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Abstract

Drug discovery is a long, expensive, and com-
plex process, relying heavily on human medic-
inal chemists, who can spend years searching
the vast space of potential therapies. Recent
advances in artificial intelligence for chemistry
have sought to expedite individual drug dis-
covery tasks; however, there remains a crit-
ical need for an intelligent agent that can
navigate the drug discovery process. To-
wards this end, we introduce LIDDIA, an au-
tonomous agent capable of intelligently navi-
gating the drug discovery process in silico. By
leveraging the reasoning capabilities of large
language models, LIDDIA serves as a low-
cost and highly-adaptable tool for autonomous
drug discovery. We comprehensively examine
LIDDIA, demonstrating that (1) it can gen-
erate molecules meeting key pharmaceutical
criteria on over 70% of 30 clinically relevant
targets, (2) it intelligently balances exploration
and exploitation in the chemical space, and (3)
it identifies one promising novel candidate on
AR/NR3C4, a critical target for both prostate
and breast cancers. Code and dataset are
available at https://github.com/ninglab/
LIDDiA.

1 Introduction

Artificial intelligence (AI) research has long sought
to develop agents capable of intelligent reasoning
to aid humans by autonomously navigating com-
plex, resource-intensive processes. Drug discov-
ery is one such process, relying heavily on human
medicinal chemists, who can spend years searching
the vast space of potential therapies (Blass, 2021).
Recent advances (Chen et al., 2020; Zhao et al.,
2024; Trott and Olson, 2010; Swanson et al., 2024;
Zhou et al., 2019; Jensen, 2019) in AI for chem-
istry have sought to expedite drug discovery by
performing individual tasks in silico. However,
there remains a critical need for an intelligent, au-
tonomous agent that can strategically navigate and

facilitate the drug discovery process.
Drug discovery is a complex, nonlinear process

with many requirements. Successful drugs must not
only bind well to their therapeutic targets, but also
exhibit good physicochemical, pharmacodynamic,
and pharmacokinetic properties. These require-
ments are not necessarily independent; changing
a molecule to satisfy one may result in the viola-
tion of another. Medicinal chemists combine man-
ual analysis with computational tools to identify
promising molecules, evaluate their properties, and
optimize their structures—an iterative process that
demands substantial time and effort.

Large language models (LLMs) have emerged
as reasoning engines capable of intelligent rea-
soning and planning over complex tasks. Recent
works (Yao et al., 2022; Liu et al., 2023; Boiko
et al., 2023; Zhou et al., 2023) have explored lever-
aging LLMs as intelligent agents, using natural
language as an interface for taking actions and ob-
serving results. By pairing LLM’s reasoning capa-
bilities with computational tools for drug discovery,
we envision building a digital twin of the medicinal
chemist, capable of navigating the complexities of
the drug discovery process.

In this work, we introduce LIDDIA, an intel-
ligent agent for navigating the pre-clinical drug
discovery process in silico. LIDDIA is com-
posed of four interconnected components: (1)
REASONER, (2) EXECUTOR, (3) EVALUATOR,
and (4) MEMORY. Each component interacts with
the others to collaboratively navigate the drug dis-
covery process. By harnessing the pre-trained
knowledge and reasoning capabilities of LLMs,
LIDDIA enables intelligent and rational decision-
making over drug discovery steps, mimicking ex-
perienced medicinal chemists and steering the drug
discovery process toward high throughput and suc-
cess rate. In doing so, LIDDIA orchestrates the
intelligent use of computational tools (e.g., docking
simulation, property prediction, molecule optimiza-
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tion). One key strength of LIDDIA lies in its inte-
gration of generative AI tools for molecular design,
enabling it to explore vast chemical spaces beyond
conventional molecular libraries. With a modular
architecture, LIDDIA is designed for flexibility,
allowing it to be seamlessly extended or refined as
new capabilities emerge. To the best of our knowl-
edge, LIDDIA is the first of its kind, representing
the first effort toward low-cost, high-efficiency, au-
tonomous drug discovery.

We rigorously benchmark LIDDIA (Section 5)
and demonstrate that it can produce promising drug
candidates satisfying key pharmaceutical proper-
ties on more than 70% of 30 major therapeutic
targets (Section 5.1). We provide an in-depth study
(Section 5.2), illustrating that LIDDIA strategi-
cally generates, refines, and selects highly favor-
able molecules, well aligned with a real-world drug
discovery workflow (Section 5.2.1). We also iden-
tify a salient pattern underpinning successful out-
comes for LIDDIA: effectively balancing explo-
ration and exploitation in the chemical space (Sec-
tion 5.2.2). Lastly, we highlight one promising
drug candidate for AR/NR3C4, an important target
for prostate and breast cancers (Section 5.4).

2 Related Work

LLMs equipped with tools have recently shown
great promise as autonomous agents for scientific
discoveries, including drug discovery (Gao et al.,
2024). For instance, AutoBA (Zhou et al., 2023)
uses LLMs to automate multi-omics bioinformat-
ics analysis, generating new insights using well-
known bioinformatics libraries. Another example
for biomedical research is PROTAGENT (Ghafarol-
lahi and J. Buehler, 2024), an LLM agent system
for de novo protein design, equipped with physics-
based simulations to ground its design process. Ma-
terials science can also benefit from LLM agents as
well, as shown by A-LAB (Szymanski et al., 2023),
a self-driving laboratory that uses an LLM agent to
control both analysis tools and laboratory hardware
for semiconductor material design.

For drug discovery, COSCIENTIST (Boiko et al.,
2023) uses LLMs to perform web search, con-
duct technical documentation, program, and oper-
ate physical hardware modules to plan and con-
trol chemical synthetic experiments. It demon-
strates the viability LLM agents equipped with
both physical and computational tools to act as self-
driving laboratories for organic chemistry. How-

ever, COSCIENTIST does not integrate any domain-
specific tools for grounding, but rather relies upon
the LLM’s intrinsic chemistry knowledge, web
search, and results from the physical experiments.

In addition, CHEMCROW (M. Bran et al., 2024)
is an LLM agent equipped with specific tools for
small molecule organic chemistry. These tools sup-
port generating molecule structures from natural
language descriptions, predicting molecule proper-
ties, conducting in silico safety checks, and per-
forming retrosynthesis planning. Grounded by
these tools, CHEMCROW demonstrates an ability
to perform complex, multi-step chemistry tasks
commonly found in the drug discovery process.
CACTUS (McNaughton et al., 2024) is a simi-
lar agent to CHEMCROW, emphasizing tools that
can predict properties important to drug discov-
ery. DRUGAGENT (Inoue et al., 2024) is an LLM
agent for drug repurposing, equipped with tools
to search databases of existing drugs to identify
candidates likely to interact with a protein target.
Notably, none of these LLM agents are grounded
with well-established computational tools for novel
structure-based drug discovery (SBDD).

