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Abstract

Diagnosis based on Electronic Health Records
(EHRs) often struggles with data scarcity and
privacy concerns. To address these issues, we
introduce RareSyn, an innovative data synthesis
approach designed to augment and de-identify
EHRs, with a focus on rare diseases. The core
insight of RareSyn involves using seed EHRs
of rare diseases to recall similar records from
both common and rare diseases, and then lever-
aging Large Language Models to substitute the
key medical information (e.g., symptoms or
examination details) in these records with in-
formation from the knowledge graph, thereby
generating new EHRs. We first train a trans-
former Encoder with contrastive learning to
integrate various types of medical knowledge.
Then, RareSyn engages in iterative processes
of recalling similar EHRs, structuring EHRs,
revising EHRs, and generating new EHRs until
the produced EHRs achieve extensive cover-
age of the rare disease knowledge. We assess
RareSyn based on its utility for diagnosis mod-
eling, the diversity of medical knowledge it
incorporates, and the privacy of the synthesized
EHRs. Extensive experiments demonstrate its
effectiveness in improving disease diagnosis,
enhancing diversity, and maintaining privacy.

1 Introduction

Recent advances in artificial intelligence, partic-
ularly in Large Language Models (LLMs), have
demonstrated significant promise in the clinical
diagnosis of diseases based on Electronic Health
Records (EHRs) (Poongodi et al., 2021; Nelson
et al., 2022; Zhao et al., 2024b, 2025). However,
concerns have been raised regarding their effec-
tiveness when dealing with imbalanced training
data. The abundance of data for common diseases
contrasts sharply with the scarcity of data for rare
diseases, potentially hindering the model’s ability
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to accurately diagnose rare conditions (Chen et al.,
2024; Zhao et al., 2024a). Additionally, data se-
curity and privacy issues significantly hinder data
sharing and the development of AI-assisted diagno-
sis (Scheibner et al., 2021; Chen et al., 2021). Se-
cure and privacy-preserving data sharing is crucial,
especially for rare diseases where data is limited
(Hernandez et al., 2022). To address the data defi-
ciency problem for rare diseases, researchers have
proposed various methods, including knowledge-
guided few-shot learning (Zelin et al., 2024; Zhao
et al., 2024b), federated learning (Pati et al., 2022),
and LLM-based retrieval-augmented generation
(Shyr et al., 2023; Chen et al., 2024). However,
none of these approaches produces new rare dis-
ease data to overcome data scarcity, balance the
training dataset, or facilitate secure data sharing.

Data synthesis, describing a paradigm where
generating fully synthetic data serves as an alter-
native to real data (Gonzales et al., 2023), can po-
tentially address data scarcity and privacy issues.
However, the process of synthesizing EHRs that are
medical fact accurate, representative of rare disease
knowledge, de-identified, and capable of enhanc-
ing disease diagnosis performance, presents several
challenges: 1) The scarcity of real examples makes
accurately capturing the full statistical properties
of the data difficult; 2) Any deviation from factual
information about rare diseases during synthesis
can negatively impact the accuracy of diagnostic
models; 3) Ensuring the de-identification of real
EHRs during synthesis is a significant task.

To combat data scarcity and enrich rare disease
samples, we incorporate knowledge graphs (KG)
for disease insights and utilize common disease
EHRs for varied templates. To ensure the medical
accuracy of synthesized EHRs, we use imap (Wang
et al., 2024), a data structure that parses plain text
into term-value pairs, to highlight key informa-
tion during synthesis. To de-identify and ensure
the utility of the synthesized EHRs for diagnosis,
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we propose a KG entity weighting method. This
method emphasizes the differences between the
rare disease KG and EHR templates of common dis-
eases, ensuring that the newly generated EHRs are
rare disease-aware and untraceable to real samples.
With that in mind, we propose RareSyn, a medical
knowledge-enhanced EHR synthesis framework
for rare disease diagnosis. It seeds with a few rare
disease EHRs, recalls similar EHRs from both rare
and common diseases as templates, and samples
entities from rare disease KG to reshape these tem-
plates, thereby generating new rare disease EHRs.

Initially, we train a transformer Encoder with
diverse medical knowledge in a unified contrastive
learning task. Using some seed rare disease EHRs,
we then perform a layered recall process that first
identifies the most related diseases and subse-
quently recalls the top similar EHRs from these
diseases. Following this, we structure the recalled
EHRs using imap to emphasize key information
such as symptoms, examinations, and treatments.
We then replace the content of the recalled imap
with entities sampled from the rare disease KG,
giving high weight to the differences between the
recalled imap and the related entities of the KG.
Finally, we employ LLMs to rephrase the sampled
imaps, thereby generating new EHRs for rare dis-
eases. We repeatedly execute the above process
until the generated rare disease imaps achieve ex-
tensive coverage of the KG.

To assess whether the synthesized EHRs are fac-
tually correct, representative of the target rare dis-
ease, and de-identified, we evaluate RareSyn from
three dimensions: 1) Validity and Utility, examin-
ing if the synthetic EHRs maintain medical accu-
racy and improve rare disease diagnosis; 2) Diver-
sity, determining if the synthetic EHRs capture the
broad statistical properties of the rare disease; 3)
Privacy, ensuring that the synthetic data effectively
protect the real EHRs from potential identification.

Our contributions can be outlined as follows:

• To address data scarcity and privacy issues for
rare diseases, we propose a new framework,
RareSyn, where LLMs and Medical Knowl-
edge Graph work together in an iterative pro-
cess to synthesize new EHRs for rare diseases.

• To assess synthesized EHRs, we compared
them with original data and observed superb
results in diagnosis modeling utility, knowl-
edge diversity, and content authenticity.

• To facilitate further research, we released a
synthesized rare disease EHR dataset com-
prising 1,455 records covering 23 rare dis-
eases, based on 397 real clinical EHRs and
100 EHRs from medical exams 1.

2 Related Work

Data synthesis typically involves the generation of
data through models or algorithms rather than di-
rect human input (Bauer et al., 2024; Long et al.,
2024). As reviewed by (Goyal and Mahmoud,
2024), a variety of machine learning methods have
been employed for data synthesis, including GAN-
based methods (Xu et al., 2019), VAE-based meth-
ods (Kingma, 2013), and large language model
based methods (Radford et al., 2019; Brown et al.,
2020; Meng et al., 2022; Ge et al., 2024).

