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Abstract

Diagrams play a central role in research papers
for conveying ideas, yet they are often notori-
ously complex and labor-intensive to create. Al-
though diagrams are presented as images, stan-
dard image generative models struggle to pro-
duce clear diagrams with well-defined structure.
We argue that a promising direction is to gen-
erate demonstration diagrams directly in tex-
tual form as SVGs, which can leverage recent
advances in large language models (LLMs).
However, due to the complexity of components
and the multimodal nature of diagrams, suffi-
ciently discriminative and explainable metrics
for evaluating the quality of LLM-generated
diagrams remain lacking. In this paper, we
propose DiagramEval, a novel evaluation met-
ric designed to assess demonstration diagrams
generated by LLMs. Specifically, DiagramEval
conceptualizes diagrams as graphs, treating text
elements as nodes and their connections as di-
rected edges, and evaluates diagram quality us-
ing two new groups of metrics: node alignment
and path alignment. For the first time, we ef-
fectively evaluate diagrams produced by state-
of-the-art LLMs on recent research literature,
quantitatively demonstrating the validity of our
metrics. Furthermore, we show how the en-
hanced explainability of our proposed metrics
offers valuable insights into the characteristics
of LLM-generated diagrams. Code: https:
//github.com/ulab-uiuc/diagram-eval.

1 Introduction

Diagrams play a central role in research papers
for conveying ideas, e.g., the diagram of Trans-
former (Vaswani et al., 2017) has played a pivotal
role in presenting and publicizing the idea, mak-
ing it one of the most cited deep learning papers.
However, generating high-quality diagrams is often
notoriously complex and labor-intensive to create.
Consequently, automated diagram generation is a
central challenge in AI-assisted scientific discov-
ery (Eger et al., 2025), potentially saving millions

of hours for researchers while improving the qual-
ity of research publications. Although diagrams
are presented as images, standard image generative
models struggle to produce clear diagrams with
well-defined structure (Zala et al., 2023). We argue
that a promising direction is to generate demon-
stration diagrams directly in textual form as SVGs,
which can leverage recent advances in large lan-
guage models (LLMs).

Existing methods on automated diagram genera-
tion with LLMs rely heavily on proprietary LLMs,
either through direct planning (Mondal et al., 2024;
Zhang et al., 2024; Cui et al., 2025) or as assistance
in diagram generation (Belouadi et al., 2023, 2024;
Cui et al., 2025). Given this reliance, advance-
ments in cutting-edge proprietary LLMs, such as
Claude 3.7 Sonnet (Anthropic, 2025) and Gem-
ini 2.5 Pro (Google DeepMind, 2025), directly en-
hance automated diagram generation through SVG
code generation capabilities (Blecher et al., 2023).

However, existing evaluation metrics lack the
expressiveness needed to differentiate diagrams of
varying quality. Most benchmarks employ model-
based, diagram-level metrics (Hessel et al., 2021;
Fu et al., 2023), which were originally designed
for general text-to-image tasks rather than text-
within-image generation specific to diagrams (Ro-
driguez et al., 2023). These metrics evaluate en-
tire diagrams using general vision models, which
limits their explainability and their ability to ac-
curately capture detailed logical correctness, re-
sulting in only moderate correlation with human
judgments (Eger et al., 2025). Thus, there is a
critical need for new metrics.

In this paper, we propose DiagramEval, a novel
evaluation metric designed to assess demonstration
diagrams generated by LLMs. Specifically, Dia-
gramEval conceptualizes diagrams as graphs, treat-
ing text elements as nodes and their connections
as directed edges, and evaluates diagram quality
using two new groups of metrics: node alignment
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Figure 1: DiagramEval framework overview. Intuitively, Node Alignment measures the correctly matched text
elements between generated and groundtruth diagrams while Path Alignment measures the correctly matched
connections upon matched elements.

and path alignment. Specifically, we transform dia-
grams into SVG format, parsing text elements as
nodes. Connections between elements are then ex-
tracted as edges. Our metrics quantify the node
and path (multi-hop edges) alignment between gen-
erated and ground-truth diagrams using precision,
recall, and F1 scores. For the first time, we effec-
tively evaluate diagrams produced by state-of-the-
art LLMs on recent research literature, validating
the proper consistency between our metrics and
existing metrics. We also demonstrate metric statis-
tics and case studies that reveal some previously
unrecognized shortcomings of existing metrics due
to their moderate explainability, for example, over-
sensitivity to spatial layouts and other visual ele-
ments and metric hacking. We furthermore show
empirically how the enhanced explainability of our
metrics helps overcome these shortcomings and
meanwhile offers valuable insights into the charac-
teristics of LLM-generated diagrams.