3 LIDDIA Framework

LIDDIA is an automated, agentic framework for
navigating the drug discovery process by com-
bining computational tools and reasoning capa-
bilities. As illustrated in Figure 1, LIDDIA is
composed of four components: (1) REASONER

(Section 3.1), which plans LIDDIA’s actions
and directs LIDDIA to conduct drug discov-
ery; (2) EXECUTOR (Section 3.2), which ex-
ecutes REASONER’s actions using state-of-the-
art computational tools; (3) EVALUATOR (Sec-
tion 3.3), which assesses candidate molecules; and
(4) MEMORY (Section 3.4), which keeps all the
information produced along the drug discovery pro-
cess. Each of these components represents a logi-
cal abstraction from the traditional drug discovery,
enhanced by computational tools and generative
AI. The ultimate goal is, given a target of interest
and property specifications on its potential drugs
(e.g., at least 5 molecules, binding affinities better
than -7, drug-likeness better than 0.5), LIDDIA
produces a diverse set of high-quality molecules
that satisfy these specifications and can be con-
sidered as potential drug candidates for the target.
Overall, LIDDIA represents an innovative initia-
tive towards autonomous drug discovery, integrat-
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Figure 1: Overview of the LIDDIA Framework

ing AI-driven planning, execution, evaluation, and
memory management to accelerate the identifica-
tion and optimization of novel therapeutics.

3.1 REASONER

LIDDIA’s decision-making is conducted through
its REASONER component. Using the information
in MEMORY (e.g., molecules under current con-
sideration and their property profiles), REASONER

conducts reasoning and strategically plans the next
actions that LIDDIA should take, leveraging the
pre-trained knowledge and reasoning capabilities
of LLMs. REASONER explores three action types:
(1) GENERATE to generate new molecules; (2)
OPTIMIZE to optimize existing molecules; and (3)
SCREEN to process the current molecules. These
actions correspond to several key steps in hit identi-
fication (via generative AI) and lead optimization in
pre-clinical drug discovery. Therefore, REASONER

is key to guiding LIDDIA through the iterative
process of molecular design, ensuring that each de-
cision aligns with the overall requirements of drug
discovery while balancing all required properties.

3.2 EXECUTOR

LIDDIA executes all drug discovery actions
planned by REASONER through its EXECUTOR.
EXECUTOR is equipped with state-of-the-art com-
putational tools tailored to different actions. Specif-
ically, EXECUTOR integrates: (1). generative mod-
els for structure-based drug design to implement
the GENERATE action, utilizing methods such as
Pocket2Mol (Peng et al., 2022); (2). generative
models for molecular refinement to implement the
OPTIMIZE action, enhancing drug-like properties
and optimizing molecular structures (Jensen, 2019);
and (3). a processor to implement the SCREEN ac-
tion, allowing complex and logic screening, orga-
nizing and managing molecules, and identifying
the most promising ones.

A key innovation of LIDDIA is that EXECUTOR

leverages generative models for both hit iden-
tification (GENERATE) and lead optimization
(OPTIMIZE). Unlike conventional drug discov-
ery, which relies on searching and modifying ex-
isting molecular databases, EXECUTOR enables de
novo molecular generation, expanding the chemical
space beyond known molecules. This approach in-
creases the likelihood of discovering novel, diverse,
and more effective drug candidates. Moreover, by
automating lead optimization through generative
models, EXECUTOR reduces human bias stemming
from individual expertise levels and limited chem-
ical knowledge. This ensures a more systematic,
data-driven approach to improving molecular prop-
erties. By integrating generative tools, LIDDIA
can operate autonomously, designing superior drug
candidates more efficiently than traditional human-
driven search methods. This automation enhances
cost-effectiveness and accelerates drug discovery,
making LIDDIA a powerful AI-driven co-pilot in
the drug discovery process.

3.3 EVALUATOR

LIDDIA performs in silico assessments over
molecules using its EVALUATOR. EVALUATOR as-
sesses an array of molecule properties essential to
successful drug candidates, including target bind-
ing affinity, drug-likeness, synthetic accessibility,
Lipinski’s rule, novelty, and diversity. For different
properties, EVALUATOR uses the appropriate com-
putational tools to conduct the evaluation. Evalua-
tion results are systematically stored in LIDDIA’s
memory (MEMORY; discussed in Section 3.4),
and subsequently utilized by REASONER to refine
decision-making and guide the next steps in the
drug discovery process. Once EVALUATOR identi-
fies molecules satisfying all user requirements, it
signals LIDDIA to terminate the search and return
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Table 1: Statistics over protein targets.

Disease #Targets (%)

Cancers 15 (50%)
Neurological Conditions 8 (27%)
Cardiovascular Diseases 6 (20%)
Infectious Diseases 4 (13%)
Diabetes 3 (10%)
Autoimmune Diseases 3 (10%)

Some targets are associated with multiple categories.

the most promising candidates. Thus, EVALUATOR

serves as a critical quality control mechanism, sys-
tematically steering LIDDIA toward identifying
optimal drug candidates while minimizing the ex-
ploration of suboptimal chemical spaces. In addi-
tion, EVALUATOR is designed in a plug-and-play
fashion, allowing additional tools to be added or
updated to support new property requirements.

3.4 MEMORY

LIDDIA keeps all the information produced
throughout its entire drug discovery process in
MEMORY. This includes information provided by
users via prompts, such as protein target structures,
property requirements, and reference molecules
(e.g., known drugs). More information will be
dynamically generated as LIDDIA progresses
through the drug discovery process, including the
trajectories of actions that LIDDIA has taken
(planned by REASONER), molecules generated
from prior actions, and their properties. The in-
formation in MEMORY is aggregated and provided
to REASONER to facilitate its planning. MEMORY

is dynamically changing and continuously updated.
This evolving repository enables REASONER to be
well informed by prior knowledge and newly gen-
erated data, and thus better reflect and refine its
strategies, enhancing the efficiency and effective-
ness of automated drug discovery.

4 Experimental Settings

4.1 Evaluation Metrics

Molecule Qualities We use these metrics to eval-
uate the molecules generated by different methods.

Key molecule properties We first evaluate
the following general properties required for suc-
cessful drugs: (1) drug-likeness (Bickerton et al.,
2012) (QED), (2) Lipinski’s Rule of Five (Lipinski
et al., 2001) (LRF), (3) synthetic accessibility (Ertl
and Schuffenhauer, 2009) (SAS), and (4) binding
affinities measured by Vina scores (Trott and Ol-
son, 2010) (VNA). Evaluation on more molecule

properties (e.g. toxicity properties) is available in
Appendix C.2.

