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Abstract

This paper investigates the enhancement of rea-
soning capabilities in language models through
token-level multi-model collaboration. Our
approach selects the optimal tokens from the
next token distributions provided by multiple
models to perform autoregressive reasoning.
Contrary to the assumption that more models
yield better results, we introduce a distribu-
tion distance-based dynamic selection strategy
(DDS) to optimize the multi-model collabora-
tion process. To address the critical challenge
of vocabulary misalignment in multi-model col-
laboration, we propose the concept of mini-
mal complete semantic units (MCSU), which
is simple yet enables multiple language mod-
els to achieve natural alignment within the lin-
guistic space. Experimental results across var-
ious benchmarks demonstrate the superiority
of our method. The code will be available at
https://github.com/Fanye12/DDS.

1 Introduction

With the rapid development of large language
models (LLMs), numerous impressive works such
as GPT4 (Achiam et al., 2023), Llama3 (Dubey
et al., 2024), and Qwen2 (Yang et al., 2024) have
emerged. People are increasingly accustomed to
seeking answers from LLMs when encountering
problems, and even researchers consult LLLMs dur-
ing their scientific work. Although LLMs have
demonstrated remarkable capabilities in many ar-
eas of natural language processing (NLP), they of-
ten show their inability to perform complex reason-
ing tasks (Fu et al., 2022). Therefore, how to fur-
ther improve the performance of LLMs in complex
reasoning tasks has become a hot topic (Kojima
et al., 2022; Liang et al., 2023). Enhancing model
performance from training side is very costly, as
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Question: Bob buys 6 books a week. Each 3 books cost 10 dollars. How
much does he spend on books every month?

Each book costs 10/3=3.3 dollars.There are four weeks X @
in a month, so he will spend 3.3%6%4=79.2 dollars.
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Qwen + Llama

Qwen

Bob will spend <<6/3*|0%4=80>>80 dollars on «

books every month.
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He will spend 4%10%6/3=20 dollars on booksX
Qwen + Llama+GLM

every month.

Figure 1: Motivation of the proposed DDS. For the
same mathematical problem, Single LLM Qwen gave
the wrong answer, token-level collaboration between
Qwen and Llama produced the correct answer, whereas
collaboration among Qwen, Llama, and GLM resulted
in an incorrect answer. This demonstrates that multi-
model collaboration can improve answer but having
more models in collaboration does not necessarily im-
prove outcomes; selecting the appropriate models for
collaboration is essential.

training a language model requires significant re-
sources. Furthermore, performance improvements
have begun to plateau due to the slowing impact of
scaling laws (Kaplan et al., 2020; Touvron et al.,
2023). Therefore, more and more research (Wei
et al., 2022; Kojima et al., 2022; Madaan et al.,
2024; Liang et al., 2023; Xu et al., 2024) has begun
to focus on improving model performance with
some simple and low-cost methods.

Ensembling is a highly promising approach that
has been extensively studied since the early days of
deep learning. Recent studies have also confirmed
that ensembling multiple large language models
(LLMSs) can further enhance their capabilities (Yao
et al., 2024; Shen et al., 2024). Different LLMs
usually have different knowledge boundaries and
their own strengths (Wan et al., 2024; Jiang et al.,
2023). If their capabilities can be well synergized,
it will certainly enhance the reasoning ability of the
language model and break through the performance
bottleneck of a single LLM (Khan et al., 2024; Du
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et al., 2023), which is also the expected goal of
multi-model collaboration. Previous multi-model
collaboration methods (Khan et al., 2024; Liang
et al., 2023; Du et al., 2023) mostly conduct ma-
jority voting or discuss at the level of the overall
answer. For the same question, each LLM puts
forward its own point of view and tries to convince
other models, so as to finally reach a consensus
among multiple models. The debate process usu-
ally involves selecting the final answer based on
certain rules or introducing a new referee model.
This may require many rounds of debate and relies
heavily on one of the models to give a strong cor-
rect answer and convince the other debaters to get
the final answer.

It is generally believed that the knowledge of
LLM is stored in its massive parameters, but the
output next token distribution is the specific exter-
nal manifestation of its knowledge ' (Hinton, 2015;
Wan et al., 2024; Radford et al., 2019). There-
fore, a straightforward idea is to combine the
knowledge of multiple LLMs by combining the
next token distributions given by these models.
Token-level multi-model collaboration is based on
this approach to enhance the reasoning capabilities
of LLMs. It not only avoids the need for complex
interaction rules among multiple models but can
also exhibit emergent abilities to a certain extent,
offering correct answers when individual models
cannot do so independently.

Contrary to the assumption that more models
yield better results, we find that not all model addi-
tions will have a positive impact on the final results.
As shown in Fig. 1, for three similarly capable
LLMs, when Qwen and Llama collaborate to pro-
vide the correct answer, the addition of GLM ac-
tually results in an incorrect final outcome. This
demonstrates that simply increasing the number of
models does not necessarily lead to positive results.
The key is to select the appropriate models for col-
laboration. Based on the principle that “there is
typically only one correct answer, whereas incor-
rect answers can be numerous and varied”, we pro-
pose a distribution distance-based dynamic selec-
tion strategy (DDS) to solve this problem. Specifi-
cally, we calculate the pairwise distances between
the next token distributions provided by multiple
LLMs. We filter out the outlier distributions that
are far from the majority, retaining those that are

"LLM’s output is obtained by autoregressive sampling
from this distribution, so LLM’s knowledge determines the
quality of its output.

closer together, which are considered to be near the
correct answer.

In addition, due to inherent differences in model
architecture, training data, and training processes
among different LLMs, they typically exhibit vo-
cabulary discrepancies. For instance, the word
“Llama” might be tokenized into “Lla” and “ma”
by model A’s tokenizer, while model B’s tokenizer
could split it into “LI” and “ama”. Such discrep-
ancies prevent us from performing integration by
simply averaging multiple probability vectors, as
is traditionally done in ensemble learning. Exist-
ing methods (Yu et al., 2024; Huang et al., 2024;
Yao et al., 2024) typically attempt to resolve this
issue by aligning different vocabularies. How-
ever, this alignment process often necessitates ad-
ditional computation and inevitably introduces cer-
tain noise, which can affect the final outcomes.

In this paper, we propose the concept of “mini-
mal complete semantic units (MCSU)” to achieve
natural alignment across different LLMs in natural
language. Specifically, we use MCSU to replace
token as the smallest semantic unit in the LLM au-
toregressive generation process. For instance, the
word “apple” is encoded as a single token, which
we consider to have complete semantic meaning,
while “Llama” might be split into “Lla” and “ma”,
where “Lla” and “ma” do not constitute a com-
plete semantic unit. For these exceptional cases,
we allow the LLM to continue generating tokens
until the generated tokens can be combined into
MCSU. We then use the product of joint proba-
bilities to represent the probability score for this
MCSU. Moreover, we find that about 90% of com-
mon English words are encoded as a single token
(see Appendix D), meaning that most commonly
used tokens are already MCSUs. Therefore, the in-
troduction of MCSUs does not result in significant
additional computation, providing a low-cost solu-
tion to the vocabulary misalignment issue during
token-level multi-model collaboration.

