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Abstract

Visual Language Models have demonstrated
remarkable capabilities across various tasks, in-
cluding visual question answering and image
captioning. However, most models rely on text-
based instructions, limiting their effectiveness
in natural human-machine interactions. More-
over, the quality of language models primar-
ily depends on reasoning and prompting tech-
niques, such as chain-of-thought, which remain
underexplored when using speech instructions.
To address these challenges, we propose SilVar,
an end-to-end multimodal model that leverages
speech instructions for reasoning-based visual
question answering. Additionally, we investi-
gate reasoning techniques at different levels,
including conversational, simple, and complex
speech instructions. SilVar is built upon CLIP,
Whisper, and LLaMA 3.1-8B, enabling more
intuitive interactions by allowing users to pro-
vide verbal or text-based instructions. To this
end, we introduce a new dataset designed to
challenge models with speech-based reason-
ing tasks for object localization. This dataset
enhances the model’s ability to process and ex-
plain visual scenes from spoken input, moving
beyond simple object recognition to reasoning-
based interactions. To our knowledge, SilVar is
the first open-source, speech-driven VLM. We
believe SilVar will inspire the next generation
of multimodal reasoning models, advancing to-
ward expert artificial general intelligence. Our
code and dataset are publicly available here.

1 Introduction

Visual Language Models (VLMs) have gained sig-
nificant attention due to their capacity to bridge the
gap between visual and textual modalities, facili-
tating more intuitive interactions between humans
and machines. These models are valuable in tasks
like visual question answering (VQA), which may
involve yes/no answers, multiple-choice questions,
or even generating image descriptions. With ad-
vances in deep learning, VLMs can now effectively

handle visual scenes and provide meaningful tex-
tual outputs that explain or describe those scenes
in natural language.

Recent advancements in VLMs, such as CLIP
(Radford et al., 2021), have enabled Large Lan-
guage Models (LLMs) to process images and
text simultaneously (Ranasinghe and Ryoo, 2023;
Alayrac et al., 2022; Awadalla et al., 2023). Models
like Flamingo (Alayrac et al., 2022), BLIP-2 (Li
et al., 2023b), LLaVA (Liu et al., 2023), LocVLM
(Ranasinghe et al., 2024), and LISA (Lai et al.,
2024) demonstrate strong multimodal capabilities,
excelling in tasks such as image captioning and
VQA through improved reasoning and prompting
techniques. Despite these advances, most VLMs
still rely on text-based interactions, limiting usabil-
ity in scenarios where text is impractical. While
prompting and reasoning for LLMs have been stud-
ied extensively in text, their adaptation to speech re-
mains underexplored. Recent models like GPT-4o
(OpenAI, 2024b) support speech-based interaction,
greatly enhancing user experience, but open-source
efforts in this area are still limited.

To enable speech interaction with LLMs, speech
instruction models such as Qwen2-Audio (Chu
et al., 2024), SALMONN (Tang et al., 2023), and
Llama-Omni (Fang et al., 2024) have been devel-
oped to process speech instead of text-based in-
structions. Although these models enable speech
instruction, they are not capable of understanding
both images and text simultaneously. Inspired by
VLMs and ARS models, we propose SilVar, a mul-
timodal model that can understand both images
and audio or images and text, at the same time. In
addition, we investigate reasoning techniques for
speech instructions on image description and ob-
ject localization. To this end, we further provide
a dataset for speech instruction. The key contribu-
tions of our paper are summarized as follows:

• We propose a multimodal model with speech
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instruction for text generation and object lo-
calization.

• Speech reasoning – we investigate the effect
of reasoning for speech instruction, which in-
cludes conversation level, simple reasoning,
and complex reasoning.

• We propose a training pipeline and publicly re-
lease the reasoning speech instruction dataset.