2 Related Works

Extensive research has addressed both the under-
standing (Han et al., 2023; Liu et al., 2023; Wang
et al., 2024b; Hu et al., 2024) and generation (Mad-
digan and Susnjak, 2023; Yang et al., 2024) of
scientific images, with specific efforts targeting di-
agram generation (Zala et al., 2023; Zhang et al.,
2024; Mondal et al., 2024; Cui et al., 2025). Cur-
rent automated evaluation metrics fall into two
main categories: 1) diagram-to-diagram similar-
ity (Fu et al., 2023), and 2) caption-to-diagram
similarity (Zhang et al., 2019; Hessel et al., 2021).
Both metric types primarily measure overall simi-
larity between generated diagrams and references
in latent space, neglecting detailed logical accuracy,
such as verifying element-wise connections against
the paper context. Closely related to our approach

is the VPEval metric (Cho et al., 2023), which
evaluates element and connection accuracy via vi-
sual question answering (VQA). However, VPEval
often struggles to accurately identify connections
even in diagrams involving common knowledge,
requiring manual annotations (Zala et al., 2023).
Our approach extends the concept of VPEval by
leveraging vision-language models (VLMs) and
file parsing to reliably extract elements and con-
nections, thus better suited for evaluating diagrams
generated from academic papers.

3 Preliminary

Problem Definition Following existing research
working on diagram generation (Zala et al., 2023;
Mondal et al., 2024), we define the task of auto-
mated generation of scientific diagrams from aca-
demic papers: Given the input corpus {T, c, π},
which includes original paper context T , origi-
nal diagram captions corig, and layout captions
clayout, our goal is to generate a diagram D which
demonstrates the overall idea of research paper
T . We have a groundtruth diagram Dgt, which
we use to generated the layout captions with an
independent vision language model. Dgt also serve
as reference to evaluate generated diagrams. As
mentioned, the diagram generation is done in the
SVG format (Blecher et al., 2023), which is both
editable and widely adopted by proprietary LLMs.

4 Methodology

As illustrated in Figure 1, our evaluation framework
for LLM-generated diagrams is based on the core
idea of treating diagrams as text-attributed graphs
(TAGs) (Yang et al., 2021). In these graphs, dia-
gram elements associated with text are defined as
nodes, while connections between elements form
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directed edges. We introduce novel metrics to eval-
uate these diagrams from two complementary per-
spectives: Node Alignment, which assesses the
matching of nodes between the generated and ref-
erence diagrams, and Path Alignment, which eval-
uates the consistency of paths in both diagrams
connecting matched nodes.

The primary challenge in performing this de-
tailed evaluation lies in effectively extracting nodes
and edges from SVG diagram files, which we ad-
dress in the following section.

4.1 Constructing Diagram Graphs

Node Extraction: Text exists in SVG files in the
form of SVG text items. Since they are accessible
by scanning SVG files, the key problem of node
extraction is to determine what text items belong
to one node. We combine the spatial and semantic
factors in a two-step process to tackle this process.

The upper half of Figure 1 outlines the node
extraction process. First, we form a draft node
list by parsing the SVG file. We collect spatial
coordinates and span lengths of all text items in
the file. Then, we investigate every item pair about
whether 1) their y-coordinates differ by less than
K× font size, and 2) their spans in the x-coordinate
overlap for more than τ . If both conditions are
fulfilled, two items are considered as one node. We
apply above parsing to get the draft node list.

Second, we exploit a light-weight multi-modal
LLM to refine the draft node list according to
the text semantic. This step takes the rendered
SVG image and draft node list as input. The LLM
is tasked with several refinement operations: (1)
Merging spatially contiguous and semantically re-
lated text nodes; (2) Adding missing conceptual
nodes, which may include non-textual elements
(such as icons or logos); and (3) Removing nodes
with unclear semantics. We obtain the final node
list V = {vi} from the LLM output.

Edge Extraction: Edges are represented implic-
itly in the diagram, making their identification
challenging. Manually defining rules to capture
diverse visual forms of connections (e.g., arrows
with various styles, lines, and spatial arrangements
indicating logical flows) from raw SVG data is
highly complex. Thus, we again employ an LLM
with vision capabilities. As depicted in the lower
half of Figure 1, this model is provided with the
rendered diagram image and a curated list of nodes,
each with a unique identifier and textual content.

The LLM analyzes visual cues—such as arrows,
lines, and proximities—to identify all directed
connections between node identifiers. This yields
a set of directed edges E = (vi, vj), . . ., where
vi, vj ∈ V . Combining edge set E with node set
V results in the complete extracted graph G(V,E).

This node and edge extraction process is indepen-
dently applied to both the LLM-generated diagram
D, resulting in the graph Ggen, and the groundtruth
diagram Dgt, yielding the reference graph Gref .
We evaluate its accuracy in Section 5.4.