2 Related Works

2.1 Output-level Model Emsembling

Output-level model emsembling is usually done
by imitating some group collaboration behaviors
of humans to conduct multi-model collaboration
(Khan et al., 2024; Liang et al., 2023; Du et al.,
2023; Yin et al., 2023; Sun et al., 2023). The goal
is to combine the advantages of multiple models
and introduce external feedback from other models

12907



T,

M,

sampling|next token sampling next MCSUJ\ from multiple distribution using DSS
from one|distribution / N\
P(TtIT,,T,,...T.,) P,(MJdM,, M,,..M, ) P,(M(M,, M,,...M. ) P (MM, M,,...M )
L x
YES
<@SU7 -NO, Gontinue to output next token
autoregression : P
autoregression
14 N
LLM LLM, LLM, LLM,
M AN Tk >
TiToe T i M,,M,,..M,,, M, |
(a) (b)

Figure 2: From the implementation point of view, the proposed DDS is an adjustment based on single model
autoregression. (a) A single LLM samples the next token from its output next token distribution and generates
the response autoregressively. (b) The proposed DDS selects the optimal next MCSU from multiple next MCSU
distributions given by multiple LLMs and generates the response autoregressively.

to break through the performance bottleneck of a
single model (Liang et al., 2023). The simplest
method of multi-model collaboration is to perform
majority voting based on the answers given by mul-
tiple LLMs. Jiang et al. (2023) developed an auxil-
iary ranking model to evaluate and select the best
candidate output from multiple LLMs’ responses.
Similarly, Shnitzer et al. (2023) designed a router
that determines the optimal candidate model based
on the given question.

Moreover, many methods begin to allow LLMs
to interact with each other. Liang et al. (2023)
and Du et al. (2023) enhanced the performance of
LLM in specific tasks by allowing multiple LLMs
to debate on the same problem and finally reach
a consensus. Yin et al. (2023) proposed a cross-
model exchange based on network topology to ob-
tain feedback from other LLMs to improve their
own output. Inspired by human behavior, Sun et al.
(2023) proposed multiple collaboration modes, in-
cluding discussion, review, and retrieval, to jointly
work towards enhancing inference performance.

Output-level model emsembling methods often
require introducing additional components that
need to be trained or an extra referee LLM to help
select the final result. Some methods even neces-
sitate designing complex interaction rules, all of
which increase the complexity. Furthermore, the
accuracy of the final result heavily depends on one
of the models providing a strong correct answer.

These issues have brought great limitations to the
output-level model emsembling methods.

2.2 Token-level Model Emsembling

Unlike output-level ensembling methods that
integrate at the final answer stage, token-
levelensembling methods perform integration at
each step of the LLM generation process. These
methods select the optimal next token by integrat-
ing the next token probability distributions output
by multiple LLMs. Shen et al. (2024) developed a
trainable classifier to help determine which LLM
should be utilized for completing the current step
in the autoregressive generation process. Wan et al.
(2024) leveraged output probability vectors from
various models during the training process, using
these vectors as labels to distill the knowledge.
Owing to the vocabulary discrepancies among
different LLMs mentioned previously, numerous
approaches (Yu et al., 2024; Xu et al., 2024; Huang
et al., 2024; Yao et al., 2024) concentrate on align-
ing their tokenizers to achieve improved ensemble
outcomes. Xu et al. (2024) proposed a method that
directly learns the projection matrices between dif-
ferent vocabularies, using overlapping tokens as
anchors to bridge the gap between heterogeneous
LLMs. Similarly, Huang et al. (2024) utilized an-
chors to calculate the relative representations to
different vocabularies, thereby enabling the vocab-
ulary projection indirectly. In another approach, Yu
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et al. (2024) also relied on anchors to calculate the
relative representations, achieving a similar indirect
vocabulary projection. Yao et al. (2024) introduced
the UNITE, a novel approach that efficiently com-
bines models by focusing on the union of the top-k
tokens from each model, thereby avoiding the need
for full vocabulary alignment and reducing compu-
tational overhead.

However, this vocabulary alignment operation
is bound to introduce noise, which can affect the
final performance. The proposed MCSU aims to
mitigate this impact.

3 Method

Given the same question, different LLMs usually
give different answers. This is because they have
learned different knowledge due to the difference
in network architecture, training data and training
process (Raiaan et al., 2024). As mentioned ear-
lier, it is generally believed that the knowledge is
stored in the huge parameters of LLMs (Radford
et al., 2019), and the output next token probabil-
ity distribution is the specific external manifesta-
tion of their knowledge (Hinton, 2015; Wan et al.,
2024). Therefore, our starting point is to combine
the knowledge of different LLMs by combining
these distributions:

Py = Combine(PL, P?, ..., PK),

(1
KN; = Combine(KN}, KN?, ..., KNJ),

where P; represents distributions, K N represents
knowledge and C'ombine represents a certain com-
bination.

Fig. 2 provides an overview of the proposed
method, which mainly consists of two parts. The
first part achieves a natural alignment of differ-
ent LLMs through the MCSU, thus avoiding the
complex operations previously introduced for vo-
cabulary alignment. In the second part, we intro-
duce DDS. We hypothesize that not all probability
vectors output by LLMs are beneficial to the final
result. Therefore, at each step of autoregression,
we dynamically select several appropriate probabil-
ity distributions for integration. We will introduce
them in detail in the following sections.

3.1 Minimal Complete Semantic Units

In LLMs, a token is the smallest semantic unit for
calculation. Natural language is segmented into
individual tokens by a tokenizer, and outputs are
generated autoregressively by predicting the next

token until the end token is encountered. However,
some tokens may not always convey complete se-
mantic meaning. To address this, we introduce
the concept of a minimal complete semantic unit
(MCSU), which is defined as a word, punctuation
mark, or number representing the smallest unit of
complete meaning. Tokens that only represent part
of a word lack complete semantic meaning and con-
tribute to vocabulary misalignment across different
LLMs. 2

For alphabetic languages like English, the to-
kenization process often splits some words into
multiple subword tokens, which may result in indi-
vidual tokens lacking complete semantic meaning.
This is precisely why we proposed the Minimum
Complete Semantic Unit (MCSU) concept. In lan-
guages such as English or French, whitespace can
serve as a reliable delimiter for identifying MCSUs.

In contrast, for logographic languages like Chi-
nese, each token inherently represents either a sin-
gle character or a complete word, thus constitut-
ing an MCSU by definition without requiring addi-
tional segmentation criteria. We believe these two
cases adequately represent the majority of language
types. The experiments in this paper were mostly
conducted on English datasets, but the results in
Table 4 also demonstrate its good performance on
Chinese datasets.

During integration, if the next token produced
by an LLM does not form an MCSU, the model
continues generating tokens until a sequence of
consecutive tokens can form an MCSU. Since En-
glish words are typically separated by spaces or
punctuation marks, it is relatively straightforward
to determine whether a sequence constitutes an
MCSU. We represent the probability of an MCSU
using the product of the joint probabilities of its
constituent tokens.

For an MCSU M consisting of several tokens,
M =1T1,Ts,...,T,, where T' denotes a token, its
probability is expressed as:

n
PM = HP(,IHTl,TQ, 712*1)‘ (2)
=1

We use MCSUs and their probabilities to replace
the original next token probability distribution for
subsequent multi-model collaboration, addressing

For example, “Llama” might be split into the tokens “Lla”
and “ma” by model A, and into “L1” and “ama” by model B.
These tokens are not MCSUs and are a primary reason for the
misalignment of vocabularies across different LLMs.
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the issue of inconsistent tokens across different
LLM vocabularies. Additionally, to reduce compu-
tational complexity, we employ Top-k (Fan et al.,
2018) sampling to select the top K MCSUs with
the highest probabilities.