In the healthcare domain, Buczak et al. (2010)
utilized a data-driven approach to produce synthetic
EHRs for exploring questions related to disease out-
breaks. (Park et al., 2013) proposed a perturbed
Gibbs sampler to generate privacy-preserving pa-
tient data. Choi et al. (2017) developed medGAN
for EHR synthesis, while Han et al. (2024) in-
troduced a discrete diffusion model for generat-
ing tabular EHR data in both unconditional and
conditional scenarios. Additionally, Theodorou
et al. (2023) presented a hierarchical autoregressive
language model for longitudinal EHR generation.
Kumichev et al. (2024) developed an LLM-based
framework for EHR generation.

Despite these advancements, existing methods
do not focus on rare disease data synthesis and
struggle to generate realistic, diverse, valid, and
de-identified EHR data for rare diseases.

3 Methods

RareSyn’s core strength lies in its use of LLMs
to generate new EHRs for rare diseases, guided
by common disease EHR templates and insights
from a rare disease medical KG. As illustrated
in Figure 1, RareSyn begins with a transformer-
based Encoder trained with contrastive learning
to integrate various medical knowledge into a uni-
fied task. Following Zhao et al. (2024b), we uti-
lize disease-related triples from the medical KG,
multiple-choice medical license exam data, and
EHR data during training.

We then continue the following process for EHR
synthesizing: 1) Layered Recalling of Similar

1The dataset will be released at publication.
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Figure 1: Overview of RareSyn. Initially, we train a transformer Encoder with contrastive learning to integrate
various types of medical knowledge. The process then involves rounds of similar EHRs recalling, EHR structuring
by imap, imap replacement, and new EHRs generation to complete the EHR synthesis for rare diseases. A detailed
case study and synthetic EHR example are presented in Appendix E and F.

EHRs. Starting with a seed EHR h for a rare dis-
ease d, we identify the top K1 related diseases and
retrieve the top K2 similar EHRs (Hr) for these
diseases using the Encoder model; 2) EHR Struc-
turing. For each EHR hr in Hr, we extract key
information from the hr using the imap, resulting
in imaphr . Then we mask the values of hr to create
an EHR template tr; 3) imap Replacement. An
algorithm is designed to weight the entities in the
KG of d. We replace the values in imaphr by sam-
pling from these weighted entities using a LLM,
creating a new imap for d, denoted as imapd; and
4) EHR Generation. The imapd is rephrased using
LLMs, guided by the EHR template tr, to produce
readable EHRs. These steps are repeated until the
generated rare disease imaps achieve comprehen-
sive coverage of the KG for d.

3.1 Layered Recalling of Similar EHRs

RareSyn leverages disease EHR templates and a
rare disease knowledge graph to ensure both struc-
tural and contextual validation in the synthesized
records. Relying solely on rare disease EHRs as
templates can result in identical records to the orig-
inal ones, potentially leading to real EHR leakage
and posing privacy issues. To enhance the diver-
sity of synthesized data in a de-identified form, we
incorporate common disease EHRs into the pro-
cess. Starting with a real rare disease EHR h as
a seed, we recall similar EHRs from both com-
mon and rare diseases. However, directly recalling
EHRs can sometimes introduce records that are en-

tirely different from the target diseases, potentially
misleading the training process for disease diag-
nosis. For instance, in our preliminary validation
experiments, directly recalling EHRs for “Renal
Tuberculosis” resulted in EHRs belonging to AIDS,
which has very different clinical notes from “Renal
Tuberculosis.” Using such templates could nega-
tively impact the diagnosis modeling for “Renal
Tuberculosis.” Moreover, template EHRs play a
crucial role in the imap replacement by helping to
weight the KG entities, thereby ensuring the utility
of the diagnosis task (see section 3.2). However, us-
ing template EHRs from too different diseases may
reduce their utility for the target disease diagnosis.

To address this, we apply a layered recalling
mechanism to retrieve EHRs from similar diseases.
Specifically, we use a pre-trained Encoder to en-
code both the seed EHR h and each disease candi-
date. As shown in lines 4-8 in Algorithm 1, each
disease candidate’s representation is compared with
the seed EHR’s representation, and the diseases
with the top K1 largest cosine similarities are se-
lected as the recalled diseases, denoted as Dr. We
next filter the EHRs belonging to Dr to narrow
down the candidate set. We then use the Encoder
to obtain representations for these EHRs. Each
EHR’s representation is compared with that of the
seed EHR, and the top K2 EHRs with the high-
est cosine similarities are selected as the recalled
EHRs, denoted as Hr.
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3.2 EHR Structuring

In this phrase, to ensure RareSyn produces factu-
ally correct EHRs, we extract key information on
symptoms, examination, and treatment, and parse
the EHRs using imap, a data structure that converts
plain text into term-value pairs. For example, con-
sider an EHR for “Renal Tuberculosis” that states:
“Male, 56, with a 2-week history of low-grade fever
and a cough with sputum for 1 month. Chest X-ray
reveals irregular patchy shadows and thin-walled
cavities in the right lower lobe.” The imaphr for this
case is extracted as the following term-value pairs:
(Symptoms: 2-week low-grade fever), (Symptoms:
Cough with sputum for 1 month), and (Examina-
tion: Irregular patchy shadows and thin-walled cav-
ities in the right lower lobe).

Specifically, for a recalled EHR hr, we parse
it using imap, denoted as imaphr , focusing on the
three dimensions mentioned. We then mask the cor-
responding term’s values within imaphr , creating
an EHR template tr (as illustrated in lines 10-11 of
Algorithm 1).

3.3 imap Replacement

We then reshape the imaps with a medical KG to
inject insights about rare diseases, thereby enhanc-
ing diagnostic modeling. Specifically, we scan
each term-value pair of the extracted imap and
aim to replace its value by sampling from the cor-
responding entities in the KG. These entities are
obtained from relationships defined by the term’s
name with the rare disease. For example, for the
EHR described in section 3.2, for the term-value
pair, (Symptom: Cough with sputum for 1 month),
we replace the value by sampling from the entities
identified through the relationship between symp-
toms and the target disease "Renal Tuberculosis"
in the KG. However, performing random replace-
ments poses the issue that many diseases share
similar symptoms. As a result, there is a risk that
all replacements are symptoms common to mul-
tiple diseases, rendering the synthesized imap in-
effective for diagnostic training for the target rare
disease. To address this problem, we introduce a
weighted sampling mechanism that emphasizes the
differences between the KG and the recalled imaps
for effective and de-identified new EHRs.