Novelty We measure the novelty (NVT) of a
molecule m with respect to a reference set of
known drugs M0 as follows:

NVT(m;M0)=1−maxmi∈M0(simT(m,mi)),

where M0 is the reference set of known drugs, m
and mi are two molecules, and simT(m,mi) is the
Tanimoto similarity of m and mi’s Morgan finger-
prints (Morgan, 1965). High novelty indicates that
new molecules are different from existing drugs,
offering new therapeutic opportunities. A molecule
m is considered novel if NVT(m) ≥ 0.8.

High-quality molecules A molecule m is con-
sidered as “high quality” (HQ) for a target t, if its
properties satisfy QED ≥ QEDt, LRF ≥ LRFt, SAS ≤
SASt, VNA ≤ VNAt, and NVT(m) ≥ 0.8, where the
overline and the subscript t indicate the average
value from all the known drugs for target t. Such
multi-property requirements are typical in drug dis-
covery. Meanwhile, this presents a significant chal-
lenge, as LIDDIA must identify molecules with
key properties similar to or even better than existing
drugs but structurally significantly different from
them. In our dataset, we include existing drugs for
targets as the gold standard for evaluation purposes.

Molecule Set Diversity We measure the diversity
(DVS) of a set of generated molecules M defined
as follows,

DVS(M) = 1− E{mi,mj}⊆M [simT(mi,mj)] ,

where mi and mj are two distinct molecules in M.
High diversity is preferred, as chemically diverse
molecules increase the likelihood of identifying
successful drug candidates. A set of molecules
M is considered diverse if DVS(M) ≥ 0.8. This
imposes a highly stringent requirement on the di-
versity of the generated molecules.

Target Success Rate Target success rate, de-
noted as TSR, is defined as the percentage of targets
for which a method can generate a diverse set of at
least 5 high-quality molecules.

4.2 Protein Target Dataset
To evaluate LIDDIA, we manually curated a
diverse set of protein targets from OpenTar-
gets (Ochoa et al., 2023) that are strongly asso-
ciated with major human diseases: cancers, neu-
rological conditions, cardiovascular diseases, in-
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fectious diseases, diabetes, and autoimmune dis-
eases. For each of these protein targets, we iden-
tified an experimentally resolved structure with a
small-molecule ligand from the RCSB Protein Data
Bank (PDB) (Berman et al., 2000) and extracted
the binding pocket according to its ligand’s posi-
tion. To enable a comparison to existing drugs, we
searched ChEMBL (Bento et al., 2014; Gaulton
et al., 2011) for all known drugs targeting the se-
lected proteins. This leads to 30 protein targets with
PDB structures, ligands, and existing drugs. These
targets will be used as input in our experiments.
Table 1 presents the distribution of the targets in
terms of their disease associations. Please note,
some targets are associated with multiple diseases.
A full list of targets is presented in Appendix A.
We discuss the importance of manual curation of
this dataset in Appendix A.1.

4.3 Implementation Details
LIDDIA leverages Claude 3.5 Sonnet (Anthropic,
2024) as the base model for its REASONER and
EVALUATOR since it achieves state-of-the-art per-
formance in chemistry related tasks (Chen et al.,
2024; Huang et al., 2024). We designed and
fine-tuned specific prompts to guide REASONER

and EVALUATOR, respectively. Details on these
prompts are provided in Appendix B. EVALUATOR

evaluates all the metrics as defined in Section 4.1.
We set the maximum number of actions taken to
10 to ensure a concise yet effective drug discovery
trajectory.

EXECUTOR executes the GENERATE action us-
ing Pocket2Mol (Peng et al., 2022). As a structure-
based drug design tool, Pocket2Mol can gener-
ate molecules using only the target protein struc-
ture. This provides LIDDIA with the ability to
extend to novel targets without known ligands.
For efficiency, Pocket2Mol is set to generate a
minimum of 100 molecules using a beam size
of 300. The OPTIMIZE action is implemented
via GraphGA (Jensen, 2019), a popular graph-
based genetic algorithm for molecule optimization.
In LIDDIA, OPTIMIZE can refine molecules on
three essential properties: drug-likeness (QED), syn-
thetic accessibility (SAS), and target binding affin-
ity (VNA). However, the actions can be easily ex-
panded to cover additional properties.

4.4 Baselines
We compare LIDDIA with two types of base-
lines: task-specific molecule generation meth-

ods, and general-purpose LLMs. For molecule
generation methods, we use Pocket2Mol (Peng
et al., 2022) and DiffSMol (Chen et al., 2025).
Pocket2Mol (Peng et al., 2022) is a well-
established generative method for structure-based
drug design, which uses binding pocket structures
as input. DiffSMol (Chen et al., 2025), on the
other hand, is a state-of-the-art generative method
for ligand-based drug design, requiring a binding
ligand. These two methods represent distinct ap-
proaches in computational drug design, using dif-
ferent information to generate potential drug can-
didates. Notably, Pocket2Mol is used by LIDDIA
in GENERATE actions, capitalizing on the popular-
ity of SBDD and its ability to generate molecules
without reference ligands.

For general-purpose LLMs, we use GPT-
4o (OpenAI et al., 2024), o1 (OpenAI, 2024a),
o1-mini (OpenAI, 2024b), and Claude 3.5 Son-
net (Anthropic, 2024). GPT-4o and Claude 3.5
Sonnet are representative state-of-the-art language
models; o1 and o1-mini are specifically tailored
towards scientific reasoning during their training.
We evaluate all four of these models as baselines
to provide a comprehensive understanding of the
performance of state-of-the-art LLMs.

5 Experimental Results

5.1 Main Results

Table 2 presents the performance of different meth-
ods, including their success rates and the qualities
of their generated molecules. We include the full
results in Table A3.

LIDDIA successfully generates novel, diverse,
and high-quality molecules as potential drug can-
didates for 73.3% of targets (TSR), significantly
outperforming existing methods. Pocket2Mol, the
second-best method, achieves only a 23.3% suc-
cess rate, while most proprietary LLMs fail entirely.
Crucially, LIDDIA excels in simultaneously opti-
mizing all five key pharmaceutical properties – QED,
LRF, SAS, VNA, and NVT– on average, 85% of the
generated molecules for each target are of high
quality (HQ). In contrast, GPT-4o achieves only
35% in HQ, lagging nearly 50 percentage points
behind LIDDIA, while all other methods perform
even worse. In terms of the qualities of the gen-
erated molecules, LIDDIA produces molecules
of comparable or superior quality to the limited
outputs of other methods. These results highlight
LIDDIA as a highly effective and reliable frame-
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Table 2: Performance comparison between the baseline methods and LIDDIA. Full results is available in Table A3.