2 Related Work

With the advent of large language models (LLMs)
like GPT-3 (Brown, 2020), GPT-4 (Achiam et al.,
2023), and open-source models such as the Llama
family (Touvron et al., 2023a,b; Dubey et al., 2024)
and Vicuna (Zheng et al., 2023b), the foundation
was laid for the development of vision-language
models (VLMs). VLMs extend LLMs by enabling
learning from both text and visual inputs (Li et al.,
2023b), accelerating progress in multimodal mod-
eling, particularly for integrating vision or speech
with language. Early efforts like CLIP (Radford
et al., 2021) and ALIGN (Jia et al., 2021) intro-
duced frameworks for combining vision and lan-
guage. Building on these, models such as Flamingo
(Alayrac et al., 2022), BLIP (Liu et al., 2024),
MiniGPT-v2 (Chen et al., 2023), MiniGPT-4 (Zhu
et al., 2023), and LLava (Liu et al., 2023) advanced
tasks like visual question answering and image cap-
tioning. Applications have since expanded to ob-
ject detection, segmentation, and reasoning-based
localization (Liu et al., 2023; Lai et al., 2024; Zhu
et al., 2023; Wang et al., 2024; Ranasinghe et al.,
2024). While early models emphasized scale, re-
cent efforts focus on smaller, high-performance
models and effective prompting techniques (Wei
et al., 2021; Dubey et al., 2024; Li et al., 2022).

In parallel, speech recognition has emerged as
a crucial area of research, particularly with the de-
velopment of automatic speech recognition (ASR)
systems such as Whisper (Radford et al., 2023) and
Wav2Vec (Baevski et al., 2020). In addition, there
are lot of work that has been done on speech-related
tasks, including speech-to-text translation, speech
emotion recognition (SER), and vocal sound clas-
sification (VSC) (Tang et al., 2023; Wang et al.,
2023a; Ao et al., 2021). Beyond speech genera-
tion, recent models have been investigated to en-
hance emotion and voice interactions, such as Au-
dioPaLM (Rubenstein et al., 2023) and LauraGPT
(Du et al., 2023), fostering more natural communi-
cation. Innovations such as VALL-E (Wang et al.,

2023b) and MusicGen (Copet et al., 2024) further
illustrate how audio generation can enrich text-
based interactions. Furthermore, the challenge
of low-resource conversational telephony speech
corpora has been investigated using unsupervised
learning and fine-tuning techniques of large pre-
trained models (Vieting et al., 2023).

The integration of ASR with language models
has led to the development of multimodal models
(Chu et al., 2024; Xie and Wu, 2024). For instance,
SpeechGPT (Zhang et al., 2023a) allows users to
engage with large language models using speech.
Additionally, HuggingGPT (Shen et al., 2024) en-
hances this interaction by discretizing speech into
tokens and expanding the LLM’s vocabulary to ac-
commodate speech inputs. Furthermore, the study
in (Adedeji et al., 2024) demonstrated that LLMs
have the potential to improve the accuracy of ASR
systems, particularly in medical transcription.

While VLMs have significantly advanced vision-
text integration, incorporating audio and ASR has
enabled more dynamic multimodal interactions.
The release of GPT-4o (OpenAI, 2024b) showcases
real-time speech-based interaction with LLMs, im-
proving user experience over text-only models.
However, its closed-source nature limits further
development. Currently, few open-source models
support speech-based interaction with VLMs. To
address this, we introduce SilVar, a novel multi-
modal model that integrates speech instructions di-
rectly into the reasoning process, enhancing tasks
like image interpretation and object localization.
We also provide a complete pipeline leveraging
open-source foundation models, aiming to support
and inspire research in multimodal reasoning.

Prompting techniques play a vital role in enhanc-
ing LLMs’ reasoning abilities for tasks like ques-
tion answering (Liu et al., 2023; Lai et al., 2024),
with methods such as chain-of-thought (CoT) and
zero-shot prompting significantly influencing per-
formance (Wei et al., 2022; Yao et al., 2024). In
ASR contexts, prompting has also been applied
to complex tasks like diarization and error cor-
rection (Adedeji et al., 2024). Building on this,
we explore reasoning techniques, particularly zero-
shot and CoT prompting, for speech-based instruc-
tion. As LLMs, VLMs, and instruction tuning
evolve, benchmarks such as ScienceQA (Lu et al.,
2022), MMMU (Yue et al., 2024), and LLaVA (Liu
et al., 2023) have been developed to evaluate multi-
modal reasoning, yet they primarily focus on text-
image input. To address the lack of benchmarks
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for speech-based instruction, we introduce SilVar,
a new dataset that incorporates text, images, and
speech instructions for text generation. We also
augment existing reasoning datasets like MMMU,
LISA, and ScienceQA by converting their text in-
puts into speech.