Suppose the target disease to be synthesized is d,
and the recalled disease EHR is hr, and its imap is
formulated as a set of term-value pairs {(tit , vit)},
where t denotes the terms of Symptom, Examina-

tion, and Treatment, respectively. it ∈ {1, . . . , Nt}
is the index of the term-value pairs of term t with a
maximum number Nt. For a term ti and its related
values Vi, we identify the triplets in the KG that
satisfied head entity is d and the relationship is ti,
their tail entities are our candidates for replacing
the values of the term ti. Then, as illustrated in
lines 12-16 in Algorithm 1, we calculate the weight
for the tail entities. For a tail entity, e, we use the
Encoder to calculate the cosine similarities between
the values v ∈ Vi and entity e. The similarity is de-
noted as S(v, e). To emphasize the differences, the
weight of e should be the inverse of S(v, e), with
a very small ϵ added for exploration. Additionally,
to further improve diversity and reduce repeated
sampling, we add an inverse term to the current
entity sampled numbers. The weight of sampling
the entity e is then formulated as:

W (e) =
r(e)∑
e∈E r(e)

, (1)

where the rating r(e) is given by:

r(e) = log

(
N

Ne

)
+

1

maxv∈Vi(S(v, e))
+ ϵ, (2)

where N is the total number of entities that have
been sampled, Ne is the number of times the
entity ent has been sampled, and ϵ is a small
constant added to ensure exploration. The term
maxv∈Vt(S(v, e)) represents the maximum cosine
similarity between the values in Vi and the entity e.

The weighted KG highlights the different entities
that distinguish imaphr from the KG of disease
d, where entities with larger weights are expected
to be sampled more frequently. After assigning
weights to the KG entities for the target disease d,
to effectively instruct the LLM to focus on entities
with high weights, we first sample entities from the
weighted KG based on their weights calculated by
Equation 1. We ensure that the sampled entities
include those related to symptoms, examinations,
and treatments. We then employ the GPT-4 model
(Achiam et al., 2023) to select from these sampled
entities and replace the values in the imap of the
recalled EHR hr with them, thereby generating a
new imap for the target rare disease d, denoted as
imapd. This process is illustrated in lines 17-19 of
Algorithm 1. A detailed prompt for this process is
presented in Table 6.
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3.4 Rare Disease EHR Generation

In the previous stages, we structured the recalled
EHR into the imaphr and template tr, and replaced
the imaphr ’s values with the target rare disease’s
weighted knowledge graph to produce the new
imap for the target disease d as imapd. In this
stage, we aim to instruct the LLM to generate new
EHR text for the rare disease d based on the imapd
and the template tr.

As shown in Figure 1, we make full use of the
imapd, transformed by the weighted KG, in terms
of symptom, examination, and treatment for dis-
ease d. This is integrated with the EHR templates
tr of related diseases to guide the LLM in filling
in the masked content of tr concerning symptom,
examination, and treatment for d. We then feed the
imapd, which contains key diagnostic insights of
the rare disease d, along with the template tr to the
LLM. Subsequently, we instruct the LLM to select
the appropriate entities to fill in all the masks in the
template tr, thereby generating a new EHR hd for
the rare disease d in natural language form. The
EHR generation process is detailed in lines 21-22
of Algorithm 1, and the prompt for this process is
presented in Table 7.

3.5 Stopping Mechanism

As illustrated in Figure 1, we continue the four
steps outlined above: recalling the related diseases
and similar EHRs to obtain the EHR hr, structur-
ing the EHR hr to get imaphr and the template
tr, replacing imaphr to create imapd, and generat-
ing the final EHR. This process results in the final
synthetic EHR for the rare disease.

We expect to synthesize EHRs enriched with in-
sights from the rare disease KG to enhance rare
disease diagnosis. To fully leverage the KG infor-
mation and improve data synthesis efficiency, we
propose the entity weighting mechanism for effi-
cient entity utilization. Once all relevant entities are
integrated into the synthetic data, we can conclude
the iterative synthesis process described above. To
assess the synthetic data’s coverage of the rare dis-
ease KG, we introduce a metric that measures the
proportion of sampled entities in the KG relative to
the total number of entities, as follows:

β(d) =

∑
e∈G(d) INe>0

U
, (3)

where Ne represents the number of times entity e
has been sampled, and G(d) denotes the sub-KG

for disease d in terms of symptom, examination,
and treatment. The indicator function I equals 1 if
Ne > 0 and 0 otherwise. U is the total number of
entities in G(d).

The loop “for hr ∈ Hr” in Algorithm 1 can
generate multiple EHRs as instructed in the prompt,
but we set it to produce one per iteration. The total
number of EHRs depends on β and the threshold
(we set as 0.98). Specifically, we generated 1,330
rare synthetic EHRs for JARVIS-D and 125 for
JarvisD2 (see Appendix Table 4).

Algorithm 1 EHR Synthesizing Algorithm
Require: Target rare disease d, its KG and related entities

number U , all EHRs H , K1,K2, N , and ϵ

Ensure: Synthesized EHRs Ĥd for d
1: Init the Encoder model M , set β,Ne = 0
2: while β <= 0.98 do
3: N = N + 1
4: # layered recalling of similar EHRs
5: Randomly Select seed a EHR h of disease d
6: Use M to get K1 diseases related to h, as Dr

7: Use M to get K2 EHRs to h diagnosed in Dr , as Hr

8: for hr in Hr do
9: # EHR structuring

10: Use LLMs to structure hr , as imaphr

11: Mask imaphr value in Hr to create template tr .
12: # KG Entity Weighting
13: for Entity e in KG with head = d and relationship

∈ {Symptom, Examination, Treatment} do
14: Ne+ = 1
15: Use M to compute e’s similarity with imaphr ’s

values, find max, and get e’s weight via eq. 1, 2
16: end for
17: # imap Replacement
18: Sample entities Ew based on weighted KG
19: Instruct LLM to replace imaphr ’s values with Ew

to get imap for d, as imapd
20: # EHRs Generation
21: Guide LLM to synthesize EHR hd on imapd & tr
22: Update β via equ. 3
23: end for
24: end while

4 Experimental Settings

4.1 Datasets and Baseline

Medical Knowledge Graph. We used the medi-
cal knowledge graph2 in RareSyn and, following
(Zhao et al., 2024b), trained the encoder for dis-
ease and EHR retrieval with 2,585 disease-related
triples. Each triple consists of two entities and a
relationship, in the form (entitya, relation, entityb);
for example, (Tuberculosis of kidney, Symptom,
Back pain). We also incorporated question-answer
pairs from medical licensing exams for training
(see Appendix A for details).

