results via different measures on AGNews (7, = 20).

tributes positively to overall effectiveness. It can
be observed that after removing the Distribution
Estimation (DE) module, the Macro-F1 result is re-
duced by 23.14%. The reason for this is that when
the DE module is removed, the prior distribution
aligns with the distribution of labeled data, which
is balanced. This is an extreme mismatch with the
distribution of classes for unlabeled data, resulting
in the forced assignment of many majority classes
into majority classes in order to achieve balance.
This confirms the effectiveness of our approach.

Datasets  Ablation ‘ Acc F1 AF1
PL-POT 86.36 85.79 -
w/o Warm | 85.84 84.19 | 1.60

AGNews w/o MB 85.14 84.10 | 1.69
w/o DE 7828 62.65 |23.14
w/o MD 84.03 84.09 | 1.70

Table 4: Ablation results (%) on AGNews, MD means
the module which employs mistrust degree adjust in the
training objective and MB means memory bank module.

6.4 Class Distribution Evaluation

In order to evaluate our results more accurately,
we compare the predicted number with the truth
distribution on all individual classes on AGNews
with different ratios in Figure 4. It is observed
that PL-POT with POT calibration improves the
performance on all individual classes. The class
distribution is close to the true distribution after
calibration, especially for the minority classes, and
there is no large predicted-true class mismatch due
to the dominant class bias, illustrating the validity
of our POT calibration and distribution estimation.

6.5 Calibration Results Evaluation

To validate PL-POT’s pseudo-label calibration ef-
ficacy, we analyze epoch-wise correction results.
Figure 3 shows that the number of right pseudo-
labels (RN) are blue, while the error pseudo-labels
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Figure 4: Calibrated class distribution on AGNews.

(EN) are yellow. As the training progresses, the dis-
tinction between the two classes widens, although
both blue and yellow show an upward trend, indicat-
ing that the accuracy of the pseudo-labeling calibra-
tion is improving. Figure 4(b) shows the calibration
results based on the similarity between prototypes
and text embeddings, and Figure 4(c) shows the
calibration results based on the optimal transport
method with balanced distribution. Both methods
correct more incorrect than correct results. It illus-
trates the accuracy of our OT correction method
based on estimated distributions.

7 Hyper-parameter Analysis

In this section, we perform parametric sensitivity
analyses at the experimental setup of 7, = 20 on
AGNews. We report all the results (Acc) after 3
trials on validation set.

7.1 Impact of Correlation Coefficient A

In our method, we use the correlation coefficient A
to control the ratio of the current estimation to the
historical estimation. From Figure 5 (a), when A
is set to 0.6, PL-POT can get the best accuracy of
86.36%. It shows that both historical and current
results are important for estimating the distribution
of current unlabeled data.
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Figure 5: Hyper-parameter analysis on AGNews.

7.2 Impact of correlation coefficient o

In our method, we use the hyper-parameter o as
correlation coefficient to control the flooding ratio
on the calibrated results. From Figure 5 (b), the
configuration of « is not sensitive to the model
performance because it is automatically updated
based on the training status. Nevertheless, it is
important since when the « is set to 0, the result
receives the largest decrease.

7.3 Impact of length of memory bank M

We analyze the Memory Bank (MB) length
sensitivity across datasets with varying class
counts and annotation sizes. Experimental results
(Accuracy/Macro-F1) on AGNews and Yahoo re-
veal performance degradation when MB length ex-
ceeds 128. This decline suggests error accumu-
lation from outdated pseudo-labels historical pre-
dictions generated in earlier training iterations that
lose reliability over time. Notably, overextended
MBs amplify noise by retaining suboptimal pseudo-
labels beyond their temporal validity window.

M | AGNews Yahoo
16 85.14/84.10 62.63/60.74
32 84.62/83.66 63.94/62.31
64 85.83/84.00 64.01/64.24
128 86.36/85.79 65.84/65.34
256 84.01/83.54 62.00/61.55
512 82.64/80.85 57.75/55.74

Table 5: The impact of memory bank length M.