3 Data Generation

With the development of multimodal models, there
has been a surge in datasets that support model
training, such as Flickr30K (Young et al., 2014), Vi-
sual Genome (Krishna et al., 2017), and MovieQA
(Tapaswi et al., 2016). However, these datasets
are limited to tasks like automatic image descrip-
tion, image or video captioning, and simple visual
question-answering. To explore the understanding
and explainability of multimodal models, more in-
tricate datasets such as LAION (Schuhmann et al.,
2022), SEED (Li et al., 2023a), and LLaVA (Liu
et al., 2023) have been created, enabling LLMs to
generate detailed responses. Despite this progress,
the available data are insufficient for guiding LLMs
in querying and responding to users’ input, par-
ticularly for tasks requiring complex instructions.
As a result, techniques like hard prompting (Wen
et al., 2024) or prompt engineering (Wei et al.,
2022; Yao et al., 2024) have been proposed. For
dataset, LLaVA (Liu et al., 2023) is one of the re-
cent datasets that use strong prompting baselines.
However, this type of data is a text-based instruc-
tion and not well-suited for speech instruction, es-
pecially in the context of human-machine interac-
tion. For this, we propose a unique speech instruc-
tion dataset that emphasizes natural conversation.

Inspired by the success of recent GPT models
in text-based tasks and GPT-assisted datasets (Liu
et al., 2023), we developed our dataset with GPT-4
(OpenAI, 2024a) assistance, as shown in Figure 1.
Notably, we only used text as input for GPT-4 to
generate different types of questions. To ensure
the model can effectively perform reasoning-based
object localization and generate coherent responses
from speech instructions, we designed the dataset
according to the following criteria:

• Human-machine conversation: The dataset
is designed to reflect natural human-machine
conversations, enabling the agent to interpret
and respond to verbal instructions in a conver-
sational context.

• Reasoning instructions and responses: Un-
like traditional datasets focused on simple ob-

ject recognition, our dataset contains reason-
ing instructions and explanations behind the
responses. This is crucial for enhancing the
model’s ability to explain not just what the ob-
ject is, but also why it is located in a particular
place.

• Detailed descriptions: The dataset includes
both simple questions and complex reasoning
scenarios, requiring the model to provide de-
tailed descriptions of visual scenes.

The SilVar dataset contains 4,161 speech-driven
samples based on 2,518 randomly selected images
from the COCO 2014 dataset (Lin et al., 2014).
It includes two task types: spatial object localiza-
tion (2,361 samples), which helps models learn
spatial reasoning, and object detection with bound-
ing boxes (1,800 samples), the primary focus of
this work. All samples are generated using GPT-
4 with a structured prompting strategy. For spa-
tial tasks, object positions are described using di-
rectional terms (e.g., left, right, front, behind),
while detection tasks include bounding box out-
puts. Rather than naming objects directly, GPT-4
generates scenario-based questions that highlight
an object’s role, as illustrated in Figure 1, with
answers providing detailed explanations.

• Object’s characteristics: A description of
the object’s features, shape, and functionality.

• Background context: An explanation of how
the object is relevant to the broader environ-
ment depicted in the image.

• Interaction with surroundings: An analy-
sis of how the object interacts with other ele-
ments in the scene, such as people, activities,
or other objects.