2https://jarvislab.tencent.com/kg-intro.html
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Table 1: This table shows the Micro-F1 scores for rare diseases (on JARVIS-Drare and JarvisD2rare) and overall
diagnosis (on JARVIS-D and JarvisD2). We compare the results of training with only original EHRs and with
additional synthetic rare disease EHRs from MedSyn and RareSyn (ours) across different diagnosis models. GPT-4,
DeepSeek-R1, and MedPaLM-2 use in-context learning with either 4 original EHR examples or a mix of 2 original
and 2 synthetic examples. All RareSyn instances significantly (p < 0.05) outperform Original and MedSyn. The
highest F1 score is underlined. The Macro-F1 results are presented in Appendix D.

Methods JARVIS-Drare JARVIS-D JarvisD2rare JarvisD2

Original MedSyn RareSyn Original MedSyn RareSyn Original MedSyn RareSyn Original MedSyn RareSyn
Embedding-Based

BERT (Devlin et al., 2018) 20.5 84.0 92.4 87.3 89.2 89.9 41.2 71.2 78.8 88.1 89.4 91.9
MedBERT (Ting et al., 2020) 21.2 84.7 93.1 87.7 88.3 91.2 47.5 76.2 80.0 88.5 90.6 92.8
GP (Yang et al., 2022a) 21.5 73.6 88.9 84.6 85.8 87.7 42.5 67.5 77.5 86.4 87.2 89.4
KEPT (Yang et al., 2022b) 23.3 81.2 93.1 86.8 87.0 89.5 45.0 73.8 80.0 87.2 88.5 91.5
MKeCL (Zhao et al., 2024b) 25.0 76.4 93.8 88.6 90.3 91.2 50.0 77.5 81.2 89.8 90.6 92.3

General LLMs
ChatGLM2-6B (GLM et al., 2024) 75.0 83.3 95.5 90.9 92.3 92.5 87.5 90.0 91.2 91.1 92.3 92.8
Qwen1.5-7B (Bai et al., 2023) 37.2 78.5 94.8 88.9 89.2 90.4 90.0 93.8 96.2 93.6 94.5 94.5
GPT-4 (Achiam et al., 2023) 27.8 43.1 44.1 46.6 46.8 48.3 95.0 95.0 95.0 96.6 96.6 97.0
DeepSeek-R1 (Guo et al., 2025) 96.9 97.6 97.6 96.2 96.4 96.4 98.8 98.8 98.8 97.4 97.4 98.3

Specialized LLMs
HuatuoGPT2-7B (Zhang et al., 2023) 69.1 78.1 94.8 89.2 91.8 92.1 91.2 93.8 95.0 94.0 94.0 94.9
MedPaLM-2 (Singhal et al., 2025) 29.2 38.2 43.1 45.3 46.1 46.1 85.0 86.2 87.5 91.5 91.5 92.8

Electronic Health Records. We evaluated
RareSyn using two datasets: JARVIS-D (Zhao
et al., 2024b) and JarvisD2 (Zhao et al., 2025).
JARVIS-D contains 12,776 EHRs from five hos-
pitals, covering 193 diseases with patient demo-
graphics, complaints, exams, and treatments. We
split it into JARVIS-Dcommon and JARVIS-Drare, the
latter comprising the rarest 9.3% of diseases (3%
of EHRs, 18 diseases). JarvisD2 includes 10,953
diagnosis question-answer pairs from CMExam,
CMB, and MedBench, spanning 4,949 diseases.
After filtering for diseases with at least 20 ques-
tions, we obtained 929 pairs across 36 diseases.
Using GPT-4, we extracted EHR-diagnosis pairs
and further split JarvisD2 into common and rare
subsets, with JarvisD2rare containing the five rarest
diseases. As real-world rare disease data are ex-
tremely scarce and subject to privacy restrictions,
our rare disease dataset comprises long-tail disease
classes—an approach widely adopted as a proxy in
machine learning research (Li et al., 2019; Zhang
et al., 2024).

For both JARVIS-Drare and JarvisD2rare, we used
16 EHRs per rare disease for testing, with the re-
mainder for training, ensuring thorough evaluation
of synthetic EHRs’ utility. For JARVIS-Dcommon
and JarvisD2common, we split them 80-20% into
training and testing datasets. All training datasets
were used during the Encoder pretraining stage.
More details are in Appendix A.

Baseline. We compared MedSyn (Kumichev
et al., 2024), which uses LLMs to generate syn-
thetic EHRs by sampling medical contexts from
external knowledge bases. Due to the limited rare

disease EHR data, other synthesis methods like
MedGAN were not applicable.

4.2 Implementation

We trained a BERT-based Encoder for disease
and EHRs recalling with contrastive learning on
question-answer pairs derived from medical knowl-
edge graphs, medical licensing exams, and EHRs.
For similar EHRs layered recalling, we selected
one rare disease EHR as a seed, then retrieved the
top 5 related diseases and top 5 EHRs. GPT-4 was
prompted to generate the imap for these EHRs, fol-
lowing Wang et al. (2024). After weighting KG
entities, GPT-4 replaced the imap to produce the
final synthetic EHRs. This process was repeated
until the synthetic EHRs’ imaps fully covered the
rare disease KG and matched the average size of
common disease EHRs (about 70 for JARVIS-Drare
and 25 for JarvisD2rare). Example prompts and
dataset details are in Appendices G and A.

We assessed the utility of RareSyn-generated
synthetic EHRs by training various models on
a multi-class disease diagnosis task, including
embedding-based models (BERT, MedBERT, GP,
KEPT, MKeCL), general LLMs (ChatGLM2-
6B, Qwen1.5-7B, GPT-4), and specialized LLMs
(HuatuoGPT2-7B, MedPaLM-2). We selected
these models based on the state-of-the-art methods
for disease diagnosis task. Due to resource lim-
its, only smaller models (6B/7B) were fine-tuned,
while larger models (e.g., GPT-4, DeepSeek) used
in-context learning. All models were trained in
two settings: (1) with original EHRs only, and (2)
with both original and synthetic EHRs. Additional
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details are in Appendix B.

5 Main Results and Analysis

We conducted extensive evaluations of RareSyn’s
effectiveness in rare disease diagnosis, along with
analyses of its medical factual correctness (Valid-
ity), breadth of medical knowledge (Diversity), and
de-identification capability (Privacy).

