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Abstract

Instruction tuning in multimodal large language
models (MLLMs) generally involves coopera-
tive learning between a backbone LLM and a
feature encoder of non-text input modalities.
The major challenge is how to efficiently find
the synergy between the two modules so that
LLMs can adapt their reasoning abilities to
downstream tasks while feature encoders can
adjust to provide more task-specific informa-
tion about its modality. In this paper, we ana-
lyze the MLLM instruction tuning from both
theoretical and empirical perspectives, where
we find the unbalanced learning between the
feature encoder and the LLM can cause prob-
lems of oscillation and biased learning that lead
to sub-optimal convergence. Inspired by our
findings, we propose a Multimodal Balance Co-
efficient that enables quantitative measurement
of the balance of learning. Based on this, we
further design a dynamic learning scheduler
that better coordinates the learning between
the LLM and feature encoder, alleviating the
problems of oscillation and biased learning. In
addition, we introduce an auxiliary regulariza-
tion on the gradient to promote updating with
larger step sizes, which potentially allows for a
more accurate estimation of the proposed Mul-
tiModal Balance Coefficient and further im-
proves the training sufficiency. Our proposed
approach is agnostic to the architecture of LLM
and feature encoder, so it can be generically
integrated with various MLLMs. We conduct
experiments on multiple downstream tasks with
various MLLMs, demonstrating the proposed
method is more effective than the baselines in
MLLM instruction tuning.

1 Introduction

Multimodal instruction tuning aligns pre-trained
multimodal large language models (MLLMs) with
specific downstream tasks by fine-tuning MLLMs
to follow arbitrary instructions (Dai et al., 2024;

*These authors contributed equally to this work.
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Figure 1: Illustration of (a) the oscillation problem and
(b) the biased learning problem, caused by imbalanced
multimodal learning. The optimization trajectories are
shown in solid bold lines and the multimodal gradients
at the current step t are in solid thin lines.

Zhang et al., 2023; Zhao et al., 2024; Lu et al.,
2023; Han et al., 2023; Wu et al., 2024b; Wang
et al., 2024b; Wu et al., 2025b,a). Leading
pre-trained Multimodal Large Language Models
(MLLMs) typically share similar architectures (Li
et al., 2023; Liu et al., 2024; Tang et al., 2023a;
Chu et al., 2023). Specifically, the non-text data
(image, audio, etc) is first encoded by a feature en-
coder into embedding tokens. Then, these encoded
embeddings are inserted into language prompts,
creating multimodal sequence inputs for the LLMs.
Effective multimodal understanding and reasoning
in MLLMs depend on the model’s ability to learn
aligned multimodal features using its feature en-
coder (e.g., (Li et al., 2023)), and on leveraging
the pre-trained capabilities of its backbone LLM
(e.g., (Touvron et al., 2023; Chiang et al., 2023))
to interpret these multimodal inputs. This gener-
ally involves a two-prolonged learning process: (1)
LLM Adaptation. Encoded non-text features (e.g.,
visual and auditory) in downstream tasks may not
be perfectly aligned with pre-trained text features,
thus requiring the backbone LLM to adapt its pre-
trained parameters to recognize these new, non-text
modality tokens. (2) Feature Encoder Adapta-
tion. While LLMs possess strong reasoning ability
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from their pre-trained, it requires the feature en-
coders to be fine-tuned to extract task-specific in-
formation for evidence of reasoning. Cooperative
balancing of these two learning stages is crucial
for effective instruction tuning of MLLMs. When
the learning is biased on the LLMs with (1), the
insufficiently learned feature encoder can lead to
information loss (Bai et al., 2024; Tong et al., 2024;
Wu et al., 2025c), hindering the LLM’s ability to
reason effectively due to a lack of adequate evi-
dence from non-text modalities. Conversely, if the
learning is biased on the feature encoder with (2),
the LLMs can be insufficiently adapted and strug-
gle to interpret non-text modalities. As a result,
it will cause the hallucination problem (Bai et al.,
2024; Rawte et al., 2024; Wu et al., 2024a,d) due
to the strong language prior inherent in the back-
bone LLMs. Therefore, it is essential to balance the
learning between the feature encoder and backbone
LLM, so that the learning is not overly biased on
either of the two modules.

