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Abstract

Quantifying identity fusion—the psychological
merging of self with another entity or abstract
target (e.g., a religious group, political party,
ideology, value, brand, belief, etc.)—is vital
for understanding a wide range of group-based
human behaviors. We introduce the Cognitive
Linguistic Identity Fusion Score (CLIFS), a
novel metric that integrates cognitive linguis-
tics with large language models (LLMs), which
builds on implicit metaphor detection. Unlike
traditional pictorial and verbal scales, which re-
quire controlled surveys or direct field contact,
CLIFS delivers fully automated, scalable as-
sessments while maintaining strong alignment
with the established verbal measure. In bench-
marks, CLIFS outperforms both existing auto-
mated approaches and human annotation. As a
proof of concept, we apply CLIFS to violence
risk assessment to demonstrate that it can im-
prove violence risk assessment by more than
240%. Building on our identification of a new
NLP task and early success, we underscore the
need to develop larger, more diverse datasets
that encompass additional fusion-target do-
mains and cultural backgrounds to enhance gen-
eralizability and further advance this emerging
area. CLIFS models and code are public at
https://github.com/DevinW-sudo/CLIFS.

1 Introduction

In Comprehensive Identity Fusion Theory (CIFT)1,
identity fusion is commonly referred to as a “vis-
ceral feeling of oneness,” often felt by an individ-
ual with a group (Swann et al., 2024, 2012, 2009).
In contrast to the traditional social identity the-
ory (Tajfel and Turner, 1979), CIFT suggests that
identity fusion is a unique form of group alignment
that can occur not only with social groups but also
with any abstract target such as an ideology, leader,

†Correspondence: devrwrig@iu.edu
1For a helpful reference table of acronyms and symbols

used or introduced in this paper, see Table 8 in Appendix B.

value, or belief (Swann et al., 2024). Identity fu-
sion is a stable alignment where the personal self
remains active and mutually reinforcing with the fu-
sion target identity, characterized by porous bound-
aries and a tendency to motivate both extreme and
prosocial in-group behavior (Swann et al., 2024).

Identity fusion manifests itself in various ways;
examples include extreme self-sacrifice and de-
fense of the target group—e.g. fighting, killing, or
dying for their target group, prioritizing fused target
over family, and even support for honor violence or
denial of in-group wrongdoing (Swann et al., 2024;
Ashokkumar and Swann, 2023; Besta et al., 2014;
Swann et al., 2014; Whitehouse et al., 2014; Swann
et al., 2010). Fusion can also drive enacted or
endorsed political persecution and violent opposi-
tion to unfavorable political outcomes (Kunst et al.,
2019). Recent work reveals a more nuanced role:
fusion correlates with social exploration and out-
group trust in peaceful settings, suggesting it can
support intergroup cooperation absent perceived
existential threats (Klein et al., 2024).

Although prior research has uncovered various
pathways leading individuals toward and away
(known as “defusion”) from identity fusion, some
defusion methods can be ethically problematic or
even backfire (e.g., imprisonment, solitary confine-
ment, degrading social support systems, seeding
doubt and distrust of in-group), and there remain
a lot of knowledge gaps in both fusion and defu-
sion (Swann et al., 2024; Ángel Gómez et al., 2020).
The ability to quantitatively estimate identity fu-
sion is important, given that it can drive powerful
social consequences. These consequences mani-
fest as beneficial outcomes—such as enhanced so-
cial cohesion and prosocial behaviors—and harm-
ful outcomes—such as radicalization and violence.
Advancing this line of inquiry requires tools to es-
timate the strength of fusion and reliably track it
longitudinally across larger populations.

Despite advances in understanding identity fu-
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sion and its consequential nature for stable, co-
operative, and cohesive social systems; empirical
measures remain largely self-reported or qualita-
tive (Ebner et al., 2022a; Jiménez et al., 2016;
Gómez et al., 2011; Swann et al., 2009). This gap
precludes large-scale, longitudinal, and historical
analyses of inter- and intra-community dynamics of
identify fusion, the mechanisms that shape fusion
processes, and the spectrum of fusion outcomes,
from destructive violence to social cohesion and co-
operation. (Ebner et al., 2022a; Klein et al., 2024).

Here, we introduce “Cognitive Linguistic Iden-
tity Fusion Score (CLIFS),” an automated, text-
based metric of identity fusion that leverages LLMs
and machine learning to quantify fusion directly
from natural language. One of the core elements
of CLIFS is our use of masked contextual LLMs
to detect implicit metaphors between self and the
fusion target. We hypothesize that an individual’s
conceptualization of their identity concerning their
fusion target is expressed subconsciously in im-
plicit metaphors through uniquely framed speech.

Inspired by Card et al. (2022)’s Masked Lan-
guage Model (Masked-LM) method, which de-
tects implicit metaphorical language in political
speeches, we propose a metric that captures an
individual’s conceptual proximity of self and fu-
sion target. We validate CLIFS against the estab-
lished verbal scale and human coding. Specifically,
CLIFS raised classification performance 6–154%2

over baselines and surpassed human annotation by
11–22%. In fine-grained identity fusion estimation,
it cut error rates 25% and boosted monotonic corre-
lation by 10% versus human annotations (reaching
absolute performance levels 2–30× that of prior
methods). Finally, we apply CLIFS to the violence
risk prediction task as a proof of concept, demon-
strating over 240% of predictive gains over the
existing approaches. By developing an automated
identity fusion estimation method, our work may
open up new large-scale avenues to (1) validate the-
oretical pathways to and from fusion, (2) examine
how self-verification and narrative or information
resonance drive both prosocial and risky behaviors
across groups, and (3) unlock practical applications
in counter-terrorism, violence risk evaluation, and
cultural analytics.

2All reported changes are relative (i.e., proportional to the
baseline, not percentage points); multiplicative expressions
(e.g., “3× gain”) are equivalent representations, unless explic-
itly noted as “absolute” performance.

2 Related Work

2.1 Traditional identity fusion estimation

The Pictorial Measure of Fusion is a single-item,
five-point scale showing two circles (self and tar-
get) with increasing overlap (Swann et al., 2009).
The Dynamic Identity Fusion Index (DIFI) applies
the same overlapping-circle paradigm in a GUI
that lets respondents click-and-drag for finer res-
olution (Jiménez et al., 2016). By contrast, the
seven-item Verbal Identity Fusion Scale (VIFS)
is the gold standard metric for identity fusion. It
consists of seven statements (e.g., “I am one with
my [target],” “My [target] is me;” see Appendix
C.1 for full list) rated on a 1–7 Likert scale (orig-
inally 0–6) designed to capture multiple facets of
fusion, including, importantly, reciprocal dynamics
of fusion (Gómez et al., 2011). VIFS scores are
computed as the mean of all seven item ratings.

2.2 Related Automated Measures

The Unquestioning Affiliation Index (UAI) is “a
language-based measure of group identity strength,”
calculated from cognitive-processing and affiliation
words using the Linguistic Inquiry and Word Count
software (Ashokkumar and Pennebaker, 2022; Pen-
nebaker et al., 2015)—see Appendix E.1 for defi-
nition. While validated with the VIFS, its mono-
tonic correlation is weak to moderate (Ashokkumar
and Pennebaker (2022) report 0.21 < rs < 0.31;
rs = 0.278, p ≪ 0.001 in our testing; see Ap-
pendix E.3 for Spearman’s rs), and values vary
across samples due to z-scoring. This limited align-
ment suggests the UAI is an unreliable standalone
fusion metric, particularly in populations with ex-
treme fusion levels.

The Violence Risk Index (VRI) is a “fusion-
based linguistic violence risk assessment frame-
work” that string-matches texts against manually
constructed dictionaries—derived from over 4,000
pages of manifestos—covering narrative categories
related to violence risk and identity fusion (Ebner
et al., 2024a,b, 2022b). Category scores are calcu-
lated as proportions of sentences containing tar-
get terms or as ratios between categories (e.g.,
identification-group vs. identification-identity), and
the final VRI is a weighted sum of the means across
three category groups (see Appendix E.2). While
the VRI includes an Identity Fusion module, our
testing indicate scores do not align with the VIFS
(rs = −0.021, p = 0.534), suggesting it does not
measure fusion directly—though it still identifies
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linguistic markers of fictive-kinship dynamics.

2.3 Metaphor detection with LLMs

Card et al. (2022) analyze 140 years of U.S. con-
gressional and presidential immigration speeches,
using contextual masked LLMs to detect implicit
dehumanizing metaphors (e.g., “animals,” “cargo,”
and “vermin”). Their method involves masking
mentions of immigrants and measuring the like-
lihood of metaphorical substitutions with BERT.
This allows for large-scale quantification of subtle
metaphor by observing how individuals frame their
speech, instead of explicit word usage. The demon-
stration that masked LLMs can effectively uncover
and quantify implicit metaphors at scale, thereby
accessing how concepts are subconsciously framed
in speech, directly informs our approach in CLIFS.

3 Task Formulation and Data

We introduce a new NLP task: predicting identity
fusion from natural language, and evaluate its util-
ity on a downstream task—violence risk prediction.
To support this, we repurpose datasets that, while
tangentially touched by prior work outside the NLP
community, have not been used in mainstream NLP
research. The identity fusion dataset has never been
formulated as an identity fusion benchmark; and
the violence prediction benchmark was analyzed
using basic string-matching techniques in a non-
NLP venue. By introducing these datasets to the
field, we extend NLP into new domains within hu-
man cognition and behavior.

3.1 Identity Fusion Prediction

We define the task as predicting a speaker’s level of
identity fusion with a fusion target from free text,
using VIFS scores as ground truth. We frame this as
both a regression (fine-grained) and a classification
(low, medium, high; coarse-grained) problem.