8 Conclusion

In this paper, we propose a novel PL-POT model
for SSTC task, which formulates the pseudo-
labeling problem as an OT problem to alleviate
the bias of imbalanced class data. Particularly, we
calibrate the class distribution of unlabeled sam-
ples with reliable (pseudo-) labeled samples in MB.
Then, we derive the semantic similarity between

unlabeled samples and class prototypes as the cou-
pling cost. By solving OT, each unlabeled sample is
assigned with the most plausible class, and ensures
the class distribution of pseudo-labels. Experimen-
tal results demonstrate PL-POT can effectively cal-
ibrate the pseudo-labels with the class distribution,
and outperforms previous state-of-the-art methods.

9 Baselines of Semi-supervised Image
Classification

In imbalanced semi-supervised learning, there are
also methods in image classification. We also com-
pared these methods with our method:
CDMAD (Lee and Kim, 2024) adopts a "white"
embedding to to measure the degree of deviation
of the pseudo-labeled data.
TCBC (Li et al., 2024b) makes twice class bias cor-
rection for imbalanced semi-supervised learning.
From the table 6, we can find that not all semi-
supervised image classification methods can be
applied to text classification problems, such as CD-
MAD with "white" images. On the other hand,
the results of another image classification method
TCBC is also worse than ours. TCBC also utilizes
an estimate of the class distribution from the par-
ticipating training samples to correct the model.

‘ T =5 7w = 10
Method | Acc F1 Acc F1
CDMAD - - - -
TCBC 84.75 80.19 76.45 75.37
Ours 86.98 85.71 84.17 84.20

Table 6: Comparison with image classification tasks.

Limitations

Although PL-POT has been proven to be effective
according to our extensive experiments, the cur-
rent design of our method may not be optimal and
could be improved in the future. Specifically, on
the one hand, it becomes increasingly difficult to
accurately estimate the estimated distribution as
the number of pseudo-labels increases, which is an
aspect that needs improvement in the future. On the
other hand, we focus on the semi-supervised text
classification, and it is also possible for our method
to be applied to the field of images. In the future,
we would investigate the applicability of our PL-
POT model on the open-set semi-supervised image
classification tasks.
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A Optimal Transport

Optimal Transport (OT) is a mathematical frame-
work that addresses the problem of finding the most
cost-effective method for transferring mass from
one probability distribution to another, with its con-
ceptual origins tracing back to the pioneering work
of Gaspard Monge (Villani et al., 2009) in the late
18th century. Let o and v be two probability mea-
sures defined on the same space R", denoting the
source and target distributions of resources, respec-
tively. The Monge problem aims to find a mapping
II: R™ — R" that transforms a distribution g into
a distribution v while minimizing the total transfer
cost. This cost is usually measured by a cost func-
tion ¢(z, II(x)), where x is the original location
of the resource and II(z) is the new location to
which it is transferred. It can be formulated as the
following optimization problem:

IT = argmin/ c(x, I(x)) du(z), (14)
11 n
where IT is the transport plan, ¢(z, IT(x)) the cost
function measuring from the x to the IT(x) transfer
cost, and the integral the total cost over all z.
However, the Monge formulation of optimal
transport imposes a restrictive assumption: the
mass must be indivisible, meaning it requires a
deterministic transport map II that assigns each
point in the source distribution to a single point in
the target. This approach becomes infeasible when
the two distributions have different total masses,
or when the transport naturally requires a many-
to-many correspondence between source and tar-
get points. To overcome these limitations, the
Kantorovich problem generalizes the framework
by seeking a probabilistic transport plan. In this
problem, we consider two given probability distri-
butions @ and v, defined on two spaces X and Y,
respectively. The Kantorovich problem aims to find
a joint probability distribution (i.e., transport plan)
II over X x Y whose marginal distributions are p
and v, respectively, while minimizing the overall
transport cost. Mathematically, this problem can
be expressed as follows:

m n
" .
II :argmmg g Ci;11;5,
TeRY*™ =1 j=1

HTlm =v,

(15)
s.t. II1,, = w,

where II is a joint probability measure on X x Y,
representing the transition plan, and ¢(x,y) is a

cost function for moving fromz € X toy € Y.
Notably, the Kantorovich problem can be solved
by Sinkhorn-Knopp algorithm (Cuturi, 2013) effi-
ciently. which substitutes the linear program prob-
lem by a smooth problem with an entropy regular-
ization term as follows: The algorithm 1 shows the
flow of the Sinkhorn-Knopp algorithm, where ©
denotes element-wise division.