In this paper, we first propose a multimodal bal-
ance coefficient that quantifies the learning bal-
ance between the feature encoder and the backbone
LLM in MLLM instruction tuning. Based on the-
oretical analysis and empirical observations, we
identify two types of learning dilemmas that can
be quantitatively measured by our proposed multi-
modal balance coefficient: i) the oscillation prob-
lem and ii) the biased learning problem, as illus-
trated in Figure 1. Specifically, Figure 1(a) demon-
strates the oscillation problem where the learning
is alternatively favoring either the feature encoder
or the LLM. This oscillation impedes the conver-
gence of optimization and undermines learning ef-
ficiency since the learning is hardly progressing in
consistent directions. On the other hand, Figure
1(b) shows the biased learning problem where the
training consistently favors either the LLM or the
feature encoder. In such cases, the gradient descent
primarily only updates either the LLM or the fea-
ture encoder, resulting in insufficient learning of
the other module. This diminishes the effective-
ness of gradient descent since the under-trained
module (LLM or feature encoder) will not be ca-
pable of contributing sufficient information to the
generation outputs.

To address these challenges, we propose
Coordinated MultiModal Instruction Tuning
(CoMMIT), which regularizes the training with
a coordinated learning rate scheduler (Section 6).
This scheduler dynamically adjusts the learning

rates of the feature encoder and LLM according to
the proposed multimodal balance coefficient, ensur-
ing sufficient gradient descent for both the feature
encoder and LLM while mitigating the oscillation
problem. We also introduce a regularization loss
that promotes larger update steps during training,
further alleviating gradient diminishing. We theo-
retically analyze the convergence rate and demon-
strate that we can achieve accelerated convergence
when optimizing with CoMMIT (Section A). We
summarize our main contributions as follows:

• We introduce a theoretical framework to un-
cover the pitfalls of the learning imbalance
problem in MLLM instruction tuning, which
can cause MLLM insufficient learning and the
oscillation problem.

• Based on the theoretical analysis and empiri-
cal observation, we propose CoMMIT to bal-
ance multimodal learning progress by dynami-
cally coordinating learning rates on the feature
encoder and LLM. CoMMIT also enforces a
gradient regularization that encourages larger
step sizes and improves training efficiency.

• Applying CoMMIT introduces a novel term
in the convergence rate analysis. Theoretical
analysis proves that this term is always greater
than one, leading to faster convergence. We
also demonstrate that the theorem can be gen-
eralized across various optimizers.

• Empirical results on downstream tasks in vi-
sion and audio modalities with various LLM
backbones show the efficiency and effective-
ness of the methods. We demonstrate that
CoMMIT can better coordinate multimodal
learning progress with balanced training be-
tween the feature encoder and the LLM.

2 Related Works

MLLMs have become a new paradigm to empower
multimodal learning with advanced language rea-
soning capabilities, such as with vision (Li et al.,
2023; Liu et al., 2024; Wang et al., 2024c; Maaz
et al., 2023; Zhang et al., 2023; Huang et al., 2023a;
Yan et al., 2024), and audio (Huang et al., 2023b;
Tang et al., 2023a; Gardner et al., 2023). Despite
good generalizability and zero-shot performance
of existing large language models (LLMs), the dis-
crepancy between different modalities can be one
of the greatest challenges for LMMs to achieve
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comparable reasoning performance as LLMs. To
bridge the multimodality gap and align with down-
stream tasks, several works focus on two-fold con-
siderations: feature (modality) alignment and rea-
soning alignment. The most common approach for
feature alignment is to encode the source modality
feature to semantic tokens within the LLMs’ em-
bedding feature space. By adding the modality-
specific tokens (Wang et al., 2024a; Liu et al.,
2021a; Zhang et al., 2024) as soft prompt inputs
(Liu et al., 2021b; Xie et al., 2023; Wu et al., 2023,
2024c), the backbone LLMs can process these to-
kens with language tokens as a unified sequence.
However, the newly added semantic tokens cannot
be understood by LLMs directly for language rea-
soning, due to the limited text-only pretraining of
LLMs. Such misalignment problems will lead to
textual hallucination problems, namely linguistic
bias (Ko et al., 2023; Tang et al., 2023b), in which
the language models reason only based on their lan-
guage prior. Thus, multimodal alignment should
be achieved by additional adaptation of the LLM
itself with multimodal instruction tuning.