3.2 Violence Risk Prediction

To test the applied value of our fusion metric, we
use it in a violence risk classification task. While
not central to fusion research, the task’s original
method is grounded in identity fusion theory, mak-
ing it a relevant setting for testing whether fusion-
informed features improve downstream prediction.
The goal is to classify small chunks of ideologi-
cal texts into Violent Self-Sacrificial, Ideologically
Extreme, or Moderate categories.

3.3 Data

The reuse and reconstruction of these datasets was
deemed Not Human Subjects Research by our IRB;
see Appendix A.7 for license details.

3.3.1 Data for Identity Fusion Prediction
Ashokkumar and Pennebaker (2022) conducted
three experiments to develop and test the UAI.
We use data from their first experiment, which
is well-suited for identity fusion prediction. It
includes 871 MTurk participants who wrote for
6–8 minutes about their relationship to, and took
the VIFS for one of three fusion targets: country
(USA, n = 251), religion (n = 371), or univer-
sity (n = 249), after excluding two cases missing
VIFS scores (see Appendix A.1 for data samples).
Although only four of the seven VIFS items were
administered in the country condition. We use par-
ticipants’ VIFS scores as ground truth, discretiz-
ing them into “low,” “medium,” and “high” fusion
based on standard deviation cutoffs from the mean,
see Figure 9 in Appendix B.

3.3.2 Data for Violence Risk Prediction
We use the manifesto corpus from Ebner et al.
(2022a, 2024b), which includes 15 ideological man-
ifestos labeled as “Violent Self-Sacrificial,” “Ide-
ologically Extreme,” or “Moderate.” We segment
texts into ≈300-word, sentence-preserving chunks
with NLTK’s sent_tokenize (Bird et al., 2009),
yielding 6,968 samples: 4,950 Violent, 1,361 Ex-
treme, and 657 Moderate.

To address class imbalance (majority class com-
prised ≈71%) and obtain more stable estimates, we
downsampled the larger classes to match the minor-
ity class (657 samples each) using a round-robin
sampling strategy at the author level, sequentially
selecting chunks from each manifesto. The final
balanced dataset contained 1,971 samples.

4 Method

4.1 CLIFS

Identity Fusion Metrics: We build on the idea
of metaphor detection with masked token predic-
tion (Card et al., 2022). The intuition is that, for
individuals with strong identity fusion, self and
target concepts are like metaphors, and are there-
fore used more interchangeably in their spoken or
written texts—reflecting close conceptual proxim-
ity. When identity tokens are masked, fusion-target
terms should receive a higher probability (and vice
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versa), even if the swap is not perfectly grammati-
cal, because the underlying concepts align. Namely,
we quantify how replaceable one’s identity tokens
are with the tokens for the fusion target using Mod-
ernBERT (Warner et al., 2024; Wolf et al., 2020)
and use this quantity as a main feature of the score.

Prior research and the VIFS illustrate that iden-
tity fusion is a reciprocal (i.e., bidirectional) rela-
tionship (Gómez et al., 2011; Swann et al., 2024).
To capture this dynamic, we compute both the di-
rectional proximity from identity to fusion target,
SI→T , and from fusion target to identity, ST→I ,
and then combine them with a harmonic mean:

f(I,T ) =
2SI→T ST→I

SI→T + ST→I
(1)

Analogous to the F1 score, this formulation em-
phasizes the reciprocity of identity fusion.

To compute directional proximity Sx→y (x, y ∈
{I, T}), we first build a candidate vocabulary Vx

for category x (details below). We mask all y-type
mentions in a document with [MASK] tokens, yield-
ing My masked positions. The sequence is pro-
cessed with ModernBERT, and a softmax is applied
over the vocabulary at each masked position. For
each position m, we extract the probabilities of can-
didate words in Vx, then raise them to the power α
(< 1, with α = 0.5 in our models). When probabil-
ities are small (as is common with masked language
models), this amplifies differences between can-
didates, improves numerical stability, and allows
meaningful aggregation. We sum over each candi-
date to acquire each mask score, sum all masked
scores, and then divide by My for the average:

Sx→y =
1

My

My∑

m=1

∑

wv∈Vx

P (wv | Cm)α (2)

Informed by the fictive kinship relationship of
those who experience identity fusion (Ebner et al.,
2022a,b), we also estimate the extent to which this
kin-like bond is expressed in implicit metaphors.
The intuition mirrors that of fusion proximity: in
highly fused individuals, kin-related and target con-
cepts share conceptual space. Presumably, this
subtly shapes how related terms are framed. We
compute this by replacing fusion target words with
kinship terms and calculating directional proximity:
Kf = SK→T . See Figure 5 in Appendix B for an
example of a directional score calculation.

Our set of identity words, I , consists of first-
person singular pronouns. The kinship word set,

K, is drawn from prior work identifying familial
terms as markers of identity fusion (Ebner et al.,
2024b, see Supplemental Material). The fusion tar-
get set, T , is a partially parameterized input, allow-
ing different group terms to be passed in or ignored
depending on the context. For our experiments, we
include known groups from the dataset. The base
set includes a fixed list of generic collective words
combined with first-person plural pronouns. See
Appendix C.2 for the full lists of terms used.

We algorithmically expand both sets K and T to
focus on the kin and group concepts they represent
instead of the specific words themselves. Similar
to Card et al. (2022), we use static embeddings to
expand our categories. We’ve elected to use GloVe
embeddings, owing to their large-scale pretraining,
their quality semantic embeddings, and the ease of
loading via the gensim library (Pennington et al.,
2014; Řehůřek and Sojka, 2010). We append all
words in the GloVe vocabulary to K or parameter
T that have a cosine similarity > 0.8 to any of the
words in the respective set. To ensure we capture
document-specific group references, we addition-
ally run spaCy’s NER on each text and mask all
Organizations (ORG), Nationalities or Religious
or Political Groups (NORP), or Geopolitical Enti-
ties (GPE) along with masking T words, but they
are not added to the overall T set (Honnibal et al.,
2020; Honnibal and Montani, 2017). We apply
NER-based expansion only when computing SI→T

and Kf , omitting it for ST→I . This captures each
speaker’s specific group labels without inflating the
reverse-direction candidate set with idiosyncratic
entities or introducing document-specific vocabu-
lary sizes—an inconsistency that would distort the
summed score

∑
wv∈Vx

P (wv | Cm)α.
These four metrics serve as features for our clas-

sifier and regressor; f(I,T ) (Fusion-Proximity), Kf

(Fictive-Kinship), SI→T , and ST→I . The metric
distributions exhibit a small but noticeable progres-
sive shift from low to high values in the SI→T

and Kf features. Although the shifts in f(I,T ) and
ST→I are not as progressive across categories, both
still exhibit a shift as individuals experience and
express high levels of fusion, as shown in Figure 1.
Unlike prior methods, these scores are not limited
to explicit use of a predefined vocabulary. Instead,
they rely on how individuals conceptualize their
identity concerning their fusion target.

Lexical Markers of Identity Fusion: To lever-
age the knowledge gained by prior work, we uti-
lize selected outputs of UAI and VRI. From UAI,
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Figure 1: CDFs of each Masked-LM identity fusion
metric by true label (means shown as dashed lines; x-
axis log-scaled). The curves reveal distributional shifts
across fusion levels, empirically supporting the theoreti-
cal premise behind our implicit metaphor approach.

we utilize the scores affiliation, cognitive process-
ing (Ashokkumar and Pennebaker, 2022), and a
sample-independent naïve UAI (nUAI)—see Ap-
pendix E.1. From VRI, we incorporate VRI-fusion
and identification (Ebner et al., 2024b).

Opaque Deep Learning Features: We use
embeddings from an off-the-shelf SBERT model
as features—all-mpnet-base-v2—to capture se-
mantic patterns not yet uncovered in identity fusion
research (Reimers and Gurevych, 2019). Finally,
we fine-tune a ModernBERT classifier to predict
the coarse-grained fusion levels. We extract its
softmax probabilities for low, medium, and high fu-
sion as three continuous features. Preserving these
soft probabilities—rather than forcing a single hard
label—allows the downstream model to leverage
the full spectrum of ModernBERT’s confidence.

We train both a random forest classifier and re-
gressor using grid search for hyperparameter opti-
mization (Pedregosa et al., 2011; Breiman, 2001).
During testing, low and high fusion categories
proved difficult to classify, likely due to subtle lin-
guistic differences and limited training data. To
mitigate this, we adjust class weights inversely to
class frequency and double the weights for low and
high categories during training. See Figure 2 for
an architecture diagram.

4.1.1 Ensemble

We form a hard-voting ensemble of our CLIFS
random forest with other high-performing baselines

to maximize performance. In addition to the CLIFS
random forest, we utilize the SBERT random forest
and both RAG approaches (details below).

4.1.2 CLIFS-VRI
To benchmark CLIFS against baseline violence
risk prediction methods, we modify the VRI by
replacing its fusion metric—which does not align
with the VIFS—with our five features: f(I,T ), Kf ,
SI→T , ST→I , and the CLIFS random forest class
prediction. These features are then used to train a
new random forest for violence risk prediction.

4.2 Data Augmentation

Given the small size of our identity fusion dataset,
we apply two forms of AI data augmentation:
Round-Trip Translation (RTT) and Generative
AI (GenAI) text generation. Data augmenta-
tion has been shown to enhance performance and
generalization in low-resource text classification
tasks (Bayer et al., 2023). For RTT, we use the
nlpaug library (Ma, 2019) to translate text to Ger-
man and Chinese and back to English using Face-
book’s wmt19 and Helsinki-NLP’s opus-mt mod-
els (Ng et al., 2020; Tiedemann et al., 2023; Tiede-
mann and Thottingal, 2020). Prior work indicates
RTT with diverse languages is effective for gener-
ating paraphrastic variants without a need for over-
sampling, previously improving performance in
translation and language understanding tasks (Fang
and Xie, 2022)—RTT examples in Appendix A.3.