4.2 Evaluation Metrics
Node Alignment These metrics appraise the fi-
delity of the textual content within the generated
diagram. This involves assessing the degree to
which the set of text elements Vgen in the gener-
ated diagram aligns with the set Vref from the
reference diagram. The core of this compari-
son is a node-matching procedure: each node in
Vgen is compared against all unmatched nodes in
Vref . A match is established if the textual simi-
larity between a pair of nodes, surpasses a prede-
fined threshold. Denoting MV as the set of suc-
cessfully matched node pairs (vgen, vref ), where
vgen ∈ Vgen and vref ∈ Vref , we quantify perfor-
mance as follows:

• True Positives (TPV ): The cardinality of the
set of matched node pairs, |MV |.

• False Positives (FPV ): The count of nodes in
Vgen that remain unmatched, |Vgen| − TPV .

• False Negatives (FNV ): The count of nodes in
Vref that remain unmatched, |Vref | − TPV .

Based on these quantities, we compute informa-
tion retrieval metrics—PrecisionV , RecallV , and
F1-scoreV as our proposed metrics for node align-
ment.

Path Alignment We also assess the node-wise
structural fidelity encoded in Ggen corresponds with
that in Gref in addition to node alignment. We
choose to investigate path, whose existence is a
reachability indicator between two nodes. Not lim-
ited to neighborhood, paths reveal all relationships
in the diagram, thus being a better feature for rela-
tional information comparison.

Crucially, this comparison is constrained to the
subgraph induced by the previously matched nodes
MV , because node appearance has been evaluated
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Model
Node Alignment Path Alignment CLIPScore

prec. recal. F1 prec. recal. F1 Text Image
Llama 4 Maverick 0.4737 0.3121 0.3470 0.2260 0.2506 0.2005 0.6962 0.6950
Gemini 2.5 Pro 0.3600 0.3741 0.3341 0.2503 0.2817 0.2261 0.6090 0.7021
Claude 3.7 Sonnet 0.2921 0.5087 0.3500 0.3353 0.2108 0.2419 0.6206 0.7324

Table 1: Results on diagram generation of three LLMs over our metrics and two CLIPScore metrics (Hessel et al.,
2021), the most widely-used evaluation measurement.

in the Node Alignment. Specifically, we exclude
those unmatchable nodes in one graph that are not
possible to get involved a path in the other graph.

Let MV = (vgen, vref ) denote the set of
matched node pairs. We define VM as the set of
matched nodes, i.e., VM = {vgen | (vgen, vref ) ∈
MV } = {vref | (vgen, vref ) ∈ MV }. For sim-
plicity, we maintain a one-to-one correspondence
between nodes in V M

gen and V M
ref via the mapping

defined by MV .
We then induce subgraphs GM

gen and GM
ref on the

matched nodes VM in both the generated and refer-
ence graphs, respectively.

For each ordered pair of distinct matched nodes
(u, v) where u, v ∈ VM and u ̸= v, we assess: 1)
whether there exists a path from u to v in GM

gen, and
2) whether there exists a path from the correspond-
ing node u′ to v′ in GM

ref , where (u, u′) ∈ MV and
(v, v′) ∈ MV . Formally, we define:

Pgen ={(u, v) | u ̸= v,

path from u to v exists in GM
gen}

Pref ={(u, v) | u ̸= v,

path from u′ to v′ exists in GM
ref}

(1)

where, for each (u, v) ∈ Pgen or Pref , u and v are
matched nodes and u′ and v′ are their respective
counterparts in the other graph according to MV .
We can then compare Pgen and Pref by defining:

• True Positives (TPP ): The number of node
pairs for which a path exists in both induced
subgraphs, i.e., |Pgen ∩ Pref |.

• False Positives (FPP ): Node pairs where a
path exists only in GM

gen, i.e., |Pgen \ Pref |.

• False Negatives (FNP ): Node pairs where a
path exists only in GM

ref , i.e., |Pref \ Pgen|.

Based on these quantities, we compute
PrecisionP , RecallP , and F1-scoreP as our metrics
for path alignment.

In concert, metrics for Node Alignment and
Path Alignment furnish a fine-grained and explain-
able evaluation of LLM-generated diagrams. They
discriminate diagrams by exactly telling the mis-
matching of text elements and their relationship.
Our advantage in interpretablity also provides guid-
ance on where the generation could be improved.
In the next section, we support this point by results.

5 Experiment

This section discuss our experiments conducted
to validate our metrics by comparison with CLIP-
Score (Hessel et al., 2021), the most widely-used
evaluation metrics for diagram generation. We first
explain our experiment setup in Section 5.1. Then,
we give the main result of our experiment in Sec-
tion 5.2. Section 5.3 demonstrates the statistics
of metrics in the experiment. Section 5.4 vali-
dates our metrics by comparing to human evalua-
tion. Section 5.5 explains with cases what happen
when our metrics and CLIPScore differ, respec-
tively. Throughout our experiment, we show that
our metrics provide unique and beneficial informa-
tion towards better evaluation of automated dia-
gram generation.