3 Preliminaries

Given a pair of non-text input IS (images, audio,
etc) and instruction prompt IX of nature language,
the instruction-tuned MLLM should comprehend
the semantics of IS and generate outputs that com-
ply with the instruction specified in IX . State-of-
the-art MLLM instruction tuning generally adopts
similar diagrams of training (Gardner et al., 2023;
Li et al., 2023; Liu et al., 2024), which involves
cooperative training between a feature encoder S
and a pretrained LLM X . Specifically, S first en-
codes the multimedia input IS into the embedding
space of X . Then, the encoded IS is inserted into
the instruction prompt IX as input that conditions
the output generation of X ,

PS,X(ŷk|IS , IX , yj<k) = X(ŷk|S(IS), IX , yj<k),
(1)

where ŷk is the kth predicted token and yj<k de-
notes the first k−1 of the expected ground truth to-
kens in auto-regressive generation, k = 1, · · · ,K.
The training loss is the cross-entropy defined by
the predicted distribution on ŷk and the kth ground
truth token yk(Liu et al., 2024; Ouyang et al.,

2022),

L(Y ={yk}Kk=1 | IS , IT ) =

− 1

K

K∑

k=1

yk logPS,X(ŷk|IS , IX , yj<k),
(2)

The learning objective is to find the optimal X and
S by minimizing the loss function. As mentioned
in Section 1, the learning can either be inefficient
by oscillating between the optimization of the two
modules or insufficient by biasing on one of S and
X . Our goal is to find a balance between the learn-
ing of X and S, so to accelerate the convergence
while ensuring that both S and X are sufficiently
trained.

4 Measurement of Learning Balance in
MLLM Instruction Tuning

To assess the balance between the updates on X
and S, we first measure the significance of each up-
date separately with X and S. Formally, for the t-th
step of training, we define d(PXt,St ||PXt+1,St) and
d(PXt,St ||PXt,St+1) that quantify the significance
of updates on X and S, respectively, by measuring
the shift in output distributions,

d(PXt,St ||PXt+1,St) = (3)
1

K

∑

k

KL
(
PSt,Xt(ŷk|IS , IX)||PSt+1,Xt(ŷk|IS , IX)

)
,

d(PXt,St ||PXt,St+1) = (4)
1

K

∑

k

KL
(
PSt,Xt(ŷk|IS , IX)||PSt,Xt+1(ŷk|IS , IX)

)

where we use the subscript t to index the trained
steps and KL(·||·) is the KL divergence. Based on
(3) and (4), we define the Multimodal Balance Co-
efficient that measures the balance between training
on X and S.

Definition 4.1 (Multimodal balance coefficient).
For time step t of joint training on X and S, the
Multimodal Balance Coefficient κt is measured
with the respective learning steps on the feature
encoder St and the LLM Xt.

κt =
d(PXt,St ||PXt+1,St)

d(PXt,St ||PXt,St+1)
. (5)

κt with a value always near 1 indicates that
the learning is balanced between the feature en-
coder and the LLM. On the contrary, κt >> 1 and
κt → 0 suggests that the learning biased by lean-
ing toward X and S, respectively. κt with high
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variance corresponds to learning that oscillates be-
tween optimizing on X or S. To further illustrate
this, we derive Theorem 1 which estimated the
gradient on X and S during training.

Theorem 4.2. Let GX
t and GS

t be the gradient on
X and S at time step t, we can derive the multi-
modal gradient estimated bounds,

∥GX
t ∥ ≤ (κt + 1)HS

t , ∥GS
t ∥ ≤ (

1

κt
+ 1)HX

t ,

(6)
where HS

t and HT
t represent the individual learn-

ing steps of S and X , respectively. These are given
by,

HS
t =

(
∥IXt ∥+ ∥St(I

S
t )∥
)−1 ∥logits(PXt,St+1)∥,

HX
t =

∥∥ISt
∥∥−1 ∥logits(PXt+1,St)∥. (7)

The detailed proof is provided in Appendix B.1.
Within the metric space of probability distri-

bution (PS,X , d), the values of HS
t and HT

t are
bounded by a finite norm. HS

t and HT
t are also

lower-bounded, assuming multimodal gradients are
not diminishing which we alleviate by proposing a
regularization on the gradient in Section 6. There-
fore, κt can account the most for the gradient upper
bound in (6) so it is suitable to measure the learning
imbalance problem.