Pocket2Mol DiffSMOL Claude GPT-4o o1-mini o1 LIDDIA

%m/t #m/t %m/t #m/t %m/t #m/t %m/t #m/t %m/t #m/t %m/t #m/t %m/t #m/t

in
iti

al Generated - 100.0 - 100.0 - 5.0 - 5.0 - 5.0 - 5.0 - 24.5
Valid 100.0 100.0 99.9 99.9 98.7 4.9 97.3 4.9 91.3 4.6 95.3 4.8 100.0 24.5

ge
ne

ra
te

d
m

ol
ec

ul
es

QED≥QEDt 53.4 53.4 60.0 60.0 96.7 4.8 88.2 4.4 90.1 4.5 88.3 4.4 97.2 21.8
LRF≥LRFt 99.7 99.7 72.1 72.1 98.7 4.9 95.9 4.8 90.7 4.5 95.3 4.8 96.7 21.8
SAS≤SASt 77.4 77.4 7.5 7.5 92.7 4.6 90.7 4.5 81.4 4.1 92.6 4.6 88.3 17.4
VNA≤VNAt 15.3 15.3 24.7 24.7 63.3 3.2 59.2 3.0 47.9 2.3 34.6 1.8 95.8 21.2
NVT≥0.8 87.6 87.6 98.2 98.2 46.9 2.4 68.3 3.4 64.1 3.2 55.9 2.8 97.8 22.4

HQ 6.4 6.4 0.7 0.7 30.3 1.5 35.0 1.7 28.2 1.4 20.7 1.0 84.0 14.5

am
on

g
al

lt
ar

ge
ts

%t #t %t #t %t #t %t #t %t #t %t #t %t #t

DVS≥0.8 100.0 30 100.0 30 30.0 9 90.0 27 67.7 20 70.0 21 97.7 29
N≥5&DVS 100.0 30 100.0 30 27.7 8 77.7 23 43.3 13 57.7 17 90.0 27
N≥5&HQ 27.7 8 3.3 1 23.3 7 10.0 3 0.0 0 3.3 1 73.3 22
DVS & HQ 23.3 7 10.0 3 10.0 3 33.3 10 33.3 10 20.0 6 90 27

TSR 23.3 7 0.0 0 6.7 2 6.7 2 0.0 0 0.0 0 73.3 22

Quality of Generated Molecules

NVT ↑ 0.87 0.89 0.77 0.82 0.79 0.80 0.86
QED ↑ 0.51 0.55 0.78 0.74 0.75 0.77 0.69
LRF ↑ 4.00 3.43 4.00 3.99 3.85 4.00 3.93
SAS ↓ 2.46 6.15 2.30 2.16 2.02 2.03 2.62
VNA ↓ -4.74 -4.23 -6.69 -6.56 -6.31 -5.97 -7.17
DVS ↑ 0.88 0.89 0.76 0.84 0.79 0.80 0.82

%m/t: average percentage of molecules per target; #m/t: average number of molecules per target; Generated: initially generated molecules; Valid: generated
molecules that are also valid; overlinet: the average value of corresponding property in the known drugs for the target t. %t: average percentage of targets among
all targets; #t: average number of targets; N≥5&DVS: at least 5 molecules are generated and the set is diverse; N≥5&HQ: at least 5 molecules are generated and
they are of high quality; ↑/↓ indicates higher/lower values are better. Bold and underline indicates the best and second-best results, respectively.

work for accelerating drug discovery, consistently
outperforming existing methods in both success
rate and molecule qualities. We also compare
LIDDIA with more recent state-of-the-art meth-
ods and observe similar findings as presented in
Appendix C.1.

GENERATE

Start

Success

1.00

OPTIMIZE SCREEN

Failure

0.90 0.10

0.260.07

0.11 0.53
0.14

0.86

0.02

Figure 2: Action transitions in LIDDIA. The numbers
represent the transition probabilities.

LIDDIA consistently generates high-quality
molecules across all key pharmaceutical prop-
erties. Notably, it produces the most molecules
(97.2%) for each target with QED higher than av-
erage, and the most molecules (95.8%) for each
target with VNA higher than average, compared
to other methods. Most of them (97.8%) are
also novel, second only to DiffSMol. With re-

# DVS NVT VNA QED SAS LPF

1

2

3

4

5

6

7

8

9

10

Ite
ra

tio
n

124 .87 .72 -3.0 .27 5.0 4.0

93 .86 .73 -4.8 .39 4.8 3.4

39 .83 .81 -6.1 .52 3.4 3.6

35 .79 .80 -6.3 .54 3.4 3.6

16 .76 .82 -6.4 .58 3.0 3.8

32 .82 .79 -6.2 .60 3.2 3.7

12 .78 .82 -6.6 .63 3.1 4.0

33 .83 .81 -5.7 .45 3.0 3.7

5 .74 .82 -7.0 .65 3.2 3.7

5 .73 .83 -7.0 .54 3.0 3.8

GENERATE

OPTIMIZE

SCREEN

30 0 0

0 27 3

0 6 22

0 5 11

0 1 10

0 3 7

0 0 8

0 2 5

0 0 6

0 0 5

Figure 3: Molecule quality (left panel) and actions (right
panel) over iterations by LIDDIA.

spect to known drugs, a vast majority (88.3%)
of LIDDIA’s molecules exhibit high synthetic ac-
cessibility (SAS) and (96.7%) adhere to Lipinski’s
Rule of Five (LRF), comparable to general-purpose
LLMs such as Claude, GPT-4o, and o1. On the
most stringent metric, VNA, LIDDIA significantly
outperforms other methods, with 95.8% of its gen-
erated molecules binding similarly to or better than
existing drugs. In contrast, existing methods strug-
gle to exceed 65% across these key properties.
Overall, LIDDIA proves to be a robust and reliable
approach, surpassing existing methods in generat-
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ing high-quality drug candidates. We also show
that LIDDIA’s generated molecules are better than
or comparable to known drugs in terms of their tox-
icity properties. We provide further discussion in
Appendix C.2.

Existing methods face substantial challenges
to achieve multiple good properties concurrently.
For instance, general-purpose LLMs – Claude,
GPT4o, o1-mini, and o1– exhibit a trade-off be-
tween novelty and binding. While they achieve
impressive VNA, their generations tend to resem-
ble known drugs closely (e.g., <70% novelty). In
contrast, Pocket2mol and DiffSMol demonstrate
the opposite: excel at NVT but struggle at VNA. It
is possible that LLMs often anchor their genera-
tions based on prior knowledge (e.g., known lig-
ands), thus narrowing their explorations. Mean-
while, Pocket2Mol and DiffSMol can generate
new binding molecules but not better than exist-
ing drugs. Note that LIDDIA does not suffer from
such compromise (e.g., both SAS and VNA >95%).