Following the generation of questions and an-
swers, four people corrected the data to ensure qual-
ity and coherence. Human reviewers verified that
each set of questions consistently referred to the
same object and that the answers offered detailed
reasoning, including the object’s characteristics,
background, and interactions. In addition, bound-
ing boxes were manually labeled using Roboflow
(Dwyer et al., 2024) to accurately pinpoint the spe-
cific objects being referred to in each image. After
ensuring data quality through human verification,
we convert text to speech using Google Cloud APIs,
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Question type 1: Conversation

What object known for its comfort and joy, often in colorful outfits, is

frequently found in cozy gatherings? Let's explain it in detail.

Question type 2: Simple reasoning

What object known for comfort and joy, often in colorful outfits, is frequently

found in cozy gatherings? Let's think step by step.

Question type 3: Complex reasoning

As friends come together for a laid-back evening of sharing stories and

enjoying refreshments, what soft and cuddly figure symbolizes friendship

and nostalgia, often bringing a smile to those in its presence?

Response:

The soft and cuddly figure referred to is the teddy bear, located at [BBOX]. This plush toy evokes feelings of nostalgia and

friendship, characterized by its rounded form, soft fur, and friendly expression. Its placement among friends and the wine

bottles signifies its role in creating a warm and inviting atmosphere, where stories can be shared. The bear's presence

encourages a sense of camaraderie and emotional connection among guests, reinforcing how such objects often serve to

bridge interactions and enhance the joy of gathering.

BBOX: [[304,36, 628, 364 ], [ 28, 230, 423, 384 ], [ 76, 96, 258, 292 ] ]

Figure 1: An example from our SilVar-bench dataset, focusing on reasoning speech instructions with different types:
conversation, simple reasoning, and complex reasoning. The detected objects are highlighted in yellow bounding
boxes. The dataset not only focuses on reasoning instructions but also generates visual explanations, enhancing
spatial understanding and interpretability.

which support over 50 voices. SilVar-Bench pro-
vides a robust evaluation framework, challenging
models in object recognition and context-specific
reasoning. It is designed to advance multimodal
models requiring spatial understanding and detailed
reasoning in speech-driven interactions. It is worth
noting that our dataset is larger than smaller-scale
datasets such as LISA, which contains only 1,218
samples. This highlights that our dataset ensures
not only quality but also sufficient quantity.

Dataset Train Validation Test

ScienceQA 6,218 2,097 2,017
MMMU 150 900 10,500
LISA 239 200 779
SilVar 3,461 - 700

Table 1: The datasets used in this study. It is important to
note that the SilVar training set contains 1,100 bounding
box localization samples and 2,361 spatial localization
samples, while the test set includes 700 bounding box
localization samples.

In addition to our dataset, we utilize existing
text-based reasoning datasets—MMMU (Yue et al.,
2024), LISA (Lai et al., 2024), and ScienceQA
(Lu et al., 2022)—for pretraining, as they focus on
reasoning, localization, and description. MMMU
includes 11,500 samples across 30 subjects and 183
subfields, while LISA provides 239 training sam-
ples (we use only the training split). ScienceQA

spans 26 topics, 127 categories, and 379 skills; we
filter it to include only samples with image-text
pairs. To adapt these datasets for spoken input,
we apply preprocessing steps to ensure clarity and
vocalizability for speech generation.

• Handling special characters: We con-
verted complex symbols like LaTeX and
non-standard characters into formats suit-
able for speech instruction, enabling correct
processing and vocalization.

• Punctuation and text normalization: We
standardized punctuation in the text to en-
sure that it would generate smooth, natural
speech outputs, enhancing the clarity and
coherence of the spoken content.

4 Speech-Driven Visual Language Model

4.1 Architecture

SilVar is a multimodal model designed for image
interpretation and object localization based on var-
ious input modalities, including speech and text.
This approach enables SilVar to understand and
respond comprehensively to various inputs and
prompts. The model architecture is illustrated in
Figure 2, consisting of several key components: an
audio encoder, a visual encoder, a projector, and a
large language model.
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Visual Encoder 
& Projector

Visual Encoder 
& Projector

<speech> In an environment ...,

which species typically exhibit social

behavior and migratory instincts while

traveling in family groups? <speech>

Audio Encoder 
& Projector

Audio Encoder 
& Projector

Large Language ModelLarge Language Model

Response: The species shown in the water

is the Canada Goose, found at [BBOX]…

Automatic Speech Recognition 

Text

Speech Encoder

LLMs

Text

Stage 2. Multimodal instruction

fine-tuning.