3.2 Distribution Distance-based Dynamic
Selection Strategy

As mentioned earlier, not all probability distribu-
tions generated by LLMs have a positive impact
on the final integration. This is understandable
because the model may inherently struggle with
answering the given question, leading to poten-
tially erroneous probability distributions. Based
on the principle that “there is typically only one
correct answer, whereas incorrect answers can be
numerous and varied”, we propose the distrition
distance-based dynamic selection strategy to help
filter out the probability distributions used for the
final integration.

According to this principle, we believe that if
the distance between two distributions is closer,
they are nearer to the correct answer, as incorrect
answers typically exhibit greater variability. We
use the probability distribution representing the
next MCSU instead of the next token’s probability
distribution because different LLMs are aligned on
MCSUs. The probability distributions representing
MCSUs can be integrated, and they are naturally
aligned semantically.

Given the large size of the vocabulary, for each
LLM, we adopt a Top-k approach, retaining only
the K MCSUs with the highest probabilities while
ignoring the rest, which have lower probabilities.
This significantly reduces computational complex-
ity, especially considering that the vocabulary size
is in the tens of thousands. We calculate the KL
divergence between different probability distribu-
tions, if the distance between two distributions is
small, we consider them closer and retain them,
discarding those with larger distances. During each
autoregressive step, this method dynamically se-
lects the distributions most beneficial for the final
integration. The specific process is as follows:

For each LLM 1, define the probability distribu-
tion of the next MCSU as P;.

For each P;, retain only the top K items with the
highest probabilities, setting the rest to zero:

P;op—k () = Pi(z) ifzxe t.op—k items 3)
0 otherwise

Find the union U of all P;Op'k. For each P;Op'k, set
the probabilities of items not in U to 1e~? (the min-
imum value close to 0 is convenient for subsequent
calculations):

PHa) P"Y) ifzeU @
) =
! 1le™? otherwise

For any two probability distributions ;" and P,
calculate the KL divergence between them

Di (P || PY) ( ;
xzelU J r

If DxL (P || P;) < e (where € is a predefined
threshold), retain these distributions. Note that if
none of these distributions are close to each other,
then all of them should be retained, as there is no
reason to discard any of them.

We determine € by computing the global mean
through statistical methods, and set its value to 0.1
in this paper (the detailed procedure can be found
in Appendix A).

Finally, we usually average the retained distribu-
tions and select the MCSU with the largest proba-
bility for subsequent iterations.

4 Experiments

4.1 Experiment Setup

Tasks ans datasets. We evaluate the performance
of our proposed method on the following bench-
marks: Arithmetic Reasoning. For this task, we
selecte four datasets of different difficulty, includ-
ing SVAMP (Patel et al., 2021), GSM8K (Cobbe
et al., 2021), AddSub (Hosseini et al., 2014) and
AQuA (Ling et al., 2017). Commonsense Rea-
soning. We select four datasets to evaluate the
performance of the prpoposed method, including
CommonseQA (Talmor et al., 2018), StrategyQA
(Geva et al., 2021), OpenBookQA (Mihaylov et al.,
2018) and ARC-c (Clark et al., 2018). Symbolic
Reasoning. We select four datasets from BigBench
(Srivastava et al., 2022) for testing, including Date
Understanding, Penguin, Colored Objects and Log-
ical Deduction.

Baselines. We compare the proposed method
with three sets of widely used baselines: (1) source
LLMs, including Qwen-2 7B (Yang et al., 2024),
Llama-3 8B (Dubey et al., 2024) and GLM-4
9B (GLM et al., 2024); (2) Output-level emsem-
bling: majority voting, a widely used collaboration
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Methods / Datasets SVAMP GSMS8K AddSub AQuA Avg.
Qwen-2-7B 90.0 82.3 90.8 65.5 82.1

Single LLM Llama-3-8B 85.2 79.6 86.5 542 763
GLM-4-9B 88.6 79.6 87.5 58.1 784

Majority Voting 90.8 79.9 91.0 652 81.6

Emsembling LLM-Blender 90.2 81.3 91.0 65.0 819
GAC 89.8 81.9 91.0 63.9 81.7

DEEPEN 89.9 82.1 91.3 649  82.1

Ours DDS 91.6 85.1 91.4 65.5 834

Table 1: Comparison of accuracy on four mathematical reasoning datasets using DDS and strong baselines. The best
results are highlighted in bold. All results are expressed as a percentage of accuracy, with the % symbol omitted.

Methods / Datasets

CSQA StrategyQA OpenBookQA ARC-c Avg.

Qwen-2-7B 719 732 81.0 810 76.7
Single LLM | Llama-3-8B 679 70.2 75.3 763 724
GLM-4-9B  67.3 71.8 79.5 794 745

Majority Voting  72.3 72.0 80.5 832 770

Emsembling | FLMBlender 720 72.8 80.1 830 769
GAC 73.1 73.0 79.9 832 773

DEEPEN 72.5 74.1 79.5 84.1 776

Ours DDS 76.0 75.5 835 840 179.8

Table 2: Comparison of accuracy on four commonsense reasoning datasets using DDS and strong baselines.

method, the answers of the three models are sub-
jected to majority voting to select the most con-
sistent answer. LLM-Blender (Jiang et al., 2023),
sorts the answers given by multiple models and
then selects the one with the highest ranking. (3)
Token-level emsembling: DEEPEN (Huang et al.,
2024) and GAC (Yu et al., 2024), mainly achieve
multi-model collaboration by aligning vocabulary.
Implementation details. We use the CoT (Wei
et al., 2022) method and greedy decoding strategy
to obtain the final results. The top 5 MCSUs are
sampled in the Top-k sampling algorithm. We use
regular expressions to extract the answers from
LLM’s answers to calculate the accuracy. The
whole method is training-free, and most experi-
ments are completed on one Nvidia H800 GPU.

4.2 Main Results

Mathematical Reasoning. The quantitative results
on four datasets are shown in Table 1. It can be
seen that the proposed DDS achieves significant
performance improvements in most cases. Com-
paring the three single models, Qwen performs
the best in mathematics, while Llama performs the
worst. Furthermore, naive majority voting does not
guarantee performance improvement over the best-
performing single model. Finally, the other three
collaborative methods also do not show clear supe-

riority over the Qwen model in this benchmark.

Commomsense Reasoning. The quantitative
results on four datasets are shown in Table 2. It
can be clearly seen that the proposed DDS achieves
significant performance improvements. Compar-
ing the three single models, GLM performs the
best in this task, while Llama still performs the
worst. In addition, majority voting brings certain
performance improvements, which are generally
better than the best performance of a single model.
Finally, all other three collaborative methods are
improved compared to the single model.

Symbolic Reasoning. The quantitative results
on four datasets are shown in Table 3. The pro-
posed DDS still achieves the best performance in
most cases. Comparing the three single models,
GLM performs the best in this task, while Llama
still performs the worst. Moreover, it can be seen
that majority voting brings certain performance im-
provements, which are generally better than the
best performance of a single model. Finally, all
other three collaborative methods are improved
compared to the single model.