5.1 Main Results

Table 1 presents the Micro-F1 scores for disease di-
agnosis when training different models using only
original EHRs, as well as with additional synthetic
rare disease EHRs generated by RareSyne (Ours)
or MedSyn, on both JARVIS-D and JarvisD2. The
results show that RareSyne consistently outper-
formed MedSyn across all models and datasets. By
using a two-tier selection of real EHR templates
and KG sampling that highlights distinguishing
features, RareSyne generates more realistic and
diverse rare disease notes. In contrast, MedSyn’s
limited template diversity and less effective sam-
pling often miss key symptoms, resulting in less
accurate synthetic data. Furthermore, all models
showed significant improvements in both rare dis-
ease and overall disease diagnosis Micro-F1 scores
when synthetic EHRs were incorporated into the
training dataset (evidenced by the comparison be-
tween Original and RareSyn/MedSyn).

Comparing the results across different diagnostic
models, we found that the improvements for GPT-
4, MedPaLM-2, and DeepSeek-R1 were modest,
likely because they were trained with in-context
learning. Notably, the exceptionally high F1 scores
of ChatGLM2, HuatuoGPT2, and DeepSeek-R1 on
JARVIS-Drare suggest possible data leakage. Simi-
larly, all LLMs performed much better on JarvisD2,
likely due to its open-source data being included in
pre-training.

During the similar EHRs layered recall stage,
our first recalling diseases as constraints prevents
noisy EHR templates from unrelated diseases. This
advantage is demonstrated by the superior perfor-
mance of “RareSyn” over “w/o layered recall” in
Figure 2(a). For example, as shown in Figure 2(b),
using Renal Tuberculosis EHRs as seeds can recall
EHRs from diseases like AIDS, since patients may
share a history of tuberculosis. First recalling simi-
lar diseases and then recalling EHRs within those
disease categories ensures the recalled EHRs are
all renal-related. Moreover, weighted imap sam-

pling ensures the synthetic EHR is distinct from
its templates. As shown in Figure 2(a), this im-
proves disease diagnosis accuracy by 10.7% on
average compared to without weighting. Further-
more, using common disease EHRs as templates in
RareSyn can diversify the expression of synthetic
EHRs, especially when original EHRs are scarce.
As shown in Figure 2(a), omitting common EHR
templates (“w/o Common EHRs”) reduces accu-
racy on JARVIS-Drare by 5.5%, 4.5%, and 2.7% for
MKeCL, Qwen1.5, and HuatuoGPT2, respectively.

5.2 Analysis

Validity We conducted two tests with the assis-
tance of three medical experts to manually verify
the validity of the synthetic EHRs. Firstly, we ran-
domly selected 20 synthetic EHRs for each rare dis-
ease in JARVIS-Drare and JarvisD2rare and asked
the experts to verify if each synthetic EHR was
medically accurate and corresponded to the target
rare disease. The average accuracy across all dis-
eases and experts was around 97% for both datasets.
Secondly, we created 20 pairs of real and synthetic
EHRs for each rare disease, using the remaining
synthetic EHRs not used in the first test. The ex-
perts were then tasked with distinguishing the syn-
thetic EHR in each pair. The average success rate
across all experts was approximately 51.6% for
JARVIS-Drare and 48.3% for JarvisD2rare, indicat-
ing that the synthetic EHRs were highly similar to
the real ones, making them challenging to differen-
tiate. Results are detailed in Table 2, with human
annotation process in Appendix C.

Diversity The diversity of knowledge and tem-
plate expressions in synthetic EHRs is crucial.
As shown in Figure 2(c), diagnostic accuracy im-
proves with increased rare disease KG coverage,
but adding more synthetic EHRs after full coverage
may slightly reduce performance. To further con-
firm this, we reduced EHR volume while maintain-
ing full KG coverage and found that performance
remained stable, indicating data size has minimal
impact once full coverage is achieved.

Figure 3 provides a visualization of EHRs for
several common diseases, as well as both original
and synthetic EHRs for rare diseases in JARVIS-D.
It’s evident that the synthetic data for a given rare
disease clusters around its original data and is well
separated from other diseases. Beyond just overlap-
ping with the primary cluster in the original EHRs,
the synthetic Renal Tuberculosis EHRs also create
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(a) (b) (c)

Figure 2: (a) Impact of different components in RareSyn on MKeCL, Qwen1.5, and HuatuoGPT2’s rare disease
diagnosis accuracy, including imap distance-based weighting, layered recalling of similar EHRs, and the use of
common disease EHRs as templates for synthesis. (b) Comparison of disease distribution among similar EHRs
recalled using "Renal Tuberculosis" EHRs as the seed, through direct EHRs recalling and layered recalling methods.
(c) Rare disease diagnostic accuracy of MKeCL under two conditions: 1) trained with synthetic EHRs at different KG
coverage levels, and 2) trained with reduced EHR volumes while maintaining full KG coverage. The experiments
are performed on JARVIS-Drare (see Appendix D for JarvisD2rare results).

Figure 3: Visualization of EHRs generated by MKeCL
using t-SNE. The EHRs include four common diseases
(Anemia, Nephritis, Enteritis, Pneumonia), and original
and synthetic EHRs for three rare diseases (Renal Tu-
berculosis (RT), Chronic Subdural Hematoma (CSH),
Subphrenic Abscess (SA)) in JARVIS-D.

a cluster around an outlier. This indicates that the
process of synthesizing EHRs with diverse medi-
cal knowledge not only broadens the information
spectrum in rare disease EHRs but also ensures that
outliers are given due attention and incorporated
during the generation of synthetic data.

Table 2: Validity evaluation of RareSyn. The table
shows the accuracy rates of three experts assessing the
medical accuracy (Acc.) of 20 sampled synthetic EHRs
for each rare disease, and the success rates (SR) of these
experts in differentiating between 20 sampled pairs of
original and synthetic EHRs per rare disease.

Dataset Evaluators Accuracy Test (Acc.) Identification Test (SR)

Min Max Avg Min Max Avg

JARVIS-Drare

Expert1 90.0 100.0 97.2 45.0 60.0 53.3
Expert2 85.0 100.0 96.7 40.0 65.0 49.4
Expert3 90.0 100.0 97.5 45.0 65.0 52.2

JarvisD2rare

Expert1 95.0 100.0 98.0 40.0 50.0 45.0
Expert2 90.0 95.0 94.0 40.0 55.0 49.0
Expert3 95.0 100.0 99.0 45.0 60.0 51.0

Table 3: Privacy evaluation of RareSyn. This table
shows the minimum and average cosine distances (using
BERT) between synthetic and original EHRs. All values
are multiplied by 100 for clarity.