5.1 Experimental Setup

As mentioned in Section 3, we first prompt state-
of-the-art LLMs to generate diagrams based on the
text input. Then, we evaluate the generated dia-
grams over our 6 metrics (3× Node Alignment,
3× Path Alignment) and CLIPScore (Hessel et al.,
2021), the most common metric for diagram gener-
ation. Following are our detailed setup:

Diagram Generation We pick three cutting-
edge LLMs for diagram generation: Llama 4 Mav-
erick, Gemini 2.5 Pro, and Claude 3.7 Sonnet,
which we access by their official APIs. The unified
prompts we use to generate diagrams are omitted
to Appendix A.3. The layout caption is generated
by Gemini-2.0-Flash-lite by prompting to generate
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Figure 2: Statistic results: probability density functions (PDFs) of our 6 novel metrics.

a layout caption for the diagram image. The used
prompts are omitted to Appendix A.3.

DiagramEval We use Gemini-2.0-Flash-lite as
the LLM used in our evaluation pipeline, includ-
ing node extraction refinement and edge extraction.
The used prompts are omitted to Appendix A.3. K
and τ in the node extraction are empirically set to
1.5 and 0.2.

Baseline We use the code 1 of Diagram-
merGPT (Zala et al., 2023) for computing CLIP-
Score. Following their implementation, we use
SigLIP (Zhai et al., 2023) 2 as the vision and
language encoder in CLIPScore. LLM-generated
layout captions and groundtruth diagrams are
selected as text reference and image reference
for CLIPScore, respectively. Following Dia-
grammerGPT (Zala et al., 2023), we use model-
generated captions for computing CLIPScore be-
cause original captions may not cover enough de-
tails of the groundtruth diagram.

Notably, VPEval (Cho et al., 2023) is not suit-
able for evaluating paper diagrams. First, the ob-
ject detection in VPEval needs text to explicitly
provide the objects. However, in paper diagrams,
there are often dozens of objects while few of them

1https://github.com/aszala/DiagrammerGPT
2https://huggingface.co/google/

siglip-so400m-patch14-384

are explicitly described by paper context. Hence,
we cannot use VPEval to evaluate paper diagrams.
Second, VPEval only counts direct connections
between objects. However, generated diagrams
tend to skip some connections in the reference dia-
grams, for example, a-c compared to the original
a-b-c. This is normal in most cases when b is not
very important compared to the correct connection
between a and c, for example, b is a linear layer
between two backbone models. However, VPE-
val cannot capture such indirect connections, thus
losing discrimination.

Dataset To avoid knowledge leakage, we collect
papers accepted by CVPR2025 as the source of our
evaluation dataset, because they are released after
the data cutoff date of three LLMs. We use an au-
tomated pipeline to select diagrams with abundant
text annotation and collect them with captions and
corresponding paper context. A total number of
361 items are included in our dataset. Data consen-
sus and licenses are omitted to Appendix A.1.

5.2 Quantitative Result

Table 1 shows our quantitative result. Three mod-
els have similar performance in diagram generation
over our metrics and CLIPScore, proving our basic
soundness. All metrics agree that Claude generates
diagrams that best align with the groundtruth dia-
grams, for it performs the best over 4 out of our 6
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Figure 3: Probability Density Functions (PDFs) of two CLIPScore metrics (Hessel et al., 2021).

metrics and CLIPScore (Image).
One interesting observation is that Claude suffers

from poor node alignment precision while having
the outstanding node recall. One potential expla-
nation is that its generated diagrams tend to in-
clude extraneous nodes compared to groundtruth
diagrams. To validate this assumption, we count
the average number of nodes in generated diagrams
by three LLMs. The result fits our assumption that
Claude produces diagrams with 31.67 nodes on
average, much more than 21.42 nodes of Gemini
and 10.68 nodes of Llama. This may also explain
the poor performance of Claude over CLIPScore
(Text): While CLIPScore (Image) puts weights on
the layout and visual elements, CLIPScore (Text)
is more sensitive to unexpected text. Hence, irrel-
evant text elements greatly affect Claude’s perfor-
mance over CLIPScore (Text).

This observation highlights how our metrics pro-
vide interpretable insights into diagram generation
performance, complementing coarse-grained met-
rics with fine-grained, structure-aware evaluation.

5.3 Statistics

We compute the probability density functions of
our 6 novel metrics and 2 CLIPScore (Hessel et al.,
2021), whose result is given in Figure 2 and 3. We
also analyze their correlation and demonstrate the
result in Figure 4.

Node Alignment metrics showed a notable pos-
itive correlation with CLIPScore metrics, likely
due to their common focus on text element con-
sistency. However, Node Alignment exhibited
healthier score distributions. This improvement
stems from isolating node-level textual alignment
from factors like spatial layouts, colors, and styles,
which significantly affect CLIPScore despite be-
ing irrelevant to textual content accuracy. Simply
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Figure 4: Correlation map of our 6 novel metrics and 2
CLIPScore metrics. Metrics of Node Alignment show
considerable positive correlation with 2 CLIPScore met-
rics. Metrics of Path Alignment appear to be indifferent
with 2 CLIPScore metrics.

changing the layout from vertical to horizontal can
partially offset the drop in CLIPScore caused by
removing all connections in the diagram. Addition-
ally, CLIPScore’s sensitivity to superficial image
elements also inherently limits scoring extremes,
constraining its effectiveness in diagram evalua-
tions. Given the fact that novel methods often re-
port only 0.01 improvements on CLIPScore (Zala
et al., 2023; Mondal et al., 2024), Node Alignment
is a good complement and a potential alternate
to CLIPScore.