Analysis: From the above experiments, it can be
seen that compared with the performance of single
models and other baseline methods, the proposed
DDS performs relatively well and has improved.
Moreover, we can see that although majority voting
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Methods / Datasets Date Penguin Colored Objects Logical Deduction Avg.
Qwen-2-7B 66.5 79.2 73.2 773 74.1

Single LLM Llama-3-8B 69.6 76.1 66.4 70.1 70.6
GLM-4-9B 58.2 81.3 76.9 82.0 74.6

Majority Voting  65.1 82.2 79.4 81.2 77.0

Emsembling LLM-Blender  65.5 82.5 79.3 81.4 71.2
GAC 65.0 83.1 79.2 81.3 77.1

DEEPEN 64.5 82.9 79.4 80.2 76.8

Ours DDS 68.8 83.0 794 83.0 78.5

Table 3: Comparison of accuracy on four symbolic reasoning datasets using DDS and strong baselines.

Datasets | Qwen Llama GLM MUY prepeN pps

Voting
HumanEval | 799 622 718 73.2 79.7 81.1
C-Eval 772 459  75.6 70.1 74.2 78.3

Table 4: Comparison of proposed DDS with other base-
line methods on the HumanEval and C-Eval datasets.

Model/Metric ROUGE BLEU BLEURT
Qwen-2 7B 0.548 0.532 0.659
Single LLM | Llama-3 8B | 0.555 0.517 0.634
GLM-4 9B 0.587 0.536 0.660
Ours DDS 0.601 0.549 0.663

Table 5: Performance of DDS in reliability evaluation.
We report three metrics on the Truthful QA benchmark,
where larger values indicate more truthful results.

is a very simple way of collaboration, it can still
bring certain performance improvements compared
to single models most of the time, which is also
consistent with the experience of human collective
wisdom. Other collaboration methods are relatively
complex but do not bring further significant perfor-
mance improvements.

4.3 Evaluation on Cross-Task and
Cross-Lingual Scenarios

we have conducted additional evaluations in two
key domains: code generation and Chinese knowl-
edge quiz tasks. Specifically, we tested on the
HumanEval (Chen et al., 2021) and C-Eval (Huang
et al., 2023) datasets, with the detailed results pre-
sented in the table 4.

From the experimental results, it can be seen that
DDS performs well on these two tasks. This further
demonstrates the potential and robustness of our
proposed DDS method, which shows promise for
application in broader domains to enhance LLMs’
reasoning capabilities. Moreover, the good perfor-
mance on the Chinese dataset C-Eval also indicates
that proposed MCSU is applicable to other lan-
guages, not just English.

Model SVAMP CSQA Penguin
Qwen 90.0 71.9 79.2
Llama 85.2 67.9 76.1
GLM 88.6 67.3 81.5
Qwen+Llama 90.2 73.7 81.3
Qwen+GLM 91.0 74.1 814
Llama+GLM 87.3 71.7 81.7
Qwen+Llama+GLM 90.8 74.9 81.0
DDS (Qwen+Llama+GLM) | 91.6 76.0 83.0

Table 6: Ablation on the number of used LLMs. The
multi-model collaboration represented by the “+” sign
in the second part does not use the DSS strategy, but
directly performs weighted averaging.

Dataset/e | 005 008 0.1 015 02 03 04 05
GSMS8K | 835 852 851 850 845 842 829 827
CSQA 751 755 760 757 758 755 753 749

Table 7: Ablation experiment of threshold e. We
present the performance of DDS across varying € on
the GSM8K and CSQA datasets.

4.4 Reliability Evaluation

The validity of LLM outputs is crucial, and their
reliability is equally indispensable. The main
experiments in Section 4.2 have already demon-
strated that our proposed DDS can significantly
enhance the reasoning performance of language
models. Therefore, we are also interested in ex-
ploring whether DDS can improve the reliability
of language models. For this purpose, we select
Truthful QA (Lin et al., 2021), a classic and widely
used benchmark for evaluating the truthfulness of
language model outputs, which can reflect the reli-
ability of LLM outputs to some extent.

The results are shown in Table 5. The three
metrics in the table indicate higher truthfulness of
the model outputs when they are larger. It can be
clearly seen that the metrics for the three single
models are relatively close, while our proposed
DDS achieves significantly higher metrics, indicat-
ing that DDS enhances the reliability of language
model outputs to some extent.
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Question

The book is printed on paper that, when stacked, is 100 pages to the
inch. Each paper is printed on both sides, with one page of the book
printed on each side. How many pages are in the book, if it is 1.5
inches thick?

Kramer wrote a self-referential book. What might that book
be about? (A) counter (B) coffee table (C) school room (D)
backpack (E) bedside table

Qwen

To find out how many pages are in the book, we need to understand
that each inch of the book’s thickness represents 100 pages (since
the paper is 100 pages per inch). Given that the book is 1.5 inches
thick, we can calculate the total number of pages as follows:

Total pages = Thickness of the book in inches X Pages per inch
Total pages = 1.5 x 100 =150

Therefore, the book has **150 pages**.

Analysis: A self-referential book is one that refers to itself,
often discussing its own structure, content, or writing pro-
cess. Given this context, the book would likely delve into
themes related to literature, writing, or the act of creating a
book. Answer: (E) bedside table

Llama

The book is 1.5 inches thick. Each inch has 100 pages. So 1.5 inches
will have 1.5 x 100 = 150 pages. The answer is 150.

Analysis: The question is asking what Kramer might write
a self-referential book about. A self-referential book is a
book that refers to itself, often in a humorous or ironic way.
Kramer is a character from the TV show “Seinfeld", known
for his eccentricities and witty remarks. Correct answer:
(A) The Kramer

GLM

If the paper is 100 pages to the inch and each paper is printed on both
sides, then each inch of thickness corresponds to 50 pages (since one
side of the paper is one page). If the book is 1.5 inches thick, then
the number of pages in the book would be: 1.5 inches * 50 pages per
inch = 75 pages. So, the book has 75 pages.

Among the options, “bedside table" (E) is the closest to a
book, as it is a piece of furniture that could be associated
with a book (books are often placed on bedside tables).
Given the limitations of the options, the most appropriate
answer would be: (E) bedside table

DDS

If the book is 1.5 inches thick and each paper is 1/100 of an inch
thick, then the number of papers in the book is 1.5 inches * 100
papers/inch = 150 papers. Since each paper has two sides, and each
side is a page, the total number of pages in the book is 150 papers *

Coffee table could be a possibility, as a coffee table is a
common piece of furniture that Kramer might have written
about in a self-referential manner. Answer: (B) coffee table

2 sides/paper = 300 pages.

Table 8: Examples where DDS is able to answer correctly even though all three models answer incorrectly. Incorrect
answers are shown in red and correct answers are shown in blue. Since some answers are too long, we have made
some adjustments to facilitate presentation, but the core content remains unchanged.

4.5 Ablation Study

Ablation on the number of used LLMs. We show
the results of using different numbers of LLMs
in Table 6. It can be seen that as the number of
LLMs increases from one to three, the overall per-
formance gradually improves. The magnitude of
this change is different in different tasks. We also
notice that in some cases, the effect of using two
models is better than that of using three. We think
this is reasonable. When human groups collaborate,
it is not always the case that more participants lead
to better outcomes, the ability of the participants
is a key factor, which is also the motivation for us
to propose DDS. We hope to improve the quality
of the results by selecting participants with better
abilities. But in general, using more models will
expand the knowledge boundary and thus improve
performance.

It can be clearly seen that DDS performs best
on the three datasets, better than single mod-
els and those directly integrated methods, which
also proves the effectiveness of the strategy and
achieves our expected goal. In addition, we also
conducted experiments using more LLMs, which
can be found in the Appendix B.