For GenAI, we use OpenAI’s gpt-4o
model (OpenAI, 2024; Ben Abacha et al.,
2025), and adapt a prompt structure from prior
work that improved text classification perfor-
mance (Zhang et al., 2024). Our format includes
role, length, target, and exclusivity prompts. We
modify the style prompt into a task-specific prompt
to inform the LLM of the broad fusion target
category and specific target constraints. All targets
and categories are drawn from CIFT (Swann et al.,
2024). Full prompt details and generated examples
appear in Appendix A.2.

Finally, to further balance the classes without
excessively inflating minority categories with syn-
thetic data, we oversample 25% of randomly se-
lected entries from the low and high classes (i.e.,
doubling those entries). Post augmentation, the
dataset has 331 low (207 hum., 41 RTT, 83 GenAI),
722 medium (541 hum., 181 GenAI), 328 high
(205 hum., 41 RTT, 82 GenAI) samples, and 13
fusion-targets; see Figures 7 and 8 in Appendix B.
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Figure 2: CLIFS architecture diagram.

5 Experimental Design

To comprehensively evaluate our identity fusion
models, we conduct two performance-focused ex-
periments and one practical application experiment.
The first two assess identity fusion prediction per-
formance, while the third applies our method to
violence risk prediction.

5.1 Identity Fusion Prediction
In Experiment 1, we use a representative test set to
assess overall performance. Experiment 2 focuses
on comparison with human judgments.

5.1.1 Data Split
In Experiment 1, the raw dataset was randomly split
into 70% train, 15% validation, and 15% test. For
augmented data, we kept the test set fixed, pooled
the remaining raw and augmented samples (exclud-
ing RTT variants of test items), and split them 80%
train, 20% validation.

In Experiment 2 (human comparison), the test
set comprised the 97 human-rated college-target
participants; all other samples formed the training
and validation pool. After augmentation, we again
excluded RTT variants of test items from this pool.
Both pools are split 80% train, 20% validation sets.
This ensures no test leakage from augmentation
while enabling evaluation of its impact.

5.1.2 Experimental Settings
Experiment 1: We evaluate overall performance
across all fusion targets. Hyperparameter tuning
is performed on the validation split, and the final
metrics are reported on the test split. To assess the
impact of data augmentation, we run two training
and tuning cycles: one on the raw data and one on
the augmented data.

Experiment 2: We compare our model
performance against human annotations on 97
college-target samples. We create a dedicated
train/validation/test split rather than reusing Ex-
periment 1’s splits. If we had instead left those
97 in Experiment 1’s test set and used the same
training/validation splits, nearly half of the college-
target examples would have been excluded from
training and validation—exacerbating fusion-target
imbalance and undermining both model fitting and
hyperparameter tuning. By constructing separate
splits for Experiment 2, we (a) guarantee that our
human-comparison evaluation is performed on un-
seen data and (b) preserve a balanced, representa-
tive pool for training and validation.

We performed four-fold cross-validation on the
training data for hyperparameter tuning of our ran-
dom forest (RF), support vector machine (SVM),
and extreme gradient boosting (XGBoost) models
instead of the held-out validation set. We compare
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baseline models with models trained on CLIFS fea-
tures, and report overall performance using macro
and per-class F1 scores. To assess variability, we
apply bootstrapping with 1,000 resamples (each of
size N , the test set size). The regressor is evaluated
using Mean Absolute Error (MAE) and Spearman
correlation (rs) with true VIFS scores. To assess
feature contributions, we rank by Gini Importance
(GI) and conduct an ablation study: one feature set
is removed per round, followed by training, tuning,
and test evaluation. The random_state = 42 in
all experiments and data splits.

5.1.3 Baseline Models
For baselines, we evaluate majority-class voting,
Zero-Shot, Few-Shot, Retrieval-Augmented Gen-
eration (RAG), random forest, and fine-tuning ap-
proaches (Kojima et al., 2022; Lewis et al., 2020;
Pedregosa et al., 2011; Breiman, 2001). We fine-
tune Answer.AI’s ModernBERT-base—a state-of-
the-art encoder-only model suited for cost-effective,
real-time monitoring (Warner et al., 2024)3. For
Zero-Shot classification, we use Moritz Lau-
rer’s ModernBERT-base-zeroshot-v2.04. We
train a random forest on SBERT embeddings
(all-mpnet-base-v2) (Reimers and Gurevych,
2019; Song et al., 2020). For larger benchmarks,
we apply OpenAI’s gpt-4o (Few-Shot) and both
gpt-4o and DeepSeek’s r1 (deepseek-reasoner)
with RAG (OpenAI, 2024; Ben Abacha et al., 2025;
DeepSeek-AI et al., 2025). Our RAG pipeline
uses FAISS for retrieval (Johnson et al., 2019), and
we tune ModernBERT hyperparameters with Op-
tuna (Akiba et al., 2019). See Appendices A and D
for prompt and baseline details.

5.2 Violence Risk Prediction
To showcase a practical application of identity fu-
sion prediction and further validate our models and
metrics, we integrate CLIFS into the VRI by re-
placing its original identity fusion submodule with
our own metrics. We then evaluate the impact on
downstream predictive performance.

5.2.1 Data Split
For the VRI task, we randomly split the 1,971
text chunks—balanced across three violence risk
classes and drawn from 15 manifestos—into 80%
for training and 20% for testing. Each chunk is

3This is the same ModernBERT we fine-tuned to extract
class probabilities as CLIFS features.

4https://huggingface.co/MoritzLaurer/ModernBERT-
base-zeroshot-v2.0

≈300 words long, unique (does not overlap with
other chunks), and preserves full sentences.

While no chunk is ever included in both train-
ing and test sets, non-overlapping chunks from the
same manifesto may appear in both splits. Each
chunk is uniquely assigned to one split only. Given
the scale of the source material (over 4,000 pages)
and the class balancing procedure (which necessar-
ily excludes large portions of longer manifestos),
this design minimizes the risk of text leakage while
preserving topical diversity. Some stylistic consis-
tency from individual authors may persist, but the
setup aims to reflect more realistic scenarios (e.g.,
partial sample analysis or real-time social media
streams) where full document analysis and manual
curation are not feasible.

5.2.2 Experimental Settings
We train a random forest on the submodule outputs
of the VRI, but we replace the VRI-fusion output
with our identity fusion metrics; f(I,T ), Kf , SI→T ,
ST→I , and the fusion predicted by our CLIFS ran-
dom forest classifier. Model selection and hyper-
parameter tuning were carried out via four-fold
cross-validation on the training set, and the final
evaluation was performed using macro F1.

5.2.3 Baseline Models
We benchmark the impact of CLIFS’s identity fu-
sion evaluation on the VRI using three baselines.
First, majority class voting. Second, the origi-
nal VRI implementation from prior work (Ebner
et al., 2024a,b, 2022b), which involves manu-
ally removing thousands of false positives before
analysis (Ebner et al., 2024a, see Supplemental
Material)—a step that artificially inflates perfor-
mance and is unsuitable for large-scale or produc-
tion deployment. Accordingly, we omit this fil-
tering. Third, a random forest trained on all VRI
submodule outputs serves as our final baseline.

6 Results

6.1 Identity Fusion Prediction

Experiment 1: Our CLIFS random forest and en-
semble models trained on augmented data were the
top performers overall, both achieving the same
macro F1 score in the first experiment (F1 = 0.66;
see Table 1). Bootstrapping reflects the result,
with both models again performing equally. Both
have an equally focused 95% confidence interval
(CI), but the random forest maintains higher lower
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Exp. 1 Exp. 2
Model Orig. Aug. Orig. Aug.
Human - - 0.46 0.46
Majority Vote 0.26 0.26 0.25 0.25
Zero-Shot 0.32 0.32 0.39 0.39
Few-Shot 0.58 0.43 0.37 0.54
4o RAG 0.57 0.60 0.54 0.59
r1 RAG 0.62 0.56 0.59 0.59
SBERT RF 0.59 0.50 0.43 0.43
ModernBERT 0.49 0.62 0.40 0.52
CLIFS Ens. 0.63 0.66 0.52 0.56
CLIFS RF 0.55 0.66 0.56 0.51
CLIFS XGB 0.54 0.58 0.43 0.55
CLIFS SVM 0.58 0.66 0.52 0.53

Table 1: Results for identity fusion prediction. F1 scores
for both the overall performance (Experiment 1) and the
human-comparison benchmark (Experiment 2) across
the Original and Augmented datasets.

and upper bounds. Specifically, the random for-
est achieved an F1 = 0.65 with a 95% CI of
[0.56 − 0.75], while the ensemble achieved an
F1 = 0.65 with a 95% CI of [0.55 − 0.74]; see
Table 4 in Appendix B.