Dataset Training Data Min Dist Avg Min Dist

JARVIS-Drare

Original vs Original 3.25 4.25
Original vs Synthetic 4.18 4.97

JarvisD2rare

Original vs Original 3.91 5.11
Original vs Synthetic 4.52 6.07

Privacy To evaluate the privacy of our synthetic
EHRs, we measured the smallest distance in the
embedding space between the synthetic and orig-
inal data in JARVIS-Drare and JarvisD2rare. As
shown in Table 3, the minimum distance between
a synthetic EHR and an original EHR is greater
than the smallest distance within the original EHRs
themselves for both datasets. Additionally, the av-
erage minimum distance between the original and
synthetic data groups is slightly higher than the
average minimum distance within the original data
groups. These larger distances suggest that the syn-
thetic data points are more unique and less similar
to the original dataset compared to the similarity
among the original data points. The fact that these
distances are larger indicates that the synthetic data
does not closely mimic specific instances from the
original dataset. This effectively demonstrates the
synthetic data’s ability to maintain privacy, as it
reduces the risk of sensitive information being in-
ferred from the synthetic data.

A case study on how RareSyn generates syn-
thetic EHRs is presented in Appendix E.

6 Conclusion

To address data scarcity and privacy issues in
rare disease diagnostic modeling based on EHRs,
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we propose RareSyn, a synthetic data generation
method. RareSyn leverages KG for rare disease
insights and common disease EHRs for varied tem-
plates. It recalls similar EHRs from both common
and rare diseases, extracts key information using
a special data structure called imap, reshapes the
imap with a novel KG entity-weighted algorithm,
and produces new EHRs based on the reshaped
imap and recalled EHR templates. Extensive ex-
periments demonstrate RareSyn’s effectiveness in
disease diagnosis improving, medical factual cor-
rectness, knowledge diversity, and de-identification
capability.

Limitations

We acknowledge three limitations of our study.
Firstly, in biomedical literature, “rare diseases”

are typically defined by population prevalence
thresholds (e.g., affecting fewer than 1 in 10,000
individuals), and that many conditions in the tail
of the JARVIS dataset do not strictly meet this
definition. However, due to the extreme scarcity
and privacy constraints surrounding real-world rare
disease data, it is a widely accepted practice in
machine learning research to use long-tail or low-
frequency classes as proxies for rare diseases (Li
et al., 2019; Zhang et al., 2024). This proxy ap-
proach enables reproducible experimentation and
benchmarking, and is especially valuable for de-
veloping and evaluating methods tailored to the
low-sample regime characteristic of true rare dis-
eases.

Secondly, the scope of our study is somewhat
narrow, as it only investigates rare disease data
synthesizing in Chinese. A potential progression of
this research would involve expanding the range of
diseases studied and exploring additional language
systems.

Thirdly, our fine-tuned baseline LLM models
are approximately 7 billion parameters in size, and
their results may differ from those of larger mod-
els. Due to resource limitations, we were unable to
fine-tune larger LLMs for comparison. Future re-
search could extend our experiments by fine-tuning
larger LLMs to further validate the superiority of
the proposed framework.

Ethics Statement

Our work adheres to the ACL Ethics Policy. This
paper aims to highlight the synthesis of electronic
health records (EHRs) for rare disease diagnosis,

addressing potential issues from improper applica-
tion of the proposed models in the medical domain.
The primary objective is to explore an effective
EHR synthesis method using LLMs to alleviate
data scarcity and privacy concerns in rare disease
diagnosis modeling. However, it is crucial to note
that these methods and the synthetic data are not
yet ready for real-world medical deployment. A
significant concern is the potential for these meth-
ods to mislead users about the reasons behind their
predictions, which could lead to incorrect decisions
and serious implications for patient care and out-
comes.

Beyond accuracy and reliability, the ethical con-
siderations of our work include the privacy and
security of sensitive medical data. We have en-
forced rigorous measures to safeguard this infor-
mation throughout the data collection and utiliza-
tion process, even when using previously proposed
datasets. In conclusion, while our work shows
promise for improving disease diagnosis, it is es-
sential to approach its application with caution. We
must continue to prioritize ethical considerations of
accuracy, transparency, data privacy, and security
as we further develop and refine these methods.
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A Datasets

Medical Licensing Exams. We used 41,626
multiple-choice questions from past Medical Li-
censing Exams for Encoder pretraining. These
questions span six categories of medical knowl-
edge: treatment, lab test, body part, medicine,
disease cause, symptom, and others, comprising
33.6%, 23.5%, 1.1%, 5.3%, 5.3%, 9.1%, and 18.6%
of the data, respectively. Each exam question was
converted into a question-answer pair, with the cor-
rect answer forming a positive instance and each
incorrect option forming a negative instance. We
extracted the EHR descriptions from diagnostic
medical examination questions. These questions
are meticulously edited and high in information
density, ensuring that the clinical text can be defini-
tively diagnosed.

An example is:
Female, young. Suddenly experienced chills,

high fever, lower back pain, and symptoms of fre-
quent urination and painful urination for a week.
She has no history of similar episodes. Examina-
tion: Body temperature 39.4°C, positive percus-
sion pain in the right kidney area, urine protein
(+), 20-30 white blood cells/HP, 0-2 white blood
cell casts/low power field. What is the most likely
diagnosis for this patient?

We can extract the description part as the EHR.

JARVIS-Drare. The tail 18 disease EHRs in
JARVIS-D account for 9.3% of all diseases, rep-
resenting 3% of JARVIS-D. These tail diseases
and their corresponding EHR counts are Obsessive-
Compulsive Disorder(22), Sigmoid Volvulus(22),
Hypopituitarism(22), Rickets(22), Cystitis(22),
Esophagitis(21), Hematogenous Pulmonary Ab-
scess(21), Pulmonary Embolism(21), Eclamp-
sia(21), Acute Stress Disorder(21), Periodic Paraly-
sis(20), Uterine Perforation(20), Hypoxic Ischemic
Encephalopathy(20), Gonorrhea(20), Dermato-
myositis(20), Subphrenic Abscess(20), Chronic
Subdural Hematoma(20), and Renal Tuberculo-
sis(20).