Ablation on the KL Divergence threshold e.
As shown in the Table 7, the optimal results were

achieved when e approached 0.1. DDS is highly
sensitive to the threshold e. Both excessively large
or small values of € can render the DDS strategy
ineffective. A larger threshold weakens the filtering
effectiveness, allowing harmful distributions to in-
fluence decisions, and a smaller threshold reduces
the number of qualified distributions, forcing the
retention of all distributions (equivalent to DDS
being inactive).

4.6 Examples of Emergent Capabilities

The goal of DDS is to combine the capabilities of
multiple LLMs to break through the performance
bottlenecks of a single LLM. Traditional multi-
model collaboration methods rely on most models
providing the same correct answer for majority
voting, or rely on one model providing a highly
confident answer to convince the others to reach
a consensus. However, we are surprised to find
that our DDS can provide the correct answer even
when each individual model answers incorrectly,
demonstrating a certain level of emergent ability,
akin to the saying “two heads are better than one”.

Typical examples are shown in Table 8. It can
be clearly seen that for the same math problem, the
three LLMs give wrong answers of 150, 150 and
75 respectively, ignoring the fact that a piece of
paper has two sides or confusing the logical rela-
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tionship, while DDS gives the correct answer of
300; for another question, the three single LLMs
fail to figure out the meaning of “a self-refine book™
and thus can not give a correct answer, but DDS
understands and gives the correct answer. We spec-
ulate that the token-level collision of ideas in DDS
has brought some different inspirations, and may
sometimes achieve the effect of 1 4 1 being greater
than 2. More examples and discussion can be seen
in Appendix E.

We also present and analyze some failure cases,
which can be found in Appendix F.

5 Conclusion

We propose DDS, a distribution distance-based
token-level multi-model collaborative dynamic in-
tegration strategy. By selecting the most suitable
models for integration at each step of autoregres-
sion, DDS effectively enhances the reasoning ca-
pabilities of language models. Additionally, we
introduce the concept of the “minimum complete
semantic unit”, which provides a simple and effec-
tive solution to the vocabulary misalignment issue
between different LLMs, laying the groundwork
for effective collaboration among multiple models.
We hope that our approach can bring some inspira-
tion to the community and further promote the use
of some low-cost ways to enhance the reasoning
ability of LLM.

Limitations

Since the forward process of multiple models needs
to be calculated during integration, the reasoning
time and amount of calculation will increase com-
pared to single model reasoning. How to further
improve efficiency is an issue that needs atten-
tion. Moreover, compared to answer-level ensem-
ble methods that can directly invoke multiple APIs
to perform asynchronous inference, our method re-
quires loading multiple models locally to obtain the
probability distributions of their intermediate out-
puts, which imposes certain hardware requirements
and limits its deployment on resource-constrained
devices. Notably, we also must pay attention to
whether this multi-model collaboration approach
might bypass some of the restrictions of single-
model generated answers, leading to the production
of unethical or harmful content. This is an area that
requires further research in our future work.

Ethical Statement

This paper adheres to the ACL Code of Ethics.
Firstly, we ensure thatthe datasets used do not
contain sensitive personalinformation and pose no
harm to society. Secondlyany pre-trained mod-
els employed have been dulylicensed.Furthermore,
our code will be releasedunder a suitable license.
Lastly, the proposed multi-model collaborative ap-
proach aims to enhance the reliability and perfor-
mance of LLMs, contributing positively to the ro-
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more trustworthy computational environment for
users worldwide.
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A Determination of the KL Divergence
Threshold

The Kullback-Leibler (KL) divergence ranges from
zero to infinity. In statistics:

1) A value of 0 indicates identical distributions;

2) Values between 0 and 1 typically suggest high
similarity between distributions;

3) Values exceeding 1 generally indicate signifi-
cant divergence.

We determined this threshold e through data-
driven statistical analysis by:

The reference KL divergence values were com-
puted by measuring distributional discrepancies in
the validation dataset, implementing the following
procedure:

a) Collected large number of sample pairs (P, Q)
and calculated their KL divergence.

b) Plotted the distribution of KL values (his-
togram / CDF).

¢) Selected the mean value as threshold based on
distribution characteristics.

This process yielded a value near 0.1. We set
this as the default threshold in our experiments, and
it demonstrated satisfactory performance.

B Scaling to More Models

As shown in Table 9, it can be observed that as
the number of participants in the collaboration in-
creases, the performance improves slightly, but the
extent of improvement is not significant. We be-
lieve this is reasonable because Qwen-2-7B, Llama-
3-8B, and GLM-4-9B are already the three best-
performing models of similar parameter scale dur-
ing the same period. As pointed out in paper (Yao
et al., 2024), the capabilities of the models involved
in the collaboration are also an important factor,
and it does not depend solely on the quantity. This
also demonstrates that the DDS strategy can be
applied to LL.Ms with diverse architectures, high-
lighting its strong generalizability.

On one hand, we will conduct a deeper inves-
tigation into how DDS scales with an increasing
number of models. On the other hand, we will
explore new strategies to better integrate the capa-
bilities of these models.

C Theoretical Analysis of why
Token-level Model Emsembling Is
Effective

The knowledge of a large language model (LLM)
is primarily stored in its vast number of parameters,

Number | DDS (3) DDS (4) DDS (5)
GSM8K 85.1 84.9 85.4
CSQA 76.0 76.3 76.2

Table 9: The relationship between the performance of
DSS in GSM8K and CSQA datasets and the number of
participating collaborative models. DDS (3) refers to
the default three models Qwen-2-7B, Llama-3-8B, and
GLM-4-9B, DDS (4) is the addition of Internlm-2-7B
(Cai et al., 2024), and DDS (5) is the further addition of
Yi-1.5-9B (Al et al., 2024).

which encode a broad understanding of language
and domain-specific knowledge. However, the ex-
ternal manifestation of this knowledge is the next
token probability distribution generated at each step
of autoregressive sampling. Formally, given a con-
text x4, an LLM generates a probability distribu-
tion over the next possible tokens:

Piim(we | x<y) = softmax(fop(x<t)),

where fy represents the internal computation of
the LLM parameterized by 6. This probability dis-
tribution reflects the LLM’s internal knowledge
and informs the quality of the generated answers.
Higher-quality knowledge results in a higher proba-
bility assigned to tokens that contribute to better an-
swers. The final output from the model is sampled
from this next token distribution, and the sequence
of sampled tokens constitutes the generated text.

The answer space derived from this autoregres-
sive process is defined by the cumulative sampling
across multiple steps. Let the space of possible
answers be denoted as A, with each potential an-
swer having an associated probability based on the
product of next-token probabilities. Hence, the
probability of an answer a € A being generated by
the LLM is:

T

Pim(a | z) = HPLLM(wt | <t),
t=1

where T’ is the length of the generated answer. Im-
portantly, the better the model’s knowledge, the
higher the probability assigned to higher-quality
answers in this space. Theoretically, LLM can
output any answer, but since some answers have
extremely low probability of occurrence, we be-
lieve that LLM is not capable of making certain
answers at this time. We believe that the answer
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space only contains answers with probability reach-
ing a certain threshold.

Combining Knowledge from Multiple LLMs.