In per-class performance, the CLIFS random for-
est performs better than the ensemble on medium
(F1 RF: 0.78; F1 Ens.: 0.73) and low fusion (F1

RF: 0.62; F1 Ens: 0.59). However the ensemble
performs better on high fusion (F1 RF: 0.58; F1

Ens. 0.65); see Table 6 in Appendix B. While the
high class is important, the added computational
and time costs might not be worth the improve-
ment for the single class, unless sufficient comput-
ing resources are available to host DeepSeek R1
locally. Where the random forest might take a few
seconds to classify, the ensemble will take many
hours for a small test set (API wait times add more
time cost), which is not ideal for large-scale scenar-
ios. Furthermore, the CLIFS random forest runs
completely locally which is crucial for private data.
Overall, CLIFS classification outperforms base-
lines by 6–154%. Our regression model obtains a
MAE of 0.998, and a correlation of rs = 0.633;
p ≪ 0.001, a gain of 165–419% in correlation
strength (UAI, rs = 0.239, p = 0.006; and VRI-
fusion, rs = −0.122, p = 0.164); see Figure 3.
When considering the correlations of prior meth-
ods on the entire dataset, we estimate correlation
gains from 1.3–29× (UAI, rs = 0.278, p ≪ 0.001;
VRI-fusion, rs = −0.021, p = 0.534 on all data).

Experiment 2: In our second experiment, the

Figure 3: Random Forest regression model trained on
augmented data. Predictions are plotted against true
VIFS values. MAE = 0.998, rs = 0.633, p ≪ 0.001.

CLIFS models trained on augmented data do not
obtain the highest macro F1 scores, but they do
maintain higher performance than human anno-
tation (Human F1 = 0.46; CLIFS RF F1 =
0.51; CLIFS ensemble F1 = 0.56; 11–22%
gain). This highlights that—even under constrained
conditions—CLIFS improves meaningfully over hu-
man annotation. The human F1 score was better
than majority voting, but many models perform
better than human annotation. As Table 1 indicates,
the models which performed better than human text
annotation were, the gpt-4o Few-Shot approach
using augmented data, all RAG approaches, the
fine-tuned ModernBERT model trained on aug-
mented data, and all CLIFS approaches (except
one XGBoost model). When we also consider
our bootstrapped F1 on the human comparison
experiment, the best performers are the gpt-4o
RAG approach using augmented data, and the
deepseek-reasoner RAG approach using the raw
original data—each maintaining F1 = 0.59 in both
evaluations; see Table 5 in Appendix B.

Importantly, we validated our data augmenta-
tion approach by comparing models trained with
and without augmentation on the same fixed test
set. Across all trainable models in both Experi-
ments, augmentation improved macro F1 scores
by ≈ +10% on average, suggesting that synthetic
data captured meaningful representation rather than
degrading model reliability.

The performance drop in Experiment 2 for
CLIFS models trained on augmented data (vs. Ex-
periment 1) stems from test set composition. All 97
human-annotated entries solely included college-
target participants, removing ≈40% of that training
data. This disproportionately affected this class
and reduced performance for that fusion target.
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In contrast, RAG-based methods (which rely on
retrieval rather than training) maintained similar
performance, likely because they continued retriev-
ing college-target examples from the remaining
data. On average, CLIFS models trained on aug-
mented data dropped by a relative 15.69% from
Experiment 1 to 2 (not to be confused with com-
parisons against non-augmented models within the
same experiment). RAG models on the same data
gained 1.85%. Across all trainable models, the
average performance drop was about 15.48%.

This highlights that the observed performance
shift was due to target-specific data partitioning,
not flaws in the augmented data or approach. De-
spite this, CLIFS maintained clear improvements
over human annotation and competitive standing
relative to other baselines. Taken together with Ex-
periment 1, these results show that while CLIFS
does not universally outperform all methods under
all data partitions, it consistently provides strong
gains—11–22% over human annotation, 6–154%
classification improvements, 25% error reductions
compared to humans (CLIFS MAE = 1.063; Hum.
MAE = 1.426), and correlation increases from 10–
1,716% (CLIFS rs = 0.69, p ≪ 0.001; Hum. rs =
0.628, p ≪ 0.001; UAI rs = 0.402, p < 0.001;
and VRI-fusion rs = 0.038, p = 0.709).

Ablation Study: CLIFS identity fusion features
yield the largest gain (8.4%) for features with-
out prior training. The class-probability outputs
from the fine-tuned ModernBERT increase perfor-
mance by 13.8%, and every feature set contributes
to CLIFS’s overall performance (Figure 4).

Figure 4: Performance loss for removing each module
from the CLIFS Random Forest. A: SBERT features;
B: class probabilities from fine-tuned ModernBERT;
C: CLIFS identity fusion (f(I,T ), Kf , SI→T , ST→I );
D: UAI features (affiliation, cogproc, nUAI); E: VRI
features (VRI-fusion, identification).

Feature Importance: Impurity-based impor-

Violence Risk Prediction
Model F1

Majority Vote 0.18
VRI 0.18
VRI RF 0.53
VRI w/ CLIFS 0.62

Table 2: F1 scores for Violence Risk Prediction.

tance from our random forest reveals that SBERT
embeddings—though opaque—drive most node
splits, underscoring the need for future research
into other semantic markers of fusion. Among
interpretable features, UAI features rank highest,
followed by our CLIFS identity fusion metrics,
then VRI fusion and identification scores. In the
violence-risk model, fictive kinship (Kf ) is the
strongest individual predictor, and all five CLIFS
features rank among the top seven (for visuals, see
Figures 11, 12, and 13 in Appendix B).

6.2 Violence Risk Prediction

Simply using VRI outputs as random forest fea-
tures greatly improves performance, and is further
improved by integrating CLIFS’s more informa-
tive features (F1 from 0.18 to 0.62—a > 240%
gain); see Table 2. As stated previously, our bench-
marking reflects fully automated pipelines without
manual filtering, which is essential for realistic de-
ployment scenarios. The original VRI aggregate
score classifier matches majority voting (i.e., more-
or-less random guessing), underscoring that its re-
ported effectiveness depends heavily on extensive
manual correction. Therefore, our results highlight
both methodological advances and the feasibility
of scalable, automated risk assessment.

7 Conclusion

CLIFS delivers scalable, consistent identity fu-
sion estimation that outperforms prior methods
and human annotations, and improves VRI perfor-
mance by over 240%. It will potentially enable a
broader “view of the forest” on fusion dynamics in
future work. The CLIFS random forest offers fast,
resource-efficient inference suitable for most appli-
cations. Still, the ensemble may be more beneficial
in out-of-domain samples. Notably, the ensemble
incurs substantial latency and is best reserved for
environments where DeepSeek R1 can be hosted lo-
cally. Future work will target greater performance,
generalizability, and multilingual support.
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Limitations

Despite its strong performance, our comparison of
human annotation with CLIFS is based on a sin-
gle, college-educated research assistant annotator
whose familiarity with identity fusion likely ex-
ceeds that of most lay annotators, but is nonetheless,
a sample size of one. This reliance on a single anno-
tator reflects a constraint of the dataset (Ashokku-
mar and Pennebaker, 2022), rather than our ap-
proach. While this allows us to compare with
human annotation, it prevents us from estimat-
ing inter-rater reliability or capturing the range
of ratings that multiple independent annotators
might provide. Future work should involve sev-
eral annotators—ideally with varied backgrounds—
to establish a more developed human benchmark
against which to compare automated scores.

Moreover, our non-synthetic training and testing
data remain relatively small and narrowly focused,
comprising 873 entries on just three fusion targets
(country, religion, and university). This limited
scope may constrain the linguistic patterns and ex-
pression styles CLIFS learns, and it leaves open the
question of how well the approach would general-
ize to other groups (e.g., social movements, brands,
online communities) or to texts produced in dif-
ferent contexts. Scaling up to larger, more diverse
datasets—both in terms of fusion targets and partic-
ipant populations—will be essential for validating
CLIFS’s robustness and ensuring its applicability
across domains. To achieve this, future work will
involve strategic collaborations with organizations
or researchers who possess access to broader and
more diverse datasets, enabling a more rigorous
evaluation of CLIFS’s generalizability.

While we use Gini Importance to characterize
feature contributions, this measure does not cap-
ture interactions among features or variation across
individual predictions. Model-agnostic approaches
such as SHAP (Lundberg and Lee, 2017) address
the latter by attributing contributions at the level
of single predictions, and extensions like Tree-
SHAP (Lundberg et al., 2020) can further separate
main and interaction effects. We view this not as
undermining interpretability, but as an opportunity
for future work to build on such methods to cap-
ture richer feature dynamics and uncover additional
linguistic patterns.

Finally, all of our samples are English-language
texts drawn from U.S. participants. CLIFS’s fea-
tures may not transfer seamlessly to other cultural

settings. Building and evaluating multilingual or
cross-cultural corpora will be a critical step toward
confirming that the cognitive-linguistic cues we
leverage are universal rather than Western-centric.