5.2 Agent Analysis

5.2.1 LIDDIA action patterns

Figure 2 presents the transition probabilities of ac-
tions that LIDDIA takes throughout the drug dis-
covery process across all the targets, from start to
finish.

LIDDIA aligns with a typical drug discov-
ery workflow, incorporating intelligent refine-
ment at every stage. The most likely strat-
egy of LIDDIA begins with the generation of
target-binding molecules (GENERATE), followed
by either optimization to enhance their proper-
ties (OPTIMIZE), or screening and selection over
the generated molecules (SCREEN). Typically,
optimization is necessary, which is followed by
molecule screening over the optimized molecules.
Iterative optimization is possible when no viable
molecules exist. Similarly, iterative molecule
screening is employed when plenty of viable
molecules exist but are structurally similar. For
instance, LIDDIA may cluster these molecules
and subsequently identify the most promising
molecules within each cluster. The most common
workflow covers GENERATE, OPTIMIZE, and then
SCREEN toward successful outcomes.

SCREEN serves as a quality-control mecha-
nism to enable successful outcomes. Success-
ful molecules are only possible after SCREEN

completes screening and selection and identifies

such molecules to output. As GENERATE and
OPTIMIZE tend to yield more molecules than
necessary, allowing abundant opportunities for
LIDDIA to succeed, SCREEN prevents LIDDIA
from producing low-quality drug candidates.

Most of the generated molecules from
GENERATE directly go through subsequent opti-
mization by OPTIMIZE. This occurs in approxi-
mately 90% of the cases. Among all the generated
molecules by GENERATE, it is typical that none of
them satisfies all the property requirements, par-
ticularly those properties that are not integrated
into the GENERATE tool designs. Any screening
by SCREEN over such molecules will be futile and
wasteful. Instead, LIDDIA intelligently executes
OPTIMIZE, improving the likelihood of successful
molecules out of SCREEN screening. Meanwhile,
LIDDIA can still identify high-quality generated
molecules and conducts screening directly over
them. This clearly demonstrates the reasoning ca-
pability of LIDDIA as an effective tool for drug
discovery.

LIDDIA leverages performance-driven in-
sights to determine the most optimal action. Con-
fronted with low-quality outputs from GENERATE,
LIDDIA selectively pursues optimization to maxi-
mize results. Whenever additional molecules need
to be considered (e.g., SCREEN does not identify
good candidates), LIDDIA prioritizes optimizing
promising molecules stored in MEMORY rather
than generating entirely new ones. This represents
a cost-effective, risk-averse strategy, balancing ex-
ploration and exploitation by refining known can-
didates with high potential rather than investing
computational resources in de novo generation with
suboptimal outcomes.

LIDDIA favors refining a few highly promis-
ing candidates as it continuously progresses. Fig-
ure 3 describes both the quality of the molecules
produced and the typical actions LIDDIA takes
at each step. Compared to the initial pool, the
output molecules roughly achieve double the QED
and VNA, thus emphasizing the importance of itera-
tive optimization and effective screening strategies.
However, diversity among these top candidates is
often limited since molecules that satisfy multiple
property requirements tend to converge on similar
structures. This further highlights the complex-
ity of drug discovery. Figure 3 (right) also high-
lights how LIDDIA tends to focus on refining the
molecules via OPTIMIZE or SCREEN in later steps,
mimicking a typical drug discovery workflow.
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Figure 4: LIDDIA actions trajectories across different targets.
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Figure 5: Ablation study on LIDDIA.

5.2.2 Analysis on LIDDIA action trajectories

Figure 4 presents an example of LIDDIA action
trajectories to identify promising drug candidates
for CDK5 (Lau et al., 2002), a target for neuro-
logical conditions, such as Alzheimer’s Dementia,
along with examples of trajectories that lead to suc-
cess (e.g., HTR2A, HRAS, DRD2) and fail (e.g.,
PIK3CA, MET, ADRB2) outcomes, respectively.

LIDDIA intelligently balances exploration
and exploitation, critical to identify promising
candidates. In the case of CDK5, where it is highly
challenging to identify a good drug candidate as
demonstrated in the literature (Xie et al., 2022),
LIDDIA is able to adaptively explore the chemi-
cal space via iteratively screening viable molecules
and improving any property the molecules fail to
meet. As shown in Figure 4 (a), LIDDIA starts
with GENERATE (step 1), proceeds with OPTIMIZE

(step 2), then applies SCREEN (step 3) but fails to
find favorable candidates. In response, LIDDIA
refines the failing property (step 4) and performs
another screening (step 5). This process continues
(steps 6, 7, 8) until the agent finally converges to a
set of promising candidates.

This not an isolated case; LIDDIA consistently
displays comparable intelligent decision-making
behavior on other targets as observed in Figure 4 (b)
and Figure 4 (c). Notably, in cases with successful
outcomes, LIDDIA methodically refines several
properties before screening for candidates (DRD2),

(a) (b) (c)
Figure 6: Case study on AR/NR3C4. (a) Promising
molecule (NL-1) generated by LIDDIA. (b) Known
ligand for AR/NR3C4. (c) An example of known ap-
proved drugs for AR/NR3C4.

(a) (b)
Figure 7: (a) Docking of NL-1 within the AR/NR3C4
pocket, with hydrogen bonds shown as solid blue lines.
(b) NL-1 superpositioned with the known ligand for the
AR/NR3C4 pocket. Orange denotes NL-1; Pink denotes
the known ligand.

or strategically determines which molecules to
prioritize and what action to take (HTR2A and
HRAS). For instance, in the HRAS case, LIDDIA
uses several screenings (steps 2 and 3) to iden-
tify viable candidates, optimize them (step 4), and
conduct further screenings (step 5 to 8) until it
identifies favorable candidates. This highlights
one key strength of LIDDIA– its capability to
adapt to feedback (e.g., molecules quality) from
its EVALUATOR, to explore (e.g., via refinement
and generation), and to exploit (e.g., screening ex-
isting molecules) the chemical space. On cases
where LIDDIA yields suboptimal results, such as
PIK3CA, MET, and ADRB2, it still exhaustively
performs various actions up to the action limits
(i.e., 10 iterations). Additional analysis of PIK3CA,
MET, and ADRB2 can be found in Appendix C.3.