We propose to improve the overall answer qual-
ity by combining the knowledge of multiple LLMs,
leveraging their individual next token distributions.
Let P (w; | 2;) represent the next-token proba-
bility distribution generated by the ¢-th LLM. By
combining these distributions, we create a new,
enhanced distribution that incorporates the knowl-
edge encoded in multiple models. Specifically, we
aggregate the distributions as:

Pcombined(wt | 37<t> = Aggregate(P(l)(wt ’ x<t)7
P(2)(wt ’ 37<t),

PE) (wy | my)),

where K is the number of models and the aggre-
gation function is designed to effectively combine
the distributions. The resulting answer space from
this combination is strictly larger and of higher
quality than any individual model’s answer space,
as it benefits from the union of knowledge across
models. In theory, any answer contained in the
single model answer space can be sampled from
this answer space.

For example, consider two LLMs, M 4 and M3,
answering two different questions. In some cases,
M 4 may provide the correct answer, while in other
cases, Mp might be more accurate. By merging
their answer spaces, we can capture the correct
answers from both models with higher probability,
ensuring that:

F’combined(a* | 13) > max (P(A) (a* | l‘), P(B) (a* | fL’))

where a* is the optimal answer. In this way, the
combined space encompasses the high-quality an-
swers from both models and assigns them higher
probabilities than the individual models would on
their own. This probability is from a general per-
spective, because the probability that the merged
answer space contains the correct answer is def-
initely greater than the answer space of a single
LLM.

Sampling from the Combined Answer Space.

In order to efficiently sample high-quality an-
swers from this enhanced space, we designed the
DSS ensemble method, which uses distribution sim-
ilarity to filter out those distributions with large dif-
ferences, thereby retaining distributions with higher

similarity because they are more likely to cluster
near the correct answer, which is also our basic
assumption, and we have demonstrated its effec-
tiveness through a large number of experiments.

In conclusion, by combining the next-token dis-
tributions of multiple LLMs and introducing so-
phisticated sampling strategies, we create a richer
and more reliable answer space that enhances the
probability of producing high-quality answers. The
combined knowledge from multiple models over-
comes the limitations of any single model and sig-
nificantly improves the robustness and performance
of generated responses.

D Vocabulary Statistics

We show the probability of the 5000 most com-
monly used English words being encoded as a sin-
gle token in Table 10. It can be seen that for these
three models, almost 90% of the words are encoded
as a single token. This also shows that most com-
monly used tokens are MCSUs themselves, and
our introduction of MCSU does not bring too much
additional computation.

Model
Ratio

GLM
91.4

Llama
92.1

Qwen
88.9

Table 10: The probability of 5000 commonly used En-
glish words being encoded as a token by different LLMs.

E More Examples

We show more specific examples in Table 11, Table
12 and Table 13, corresponding to examples where
DDS correctly answered questions when only one,
two, and three single models answered correctly.
Combined with Table 8, we can find that DDS can
effectively aggregate the capabilities of multiple
models. As long as one member can give the cor-
rect answer, DDS has the ability to give the correct
answer, and can even give the correct answer when
all member models give incorrect answers.

F Faillure Examples and Analysis

DDS can also make mistakes. As can be seen from
Table 14, DDS can also give wrong answers when
some member models can answer correctly. More-
over, it cannot always exhibit emergent capabilities
when none of the member models answer correctly.
This also shows that DDS still has room for im-
provement and its potential has not been fully ex-
plored. This is also the goal of our further research.
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GSMBK

| csQA

Question

John runs 60 miles a week. He runs 3 days a week. He runs 3 hours
the first day and half as much the other two days he runs. How fast
does he run?

Aside from water and nourishment what does your dog
need? (A) bone (B) charm (C) petted (D) lots of attention
(E) walked

Qwen

John runs 3 hours on the first day, and half as much on the other two
days. This means he runs 3/2 = 1.5 hours on each of the other two
days. So in total, he runs 3 + 1.5 + 1.5 = 6 hours per week. He runs
60 miles in 6 hours, so his speed is 60/6 = 10 miles per hour. The
answer is: 10

Analysis: Dogs, like all animals, require various needs
to maintain their health and happiness. While water and
nourishment are essential, dogs also need physical activity,
mental stimulation, and affection. Among the given op-
tions, "walked" (Option E) is directly related to the physical
exercise that dogs need.

Answer: (E) walked

Llama

John runs 60 miles a week. He runs 3 days a week. So he runs 60 /
3 =20 miles a day. He runs 3 hours the first day, and half as much
the other two days. So he runs 3 hours the first day, and 1.5 hours
each of the other two days. 3 + 1.5 + 1.5 = 6 hours. So he runs 20
miles in 6 hours. 20/ 6 = 3.33 miles per hour. The answer is 3.33.

Analysis: Dogs need a variety of things to stay happy
and healthy, aside from water and nourishment. One of
the most important things they need is exercise, which is
closely related to option (E) walked.

Correct answer: (E) walked

GLM

The total distance he runs in a week is 60 miles, and the total time
he runs is:

3 hours (first day) + 3 hours (second day) + 3 hours (third day) =9
hours

Now, we can calculate his average speed for the week:

60 miles / 9 hours = 6.67 miles per hour

So, John’s average speed for the week is approximately 6.67 miles
per hour.

Analysis: To determine the correct answer, we need to
consider the basic needs of a dog, which include physical,
emotional, and social requirements.

Answer: (D) lots of attention

DDS

John runs 60 miles a week. He runs 3 days a week. On the first day,
he runs 3 hours. On the other two days, he runs half as much as the
first day, which is 3/2 = 1.5 hours each day.

So, the total hours he runs in a week is: 3 hours (first day) + 1.5
hours (second day) + 1.5 hours (third day) = 6 hours

To find out how fast he runs, we divide the total miles he runs by the
total hours he runs: 60 miles / 6 hours = 10 miles per hour

Analysis: Dogs are social animals that require attention,
exercise, and affection to maintain their physical and mental
health. While bones can be a treat, they are not a necessity
for a dog’s overall well-being. Charm is not a requirement
for a dog’s needs. Petting can be a form of affection, but it
is not a fundamental need. Walking is essential for a dog’s
physical health and exercise, which is a crucial aspect of

John runs at a speed of 10 miles per hour.

their care.
Answer: (D) lots of attention

Table 11: Examples where only one of the three single LLMs answers correctly. Incorrect answers are shown in
red and correct answers are shown in blue. Since some answers are too long, we have made some adjustments to
facilitate presentation, but the core content remains unchanged.

We have selected several failure cases and ana-
lyzed their internal autoregressive generation pro-
cesses. We found that in most cases, the failures
were due to significant distribution differences be-
tween models, especially during the critical stages
of autoregression (e.g., key numbers or key op-
tions). In these instances, one model provided an
MCSU with excessively high confidence for an in-
correct answer, which ultimately affected the final
result.

According to the article’s description of DDS’s
dynamic selection process, if the similarity be-
tween multiple distributions during the autoregres-
sive process is low, we retain all distributions be-
fore proceeding with ensemble integration. There-
fore, failures mostly occur when there are substan-
tial differences between model answers, and the
incorrect answer happens to have the highest confi-
dence.

The root cause, we believe, may stem from vari-
ations in response styles and reasoning processes
across different models, which sometimes invali-
date our assumption that "there is typically only
one correct answer, whereas incorrect answers can
be numerous and varied," leading to DDS failures.

Nevertheless, it is undeniable that DDS remains
effective in most cases, as evidenced by our experi-
mental results.