Ethical Considerations

CLIFS carries misclassification risks, so its scores
should augment—not replace—human judgment in
high-stakes contexts. Or it should be used in com-
bination with other metrics for a holistic profile.
As covered in the limitations section, since CLIFS
is trained on U.S. English MTurk essays, it may
embed cultural biases and lack generalizability, ne-
cessitating cross-cultural validation. Additionally,
there are potential biases present in the LLMs re-
lating to identity fusion not extrapolated in this
work. If individuals misinterpret or weaponize the
concept of identity fusion, authoritarian regimes
or malicious actors could weaponize CLIFS to sin-
gle out and marginalize vulnerable individuals or
groups, mistaking high fusion (which can reflect
prosocial in-group and out-group cooperation) for
imminent violence, while overlooking the many
other factors that drive risk.
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A Data & Prompting

A.1 Human Data Examples
Here are one of the lowest, highest, and median
scoring samples from the human dataset, with their
fusion score:
VIFS Score (high): 7.0; Target (group):

country (USA); Text: I am proud to be
an American. I am proud of my country’s
heritage. America has tried to be a good
friend and neighbor to other nations. It
is fought for other countries on their
soil. It has been a world leader on most
friends for many years. Many people take
issue with America even people who live
here. I say if you don’t like it here
move somewhere else. No one is making
you stay. That’s one of the great things
about America if you don’t like it you
can leave. We owe allegiance to our
country. People who badmouth our country

don’t earn my respect. People who burn
the American flag don’t earn my respect.
America allows freedoms that many other
countries don’t tolerate. We must come
together as a group and make America all
that it can be. We the people are the ones
who make it strong. No nation is perfect
because no person is perfect but through
our love for our nation we make America
what it is. It is our responsibility to
make it better. If America would fail
it would be because we the people failed.
When thinking about our past sure there is
good and bad. But we have learned from the
experiences and progressed to the nation
we are today. Let’s continue to make it
even better.
VIFS Score (medium): 4.571428571;

Target (group): country (USA); Text: My
relationship with America is that I live
in it. I’m an American citizen and
am integrated into American culture. I
interact with other Americans on a daily
basis.
On an emotional level I’m quite attached
to America. The concept of America at
least in an idealized form is a worthy
one.
On a more realistic level though I’m not
attached to America. The country has many
policies I disagree with. It also has a
history that does not make me proud.
I also have no significant attachment to
average Americans. They’re just other
people no more or less valuable to me
than average non-Americans.
VIFS Score (low): 1.0; Target (group):

country (USA); Text: I am not a patriotic
person. I don’t feel that my country
has done much for me. I have resentment
towards this country because of income
inequality. I feel that this country
should do more for it’s citizens to ensure
that everyone has a fair chance. We
are the only first world country that
does not have universal healthcare yet we
spend more on our military than all other
nations combined. We are a first world
nation that lets the elderly go hungry
and veterans be homeless. This country
only cares about it’s richest one percent.
I do not think that our current political

11656

https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://doi.org/10.1073/pnas.1416284111
https://doi.org/10.1073/pnas.1416284111
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1109/AINIT61980.2024.10581735
https://doi.org/10.1109/AINIT61980.2024.10581735
https://doi.org/10.1109/AINIT61980.2024.10581735
https://doi.org/10.1111/spc3.12531
https://doi.org/10.1111/spc3.12531
https://doi.org/10.1111/spc3.12531


system works because big corporations run
our government and our government will
pass laws to ensure their well being not
the well being of it’s citizens. This
country also houses one fourth of the
worlds prison population. It profits
off of the suffering of others - mostly
the poor. No I do not have a strong
relationship with my country and in
fact I’m embarrassed to call myself an
American.

A.2 GenAI Data Augmentation Prompting
The prompt for data augmentation consists of 5
sections; 3 random examples from the training set,
role, length, target, and exclusivity. The role in-
structs the model it is to perform as a text classifier.
The length and exclusivity prompts indicate the
bounds of word count and encourage the model to
stay on topic and on task. And the target prompt
instructs the model of their fusion target category
and the specific type of target. All of the categories
and targets come from examples identified in CIFT.
A fusion target is randomly chosen for each new
synthetic data sample. As indicated above, we use
OpenAI’s gpt-4o to generate synthetic data.

Diverse target groups and targets from CIFT:

• group

– your political party, your gang, your fa-
vorite sports team

• individual

– your sibling, your romantic partner, a po-
litical leader

• value

– your calling, god, the priesthood

• ideology or cause

– ideology

• brand

– your favorite brand

• creature

– a famous animal

The augmentation prompt is as follows:
Here is a sample of responses regarding

different targets that have scored

{IDENTITY_FUSION_CATEGORY} on the verbal
identity fusion scale like you:

Verbal Identity Fusion Scale Score:
{REAL_SCORE_1}
Response: {EXAMPLE_1}

Verbal Identity Fusion Scale Score:
{REAL_SCORE_2}
Response: {EXAMPLE_2}

Verbal Identity Fusion Scale Score:
{REAL_SCORE_3}
Response: {EXAMPLE_3}

Role:
You are an individual writing
for 6–8 minutes about a target
and your relationship with the
target. You are an individual with
{IDENTITY_FUSION_CATEGORY} identity
fusion with your target. If you took the
verbal identity fusion scale you would
score {IDENTITY_FUSION_SCORE} out of 7.

Length:
Write between 57 and 249 words in your
response.

Target:
Your target is a(n) {TARGET_CATEGORY}.
The {TARGET_CATEGORY} is
{SPECIFIC_TARGET}.

Exclusivity:
Don’t write about other targets and
please remember to stay on task. Reflect
on your relationship and what the target
means to you. Resist using the word
identity. Do not use the word identity.
You are unaware we are testing for
identity fusion. No score is necessary,
we will give you a score later. No
introduction as ChatGPT is necessary.
Do not give an introduction as ChatGPT.
Just start responding to the prompt.

The following examples are high, medium, and
low samples from the generative AI data.
VIFS Score (high): 7.0; Target:

ideology; Text: Environmental
sustainability is the very pulse of
my existence. It guides my choices,
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fueling a commitment to protect and
nurture the earth. This ideology is not
just a cause; it is an intrinsic part of
my daily life and the decisions I make.
Every action, from conserving water to
reducing waste, is a step toward a more
sustainable future. I find a deep sense
of purpose in advocating for policies
that support renewable energy and reduce
carbon emissions, knowing that these
efforts contribute to the healing of our
planet.
I engage in conversations and

activities that spread awareness about
the importance of living sustainably.
There is a profound connection with
nature that motivates me to continuously
seek ways to minimize my ecological
footprint. Seeing the tangible impact
of collective efforts, such as cleaner
air and the rejuvenation of forests,
reinforces my unwavering dedication.
Being part of a community that shares

these values is empowering. Together,
we innovate and inspire others to shift
toward practices that honor and restore
our environment. Each small step, when
multiplied by many, leads to significant
change. I am in this for the long haul,
driven by a vision of a world where
harmony with nature is not just an ideal
but a lived reality.
VIFS Score (medium): 4.5; Target:

sibling; Text: Growing up with my sibling
has shaped much of who I am today.
We’ve been through many things together,
from childhood scrapes and joys to adult
challenges and triumphs. Our bond isn’t
just one of shared experiences but also
mutual support and understanding. Despite
our differences—be it in personality,
interests, or aspirations—we’ve always
managed to find a common ground.
My sibling has qualities I deeply

admire: resilience, kindness, and
a knack for staying optimistic no
matter the situation. There have been
countless times when their perspective
helped me see things from a different
angle, encouraging me to approach life’s
obstacles with a bit more grace and
patience.

We may bicker occasionally, as siblings
often do, but these moments never
linger. They serve as reminders of our
individuality and our shared commitment
to maintaining a strong relationship. In
many ways, I feel fortunate to navigate
life with my sibling by my side.

Our shared history is a comforting
anchor, a reflection of our past and a
guide for our future. I cherish the idea
of us growing older together, continuing
to learn from each other, and supporting
one another through life’s many journeys.

VIFS Score (low): 1.0; Target:
political party; Text: I find myself
loosely affiliated with my political
party. It’s not something I feel deeply
tied to. Growing up, politics wasn’t a
major focus in my household, so naturally,
it hasn’t become an integral part of
my life either. I lean towards some
of the party’s values, but it often
seems like a label rather than a guiding
principle for everyday decisions. I
sometimes question stances that seem more
about party allegiance than practical
solutions.

While there have been times when
I’ve supported party initiatives, it’s
mainly when those line up with my
personal beliefs about fairness and
social responsibility. I appreciate
dialogues about policies that impact
everyone’s well-being and encourage
critical thinking, but I don’t feel a
strong pull towards engaging with the
party as a whole.

In truth, I approach voting with an open
mind, considering candidates and issues
individually instead of aligning with a
party line just for the sake of it. I
believe in evaluating what’s best for
the community and making informed choices.
The idea of changing affiliation or even
stepping away from politics entirely
isn’t off the table if I find that another
path aligns better with my outlook on
life. Politics might be significant, but
it doesn’t define who I am or how I live
my life.

11658



A.3 Round-Trip Translation Example

These are the results of round-trip translation for a
simple text with German and Chinese.
Original text: The quick brown fox

jumps over the lazy dog.

English -> German -> English: The
speedy brown fox jumps over the lazy dog.

English -> Chinese -> English: A fast
brown fox skips a lazy dog.

Below are paraphrasing results of one of the
highest-scoring entries for fusion from the raw
dataset when performing round-trip translation in
both German and Chinese.
Original text: I am proud to be an

American. I am proud of my country’s
heritage. America has tried to be a good
friend and neighbor to other nations. It
is fought for other countries on their
soil. It has been a world leader on most
friends for many years. Many people take
issue with America even people who live
here. I say if you don’t like it here
move somewhere else. No one is making
you stay. That’s one of the great things
about America if you don’t like it you
can leave. We owe allegiance to our
country. People who badmouth our country
don’t earn my respect. People who burn
the American flag don’t earn my respect.
America allows freedoms that many other
countries don’t tolerate. We must come
together as a group and make America all
that it can be. We the people are the ones
who make it strong. No nation is perfect
because no person is perfect but through
our love for our nation we make America
what it is. It is our responsibility to
make it better. If America would fail
it would be because we the people failed.
When thinking about our past sure there is
good and bad. But we have learned from the
experiences and progressed to the nation
we are today. Let’s continue to make it
even better.

English -> German -> English: I am
proud to be an American. I am proud of
the heritage of my country. America has
tried to be a good friend and neighbor to
other nations. It is fighting for other
countries on its soil. It has been leading
the world in most friends for many years.

Many people even contradict America to the
people who live here. I say: If you don’t
like it here, go somewhere else. Nobody
gets you to stay. That’s one of the great
things about America, if you don’t like
it, you can leave it. We owe loyalty to
our country. People who speak badly of our
country don’t deserve my respect. People
who burn the American flag don’t deserve
my respect. America allows freedoms that
many other countries don’t tolerate. We
have to come together as a group and make
America everything it can be. We, the
people, are the ones who make it strong.
No nation is perfect because no person
is perfect, but through our love for our
nation we make America what it is.