5.3 Ablation Study

We perform additional experiments to test the ef-
fectiveness of LIDDIA. First, we replace Claude
3.5 Sonnet with DeepSeek-R1 in all components
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requiring large language models to test LIDDIA’s
robustness to different backend LLMs.Additionally,
we compare LIDDIA to a simple deterministic
loop iterating between LIDDIA’s components to
analyze the importance of reasoning in LIDDIA.
Note that this deterministic loop is similar to
LIDDIA but without any LLM. Concretely, we run
GENERATE once, followed by a loop of OPTIMIZE

and SCREEN for k number of times. We priori-
tize properties that fall below requirements when
optimizing molecules, and only SCREEN for high-
quality molecules. We set k to 10, same as in
Section 4.3. We show some results in Figure 5 and
the full results in the Appendix (Table A3)

Reasoning is critical for successful drug dis-
covery. LIDDIA with reasoning (both Claude 3.5
and DeepSeek-R1) achieves a much higher target
success rate than without (more than 40% absolute
difference), indicating its significance.

LIDDIA is robust to different backend
LLMs. Comparing LIDDIA with Claude 3.5 and
DeepSeek-R1, they both perform similarly (both
with 73% TSR), emphasizing that our framework is
robust to different backend LLMs.

Interestingly, molecules generated by LIDDIA
with DeepSeek-R1 are almost always HQ compared
to Claude (>99% vs 84%). However, only 77%
satisfy the diversity requirements, in contrast to
Claude 3.5 (90%).

5.4 Case Study on AR/NR3C4
We task LIDDIA with discovering new poten-
tial drug therapies targeting androgen receptor
(AR/NR3C4), a hormone-driven transcription fac-
tor protein that plays a key role in both prostate
and breast cancers (Tan et al., 2015; Giovannelli
et al., 2018). LIDDIA identifies one molecule
(named NL-1) with better QED, VNA, and SAS than
the ligand and at least one approved drug (e.g.,
Fulmatide) for the respective targets. They are il-
lustrated in Figure 6. NL-1 has several desirable
traits, such as zwitterionic (with positive and nega-
tive charged atoms on the respective ends)—a trait
typical in most biological molecules and drugs (Mo-
bitz et al., 2024). The molecule also passes several
computational filters, including PAINS (Baell and
Holloway, 2010), BRENK (Brenk et al., 2008),
NIH (Jadhav et al., 2010; Doveston et al., 2015),
Lilly (Bruns and Watson, 2012), and Lipinski (Lip-
inski et al., 2001), further highlighting its attractive-
ness as a drug. In terms of binding, the molecule
has -8.81 kcal/mol for VNA, emphasizing that it

can bind well to the pocket. Notably, Figure 7a
shows that the molecule is buried deep within the
pocket, surrounded almost entirely by hydrophobic
residues providing many van der Waals contacts.
The molecule’s carboxylic acid group also engages
in hydrogen bonding at one end of the pocket, fur-
ther stabilizing the complex and contributing to
binding affinity. Encouragingly, further evaluation
reveals that NL-1 has several established synthetic
routes and demonstrates precedent for antagoniz-
ing stimulator of interferon genes (STING) (Gulen
et al., 2023), thereby useful in the treatment of in-
flammatory diseases (Li et al., 2023). The desirable
traits, combined with its synthetic accessibility and
therapeutic precedents, position the molecule as a
promising candidate for the androgen receptor.

Figure 7b shows a comparison of NL-1 to the
known ligand. Both molecules feature a hydropho-
bic core with polar anchors on either end, but NL-1
is slightly less compact, with fewer fused rings than
the known ligand. This reduces conformational
rigidity, providing slightly increased flexibility to
adapt to the binding pocket. Furthermore, NL-1
anchors itself with a carboxylic acid in place of the
known ligand’s ketone, enabling more hydrogen
bonds.

We also present another case study on EGFR and
extensively discuss the results in Appendix C.5.

6 Conclusions

We present LIDDIA, an agent for autonomous
drug discovery. We comprehensively examine its
capabilities, demonstrating its performance across
many major therapeutical targets and revealing sev-
eral key insights on its success. Furthermore, we
investigate the generated molecules on the highly
critical target EGFR and show their potential as
drug candidates.
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8 Limitations

LIDDIA is not without its limitations, and we plan
to address them in future work. (1) We aim to show
the utility of LLM in navigating drug discovery in
silico, and thus, we solely focus on in silico eval-
uations. However, in silico is only a part of the
entire drug discovery pipeline. To test LIDDIA’s
efficacy in the clinical world, we plan to add wet-
lab validation in our follow-up research. (2) We
focus our evaluation on a few key pharmaceutical
properties without undermining others in our cur-
rent work. We acknowledge that drug discovery
requires much more than just a few key proper-
ties. The goal of this paper is not to replicate the
entire drug discovery process but to demonstrate
the strong potential of agents in facilitating drug
discovery through generating and optimizing new
drug candidates over a few essential properties. To
this end, we intentionally design LIDDIA to be
easily extendable to other metrics. We will con-
tinue developing the agent to cover more properties
in our future research. (3) Our experiments with
LIDDIA were built on a limited number of API
calls due to budget constraints. Further testing
on more API calls will be an interesting avenue
for future research. (4) Finally, we benchmark
LIDDIA on a small set of targets given the lack of
well-established, large-scale, well-annotated bench-
marks for our tasks. We prioritized a few highly
clinically relevant therapeutic targets (such as can-
cer) with detailed information about their struc-
tures, ligands, and binding affinities. This serves as
a trade-off between scope (lack of benchmarks) and
substance (focusing on clinically relevant targets).
This follows the example of related LLM agent
works (Boiko et al., 2023; M. Bran et al., 2024),
which have used similarly small benchmarks for
initial demonstrations of agent capabilities on com-
plex tasks. Future work will include an expansion
of this dataset and additional benchmarking.

Ethics Statement

LIDDIA is designed to generate small molecules
meeting the parameters specified in a natural lan-
guage prompt. However, we recognize that not all
small molecules are safe, and such a tool could
generate harmful molecules. As such, we have
taken several steps to minimize the potential neg-
ative impact. LIDDIA only functions in silico
and does not currently generate synthesis plans for
any of its molecules. This prevents any danger-

ous molecules from being automatically produced
without conscious human oversight or intervention.
Additionally, our EVALUATOR implementation and
example prompts focus LIDDIA on priority met-
rics in designing drugs to benefit humans, such as
QED and LRF.

Despite these efforts, we cannot guarantee that
LIDDIA will not generate harmful or incorrect
content. We encourage users to practice discretion
when using LIDDIA, and to follow all applicable
safety guidelines and research best practices.
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A Dataset

The following table details each protein target in the dataset. The disease categories column indicates
whether the target is associated with autoimmune disease (A), cancer (CA), cardiovascular disease (CV),
Diabetes (D), Infectious Disease (I), or Neurological Conditions (N).

Gene Name PDB ID Pocket Structure PDB Lig. Ligand Structure Disease Cat.