Here’s a concrete example to illustrate this sce-
nario:

Prefix: "The final option is"

Model 1 generates option B (incorrect) with a
confidence score of 0.8.

Model 2 generates option D (correct) with a con-
fidence score of 0.7.

Model 3 produces an irrelevant adverb, "actu-
ally," with a confidence score of 0.75.

Since the three models’ outputs diverge signif-
icantly (B, D, and an unrelated word “actually”),
the system retains all three distributions and ulti-
mately selects the highest-confidence answer—B
(0.8), despite it being incorrect.

G Discussion

During operation, DDS requires loading all models
simultaneously because each step of its autoregres-
sive process necessitates the next MCSU distribu-
tions from every model. However, the computa-
tions across these models are mutually independent.
This means the parameters and computational load
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required by the DDS strategy scale linearly with the
number of participating models, effectively approx-
imating the sum of all individual models’ require-
ments, without introducing higher-order complex-
ity. Model interactions occur exclusively during
distribution similarity computation, which incurs
negligible computational overhead. All other com-
putations proceed independently across models.

DDS is a method that leverages multi-model
collaboration to improve model performance from
the inference side. It can break through the per-
formance bottleneck of a single model without
training and without consuming a large amount
of resources. Compared to previous multi-model
collaboration methods, DDS does not require man-
ually designing prompts to enable collaboration
among multiple models, nor does it involve the
hassle of multiple rounds of interaction to reach
a consensus. A single round of autoregression is
sufficient to produce a complete and deterministic
answer.

Furthermore, we believe that DDS can be used
for high-quality annotation, as it can integrate the
knowledge boundaries of multiple models to pro-
vide high-quality pseudo-labels for unlabeled data.
The annotation quality is likely to be superior to
that of a single model and could help address the
current shortage of high-quality data.
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Question

Josh decides to try flipping a house. He buys a house for $80,000
and then puts in $50,000 in repairs. This increased the value of the
house by 150%. How much profit did he make?

An underrated thing about computers is how they manage
workflow, at one time it was a big deal when they could
first do what? (A) share files (B) do arithmetic (C) turn on
(D) cost money (E) multitask

Qwen

Josh bought a house for $80,000 and spent $50,000 on repairs, so
the total cost of the house is $80,000 + $50,000 = $130,000.

The value of the house increased by 150% of its original value. The
original value of the house was $80,000, so the increase in value is
150/100 * $80,000 = $120,000.

This means that the new value of the house is $80,000 + $120,000 =
$200,000.

To find the profit, we subtract the total cost from the new value of
the house: $200,000 - $130,000 = $70,000. The answer is $70000.

Analysis: The question is asking about an underrated as-
pect of computers that was once considered a significant
achievement. Among the options, “multitasking" (option
E) is often seen as an advanced feature that wasn’t neces-
sarily a big deal in the early days of computing. However,
considering the context of the question, which seems to
focus on early milestones, the most fitting answer would
be “do arithmetic" (option B). In the early days of comput-
ers, their ability to perform basic arithmetic operations was
indeed a significant achievement, as it demonstrated their
computational capabilities beyond simple data processing
or file management. Answer: (B) do arithmetic

Llama

Josh bought the house for 80,000. He put in 50,000 in repairs. So
the total cost is 80,000 + 50,000 = 130,000. The house increased in
value by 150%. So the new value is 130,000 * 2.5 = 325,000. The
profit is the difference between the new value and the cost. 325,000 -
130,000 = 195,000. The answer is 195,000.

Analysis: The question is asking about an underrated thing
about computers, which is their ability to manage workflow.
The correct answer is the option that was a big deal when
computers first started doing it. Multitasking was a signif-
icant advancement in computer technology, as it allowed
computers to perform multiple tasks simultaneously, mak-
ing them more efficient and productive. Correct answer:
(E) multitask

GLM

To calculate the profit Josh made, we first need to determine the new
value of the house after the repairs.

The value of the house increased by 150%, which means the increase
is 150% of the original value of the house. To find this, we calculate:
150% of $80,000 = 1.5 * $80,000 = $120,000

This $120,000 is the amount by which the value of the house in-
creased. To find the new value of the house, we add this increase to
the original value:

New value of the house = Original value + Increase New value of
the house = $80,000 + $120,000 New value of the house = $200,000
Now, to find the profit, we subtract the total cost (original purchase
price + repair costs) from the new value of the house:

Profit = New value of the house - (Original purchase price + Repair
costs) Profit = $200,000 - ($80,000 + $50,000) Profit = $200,000 -
$130,000 Profit = $70,000

Josh made a profit of $70,000.

Analysis: The question is asking about an "underrated thing
about computers” that was a significant development when
computers first had the capability to do it. Let’s analyze
each option:

(A) share files: While sharing files is a crucial aspect of
computer networking, it was not the first significant devel-
opment when computers were first introduced.

(B) do arithmetic: Computers have always been capable
of doing arithmetic, and this was not a groundbreaking
development when they were first introduced.

(C) turn on: The ability to turn on a computer is a fun-
damental feature, but it is not something that would be
considered an "underrated thing about computers" or a sig-
nificant development when computers were first created.
(D) cost money: The fact that computers cost money is a
given, and it is not a feature that would be considered a
significant development or an "underrated thing."

(E) multitask: Multitasking refers to the ability of a com-
puter to perform multiple tasks simultaneously. This was a
significant development when computers first gained this
capability, as it allowed for more efficient use of the sys-
tem’s resources and improved productivity.

Based on the analysis, the correct answer is:

(E) multitask

DDS

To calculate the profit Josh made, we first need to determine the new
value of the house after the repairs. The value of the house increased
by 150%, which means the new value is 150% of the original value
plus the original value itself.

The original value of the house is $80,000. The increase in value is
150% of $80,000, which is:

150% of $80,000 = 1.5 * $80,000 = $120,000

So, the new value of the house after the repairs is:

$80,000 (original value) + $120,000 (increase) = $200,000

Josh spent $50,000 on repairs, so the total cost of the house after
repairs is:

$80,000 (original purchase price) + $50,000 (repairs) = $130,000
Now, to calculate the profit, we subtract the total cost from the new
value of the house:

$200,000 (new value) - $130,000 (total cost) = $70,000

Josh made a profit of $70,000.

Analysis: The question is asking about an underrated aspect
of computers and a significant milestone in their develop-
ment. The correct answer should be something that was a
major achievement in the early days of computing.

(A) Share files: While file sharing is an important feature,
it’s not a groundbreaking achievement that was a big deal
in the early days of computers.

(B) Do arithmetic: This is a fundamental capability of com-
puters, but it’s not something that was particularly ground-
breaking or a big deal in the early days of computing.

(C) Turn on: This is a basic function of any electronic
device, not a significant achievement in the development
of computers.

(D) Cost money: This is not a feature or capability of
computers, but rather a factor that affects their accessibility.
(E) Multitask: This is a significant achievement in the
development of computers, as it allows them to perform
multiple tasks simultaneously, which was not possible in
the early days of computing.

Answer: (E) Multitask

Table 12: Examples where two of the three single LLMs answer correctly. Incorrect answers are shown in red and
correct answers are shown in blue. Since some answers are too long, we have made some adjustments to facilitate

presentation, but the core content remains unchanged.
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Question

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She
sells the remainder at the farmers’ market daily for $2 per fresh duck

egg. How much in dollars does she make every day at the farmers’

market?