Conversely, Path Alignment metrics displayed
minimal correlation with CLIPScore. The case
study in the next section will show that this is be-
cause many diagrams generated by three LLMs,
even they are state-of-the-art ones, perform poorly
in expressing relationship. This finding is co-
validated by existing research on whether LLM can
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Figure 5: Case: Low CLIPScore (Text) and high Path F1. CLIPScore (Text): 0.2558. Path F1: 1.
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Figure 6: Case: High CLIPScore (Text) and low Path F1. CLIPScore (Text): 1. Path F1: 0.

understand graph structures within text (Wang et al.,
2023). However, this shortcoming has never been
explicitly revealed by any existing metrics. Path
Alignment provides fine-grained, interpretable in-
sights into missing or incorrect connections, being
a novel perspective of evaluation not offered by
existing metrics.

5.4 Human Evaluation

Accuracy of Node Extraction: Our node extrac-
tion simply transfers one single text element in
the SVG format into one node. This is accurate
because phrases are naturally placed in one text
element in both reference and generated diagrams.
2) Edge extraction: We conduct new experiments
to examine the accuracy of edge extraction. We
randomly pick 1 edge for every diagram and let
two machine learning researchers judge whether
this edge exists in the diagram.

The result shows that 85.87% of the nodes in
reference diagrams and 90% in generated diagrams
are extracted accurately, where 361/361 of refer-
ence diagrams and 300/361 of generated diagrams
are evaluated (no edge cannot be extracted from the
rest 61 generated diagrams because of the low qual-

ity). While it is hard to know how many edges are
there in the diagram, these precision scores make
sure that extracted edges are highly possible to ex-
ist in the diagram. This validates the accuracy of
our edge extraction process. We will add this result
to our new draft to complement the paper.

Correlation with human evaluation: We fol-
low the human evaluation of Cho et al. (2023) and
select a subset of 50 reference diagrams (the first
50 by the name order) and corresponding generated
diagrams by Gemini-2.5-Pro. Two senior machine
learning researchers then evaluate the semantic sim-
ilarity between reference and generated diagrams
by answering the question: do two diagrams ex-
press the same logic? Our interface offers three
options for the human evaluators: good (1.0), fair
(0.5), and bad (0). The average similarity score is
0.3298, with nearly half of the results being 0. The
following Table 2 shows the correlation between
the human-evaluated similarity score and metrics
in our papers:

Our new metrics show better alignment with hu-
man evaluation. We observe that CLIPScore-Image
may give a generated diagram a relatively good
score even if its element-wise logic is definitely dif-
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Figure 7: Case: Low CLIPScore (Image) and high Node F1. CLIPScore (Image): 0.6007. Node F1: 0.8696
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Figure 8: Case: High CLIPScore (Image) and low Node F1. CLIPScore (Image): 0.8094. Node F1: 0.16

Metric Correlation
Node F1 0.4316
Path F1 0.4052
CLIPScore-Text 0.1065
CLIPScore-Image 0.0831

Table 2: Correlation values for different metrics

ferent from the reference, while CLIPScore-Text
is too sensitive to the text description. While our
metrics are more aligned to human judgment com-
pared to CLIPScore, the most widely-used metric
in the field, we believe they are trustworthy enough
to provide another perspective of evaluation to gen-
erated diagrams.

5.5 Case Study: When and how our metrics
and CLIPScore differ

The metric statistics show that our new metrics does
not fully consistent with CLIPScore, the classical
evaluation metric. This raises a research question:
What happen when our metrics and CLIPScore
differ? In this section, we select four cases with
distinct scores by our metrics and CLIPScore and
explain why the difference takes place.

Figure 5 shows a case with low CLIPScore (Text)
and high Path F1. We can see an explicit data flow
in the generated diagram, with good alignment with
the semantic of groundtruth diagram as well as the
original paper (Wang et al., 2024a). This is well
captured by our Path F1. However, the spatial lay-
out and icons in the generated diagram are very dif-
ferent from those in the groundtruth. While layout
captions used in CLIPScore (Text) include detailed
description to these visual elements, the generated
diagram performs poorly over CLIPScore (Text).
This case consolidates the point that the sensitivity
to visual elements of CLIPScore hinder its recogni-
tion of good diagrams. More robust to the interfer-
ence of layouts and icons, our metrics complement
this disadvantage.