English -> Chinese -> English: It’s
been a world leader for most friends,
and it has been world leaders for many
years. Many people have been divided with
the United States, including those living
here. I say that if you don’t like the
move of America to another place, no one
will force you to stay. It’s a great thing
for the United States, and if you don’t
like it, it’s a great thing for the United
States. We have a responsibility to make
it better.

A.4 Zero-shot Prompting

Moritz Laurer’s ModernBERT Zero-shot model is
trained and prepared to accept just label names, and
does not require a prompt. The label names we use
are “low identity fusion,” “medium identity fusion,”
and “high identity fusion.” We then map those
labels to low, medium and high after classification.

A.5 Few-shot Prompting

The prompt for our few-shot approach consists of
an instructed role, a description of identity fusion,
a description of the task, and examples. The task
description includes brief descriptions for each la-
bel. The examples consist of the highest, lowest,
and median scoring samples from the training set.
Along with three uniquely and randomly sampled
entries for each text classification.

Importantly, the summary of identity fusion and
the three label descriptions come from OpenAI’s
o3-mini-high5 reasoning model. The model was

5https://openai.com/index/openai-o3-mini/
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given the CIFT paper and asked to summarize the
concept of identity fusion as well as describe low,
medium, and high fusion. The outputs were manu-
ally verified and then incorporated into the prompt.

The few-shot prompt is as follows:
You are a text classifier that

determines the level of identity fusion
in a given text. Identity fusion is
when an individual’s personal identity
becomes strongly intertwined with their
target’s identity.

Based on Swann et al. (2024), identity
fusion is a psychological state in
which an individual’s personal identity
becomes deeply intertwined with a
target—be it a group, leader, value,
or cause—resulting in porous boundaries
between the self and that target. This
fusion creates a powerful reciprocal
bond where personal agency is channeled
into extreme, pro-target behavior, with
the individual experiencing a profound
“sense of oneness” that can motivate
costly and self-sacrificial actions in
defense of the fusion target.

In this task, label the text as:

- "low”: Minimal fusion between
individual and target identity. Low
fusion is marked by a clear separation
between the self and the target,
so the individual shows little
behavioral commitment to the target.

- "medium”: Moderate fusion between
individual and target identity.
Medium fusion reflects a moderate
integration where the personal self
overlaps with the target enough to
inspire occasional support without
overwhelming personal autonomy.

- "high”: Strong fusion; the
individual’s identity is almost
completely merged with the
target’s identity. High fusion is
characterized by an intense, nearly
inseparable merging of identity with
the target, driving individuals to
engage in extreme, self-sacrificial
actions for its sake.

Below are three examples:

Example 1 (Lowest Scoring - low):
Text: "{low_text}" Label: low

Example 2 (Most Middle Scoring - medium):
Text: "{medium_text}" Label: medium

Example 3 (Highest Scoring - high):
Text: "{high_text}" Label: high

Now, it’s your turn:

Please classify the following text:
Text: "{sample_1.iloc[0][’write’]}"
Label: "{sample_1.iloc[0][’label’]}"

Please classify the following text:
Text: "{sample_2.iloc[0][’write’]}"
Label: "{sample_2.iloc[0][’label’]}"

Please classify the following text:
Text: "{sample_3.iloc[0][’write’]}"
Label: "{sample_3.iloc[0][’label’]}"

Please classify the following text:
Text: "{text}" Label:

A.6 RAG Prompting
The RAG prompt mostly follows the same pat-
tern as the few-shot approach. The primary dif-
ference is that it does not use 3 random samples
from the training set. Instead, the text to be clas-
sified is converted to a semantic embedding using
all-mpnet-base-v2, and then obtains 5 most sim-
ilar embeddings from the training set as evaluated
by FAISS. We use those samples along with their
real VIFS scores as examples.

The RAG prompt is as follows:
role: system

content: You are a text classifier
that determines the level of identity
fusion in a given text. Identity fusion
is when an individual’s personal identity
becomes strongly intertwined with their
target’s identity.

Based on Swann et al. (2024), identity
fusion is a psychological state in
which an individual’s personal identity
becomes deeply intertwined with a
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target—be it a group, leader, value,
or cause—resulting in porous boundaries
between the self and that target. This
fusion creates a powerful reciprocal
bond where personal agency is channeled
into extreme, pro-target behavior, with
the individual experiencing a profound
“sense of oneness” that can motivate
costly and self-sacrificial actions in
defense of the fusion target.

In this task, label the text as:

- "low”: Minimal fusion between
individual and target identity. Low
fusion is marked by a clear separation
between the self and the target,
so the individual shows little
behavioral commitment to the target.

- "medium”: Moderate fusion between
individual and target identity.
Medium fusion reflects a moderate
integration where the personal self
overlaps with the target enough to
inspire occasional support without
overwhelming personal autonomy.

- "high”: Strong fusion; the
individual’s identity is almost
completely merged with the
target’s identity. High fusion is
characterized by an intense, nearly
inseparable merging of identity with
the target, driving individuals to
engage in extreme, self-sacrificial
actions for its sake.

Below are a three examples:

Example 1 (Lowest Scoring - low):
Classify the following text into [low,
medium, high]:
Text: "{low_text}"
Output only the label, nothing else.
Label: low

Example 2 (Most Middle Scoring - medium):
Classify the following text into [low,
medium, high]:
Text: "{medium_text}"
Output only the label, nothing else.
Label: medium

Example 3 (Highest Scoring - high):
Classify the following text into [low,
medium, high]:
Text: "{medium_text}"
Output only the label, nothing else.
Label: high

The next part of the prompt is repeated 5
times for the top 5 most similar entries in the
training set as returned from FAISS.

role: user

content: Classify the following text
into [low, medium, high]:
Text: "{RETRIEVED SAMPLE}"
Output only the label, nothing else.
Label:

role: assistant
content: {RETRIEVED LABEL}

Finally, the model is allowed classify the
current text after seeing all retrieved examples.

role: user

content: Classify the following text
into [low, medium, high]:
Text: "{text}"
Output only the label, nothing else.
Label:

A.7 Use of Scientific Artifacts:

The identity fusion dataset was introduced in a
PNAS Nexus paper published under a CC BY 4.0
license (Ashokkumar and Pennebaker, 2022), with
the data provided via the article’s supplementary
materials. Although the dataset itself does not ex-
plicitly include a license statement, PNAS Nexus’s
policy requires that all supplementary data be pub-
licly available for reproducibility, and the authors
indicated in their supplementary material that it was
public data (Ashokkumar and Pennebaker, 2022);
we therefore understand it falls under the same CC
BY 4.0 terms. We note they anonymized the dataset
before publication. Consistent with the intended
use and terms, we are free to share and adapt this
data. We only adapt and reorganize the data during
augmentation and train, test, and validation splits.
We include the augmented training set as part of our
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Violence Risk Prediction Data
Author Description Label
Anders Behring Breivik Manifesto of the Norway attacks, 2011 VSS
Elliot Rodger Manifesto of the Isla Vista killings, 2014 VSS
Dylann Roof Manifesto of the Charleston shooting, 2015 VSS
Brenton Tarrant Manifesto of the Christchurch mosque attacks, 2019 VSS
Stephan Baillet Manifesto of the Halle synagogue shooting, 2019 VSS
John Earnest Manifesto of the Poway synagogue attack, 2019 VSS
Patrik Crusius Manifesto of the El Paso attack, 2019 VSS
Adolf Hitler Mein Kampf, 1925 VSS
Sayyid Qutb Milestones, 1964 VSS
Karl Marx & Friedrich Engels Manifesto of the Communist Party, 1848 IE
Yusuf al-Qaradawi The Lawful and Prohibited in Islam, 1960 IE
Fjordman Defeating Eurabia, 2008 IE
Simone de Beauvoir The Second Sex, 1949 M
Martin Luther King Jr. I Have a Dream, 1963 M
Greta Thunberg Our House Is on Fire, 2019 M

Table 3: Violence Risk Prediction Data (Ebner et al., 2022a). VSS: Violent Self-Sacrificial; IE: Ideologically
Extreme; M: Moderate.

public CLIFS ensemble model (for RAG). In addi-
tion, we re-implement the UAI as detailed within
the paper, and modify it for our purposes, which is
also within its intended use.

The VRI manifesto paper is a CC BY 4.0 li-
censed paper (Ebner et al., 2022a), and the data
was noted by its authors as available upon request
due to sensitive content. Since the corpus is com-
prised of only 15 publicly accessible manifestos
from prominent individuals, we reconstructed it
for our analysis. However, we also do not share
this reconstructed dataset publicly, as it contains
highly sensitive and harmful material (e.g., from
mass killers, terrorists, and extremists). The doc-
uments present are specified in Table 3. As this
data accompanies a CC BY 4.0 paper, especially
as it is indicated to be made available per request,
we are consistent with the intended use as we only
reorganize the data (chunking) for analysis. We
also partially re-implement their VRI as detailed in
their paper (Ebner et al., 2024b), which also has a
CC BY 4.0 license, and therefore our adaptation
falls within its intended use. Our publicly avail-
able adaptations remove all categories that are not
utilized in our method; this includes removing all
categories with harmful language (e.g., with racial
slurs).
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B Additional Tables & Figures

Overall Performance | Bootstrapped
Model Original Data Augmented Data

F1 95% CI CI Width F1 95% CI 95% CI Width
Majority Vote 0.26 [0.24, 0.28] 0.04 0.26 [0.24, 0.28] 0.04
MB Zero-Shot 0.32 [0.24, 0.40] 0.16 0.32 [0.24, 0.40] 0.16
4o Few-Shot 0.58 [0.48, 0.66] 0.18 0.43 [0.33, 0.53] 0.20
4o RAG 0.57 [0.48, 0.66] 0.18 0.59 [0.51, 0.68] 0.17
r1 RAG 0.61 [0.52, 0.71] 0.19 0.56 [0.45, 0.65] 0.20
SBERT RF 0.59 [0.48, 0.69] 0.21 0.49 [0.39, 0.59] 0.20
ModernBERT 0.49 [0.38, 0.60] 0.22 0.62 [0.52, 0.71] 0.19
CLIFS Ensemble 0.62 [0.53, 0.71] 0.18 0.65 [0.55, 0.74] 0.19
CLIFS RF 0.55 [0.46, 0.64] 0.18 0.65 [0.56, 0.75] 0.19
CLIFS XGB - - - - - -
CLIFS SVM - - - - - -

Table 4: Bootstrapped F1 scores and 95% confidence intervals for models on Original and Augmented datasets.