ADRB1 7BU7 P0G CV

ADRB2 4LDL XQC CV

AR (NR3C4) 1E3G R18 CA

BCHE 4TPK 3F9 N

CDK5 1UNG ALH N

continued
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Gene Name PDB ID Pocket Structure PDB Lig. Ligand Structure Disease Cat.

CHK2 2W7X D1A CA

CYP3A4 6MA6 MYT CA, I

CYP3A5 7SV2 MWY CA, I

DRD2 6CM4 8NU N

DRD3 3PBL ETQ N

continued
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Gene Name PDB ID Pocket Structure PDB Lig. Ligand Structure Disease Cat.

EGFR 1M17 AQ4 CA

EZH2 7AT8 SAH CA

FLT3 4RT7 P30 CA

GCK (HK4) 3H1V GCK D

GLP1R 6ORV N2V D

continued
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Gene Name PDB ID Pocket Structure PDB Lig. Ligand Structure Disease Cat.

HRAS 1RVD DBG CA

HTR2A 7WC8 92S N

KEAP1 7X4X 9J3 CA, N, A

KIT 4U0I 0LI CA

KRAS 4DSN GCP CA

continued
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Gene Name PDB ID Pocket Structure PDB Lig. Ligand Structure Disease Cat.

MET (HGFR) 2RFN AM7 CA

NR3C1 (GR) 3K23 JZN I, A

P2RY12 (P2Y12) 4NTJ AZJ CV

PIK3CA 4JPS 1LT CA

PSEN1 7C9I FTO N, CV

continued
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Gene Name PDB ID Pocket Structure PDB Lig. Ligand Structure Disease Cat.

PTGS1 (COX1) 2OYE IM8 CV

PTGS2 (COX2) 3LNO 52B CV

SHP2 (PTPN11) 7GS9 LV7 CA, D

SLC6A2 8HFL 1XR N

TNF 2AZ5 307 CA, I, A

A.1 On the Necessity of Dataset Curation

Existing benchmark datasets for drug discovery (Guan et al., 2023b,a) contain non-human proteins. In
fact, only around 40% of the test set are human proteins. Furthermore, the targets in this test set do
not necessarily have existing drugs associated with them, giving us no reference to the multi-property
requirements needed to identify HQ molecules. The lack of drugs associated with the targets is unsurprising,
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since the benchmark was originally designed for binding pose and affinity prediction (Francoeur et al.,
2020). Instead, we have decided to manually curate a set of 30 proteins, all of which (1) are human
proteins, (2) are associated with major diseases, and (3) have known drugs targeting them.

B Prompts

B.1 REASONER Prompt

You have access to the following molecules and pockets:

{pocket_str}{mol_str}
You also have access to a set of actions:

{action_str}
Your job is to find molecules that satisfy these requirements:

{req_str}
Here is a history of actions you have taken and the results:

{history_str}
Here is the evaluation result from previous iteration:

{eval_str}

Let’s think step by step and take your time before you answer the question. What is
the best action to take and what is the input of the action?

Remember that you currently have {resource_str} left to solve the task.

Remember that you can only use one action.

Your answer must follow this format:

Action: [name of action]

Input: [input of the action, should be the identifier like [’MOL001’] or
[’POCKET001’]]

If you plan to use "CODE" action, you need to include this additional format:

Desc: [explain what you want to do with the input of the action. Be as verbose and
descriptive as possible but at most three sentences. Always refer to the identifier
of the action input.]

B.2 EVALUATOR Prompt

You have access to the following pool of molecules:

{mol_str}
Your job is to find molecules that satisfy these requirements:

{req_str}
Does this pool of molecules satisfy the requirements?

Remember that all molecules in the pool must satisfy the requirements.

Let’s think step by step and answer with the following format:

Reason: (a compact and brief one-sentence reasoning)

Answer: (YES or NO)

B.3 SCREEN Prompt

Your job is to make a Python function called _function.

The input is a Dict[str, pd.DataFrame] with the following columns:

["SMILES", "QED", "SAScore", "Lipinski", "Novelty", "Vina Score"].

The output must be a pandas DataFrame with the same columns as the input.
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Table A2: Toxicity profiles of LIDDIA’s generated molecules and known drugs. Lower indicates better profile.

Toxicity profile LIDDIA Known Drugs

Mutagenicity 0.32 0.27
Carcinogenicity 0.23 0.25
Clinical Toxicity 0.08 0.33
DILI 0.68 0.54
hERG Blocking 0.31 0.59
Acute Toxicity 2.45 2.78

The function should be able to do the following task: {input_desc}

Your output must follow the following format:

import pandas as pd

def _function(Dict[str, pd.DataFrame]) -> pd.DataFrame:
#---IMPORT LIBRARIES HERE---#
#---IMPORT LIBRARIES HERE---#

#---CODE HERE---#
#---CODE HERE---#

output_df = ...
return output_df

Make sure you import the necessary libraries.

C Additional Results

C.1 Additional Baselines
We compare LIDDIA with two more recent task-specific molecule generation methods, TargetDiff (Guan
et al., 2023a) and DecompDiff (Guan et al., 2023b). We run similar experiments as in Table 2 and
present the results in Table A3. Overall, we observe similar results to Section 5.1. First, both LIDDIA
with DeepSeek-R1 and Claude significantly outperform both methods, highlighting the effectiveness of
LIDDIA. Second, both methods also struggle to generate new binding molecules better than existing
drugs, while LIDDIA does not.

C.2 Toxicity Predictions
We use ADMET-AI (Swanson et al., 2024) to predict the toxicity properties of LIDDIA’s generated
molecules. We use toxicity properties from Chen et.al (Chen et al., 2025) as reference and select some
that are available in ADMET-AI. We then compare them to drugs in our dataset and present the results in
Table A2.

Overall, we observe that our generated molecules are better than or comparable to known drugs in
terms of their toxicity properties. Note that our agent is specifically designed to generate high-quality
molecules, not “safe” molecules. Yet, Table A2 shows that their safety profiles are also promising. This
presents interesting findings that (1) the current design of LIDDIA can generate both high-quality and
“safe” molecules and (2) a significant opportunity for improvements to LIDDIA.