Stage 1. Speech-to-text alignment.

Figure 2: Illustration of the SilVar’s architecture, integrating images and audio instruction for reasoning description
and object localization.

Audio Encoder: This module extracts features
from speech instructions to provide context beyond
text-based inputs. We use the lightweight Whisper-
tiny model (Radford et al., 2023; Moor et al., 2023),
with 39M parameters, known for its strong perfor-
mance in speech recognition. Given an input audio
$A$ (max length 1500), Whisper encodes it into
a 768-dimensional feature vector. This is passed
through a Linear layer (audio projector) to match
the LLM input size (R4096) and is later concate-
nated with image embeddings. We also explore
different audio adapters, including MLP and Trans-
former layers.

Visual Encoder: This module extracts mean-
ingful features from input images using the pre-
trained CLIP model (ViT-B/32) (Radford et al.,
2021), which was trained on over 400 million
image-text pairs. For each image X ∈ RH×W×C ,
where C = 3, the input is resized to 224 × 224
and passed through CLIP to produce a sequence
of 768-dimensional visual tokens. To align with
the language model, these tokens are projected to
R4096 using a visual adapter. Following MiniGPT-
v2 (Zhu et al., 2023), the adapter consists of two
Linear layers with GELU activation. The resulting
visual features are concatenated with audio embed-
dings to form a unified multimodal representation.

Large Language Model: At the core of SilVar
is a language model, responsible for generating
text and bounding boxes by processing information
from the audio and visual encoders. To this end,

we decided to use LLama 3.1-8B (Dubey et al.,
2024), which serves as the foundational model,
allowing us to effectively transfer its pre-trained
knowledge into domain-specific tasks such as local-
ization where understanding both verbal and visual
inputs. By combining visual and audio tokens, we
provide a diverse set of token embeddings for the
language model, requiring it to process and gen-
erate a final representation of textual tokens. The
integration of these components enables SilVar to
generate human-quality text responses by leverag-
ing the complementary strengths of each modality,
making it a robust system for multimodal instruc-
tion and interaction.

4.2 Training Pipeline
We propose a two-step training process for speech
instruction: (1) speech-to-text alignment and (2)
LLM training response, as shown in Figure 2.
Since speech plays an important role as an instruc-
tional modality in our model, we start training a
speech-to-text system to align audio with text in
the domain of reasoning text generation. We use
the Whisper models for speech recognition due
to their efficiency in real-time speech processing.
As mentioned in Section 4.1, to develop a founda-
tion model that can understand and handle numer-
ous tasks, we train the model on the ScienceQA
and MMMU datasets using speech instructions,
as these datasets are reasoning benchmarks for
human-level understanding and explanation (Lu
et al., 2022; Yue et al., 2024). Furthermore, we
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aim to specialize the model for the task of object
localization; therefore, we further train the Whis-
per on the LISA dataset and our benchmark. The
data type of each dataset and the stages used in the
training process are shown in Table 2.

Dataset Data type Stage 1 Stage 2

ScienceQA Text, image x x
MMMU Text, image x x
LISA Text, image x x
SilVar Text, image, speech x x

Table 2: Summary of datasets and corresponding stages
used in our training process.

In stage 2, we use the pre-trained weights from
stage 1 to train our model for the visual question-
answering task, using direct audio input from the
audio encoder for reasoning. Similar to stage 1,
we use the ScienceQA, MMMU, LISA, and SilVar
datasets for training text generation. In our exper-
iments, we use AdamW optimizer to update the
parameters (Loshchilov and Hutter, 2019), accom-
panied by a learning rate scheduler with a linear
warmup followed by a cosine decay. The model is
trained for up to 20 epochs with a batch size of 4
and 2 workers. The model is trained on a comput-
ing system equipped with four A100 GPUs, around
twenty-two hours.