Figure 6 shows a case with high CLIPScore
(Text) and low Path F1. In contrast to the above
case, there is no clear data flow. Hence, our Path F1
assigns 0 to this diagram. However, the generated
diagram includes all text mentioned in the layout
caption. For this reason, it has perfect alignment
with the layout caption under CLIPScore (Text).
This exposes an inherent problem of depending
evaluation on models: the generator may hack the
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metric. Only by placing all text elements men-
tioned in the layout caption (rather than those exist-
ing in the original diagram), the generated diagram
yields perfect score in the model-based compari-
son with the layout caption. Our metrics ease this
problem by obtaining intermediates from models.

Figure 7 shows a case with low CLIPScore (Im-
age) and high Node F1. Similar to the case in
Figure 5, the evaluation of CLIPScore is interfered
by the difference in spatial layout and non-textual
icons. By contrast, our Node F1 focuses only on
the existence of text elements, thus giving a more
objective result. Figure 8 suffers similar problems,
where CLIPScore (Image) ignores detailed logic
and evaluates the diagram unreasonably.

To conclude, our metrics overcome two short-
comings of CLIPScore: visual element interfer-
ence and metric hacking in these four cases. This
proves that our metrics constitute good comple-
ments to CLIPScore.

6 Conclusion

This paper introduces DiagramEval, a novel set
of metrics for evaluating large language model
(LLM)-generated scientific diagrams. Unlike ex-
isting evaluation methods, DiagramEval represents
diagrams as graphs and performs automated extrac-
tion of graph structures from diagrams. Evaluation
metrics are then computed through fine-grained
comparisons between the nodes and paths in the
generated and reference graphs. DiagramEval
addresses the current lack of fine-grained, inter-
pretable, and structure-aware metrics in the assess-
ment of automated diagram generation.

Limitations

Our proposed metrics have limitations primarily
due to uncertainties in LLM performance. Specifi-
cally, the LLM may not reliably identify all edges
in the reference graph, potentially causing inaccu-
rate or underestimated evaluations. Despite this,
our metrics reduce dependency on complex models
and offer more interpretable outcomes compared
to existing methods. Addressing these limitations
is an important direction for future work.

As our work focuses on evaluating diagram gen-
eration, it does not raise new potential risks other
than those general ones by using LLMs to generate
contents.
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A Appendix

A.1 Data License and Consensus
In this study, we utilize a collection of research
papers from arXiv as our primary data source. To
ensure ethical and legal reuse, we include only
papers published under open-access licenses that
permit redistribution, including Creative Commons
Attribution (CC BY 4.0), Attribution-ShareAlike
(CC BY-SA 4.0), and Attribution-NonCommercial-
ShareAlike (CC BY-NC-SA 4.0). While the Share-
Alike and NonCommercial terms impose certain
restrictions—such as requiring derivative works
to be shared under the same license or prohibit-
ing commercial use—we fully comply with these
conditions, using the materials only for academic,
non-commercial research with appropriate attribu-
tion. Due to the fact that we only conduct text
mining on the papers and that the number of papers
is huge, we do not cite these papers.

A.2 Usage of AI Assistant
We use ChatGPT to polish the text of our paper.

A.3 Prompts
Following are four prompts we use in our experi-
ment for 1) layout caption generation, 2) diagram
generation, 3) node extraction refinement, and 4)
edge extraction, respectively.
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prompt_parts = [
"Describe␣the␣spatial␣layout

␣of␣the␣components␣in␣
this␣document ,␣focusing␣
on␣their␣relative␣
positions␣and␣
connections.",

"For␣example:␣’Component␣A␣
is␣above␣Component␣B,␣
and␣an␣arrow␣connects␣B␣
to␣C␣which␣is␣to␣the␣
right␣of␣A’.",

"Do␣not␣interpret␣the␣
meaning␣of␣the␣diagram ,␣
only␣its␣visual␣
structure␣and␣element␣
arrangement.␣Be␣concise.
",

pdf_blob_part
]

Listing 1: Prompt: Layout Caption Generation

prompt = f"""
<INSTRUCTION >

Generate an SVG diagram based on the
following information.

**Rules :**
1. Create clean , well -structured SVG

code. Keep the diagram width ="1000"
height ="700".

2. Use main concepts and expressions
given in the original paper context
for element text (very important).

3. Ensure elements (shapes , text) do
not overlap.

4. Do **not** include any legends.
5. Arrows must start and end precisely

on the border of the elements they
connect. Arrows should avoid
crossing other elements by using
vertical and horizontal corner
arrows. Do not use any sloping
arrows.

6. Represent the core mechanisms
described in the context. Avoid
using a single large block for a
complex mechanism that should be
broken down. But also keep the
mechanism representation intuitive
and easy -to-understand enough.

7. ** Never** use any characters leading
to SVG rendering issues , for

example , & (Ampersand).
8. Keep proper layout tightness. Don’t

leave a lot meaningless blank space
between elements.