Algorithm 1 Sinkhorn-Knopp Algorithm

Require: Cost matrix C € R™*™, marginals p €
R", v € R™, regularization parameter A > 0
Ensure: Approximate transport matrix P
Initialize u < 1,,, v < 1,,
Compute K <+ exp(—AC)
while not converged do
Update u < p @ (Kv)
Update v + v © (KTu)
end while
Compute P < diag(u)Kdiag(v)
return P

B Hyper-parameter Settings

For reproduction, we report our hyper-parameter
settings in Table 8 and Table 9. For a fair com-
parison, we implement PL-POT the same hyper-
prameters of the encoder modules and same opti-
mizer Adamw (Loshchilov and Hutter, 2018) as
MixText. As shown in Table 8, the initial learning
rate is tuned in [le~%, 1e~°] for BERT parameters
and [1le—4, 1e~3] for other parameters.

For PL-POT (shown in Table 9), the correlation
coefficient A that controls control the ratio of the
current estimation to the historical estimation is
set to 0.6 for AGNews and 0.5 for DBpedia and
Yahoo for datasets with more classes correspond
to a higher proportion of negative samples. For
parameters of the OT part, the cost epsilon is set
to 0.2 and the iteritions of sinkhorn algorithms is
set to 20. The length of memory bank is set to 128.
Note that the hyper-parameter settings are tuned
on the valid data by grid search with 3 trials. We
use the same experimental settings for all baseline
models. We run all experiments on an NVIDIA
Tesla P100 GPU with 16GB memory.

C Comparison with LLM

The emergence of the Large Language Model
(LLM) era has ushered in a plethora of solu-
tions for low - resource scenarios. Nevertheless,
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MODEL ‘ Alpaca-7B LLaMA2 ChatGPT4 PL-POT('7’ = 5) PL-POT('7’ = 20)
Acc 77.34 79.40 84.62 86.98 84.18
F1 78.27 80.67 84.50 85.71 84.08

Table 7: Comparison with LLM and PL-POT.

Hyper-parameter \ Value  Fl-score averaged over three runs, outperforming

type embedding dimension d 768  UDA and PGPL. We set the confidence threshold to

Bert attention dropout 0.1 0.5, and optimal transport cost €=0.1. These results

Bert hidden dropout 0.1 > -1 .

MLP hidden dimension 178 demgnstrate RL—POT S a.daptablht?/ to high-class-

Sequence Length 256  density scenarios, where its dynamic pseudo-label

Optimizer Adamw  calibration via temporal reliability weighting and

Learning rate of BERT Le™ distribution alignment mitigates error propagation

Learning rate of MLP le™3 ] . g o g . p P g .

Training epoch 100  from historical predictions, contrasting with static

Steps/epoch 100 threshold-based baselines.

batch size on labeled data 4

batch size on unlabeled data 16 Model ‘ Accuracy Macro-F1

Table 8: Common hyper-parameter settings. Supervised 72.29 69.81

UDA 78.83 77.60
PGPL 81.77 80.25

Hyper-parameter \ Value PL-POT 82.95 82.04

Warm step , Table 10: The results on Banking d

Epsilon 02 able 10: The results on Banking dataset.

Iteritions of sinkhorn 20

Correlation coefficient A (AG News) 0.6

Correlation coefficient A\ (DBpedia, Yahoo! Answer) 0.5

Flooding coefficient o 0.01

Threshold £ 0.95

Length of memory bank M 128

Table 9: Hyper-parameter settings of PL-POT.

leveraging the Application Programming Interfaces
(APIs) of large models comes with extra expenses,
and directly applying open-source large models
often fails to meet expectations. As depicted
in the figure 7, in contrast to established large-
model approaches like Alpaca-7B (Taori et al.,
2023), LLaMA2 (Touvron et al., 2023), Chat-
GPT4 (Achiam et al., 2023), our proposed method
not only demands significantly lower training costs
but also delivers superior outcomes.

D Finer-grained Experiments

To demonstrate the generalizability of our method,
we evaluate PL-POT on Banking (Casanueva et al.,
2020), a financial intent detection dataset character-
ized by fine-grained class granularity with 77 cate-
gories, 9003 training samples, 3080 test samples,
and an inherent class imbalance ratio of 4.5. Un-
der a semi-supervised setup allocating 10 labeled
samples per class alongside unlabeled training data,
PL-POT achieves 82.95% accuracy and 82.04%
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