C.3 Failure Analysis
We observe that LIDDIA yields suboptimal results on some targets (Section 5.2.2). First, we remark that
on all targets, LIDDIA can generate at least one high-quality molecule, including on PIK3CA, MET, and
ADRB2. However, they are suboptimal since: (1) the number of high-quality molecules is not sufficient
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1 2 3 4 5 6 7 8 9 10 11 12

Olmutinib V V V V
Masoprocol V V V V V V

Gefitinib V V V V V V V V V V V V
PDB Ligand V V V V V V V V V V V V

LIDDiA-Generated Molecules

(a) VNA

1 2 3 4 5 6 7 8 9 10 11 12

Olmutinib Q Q Q Q Q Q Q Q Q Q Q Q
Masoprocol Q Q Q Q Q Q Q Q

Gefitinib Q Q Q Q Q Q Q Q Q Q Q
PDB Ligand Q Q Q Q Q Q Q Q Q Q Q Q

LIDDiA-Generated Molecules

(b) QED

1 2 3 4 5 6 7 8 9 10 11 12

Olmutinib S S S S S S S
Masoprocol S S S S S S S S S S S

Gefitinib S S S S
PDB Ligand S S

LIDDiA-Generated Molecules

(c) SAS
Figure A1: Case study for EGFR. Each subfigure compares molecules generated by LIDDIA to three drugs and
one binding ligand of EGFR on VNA, SAS, and QED, respectively. Red squares indicate that the LIDDIA molecule
outperforms the reference molecule on respective metrics.

(a) (b) (c)

Figure A2: Case study on EGFR. (a) LIDDIA’s generated molecules (NL-2 and NL-3). (b) Known ligand for
EGFR. (c) Examples of known approved drugs for EGFR. NL-2 has two enol groups and NL-3 has a fulvene, both
of which are problematic as drug candidates.

(i.e., less than 5), or (2) the molecules are not diverse enough. We hypothesize that existing tools are
struggling because of the structure of the pockets. For instance, the pocket may only allow a few specific
scaffolds to bind, making it extremely difficult for existing tools to generate many and diverse high-quality
molecules.

C.4 Computational Costs

Overall, we observe that LIDDIA takes about 9K input tokens and 5K output tokens per target in our
experiments. The estimated cost to generate high-quality molecules using LIDDIA is around $0.03
(USD) calculated using Claude pricing based on the number of used tokens. This highlights the potential
of LIDDIA for low-cost autonomous drug discovery.

C.5 Case Study on EGFR

We present another case study and task LIDDIA with discovering new potential drug therapies targeting
the Epidermal growth factor receptor 1 (EGFR) protein. EGFR is a transmembrane glycoprotein that plays
a pivotal role in many cancers, including breast cancer, esophageal cancer, and lung cancer (Seshacharyulu
et al., 2012). Its role in cancer, as well as its accessibility on the cell membrane, has made it a prime
therapeutic target (Bento et al., 2014; Gaulton et al., 2011). However, cancer cells mutate rapidly and can
become resistant to drugs over time, leading to a need for novel drug therapies (Das et al., 2024). We
compare the molecules generated for EGFR by LIDDIA with three approved drugs of EGFR – Olmutinib,
Masoprocol, and Gefitinib, which exhibit the best VNA, QED and SAS among all EGFR’s approved drugs,
respectively. We also compare them with a known ligand for EGFR’s binding pocket. Figure A1 presents
the overall comparison results. Note that most existing methods cannot generate any novel high-quality
molecules. This emphasizes the strength of LIDDIA, which can tackle even a challenging target.

LIDDIA effectively generates promising novel drug candidates on EGFR. Notably, these molecules
surpass the native ligand in both VNA and QED, while displaying comparable overall profiles to approved
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(a) (b)

Figure A3: (a) Docking of NL-2 to EGFR pocket, with hydrogen bonds shown as solid blue lines. (b) Docking of
NL-3 to EGFR pocket, with hydrophobic van der Waals contacts shown using solid blue lines.

drugs. Moreover, some molecules (Figure A1 columns 1 and 2) are better than Olmutinib and Masoprocol
on all metrics (i.e., VNA, QED, and SAS). We illustrate the two molecules, NL-2 and NL-3, in Figure A2.
These molecules possess structural features that allow them to bind the pocket well. Notably, NL-2 has
hydroxyl groups on both the five- and six-membered rings from the first molecule, which form strong
hydrogen bonds with the protein target on opposite sides of the pocket (Figure A3a). NL-3 utilizes a
different binding strategy, relying on hydrophobic packing and shape complementarity rather than polar
interactions. As shown in Figure A3b, the fluorine substituent is positioned near the pocket entrance
flanked by hydrophobic residues, which serve as favorable van der Waals contacts. Meanwhile, the
diarylketone moiety is buried deep within the binding pocket, anchoring the ligand through planar stacking
and hydrophobic interactions, despite the absence of direct hydrogen bonding. This finding aligns with
previous literature (Zhang and Wu, 2023), which highlights the potency of diarylketone for antitumor
drugs.

Medicinal chemists are essential for a successful real-world deployment of LIDDIA. Despite the
favorable binding and in silico properties, closer examination reveals some concerning structural features
in these molecules. NL-2 contains two enol groups (the -OH near the double bond) —substructures
with tautomeric instability and are highly unattractive for drugs (Hart, 1979). NL-3 contains fulvene,
known to be chemically reactive, thermally unstable, sensitive to oxygen, and photosensitive (Swan et al.,
2019). The diarylketone moiety, despite its favorable binding and potency in antitumor drugs (Zhang and
Wu, 2023), is known to be phototoxic (Dubois et al., 2021). Such conflicts (e.g., favorable binding but
phototoxic) are typical in drug discovery, highlighting its significant challenges and the necessity for more
comprehensive evaluation for a successful practical deployment of LIDDIA.

Furthermore, no standalone in silico evaluation tools (e.g., computational filters from RDKit (RDKit)
and Medchem (Schuffenhauer et al., 2020)) can detect all the issues presented in these molecules. Several
filters (e.g., PAINS (Baell and Holloway, 2010), BRENK (Brenk et al., 2008), NIH (Jadhav et al., 2010;
Doveston et al., 2015)) cannot capture the problematic features in NL-2, highlighting the limitation
of existing tools. Lilly rules (Bruns and Watson, 2012) are able to identify the enol groups, but do
not raise any alerts for NL-3. These findings underscore that human expertise remains irreplaceable
in drug discovery—a domain where nuanced understanding and reliable assessments are critical for
mitigating risks. They also highlight three priorities for the future work of LIDDIA: (1) human-in-the-
loop validation, (2) development and integration of more sophisticated in silico tools, and (3) wet-lab
validation of generated molecules.

As discussed, the lack of nuanced understanding by existing in silico tools contribute to the problematic
features existed in LIDDIA’s pool of generated molecules. A more reliable option is the inclusion
of human experts in the loop for validation for a more nuanced and comprehensive evaluation of the
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molecules. Meanwhile, existing in silico tools, particularly in evaluation, have rooms for improvement.
The integration of more and better state-of-the-art tools can certainly benefit LIDDIA in generating
more and better high-quality molecules. Ultimately, in vitro and in vivo in a laboratary will be necessary
to analyze how LIDDIA’s performance translates to real-world impacts. Thus, though encouraging,
LIDDIA calls for more comprehensive and systematic investigation for a successful practical deployment.
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