5 Experiment and Result

5.1 Speech To Text Alignment and Quality
We trained Whisper for 10 epochs on converted-
to-speech datasets, and the results are shown in
Table 3 using WER and CER metrics. While Whis-
per Tiny performs well overall, its accuracy varies
across datasets. For example, ScienceQA exhibits
higher error rates (WER: 7.77 train, 7.98 test), with
Whisper Small significantly outperforming it. De-
spite minor misalignments affecting embeddings
and final predictions, we chose Whisper Tiny due to
its compact size and suitability for our end-to-end
training process later.

Dataset Models WER CER

train test train test

ScienceQA Whis. Small 4.30 4.17 5.25 4.32
ScienceQA Whis. Tiny 7.77 7.98 9.43 10.21
MMMU Whis. Tiny 6.45 6.72 5.18 5.76
SilVar Whis. Tiny 2.16 3.58 2.59 3.54

Table 3: Evaluation of speech-to-text alignment of audio
encoders. Whis. denotes Whisper.

5.2 Speech Instruction & Text Instruction

To evaluate the impact of instructional modality, we
compare SilVar’s performance using speech- and
text-based instructions across various reasoning
and conversational tasks. This includes assessing
its ability to handle both simple and complex rea-
soning, as well as conversational prompts, in both
formats. SilVar is trained only on complex reason-
ing, while other techniques are used for evaluation.
We use CIDEr, BLEU, METEOR, and ROUGE
for text generation, and bounding box accuracy
at an IoU threshold of 0.5 for object localization,
providing a comprehensive performance overview.

As shown in Table 4, text-based instructions
consistently outperform speech-based ones across
most metrics, with complex reasoning achieving
the highest scores: ROUGE-1 (37.23), BLEU-
1 (38.12), METEOR (28.66), and CIDEr (0.08).
In object detection, the IoU0.5 accuracy reaches
27.56% for text-based complex reasoning, indicat-
ing better localization. Speech-based inputs also
perform best with complex reasoning but score
slightly lower. These results highlight SilVar’s ef-
fectiveness and the challenges of aligning synthetic
speech with images, as discussed in Section 5.1.

5.3 MMMU-bench

MMMU is a benchmark with tasks that demand
college-level knowledge and deliberate reasoning,
which enables the test of model performance in
terms of expert-level perception and reasoning. The
dataset includes 30 subjects across various disci-
plines, such as art, science, and engineering. In
particular, we compare the SilVar to models that
have similar number of parameters.

As shown in Table 5, our text-based model
achieves a validation score of 31.8, outper-
forming several similarly sized baselines, in-
cluding Adept Fuyu-8B (27.9), OpenFlamingo2-
9B (28.7), MiniGPT4-Vicuna-13B (26.8), and
LLaMA-Adapter2-7B (29.8), demonstrating strong
performance in complex reasoning. While it trails
behind SOTA models like LLaVA-1.5-13B (36.4),
it offers a solid balance of accuracy and efficiency.
With speech-based instructions, SilVar also per-
forms well, scoring 30.2, which is better than
using pure transcribed text from Whisper (30.0),
and showcasing its multimodal versatility. End-
to-end training further improves performance to
30.4. Replacing Llama3.1 with DeepSeek-R1-
Distill-Llama-8B boosts the score to 32.8. Al-
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Instruction Type ROUGE-1 BLEU-1 METEOR CIDEr Accuracy (IoU = 0.5)

Complex reasoning (text) 37.23 38.12 28.66 0.08 27.56
Simple reasoning (text) 34.08 36.11 27.58 0.07 26.54
Conversation (text) 35.15 36.57 26.95 0.07 26.56

Complex reasoning (speech) 34.44 37.62 26.99 0.06 24.44
Simple reasoning (speech) 33.42 34.83 24.74 0.05 23.02
Conversation (speech) 34.16 34.25 23.86 0.04 22.71

Ablation study when using DeepSeek-R1-Distill-Llama-8B as the language model
Complex reasoning (speech) 38.62 39.05 28.17 0.09 28.41

Table 4: Performance of SilVar model on various instructional types (conversational, simple, and complex) using
speech- and text-based modalities. The highlighted values in purple represent the highest scores achieved for
each metric in text-based complex reasoning, while values in orange highlight the highest scores for speech-based
complex reasoning.