A revolving door is convenient for two direction travel, but
it also serves as a security measure at a what? (A) bank
(B) library (C) department store (D) mall (E) new york

Qwen

Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast, so
she has 16 - 3 = 13 eggs left. She uses 4 eggs to bake muffins, so
she has 13 - 4 =9 eggs left to sell. She sells each egg for $2, so she
makes 9 * $2 = $18 from selling eggs every day. The answer is: $18

Analysis: Revolving doors are commonly used in public
places to control access and maintain a certain level of
security. They are particularly useful in areas where there
is a need to control who enters and exits, such as banks,
where sensitive transactions occur, and large buildings with
high foot traffic. Answer: (A) bank

Llama

Janet lays 16 eggs per day. She eats 3 and bakes 4, so she has 16 - 3

-4 =9 eggs left. She sells these 9 eggs for 2 dollars each. 9 x 2 = 18.

The answer is 18.

Analysis:A revolving door is a type of door that allows
people to enter and exit through the same door, but in
opposite directions. It is often used in high-security areas
to control the flow of people and prevent unauthorized entry.
In this context, the correct answer would be an option that is
typically associated with high-security measures. Answer:
(A) bank

GLM

Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast, so
she has 16 - 3 = 13 eggs left.

She bakes muffins for her friends using 4 eggs, so she has 13-4 =9
eggs remaining.

She sells these 9 eggs at the farmers’ market for $2 per egg, so she
makes 9 * $2 = $18 every day at the farmers’ market.

Analysis: A revolving door is designed to allow people to
enter and exit in both directions smoothly, which can be
particularly convenient in high-traffic areas. However, it
also serves as a security measure by controlling the flow
of people in and out of a building. This can be particularly
important in places where security is a priority, such as
financial institutions. Options Analysis:

(A) Bank - Banks are known for their security measures,
and controlling access is crucial. A revolving door could
serve as a security measure here.

(B) Library - While libraries may have security concerns,
they are not typically as high as those in financial institu-
tions.

(C) Department store - Security is important, but it is not
as critical as in a bank.

(D) Mall - Similar to a department store, while security is
important, it is not as critical as in a bank.

(E) New York - This is not a specific location where a
revolving door would serve as a security measure.

Based on the analysis, the correct answer is: (A) bank

DDS

Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast and
uses 4 eggs for baking muffins. So, she uses a total of 3 + 4 =7 eggs
for personal use.

This leaves her with 16 - 7 =9 eggs to sell at the farmers’ market.
She sells each egg for $2, so she makes 9 * $2 = $18 every day at
the farmers’ market.

Analysis: A revolving door is a type of door that allows
people to enter and exit in both directions, but it also serves
as a security measure. This is because it can help to control
the flow of people entering and exiting a building, making
it more difficult for unauthorized individuals to enter. This
is particularly useful in places where security is a concern,
such as financial institutions. Answer: (A) bank

Table 13: Examples where all of the three single LLMs answer correctly. Incorrect answers are shown in red and
correct answers are shown in blue. Since some answers are too long, we have made some adjustments to facilitate

presentation, but the core content remains unchanged.
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Question

Elliott is trying to walk 10,000 steps a day. He finished half of his
steps on his walks to and from school and did another 1,000 steps
going for a short walk with his friend. He also went for a short jog
around the block and realized that after he had finished his jog, he
only had 2,000 steps left to take. How many steps did Elliott take
during his jog?

What would vinyl be an odd thing to replace? (A) pants (B)
record albums (C) record store (D) cheese (E) wallpaper

Qwen

Elliott finished half of his steps on his walks to and from school,
which means he took 10,000/2 = 5,000 steps on those walks. He
also took 1,000 steps going for a short walk with his friend. So far,
he has taken 5,000 + 1,000 = 6,000 steps. After his jog, he still had
2,000 steps left to take. This means that the number of steps he took
during his jog is the total number of steps he needs to take (10,000)
minus the steps he has already taken (6,000) and the steps he still
needs to take (2,000). So, the number of steps he took during his jog
is 10,000 - 6,000 - 2,000 = 2,000. The answer is: 2000.

Analysis: Vinyl is a type of material that was commonly
used in the production of record albums and, less frequently,
for certain types of wallpaper. It is not typically associated
with clothing or food items like cheese. Therefore, the most
unlikely option for replacing something with vinyl would
be (D) cheese.

Answer: (D) cheese

Llama

Elliott started with 10,000 steps. He did half of that, which is 5,000
steps. Then he did another 1,000 steps. So he did 5,000 + 1,000 =
6,000 steps. He had 2,000 steps left. So he must have done 6,000 +
2,000 = 8,000 steps. The answer is 8,000.

Analysis: The word “vinyl" is often associated with records,
as vinyl records are a type of phonograph record made of
polyvinyl chloride (PVC). Therefore, it would be an odd
thing to replace something that is not related to records.
Correct answer: (B) record albums

GLM

Elliott has a goal of 10,000 steps a day. He has already completed
half of his steps on his walks to and from school, which is 10,000 /
2 =5,000 steps.

He also did another 1,000 steps going for a short walk with his friend,
so in total, he has completed 5,000 + 1,000 = 6,000 steps.

After his jog, he has 2,000 steps left to take, which means he has
taken 10,000 - 2,000 = 8,000 steps so far.

To find out how many steps he took during his jog, we subtract the
steps he took before the jog from the total steps he has taken so far:
8,000 - 6,000 = 2,000 steps.

Therefore, Elliott took 2,000 steps during his jog.

Analysis: The term “vinyl" is commonly associated with a
few specific items. It is a type of plastic material that has
been used in various applications over the years. Here’s
a brief analysis of each option: (A) pants - While “vinyl
pants" are not common, they do exist, and vinyl can be
used in the production of certain types of clothing. So, it’s
not an odd thing to replace pants with vinyl. (B) record
albums - Vinyl is the material traditionally used for record
albums, so replacing them with vinyl would not be odd.
(C) record store - A record store is a place where vinyl
records are sold, so replacing a record store with vinyl
would be odd because vinyl is a material, not a place. (D)
cheese - Cheese is a food product, and vinyl is a material.
Replacing cheese with vinyl would be odd because they are
completely different types of items. (E) wallpaper - Vinyl
can be used to make wallpaper, so replacing wallpaper with
vinyl is not an odd thing. Based on the analysis, the odd
thing to replace would be: (D) cheese

DDS

Elliott has a goal of 10,000 steps a day. He has already completed
half of his steps on his walks to and from school, which is 5,000
steps. He also did another 1,000 steps going for a short walk with
his friend. So, he has completed 5,000 + 1,000 = 6,000 steps so far.
He has 2,000 steps left to reach his goal of 10,000 steps. This means
that the steps he took during his jog must be the difference between
the steps he has completed and the steps he has left to complete his
goal.

So, the steps he took during his jog are 10,000 - 6,000 = 4,000 steps.

Analysis: Vinyl is a type of material that is often used to
make records, which are used to play music. It is also
used in some other applications, such as in the production
of certain types of clothing and accessories. However, it
is not typically used to make pants, cheese, or wallpaper.
Therefore, the odd thing to replace with vinyl would be
something that is not typically made from vinyl.

Answer: (A) pants

Table 14: Examples where DDS answers incorrectly. Incorrect answers are shown in red and correct answers are
shown in blue. Since some answers are too long, we have made some adjustments to facilitate presentation, but the

core content remains unchanged.
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