Human Comparison | Bootstrapped
Model Original Data Augmented Data

F1 95% CI 95% CI Width F1 95% CI CI Width
Human 0.46 [0.34, 0.57] 0.23 0.46 [0.34, 0.57] 0.23
Majority Vote 0.25 [0.22, 0.27] 0.05 0.25 [0.22, 0.27] 0.05
MB Zero-Shot 0.39 [0.30, 0.50] 0.20 0.39 [0.30, 0.50] 0.20
4o Few-Shot 0.37 [0.30, 0.43] 0.13 0.54 [0.43, 0.66] 0.23
4o RAG 0.54 [0.43, 0.64] 0.21 0.59 [0.49, 0.69] 0.20
r1 RAG 0.59 [0.48, 0.70] 0.22 0.58 [0.47, 0.69] 0.22
SBERT RF 0.43 [0.36, 0.50] 0.14 0.43 [0.35, 0.50] 0.15
ModernBERT 0.40 [0.33, 0.48] 0.15 0.52 [0.42, 0.63] 0.21
CLIFS Ensemble 0.52 [0.40, 0.63] 0.23 0.56 [0.45, 0.67] 0.22
CLIFS RF 0.55 [0.44, 0.67] 0.23 0.51 [0.42, 0.62] 0.20
CLIFS XGB - - - - - -
CLIFS SVM - - - - - -

Table 5: Bootstrapped F1 scores and 95% confidence intervals for the human-comparison benchmark on Original
and Augmented datasets.
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Overall Per Class Performance
Model Original Augmented

F1 Low Medium High F1 Low Medium High
Majority Vote 0.26 0.00 0.78 0.00 0.26 0.00 0.78 0.00
MB Zero-Shot 0.32 0.40 0.32 0.24 0.32 0.40 0.32 0.24
4o Few-Shot 0.58 0.53 0.62 0.59 0.43 0.43 0.48 0.38
4o RAG 0.57 0.50 0.60 0.62 0.60 0.53 0.65 0.60
r1 RAG 0.62 0.57 0.72 0.57 0.56 0.56 0.70 0.42
SBERT RF 0.59 0.54 0.78 0.46 0.50 0.41 0.79 0.29
ModernBERT 0.49 0.25 0.78 0.44 0.62 0.56 0.75 0.56
CLIFS Ensemble 0.63 0.58 0.69 0.61 0.66 0.59 0.73 0.65
CLIFS RF 0.55 0.51 0.67 0.49 0.66 0.62 0.78 0.58
CLIFS XGB 0.54 0.43 0.77 0.43 0.58 0.52 0.76 0.45
CLIFS SVM 0.58 0.53 0.65 0.58 0.66 0.59 0.78 0.63

Table 6: Overall and per-class F1 scores for each model trained on the original or augmented data.

Human Comparison Per Class Performance
Model Original Augmented

F1 Low Medium High F1 Low Medium High
Human 0.46 0.32 0.70 0.36 0.46 0.32 0.70 0.36
Majority Vote 0.25 0.00 0.74 0.00 0.25 0.00 0.74 0.00
MB Zero-Shot 0.39 0.54 0.48 0.17 0.39 0.54 0.48 0.17
4o Few-Shot 0.37 0.62 0.49 0.00 0.54 0.68 0.71 0.24
4o RAG 0.54 0.70 0.59 0.33 0.59 0.69 0.67 0.41
r1 RAG 0.59 0.71 0.71 0.35 0.59 0.63 0.67 0.46
SBERT RF 0.43 0.57 0.71 0.00 0.43 0.55 0.73 0.00
ModernBERT 0.40 0.45 0.76 0.00 0.52 0.64 0.78 0.14
CLIFS Ensemble 0.52 0.67 0.62 0.27 0.56 0.63 0.64 0.40
CLIFS RF 0.56 0.69 0.72 0.27 0.51 0.67 0.72 0.14
CLIFS XGB 0.43 0.37 0.76 0.15 0.55 0.61 0.77 0.27
CLIFS SVM 0.52 0.63 0.78 0.14 0.53 0.47 0.76 0.35

Table 7: Overall and per-class F1 scores for each model on the human-comparison benchmark, trained on either the
original or augmented data.
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Acronym / Definition Acronym / Definition
Symbol Symbol
CIFT Comprehensive Identity Fusion

Theory
CLIFS Cognitive Linguistic Identity Fu-

sion Score

DIFI Dynamic Identity Fusion Index VIFS Verbal Identity Fusion Scale

UAI Unquestioning Affiliation Index VRI Violence Risk Index

nUAI naïve Unquestioning Affiliation In-
dex

RTT Round-Trip Translation

GenAI Generative AI SVM Support Vector Machine

XGBoost
and XGB

Extreme Gradient Boosting RF Random Forest

MAE Mean Absolute Error GI Gini Importance

CI Confidence Interval RAG Retrieval-Augmented Generation

Masked-
LM

Masked Language Model rs Spearman correlation

f(I,T ) Fusion Proximity Kf Fictive Kinship

SI→T Directional Proximity (Identity →
Target)

ST→I Directional Proximity (Target →
Identity)

T Fusion Target vocabulary I Identity vocabulary; First-person
singular pronouns

K Fictive Kinship vocabulary Cm Surrounding context for masked
word m

My Total number of masked positions
when masking vocabulary y within
a given text

Vx Vocabulary for category x

wv Current word from vocabulary Vx

(x ∈ {I, T,K}) replacing word m
m Current word from vocabulary y

being replaced by each word in vo-
cabulary x

Table 8: Summary of acronyms and symbols used in this paper.
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Figure 5: Example calculation of ModernBERT identity fusion scores, specifically Kf .

Figure 6: Kernel Density Estimation (KDE) plots of the distributions for the same metrics, separated by true label
(means shown as dashed lines; x-axis log-scaled).
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Figure 7: Distribution of human, round-trip translation,
and generative AI data after data augmentation.

Figure 8: Distribution of fusion-targets after data aug-
mentation.

Figure 9: Fusion score distribution of raw data with
class discretization. All scores beyond one standard
deviation away from the mean Identity Fusion score are
classified as “low” or “high;” reflecting whether they
fall below or above the mean.

Figure 10: Top: Human identity fusion ratings plotted
against the actual identity fusion values as measured
from VIFS. MAE = 1.426, rs = 0.628, p ≪ 0.001.
Bottom: The Random Forest regression model trained
on augmented data. Tested on human comparison test
set. Also plotted against true VIFS values. MAE =
1.063, rs = 0.69, p ≪ 0.001.
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Figure 11: Feature importances (Gini Importance) from the Random Forest model. Each bar shows the relative
importance of a feature, as returned by scikit-learn’s feature_importances_ attribute. This reflects the mean
normalized sum of Gini impurity reductions for that feature across all trees. Higher values indicate greater
contributions to reducing impurity, and thus greater influence on the model’s performance.

Figure 12: Left: Feature importances for all features used in CLIFS except for SBERT embedding features. Right:
The feature importances for all interpretable features from CLIFS.
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Figure 13: Feature importances for all features in the CLIFS-VRI random forest.
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C VIFS & Sets

C.1 The 7-item Verbal Identity Fusion Scale
Questions

1. My [target] is me.

2. I am one with my [target].

3. I feel immersed in my [target].

4. I have a deep emotional bond with my [target].

5. I am strong because of my [target].

6. I’ll do for my [target] more than any of the
other [group members/etc.] would do.

7. I make my [target] strong.

As mentioned above, the country-target partici-
pants only answered the following subset.

1. I am one with my [target].

2. I have a deep emotional bond with my [target].

3. I am strong because of my [target].

4. I make my [target] strong.

C.2 Sets: I, T, K
1. I: i, me, my, mine, myself.