9. Add font -size independently to every
single text element.

10. Avoid generating problematic svg
code , for example , svg code with
invalid xml characters or duplicate
attributes.

{’11. Adhere strictly to the spatial
layout in the layout and element
text.’ if spatial_layout_prompt else
’’}

Please output *only* the SVG code block ,
starting with ‘<svg ‘ and ending

with ‘</svg >‘.

<END OF INSTRUCTION >

**Paper Context :**
{paper_context}

** Diagram Caption/Focus :**
{diagram_caption}
{layout_section}

Now , output the SVG code block:
"""

Listing 2: Prompt: Diagram Generation

prompt_parts = [
"You␣are␣an␣expert␣diagram␣

analysis␣assistant␣
specializing␣in␣text␣
element␣coherence.",

f"The␣following␣image␣is␣a␣
’{diagram_type_name }’.␣I
␣have␣already␣performed␣
an␣initial␣text␣
extraction␣from␣its␣
source ,␣resulting␣in␣the
␣list␣of␣text␣elements␣
below.",

"\n**Image␣of␣the␣diagram :**
",

pil_image ,
"\n\n** Currently␣Extracted␣

Textual␣Elements␣(-␣
Element␣[ID]:␣\"[ TEXT
]\") :**",

element_list_str ,
"\n\n**Your␣Task :**",
"Analyze␣the␣image␣and␣the␣

provided␣list␣of␣
elements.␣Your␣goal␣is␣
to␣improve␣the␣element␣
list␣by␣identifying␣
necessary␣merges ,␣
additions ,␣or␣removals."
,

"\n1.␣** Merges **:␣Identify␣
if␣any␣listed␣elements␣
are␣parts␣of␣a␣single ,␣
continuous␣text␣block␣in
␣the␣image␣and␣should␣be
␣merged.",

"␣␣␣For␣example ,␣if␣’Element
␣ID_A:␣Hello’␣and␣’
Element␣ID_B:␣World ’␣
visually␣form␣’Hello␣
World ’,␣they␣should␣be␣
merged.",

"\n2.␣** Additions **:␣
Identify␣two␣specific␣
types␣of␣missing␣nodes:"
,

"␣␣␣a)␣Duplicate␣nodes:␣
Nodes␣that␣have␣the␣same
␣text␣as␣existing␣nodes␣
but␣represent␣different␣
instances␣in␣the␣diagram
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.",
"␣␣␣␣␣␣For␣example ,␣if␣there

␣are␣two␣’mask’␣nodes␣in
␣the␣diagram␣but␣only␣
one␣is␣in␣the␣current␣
list.",

"␣␣␣b)␣Non -text␣nodes:␣Nodes
␣that␣use␣icons␣or␣
images␣instead␣of␣text␣
to␣represent␣concepts.",

"␣␣␣␣␣␣For␣example ,␣an␣
OpenAI␣logo␣representing
␣LLMs ,␣or␣a␣neural␣
network␣icon␣
representing␣a␣model.",

"␣␣␣␣␣␣For␣these␣nodes ,␣
generate␣appropriate␣
text␣descriptions␣based␣
on␣their␣visual␣
representation.",

"\n3.␣** Removals **:␣Identify
␣nodes␣that␣should␣be␣
removed␣based␣on␣the␣
following␣strict␣
policies:",

"␣␣␣a)␣Non -English/Non -Math␣
Text:␣Remove␣nodes␣that␣
contain␣**ONLY**␣non -
English␣and␣non -
mathematical␣characters.
",

"␣␣␣␣␣␣For␣example ,␣if␣a␣
node␣contains␣**only**␣
Chinese␣characters ,␣it␣
should␣be␣removed.",

"␣␣␣␣␣␣However ,␣if␣the␣node␣
contains␣a␣mix␣of␣
English␣and␣non -English␣
text ,␣keep␣it.",

"␣␣␣b)␣Numbers␣Only:␣Remove␣
nodes␣that␣contain␣**
ONLY**␣numbers␣(
including␣decimal␣points
␣and␣basic␣math␣symbols)
.",

"␣␣␣␣␣␣For␣example ,␣ ’123’,␣
’3.14’,␣or␣ ’1+2’␣should␣
be␣removed.",

"␣␣␣c)␣Non -conceptual␣
elements:␣Remove␣nodes␣
not␣representing␣
concepts␣in␣the␣diagram ,
␣such␣as␣text␣
explanation ,␣description
,␣or␣examples."