Model Instruction Val Test

LLaVA-1.5-13B (Liu et al., 2024) Text 36.4 33.6
Qwen-VL-7B-Chat (Bai et al., 2023) Text 35.9 32.9
LLaMA-Adapter2-7B(Zhang et al., 2023b) Text 29.8 27.7
OpenFlamingo2-9B (Awadalla et al., 2023) Text 28.7 26.3
Adept Fuyu-8B (Bavishi et al., 2023) Text 27.9 27.4
MiniGPT4-Vicuna-13B (Zhu et al., 2023) Text 26.8 27.6

Our experiments
SilVar Text 31.8 -
SilVar-transcribed Text 30.0 -
SilVar Speech 30.2 -
SilVar-e2e Speech 30.4 -
GPT-4o mini Speech 39.3 -
Gemini Flash 1.5 Speech 36.9 -
Ablation study when using DeepSeek as the language model
SilVar-e2e (DeepSeek) Speech 32.8 -

Table 5: Performance of SilVar and other models on the MMMU benchmark. e2e denotes end-to-end training, and
transcribed denotes the usage of Whisper-transcribed text.

though GPT-4o mini (39.3) and Gemini Flash 1.5
(36.9) achieve higher scores, SilVar shows strong
potential as an open-source, speech-driven VLM
suitable for fine-tuning on downstream tasks.

5.4 ScienceQA Benchmark

In this benchmark, we compare SilVar to SoTA
models with a similar parameter count, using both
speech- and text-based instructions. As shown
in Table 6, text-based SilVar achieves an aver-
age accuracy of 86.32, outperforming models like
LLaMA-Adapter (85.19) and approaching Chat-
UniVi (88.78). Speech-based SilVar scores 63.21%,
surpassing several text-instruction models, includ-
ing MiniGPT-4 (47.71), LLaVA-7B (41.10), and
OpenFlamingo (39.27). End-to-end training yields
a slight improvement, and replacing the language
model with DeepSeek-R1-Distill-Llama-8B raises
the score to 65.82. We also compare SilVar to
speech-driven GPT-4o mini (80.15) and Gemini

Flash 1.5 (78.31). While a performance gap re-
mains between speech- and text-based models, Sil-
Var proves competitive and promising in scenarios
where spoken instructions are necessary.

5.5 Chatbot models

After training SilVar, we evaluated its performance
by comparing its predictions with those of commer-
cialized chatbots such as GPT-4o mini and Gemini
Flash 1.5. As shown in Table 8, all three mod-
els successfully inferred the underlying activity in
the image. SilVar demonstrated an enriched rea-
soning process by incorporating both speech and
spatial awareness. This highlights SilVar’s ability
and potential in VQA tasks and enables us to fine-
tune it for downstream applications. Furthermore,
this capability suggests that SilVar can effectively
integrate visual and auditory information in an end-
to-end manner, making it particularly suited for
vision-language tasks that require speech commu-
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Model Instruction Average Score

LLaVA-13B (Liu et al., 2023) Text 90.92
LaVIN-13B (Luo et al., 2024) Text 90.83
Chat-UniVi (7B) (Jin et al., 2024) Text 88.78
LLaMA-Adapter (Zhang et al., 2023b) Text 85.19
MiniGPT-4 (Zheng et al., 2023a) Text 47.71
LLaVA-7B (Yang et al., 2023) Text 41.10
OpenFlamingo (Yang et al., 2023) Text 39.27

Our experiments
SilVar Text 86.32
SilVar Speech 63.21
SilVar-e2e Speech 63.45
GPT-4o mini Speech 80.15
Gemini Flash 1.5 Speech 78.31
Ablation study when using DeepSeek as the language model
SilVar-e2e (DeepSeek) Speech 65.82

Table 6: Performance comparison of our model and other models on the ScienceQA Benchmark. e2e denotes
end-to-end training.

nication like medical surgery and self-driving cars.