JarvisD2rare. Since the original JarvisD2 con-
tains 10,953 disease diagnosis questions covering
4,949 distinct diseases, and most of these diseases
have fewer than 3 corresponding questions, we fil-
tered out diseases with at least 20 questions each
to create a dataset for our disease diagnosis clas-
sification task. The tail 5 disease EHRs account
for 13.9% of the diseases, respresenting 10.8% of

the filtered JarvisD2. These tail diseases and their
corresponding EHR counts are Adenomyosis(20),
Ventricular Septal Defect(20), Phenylketonuria(20),
Peptic Ulcer(20) and Pulmonary Tuberculosis(20).

Synthetic EHRs. Using EHRs in JarvisD2rare
and JARVIS-Drare as seeds, we created their corre-
sponding synthetic EHR datasets using RareSyn.
More dataset details for JARVIS-D, JarvisD2, and
their corresponding original and synthetic rare dis-
ease datasets are presented in Table 4.

B Experiment Settings

Implementations In training various models on
the disease diagnosis task, we applied the subse-
quent hyperparameter configurations:

• All embedding-based models were trained
with a learning rate of 1×10−4, 100 warm-up
steps, a batch size of 16, a maximum sequence
length of 256 and a maximum of 100 epochs.

• ChatGLM2-6B, Qwen1.5-7B, and
HuatuoGPT2-7B were fully fine-tuned
using 8 V100 with deepspeed, ZeRO stage 2,
fp16 enabled, a learning rate of 1 × 10−5, a
batch size of 1, gradient accumulation steps
16, and a maximum of 3 epochs.

• For GPT-4, DeepSeek-R1 and MedPaLM-2,
we used in-context learning to simulate the
training process by providing 4 examples to
the model. We compared the results of sam-
pling examples entirely from original EHRs
with those that sampled half from original
EHRs and half from synthetic EHRs.

C Human Evaluation

The medical experts involved in the validation pro-
cess were medical students from our partner hos-
pitals. Their participation was voluntary, and they
were not compensated for their contributions. We
provide detailed human evaluation instructions as
following:

12334



Table 4: Dataset details for JARVIS-D, JarvisD2, and their corresponding original and synthetic rare disease
datasets.

Dataset # of Diseases # of EHRs EHR Avg Length
JARVIS-D 193 12,776 87.5
JARVIS-Drare 18 397 76.8
JARVIS-Drare synthetic 89 1,330 87.6
JarvisD2 36 929 64.4
JarvisD2rare 5 100 57.5
JarvisD2rare synthetic 5 125 65.3

Annotation Process

Phase 1: Synthetic EHRs’ Medical Fac-
tual Correctness Verification

• Carefully check the demographics,
symptom logic, lab results (with ref-
erences), and diagnostic disease.

Annotation:

• Accuracy:

– Fully Accurate: No contradic-
tions

– Partially Accurate: ≤2 errors
– Inaccurate: >2 errors

• Error Marking:

– Highlight in red; comment on er-
ror type (e.g., Data Contradiction,
Temporal Inconsistency) and sug-
gest revisions.

• Confidence: 1–5 scale

Phase 2: Disease Diagnosis Verification

• Carefully review the synthetic EHRs
and verify whether their diagnoses
match the target rare disease.

Annotation:

• Full Match: exactly the same diagnosis

• Partial Match: related disease, e.g.,
nephritis, acute nephritis

• Mismatch: incorrect diagnosis

• Confidence: 1–5 scale

Synthetic EHR Validation Protocol

Objective: Evaluate synthetic EHRs for
accuracy and disease alignment using
evidence-based standards.
Steps:

1. Medical Accuracy: Assess temporal
logic, data consistency, and treatment
appropriateness. Highlight errors in
red, specify error type and revision,
and assign confidence (1–5).

2. Disease Alignment:

• Full Match: All major criteria
• Partial Match: ≥2 minor criteria
• Mismatch: Provide ICD-11 code

3. Confidence: 5 = clear evidence, 3 =
needs confirmation, 1 = speculative

D Experiment Results

This section reports further experimental results
and analyses of RareSyn. Table 5 summarizes
the Macro-F1 scores for both rare disease diag-
nosis and overall diagnostic performance. Our
method outperformed all baseline methods across
all datasets and models. We further report analyses
of the relationships between the breadth of med-
ical knowledge encapsulated in synthetic EHRs,
the percentage of EHRs employed when achieving
full knowledge graph coverage, and the diagnostic
accuracy of models trained with these synthetic
EHRs. Specifically, we explore how the extent
of medical knowledge in synthetic EHRs and the
proportion of EHRs used upon reaching full knowl-
edge graph coverage can influence the diagnostic
accuracy. Experiment results on JarvisD2rare is de-
picted in Figure 4.

Moreover, we conduct an ablative study on
RareSyn to examine the effects of imap distance-
based weighted sampling, layered recall of similar
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Figure 4: Rare disease diagnostic accuracy of MKeCL
on JarvisD2rare when trained with synthetic EHRs of
varying KG coverage, and the accuracy when using full
KG coverage but with different EHR coverage levels.

Figure 5: Impact of various RareSyn components on
the diagnosis accuracy of MKeCL, Qwen1.5, and Hu-
atuoGPT2 on the JarvisD2rare dataset. These compo-
nents include imap distance-based weighting, layered
recall of similar EHRs, and the use of common disease
EHRs as templates for synthesis.

EHRs and the use of common disease EHRs as
templates for synthesis. The results of these ex-
periments on JarvisD2rare are depicted in Figure
5.

E Case Study

Figure 6 presents a case study illustrating how
RareSyn generates synthetic EHRs, specifically for
Renal Tuberculosis (RT).

The process begins with a seed RT EHR. Using
our trained Encoder, we perform a layered recall of
similar EHRs. Initially, we identify diseases most
similar to RT. Within this range of diseases, we
then recall EHRs that share similarities with our
seed RT EHR.

For each similar EHR recalled, we follow steps
2 to 4 in RareSyn to generate a corresponding syn-
thetic RT EHR. For instance, consider a recalled
Nephritis EHR. In step 2, the imap structuring

phase, we extract the imaps from this EHR and
mask them to create a template.

In step 3, we calculate the weight of each en-
tity in the RT knowledge graph. This is done by
comparing them with the imaps of the Nephritis
EHR and the frequency of their occurrence in ex-
isting synthetic RT EHRs. Entities present in the
RT knowledge graph but absent in the Nephritis
EHR imaps are given more weight. For exam-
ple, ’Normal-sized kidney’ and ’Ineffective Anti-
Infective Treatment’ are key pieces of information
that distinguish RT from Nephritis, as Nephritis
often leads to enlarged kidneys and can typically
be treated with anti-infective therapy.