"\n** Important␣Notes :**",
"-␣Do␣not␣consider␣general␣

diagram␣elements␣(like␣
arrows ,␣lines ,␣or␣
decorative␣elements)␣as␣
nodes␣to␣be␣added.",

"-␣For␣duplicate␣nodes ,␣
ensure␣they␣are␣truly␣
separate␣instances␣in␣
the␣diagram.",

"-␣For␣non -text␣nodes ,␣
generate␣clear␣and␣
concise␣descriptions␣
that␣capture␣their␣
meaning.",

"-␣For␣removals ,␣strictly␣
follow␣the␣three␣
policies␣above.␣**Do␣not
␣remove␣nodes␣for␣any␣
other␣reasons .**␣",

"\n** Output␣Format :**",
"First ,␣provide␣your␣

analysis␣in␣a␣’Thinking␣
Phase’␣section ,␣
explaining␣your␣
observations␣and␣
reasoning.",

"Then ,␣after␣the␣signal␣’
FINAL␣ANSWER:’,␣provide␣
your␣findings␣as␣a␣JSON␣
object␣with␣three␣
optional␣keys:␣’merges ’,
␣’adds ’,␣and␣’removes ’."
,

"-␣’merges ’:␣A␣list␣of␣
objects ,␣where␣each␣
object␣has␣’keep_id ’␣(
the␣ID␣of␣the␣element␣to
␣retain␣and␣append␣to)␣
and␣’remove_id ’␣(the␣ID␣
of␣the␣element␣whose␣
text␣will␣be␣appended␣
and␣then␣the␣element␣
removed).",

"-␣’adds ’:␣A␣list␣of␣objects
,␣where␣each␣object␣has␣
a␣’text’␣key␣for␣the␣
newly␣identified␣text␣
string.",

"-␣’removes ’:␣A␣list␣of␣
objects ,␣where␣each␣
object␣has␣a␣’id’␣key␣
for␣the␣element␣ID␣to␣be
␣removed.",

"Example␣JSON␣output:␣{\"
merges \":␣[{\" keep_id \":
␣\"G_1\",␣\" remove_id \":
␣\"G_2\"}],␣\"adds \":␣
[{\" text \":␣\"LLM␣Model␣
(OpenAI)\"},␣{\" text \":␣
\"Input␣Image \"}],␣\"
removes \":␣[{\"id\":␣\"
G_3\"},␣{\"id\":␣\"G_4
\"}]}.",

"If␣no␣operations␣are␣needed
,␣provide␣an␣empty␣JSON␣
object␣{}␣or␣omit␣keys."
,

"Only␣include␣IDs␣from␣the␣
provided␣list␣for␣
merging␣and␣removing.␣
Ensure␣’keep_id ’␣and␣’
remove_id ’␣are␣different
.",

"\n** Response␣Structure :**",
"1.␣Start␣with␣’THINKING␣

PHASE:’␣and␣provide␣your
␣detailed␣analysis",

"2.␣After␣your␣analysis ,␣
write␣’FINAL␣ANSWER:’␣on
␣a␣new␣line",

"3.␣Then␣provide␣the␣JSON␣
output"

]
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Listing 3: Prompt: Node Extraction Refinement

prompt_parts = [
"You␣are␣an␣expert␣diagram␣

analysis␣assistant.",
f"The␣following␣image␣is␣a␣

diagram␣({ diagram_type })
.␣I␣have␣already␣
extracted␣the␣text␣
elements␣from␣it.",

"\n\n** Identified␣Textual␣
Elements␣in␣the␣{
diagram_type}␣Diagram␣(-
␣Element␣[ID]:␣\"[ TEXT
]\") :**",

element_list_str ,
"\n\n**Task :**",
f"Analyze␣**all**␣

connections␣(e.g.,␣
arrows ,␣lines␣indicating
␣flow)␣in␣the␣{
diagram_type}␣Diagram␣
image.",

"Identify␣**all**␣DIRECTED␣
one -to-one␣connections␣
BETWEEN␣the␣provided␣
element␣IDs.",

"Every␣element␣should␣
involve␣in␣at␣least␣one␣
connection."

"All␣straight␣or␣corner␣
arrows␣indicate␣
connections",

"First ,␣think␣step -by-step␣
about␣the␣connections.␣
Then ,␣on␣a␣new␣line ,␣
provide␣the␣final␣list␣
of␣connections.",

"Output␣your␣findings␣as␣a␣
JSON␣list␣of␣lists ,␣
where␣each␣inner␣list␣is
␣a␣pair␣of␣element␣IDs␣
representing␣a␣directed␣
connection␣from␣the␣
first␣ID␣to␣the␣second␣
ID.",

"For␣example:␣[[\" ID1\",␣\"
ID2\"],␣[\"ID1\",␣\"ID3
\"],␣[\"ID4\",␣\"ID2
\"]].",

"Only␣include␣**IDs**␣(not␣
the␣text)␣from␣the␣list␣
provided␣above.␣Ensure␣
the␣source␣and␣target␣
IDs␣are␣correct␣based␣on
␣the␣diagram ’s␣flow.",

"If␣there␣are␣no␣connections
,␣return␣an␣empty␣list␣
[].",

"Start␣your␣final␣JSON␣
output␣with␣the␣signal␣’
Final␣Answer␣JSON:’.",

"\n\n**{ diagram_type}␣
Diagram␣Image :**",

pil_image ,
"\n\n** Thinking␣Process␣and␣

JSON␣Output␣of␣
Connections :**"

]

Listing 4: Prompt: Edge Extraction
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