6 Ablation study

While visual and audio encoders are key to pro-
cessing image-speech pair instructions, the visual
and audio adapters are equally vital for transferring
encoded information to LLMs. In Llava (Liu et al.,
2024), linear and MLP-based adapters effectively
bridge encoders and LLMs. Model performance
can also benefit from different neural network types
(Chen et al., 2020b,a), and adapter choice is critical
in multimodal models like the Q-Former in BLIP-
2 (Li et al., 2023b) and the Perceiver Resampler
in Flamingo (Alayrac et al., 2022). Building on
this, we design both MLP- and Transformer-based
adapters for the audio encoder.

Table 7 shows SilVar’s performance using dif-
ferent audio adapters in end-to-end speech instruc-
tion training. The Transformer-based adapter re-
quires 1.5× more training time than the MLP-based
one. However, performance differences are mini-
mal, suggesting that using Whisper’s final encoder
layer eliminates the need for complex adapter de-
signs. We also explore different MLP hidden layer
sizes (2816 and 5632), finding performance varia-
tion within ±0.1 on the MMMU dataset.

Adapter SilVar MMMU (val) ScienceQA

Linear layer 24.44 30.04 63.45
MLP 25.17 31.16 63.41
Transformer 25.66 31.05 63.78

Table 7: Performance of SilVar with different audio
adapters on VLM benchmarks.

Additionally, we replace Llama 3.1 with
DeepSeek-R1-Distill-Llama-8B, resulting in mod-
est gains, about 8% on MMMU and 4% on Sci-
enceQA, as shown in Table 4, Table 5, and Table 6.

7 Conclusion

In this study, we present SilVar, the first end-to-end
speech-driven VLM designed to enhance human-
machine interaction by enabling effective reasoning
from both images and speech instructions. Unlike
most existing VLMs and LLMs that depend on
text inputs, SilVar is an open-source model sup-
porting verbal communication, allowing for more
intuitive and natural interactions. However, build-
ing speech-based VLMs is challenging due to input
quality and the alignment of audio and visual em-
beddings, leading to a performance gap compared
to text-based models. However, SilVar performs
comparably to text-based VLMs on the MMMU
and ScienceQA benchmarks, showing its potential
in scenarios where text input is unavailable.

Limitations

One limitation of this work is the small size of
the training dataset. Despite it being enough to
fine-tune our model for the new task, the usage of
this dataset outside of our research scope could be
limited.

Potential risks

The core of Silvar is a pre-trained LLM, which can
suffer from hallucination and sometimes produce
incorrect information. The usage of this model
should be carefully revised in Silvar’s answer.
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Question: What activity might be taking place that encourages interaction and
bonding between the two individuals in the image?
Silvar: The two individuals share a playful moment and joy, they are located
[142 459 284 359]. In the environment like a zoo, they might be engaging in an
interactive activity like visisting the zoo or feeding animals. This activity may
enhance their experience through shared laughter and companionship.
GPT-4o mini: The two young children in the image appear to be at a zoo,
standing in front of a giraffe enclosure. They are holding hands, smiling, and
leaning close to each other, suggesting a shared moment of enjoyment. The
activity that might be encouraging interaction and bonding between them is
a visit to the zoo, where they are likely exploring and experiencing animals
together. This shared experience fosters a sense of excitement, curiosity, and
connection.
Gemini 1.5 Flash: The two individuals in the image are encouraged to visit a zoo
or animal park together. Observing and reacting to the animals fosters interaction
and bonding through shared experience, communication, and physical closeness.

Table 8: Comparison of predictions between our models and the other speech-driven model on the reasoning
abnormal detection. Unlike GPT-4o mini and Gemini 1.5 Flash, our Silvar is an open-sourced end-to-end speech-
driven VLM.
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