Finally, in step 4, we use GPT-4 to combine the
sampled RT imaps and the Nephritis EHR template
obtained in step 2. This results in a complete syn-
thetic RT EHR.

F A Synthetic EHR Example

We present an example that demonstrates the pro-
cess from Seed EHR to Template EHR to Synthetic
EHR, using the case of "Renal Tuberculosis." This
example includes the original seed EHR, the re-
trieved template EHR, and the final generated syn-
thetic EHR.

Seed EHR: Female, young. She has been expe-
riencing episodic lower back pain accompanied by
frequent urination and urgency for five years. She
was found to have hematuria during a routine urine
test at the hospital. She was admitted to the hospi-
tal due to fever accompanied by lower back pain
and painful urination for two days. Examination:
T380C. Blood pressure 18.7/2kPa (140/90mmHg).
Urine protein (+), red blood cells (++), white
blood cells (+++). Kidney ultrasound: right kidney
11cm×5cm×3cm, left kidney 8cm×4cm×2cm.
Seed disease: Renal Tuberculosis

Template EHR: Female, young. Sore throat,
cough, fever. Noticed red urine two weeks later.
Eyelid edema. Urine output 1000ml/24h. Physical
examination: no rash on the skin. Blood pressure
150/100mmHg. Laboratory tests: urine protein
(++). Red blood cells: 50 60/HP. Blood albumin
329/L. Blood creatinine 123mol/L. Seed disease:
Nephritis

Synthetic EHR: Male, young. Recently expe-
riencing lower back pain, decreased urination, no
hematuria. Normal body temperature, blood pres-
sure 120/80mmHg. Routine urine test: urine pro-
tein (+), urine specific gravity 1.010, red blood
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Figure 6: Case study on how RareSyn generates a synthetic Renal Tubercolosis EHR.
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Table 5: This table shows the Macro-F1 scores for rare diseases (on JARVIS-Drare and JarvisD2rare) and overall
diagnosis (on JARVIS-D and JarvisD2). We compare the results of training with only original EHRs and with
additional synthetic rare disease EHRs from MedSyn and RareSyn (ours) across different diagnosis models. GPT-4,
DeepSeek-R1, and MedPaLM-2 use in-context learning with either 4 original EHR examples or a mix of 2 original
and 2 synthetic examples. All RareSyn instances significantly (p < 0.05) outperform Original and MedSyn. The
highest F1 score is underlined.

Methods
JARVIS-Drare JARVIS-D JarvisD2rare JarvisD2

Original MedSyn RareSyn Original MedSyn RareSyn Original MedSyn RareSyn Original MedSyn RareSyn
Embedding-Based

BERT (Devlin et al., 2018) 20.4 83.9 92.4 84.2 86.8 87.4 41.2 71.1 78.6 87.1 88.6 91.8
MedBERT (Ting et al., 2020) 20.8 84.6 93.1 84.4 86.0 88.8 48.0 76.4 80.3 87.0 89.6 91.8
GP (Yang et al., 2022a) 21.3 73.6 88.8 81.6 82.5 85.4 42.0 67.6 77.2 85.7 85.2 88.6
KEPT (Yang et al., 2022b) 23.4 81.1 93.1 83.2 84.0 86.8 45.3 73.9 79.5 86.1 87.4 91.8
MKeCL (Zhao et al., 2024b) 25.0 76.3 93.7 86.1 88.2 88.9 50.2 77.5 81.8 88.3 89.6 91.6

General LLMs
ChatGLM2-6B (GLM et al., 2024) 75.0 83.3 95.5 88.7 90.5 90.8 87.3 89.9 91.2 89.7 92.1 92.0
Qwen1.5-7B (Bai et al., 2023) 37.0 78.7 94.7 86.6 86.6 88.2 89.9 93.8 96.2 92.3 93.7 94.2
GPT-4 (Achiam et al., 2023) 27.6 43.2 44.1 41.1 41.9 43.7 94.9 95.0 95.0 96.4 96.4 96.2
DeepSeek-R1 (Guo et al., 2025) 96.8 97.6 97.6 94.9 95.5 95.4 98.7 98.7 98.7 96.6 97.2 98.4

Specialized LLMs
HuatuoGPT2-7B (Zhang et al., 2023) 68.8 78.1 94.7 86.4 89.5 89.7 91.3 93.8 95.1 93.5 93.5 94.7
MedPaLM-2 (Singhal et al., 2025) 28.9 37.6 42.9 40.1 40.6 41.3 85.0 86.4 87.4 89.4 91.3 91.4

cells (+), white blood cells (++). Kidney ultra-
sound: right kidney 9cm×4cm×2cm, left kidney
7cm×3cm×2cm. Chest X-ray shows normal heart
and lungs. Despite the use of a large amount of
antibiotics, the treatment effect is not good. Seed
disease: Renal Tuberculosis

G Example Prompts

We provide the details of the prompts used for rare
disease EHR imap replacement and EHR genera-
tion, as presented in Tables 6 and 7.
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<Task>: As an expert in the field of rare diseases, specifically [d], your clinical experience is
invaluable to us in synthesizing our Electronic Health Record (EHR) data related to [d].
You are given a <Structured EHR> from a different disease, formatted in term-value pairs,
as well as a <Knowledge Graph of d>. Your task is to extract related information from this
<Knowledge Graph of d> and use it to substitute the values in each term-value pair of the
<Structured EHR>. This process will generate a new structured EHR specifically for [d].
<Structured EHR>:
[EHR]
<Knowledge Graph of [d]>:
[KG]
<Output a New Structured EHR for [d]>:

Table 6: Rare disease EHR imaps replacement prompt.

<Task>:
As an expert in the field of rare diseases, specifically [d], your clinical experience is invaluable
to us in synthesizing our Electronic Health Record (EHR) data related to [d].
<Instructions>:
1. Carefully read the following provided <Knowledge about [d]> and the <EHR template>.
Incorporate all the content in <Knowledge about [d]> into the <EHR template> to produce a
comprehensive and logical EHR for [d].
2. Ensure that the EHR you produce is reasonable and valid, with no contradictions between
gender, age, and symptoms.
3. The completed EHR should contain ample information necessary for the diagnosis of [d].
<Knowledge about [d]>:
[IMAP]
<EHR Template>:
[TEMPLATE]
Please refer to the format of the <EHR Template> and sample specific content from the
<Knowledge about [d]> to fill in.
<Output [d] EHR>:

Table 7: Rare disease EHR generation prompt.
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