2. T:

(a) First Person Plural Pronouns: we, us,
our, ours, ourselves

(b) Specific | Parameter: religion, religious,
church, god, college, university, school,
usa, country, America, (seed set)

(c) Generic | Not a Parameter: team, class,
club, society, squad, gang, band, crew
(generic collective set)

3. K: Brother, sister, family, motherland, our
blood, fatherland, sons, daughters, kin, my
people, my race, our people, European
race, ancestry, ancestor, descendant, fellow,
brethren, comrades (seed set)
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D Model Details & Resources

D.1 LLM Parameter Size
1. SBERT

(a) all-mpnet-base-v2

i. 109M parameters

2. Answer.AI

(a) ModernBERT-base

i. 149M parameters

3. DeepSeek R1

(a) deepseek-reasoner

i. 685B parameters

4. OpenAI GPT-4o

(a) gpt-4o

i. 200B parameters

5. Helsinki-NLP

(a) opus-mt

i. 77.9M parameters

6. Facebook

(a) wmt19

i. 270M parameters

D.2 Hyperparameters
Final hyperparameters for all classifiers perform-
ing identity fusion prediction:

1. CLIFS Random Forest:

(a) Overall:
i. Raw Data:

A. classifier__max_depth: None
B. classifier__min_samples_leaf: 5
C. classifier__min_samples_split: 20
D. classifier__n_estimators: 300
E. scaler: passthrough

ii. Augmented Data:
A. classifier__max_depth: 20
B. classifier__min_samples_leaf: 2
C. classifier__min_samples_split: 20
D. classifier__n_estimators: 400
E. scaler: RobustScaler()

(b) Human Comparison:
i. Raw Data:

A. classifier__max_depth: None
B. classifier__min_samples_leaf: 5

C. classifier__min_samples_split: 20
D. classifier__n_estimators: 50
E. scaler: passthrough

ii. Augmented Data:
A. classifier__max_depth: None
B. classifier__min_samples_leaf: 5
C. classifier__min_samples_split: 2
D. classifier__n_estimators: 200
E. scaler: passthrough

2. SBERT Random Forest:

(a) Overall:
i. Raw Data:

A. classifier__max_depth: None
B. classifier__min_samples_leaf: 10
C. classifier__min_samples_split: 2
D. classifier__n_estimators: 300
E. scaler: passthrough

ii. Augmented Data:
A. classifier__max_depth: 20
B. classifier__min_samples_leaf: 1
C. classifier__min_samples_split: 20
D. classifier__n_estimators: 200
E. scaler: passthrough

(b) Human Comparison:
i. Raw Data:

A. classifier__max_depth: None
B. classifier__min_samples_leaf: 10
C. classifier__min_samples_split: 2
D. classifier__n_estimators: 100
E. scaler: passthrough

ii. Augmented Data:
A. classifier__max_depth: None
B. classifier__min_samples_leaf: 5
C. classifier__min_samples_split: 2
D. classifier__n_estimators: 400
E. scaler: passthrough

3. Fine-Tuned ModernBERT:

(a) Overall:
i. Raw Data:

A. learning_rate:
1.447634258437072e-05

B. per_device_train_batch_size: 32
C. per_device_eval_batch_size: 32
D. weight_decay:

0.002741795210253083
E. num_train_epochs: 4
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F. warmup_ratio:
0.2984258360785583

G. lr_scheduler_type: polynomial
ii. Augmented Data:

A. learning_rate:
0.00019174112428857004

B. per_device_train_batch_size: 32
C. per_device_eval_batch_size: 64
D. weight_decay:

0.00595353861040398
E. num_train_epochs: 3
F. warmup_ratio:

0.07542637670184059
G. lr_scheduler_type: polynomial

(b) Human Comparison:
i. Raw Data:

A. learning_rate:
7.459295575723428e-05

B. per_device_train_batch_size: 16
C. per_device_eval_batch_size: 32
D. weight_decay:

0.0010037021913674917
E. num_train_epochs: 4
F. warmup_ratio:

0.25014457922189737
G. lr_scheduler_type: cosine

ii. Augmented Data:
A. learning_rate:

0.00011843171658742821
B. per_device_train_batch_size: 16
C. per_device_eval_batch_size: 64
D. weight_decay:

0.001181105691906098
E. num_train_epochs: 2
F. warmup_ratio:

0.13989389333316193
G. lr_scheduler_type: polynomial

4. CLIFS Extreme Gradient Boosting:

(a) Overall:
i. Raw Data:

A. classifier__subsample: 1.0
B. classifier__n_estimators: 200
C. classifier__min_child_weight: 5
D. classifier__max_depth: 15
E. classifier__learning_rate: 0.01
F. classifier__colsample_bytree: 0.6
G. scaler: passthrough

ii. Augmented Data:

A. classifier__subsample: 0.6
B. classifier__n_estimators: 200
C. classifier__min_child_weight: 1
D. classifier__max_depth: 10
E. classifier__learning_rate: 0.01
F. classifier__colsample_bytree: 0.6
G. scaler: passthrough

(b) Human Comparison:
i. Raw Data:

A. classifier__subsample: 0.6
B. classifier__n_estimators: 100
C. classifier__min_child_weight: 1
D. classifier__max_depth: 15
E. classifier__learning_rate: 0.01
F. classifier__colsample_bytree: 0.8
G. scaler: MinMaxScaler()

ii. Augmented Data:
A. classifier__subsample: 1.0
B. classifier__n_estimators: 100
C. classifier__min_child_weight: 1
D. classifier__max_depth: 15
E. classifier__learning_rate: 0.2
F. classifier__colsample_bytree: 0.6
G. scaler: StandardScaler()

5. CLIFS Support Vector Machine:

(a) Overall:
i. Raw Data:

A. classifier__C: 1
B. classifier__degree: 2
C. classifier__gamma: scale
D. classifier__kernel: linear
E. scaler: passthrough

ii. Augmented Data:
A. classifier__C: 1
B. classifier__degree: 2
C. classifier__gamma: scale
D. classifier__kernel: linear
E. scaler: passthrough

(b) Human Comparison:
i. Raw Data:

A. classifier__C: 1
B. classifier__degree: 2
C. classifier__gamma: scale
D. classifier__kernel: linear
E. scaler: passthrough

ii. Augmented Data:
A. classifier__C: 0.1
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B. classifier__degree: 6
C. classifier__gamma: scale
D. classifier__kernel: poly
E. scaler: minmax

Final hyperparameters for all regressors per-
forming identity fusion prediction (all trained on
augmented data):

1. CLIFS Random Forest:

(a) Overall:
i. regressor__max_depth: 20

ii. regressor__min_samples_leaf: 1
iii. regressor__min_samples_split: 2
iv. regressor__n_estimators: 100
v. scaler: MinMaxScaler()

(b) Human Comparison:
i. regressor__max_depth: 20

ii. regressor__min_samples_leaf: 1
iii. regressor__min_samples_split: 2
iv. regressor__n_estimators: 200
v. scaler: passthrough

Final hyperparameters for all classifiers perform-
ing violence risk prediction:

1. VRI with CLIFS:

(a) classifier__max_depth: None
(b) classifier__min_samples_leaf: 2
(c) classifier__min_samples_split: 10
(d) classifier__n_estimators: 100
(e) scaler: passthrough

2. VRI Random Forest

(a) classifier__max_depth: None
(b) classifier__min_samples_leaf: 2
(c) classifier__min_samples_split: 5
(d) classifier__n_estimators: 300
(e) scaler: StandardScaler()

D.3 Compute Resources:
The resources required to fine-tune the Modern-
BERT LLM classifier:

1. 1x NVIDIA A100 80GB GPU

2. Time: ≈ 1 hour per model hyperparameter
search + training

The resources required to train the CLIFS and
SBERT random forests and CLIFS SVM classi-
fiers:

1. 1x Ryzen 7 9700X CPU

2. CLIFS RF Time: 0.22–0.39 hours per model
hyperparameter search + training (not includ-
ing the fine-tuning of ModernBERT from
above)

3. SBERT RF Time: ≈ CLIFS RF Time

4. CLIFS SVM Time: 0.06–0.17 hours per
model hyperparameter search + training

Next, the resources required to train the CLIFS
XGBoost model classifier:

1. 1x NVDIA RTX 4070 Ti 12GB GPU

2. Time: 0.77–1.03 hours per model hyperpa-
rameter search + training

Last, the resources required for the regressors:

1. 1x Ryzen 7 9700X CPU

2. ≈ 8.3 hours per model hyperparameter search
+ training
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E Appendix

E.1 Unquestioning Affiliation Index

The Unquestioning Affiliation Index is calculated
as follows:

UAI = z(A)− z(C) (3)

where z-scores (z(x) = z−µ
σ ; number of stan-

dard deviations, σ, from the mean, µ) standard-
ize counts of affiliation words (A) and cognitive-
processing words (C) against the sample distribu-
tion.

Our naïve UAI which simply removes z-scores
and subtracts raw scores:

nUAI = A− C (4)

E.2 Violence Risk Index

Let A denote the mean of the scores for the four
highly significant categories6, B the mean of the
three statistically significant categories7, and C the
mean of the five other relevant categories8. Then
calculate the weighted sum of the means.

A =
1

4

4∑

i=1

Ai, B =
1

3

3∑

j=1

Bj , C =
1

5

5∑

k=1

Ck,

VRI = 100
(
0.54A+ 0.25B + 0.21C

)

(5)
The original VRI assigns “low,” “medium,”

“high,” and “very high” classifications. We map
low and medium to Moderate, high to Ideologically
extreme, and very high to Violent self-sacrificial
in our analysis. The class thresholds are as fol-
lows: VRI < 10 = low, 10 ≥ VRI ≤ 30 =
medium, 30 < VRI ≤ 70 = high, 70 < VRI
= very high (Ebner et al., 2024a).

E.3 Spearman Correlation

The Spearman correlation coefficient, rs, is defined
as:

rs = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
, di = R(xi)−R(yi).

(6)
6Fusion, out-group dehumanization, justification of vio-

lence, and explicit calls to and announcements of violence.
7Out-group slurs, out-group demonization, and hopeless-

ness of alternative solutions.
8Existential threat, conspiracy belief, inevitable war, mar-

tyrdom narrative, and violent role model.

where R(xi) and R(yi) are the ranks of variables
xi and yi. The difference in ranks is represented by
di for the i-th pair of x and y. Spearman correlation
measures the monotonic relationship between two
variables by comparing the ranked values rather
than their raw magnitudes. Direction is indicated
by + or −.
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