5 Empirical Observations of Learning
Dilemmas in MLLM Instruction Tuning

In this section, we illustrate the learning dilemmas
described in Section 1 by observing the dynamics
of κt is different experiment settings. The experi-
ment is conducted by fine-tuning the BLIP-2 (Li
et al., 2023) model on TextVQA(Singh et al., 2019),
a widely used dataset for visual question question
answering (Dai et al., 2024; Yin et al., 2024). To
probe the problems of oscillation and learning bias,
we consider the following three learning strategies:
(1) Synced LR is trained by setting the learning
rate of both X and S to 1e−4; (2) Language LR ↑
increases learning rate of X to 1e−3; (2) Encoder
LR ↑ increases the learning rate of S to 1e− 3.

5.1 The Dilemma of Oscillation

To quantitatively understand the oscillation prob-
lem in MLLM instruction tuning, we show the
learning curves (Figure 2) of the measurement vari-
ables HS

t , HX
t , and κt proposed in (6).

Observation 5.1. As shown in Figure 2(c), the mul-
timodal learning process can suffer from significant
oscillation problems with highly variant κt in the
Synced LR setting.

Specifically, the learning curve of κt in the
Synced LR setting exhibits high variance near the
value of 1 , which is a showcase of the oscilla-
tion problems that signify training instability. This
will cause inefficient training since the learning is
alternating between X and S, instead of progress-
ing in consistent directions. We demonstrate such
inefficiency in Figures 5 and 6, showing that its
convergence is slower compared to our proposed
approach, which balances the learning process with
a more stable κt. Further, it is interesting to find in
Figure 2 that the feature encoder S is more unsta-
ble than the language model X , by comparing HS

t

in Figure 2(a) and HX
t in Figure 2(b). By increas-

ing the learning rate either X (Encoder LR) or S
(Language LR), we observe that the three metrics
in Figure 2 are stabilized. In the next section, we
show that such stabilization is at the expense of
biased learning, causing insufficient training on X
or S.

5.2 The Dilemma of Biased Learning

The Encoder LR ↑ and Language LR ↑ in Figure
2 demonstrated the biased learning problem, where
the training is biased on either S or X . Let θSt and
θXt be the parameters of S and X at time step t.
We further show three metrics with the same back-
bone MLLM and training data as in Section 5.1:
(1) the normalized learning gradient ∥GS

t ∥/∥θSt ∥
of the feature encoder S in Figure 3(a), (2) the
normalized learning gradient ∥GX

t ∥/∥θXt ∥ of the
language model X in Figure 3(b), and (3) the cross-
entropy loss in Figure 3(c). These metrics help
understand the impact of biased learning on either
X or S in MLLM instruction tuning.

Observation 5.2. In Figure 3(c), Encoder LR ↑
and language LR ↑, biased on either X or S, can
slow the convergence of the MLLM with gradient
diminishing and inferior training performance.

Such diminishing gradient would result in insuf-
ficient training on X or S with gradient descent.
For example, we can observe in Figure 3(a) and
Figure 3(b) that the Encoder LR can simultane-
ously cause the gradient diminishing in both X and
S, with the cross-entropy converging to a higher
value in Figure 3(c). In such cases, it is neces-
sary to strategically balance the learning between
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Figure 3: The learning curves of normalized learning gradient ∥GS
t ∥/∥θSt ∥ and ∥GX

t ∥/∥θXt ∥ for the feature encoder
and language model respectively, as well as the cross-entropy training losses.

different modules, so the training is not leaning
toward either X or S. In Figure 4, we show that
our proposed approach can reduce such bias while
not inducing oscillation, i.e., by learning with less
variant κt that is valued close to 1.

6 CoMMIT: Coordinated Multimodal
Instruction Tuning

Based on the observations in Section 5, the learn-
ing rate on X should be boosted when the training
is leaning toward S (κt → 0 ), and vice versa.
So motivated, we propose a dynamic learning rate
scheduling method to coordinate multimodal learn-
ing between X and S, which alleviates the oscil-
lation problems while ensuring the training is not
biased on either X or S.

Inspired by damping strategies in optimization
(Lucas et al., 2018; Tanaka and Kunin, 2021; Wei
et al., 2021), we use the proposed learning balance
metric κt in (5) as the damping parameter that facil-
itates balanced multimodal learning. Specifically,
we track the Nκ moving average of κt through the
learning process,

κ̃t =
1

Nκ

Nκ∑

i=1

κt−i+1, (8)

then dynamically adjust learning rates of X and S
in accordance. Let βX

t and βS
t be the learning rates

on X and S at time step t. We adjust the learning
rates by,

βT
t =

2α

κ̃t + 1
, βS

t =
2α

1/κ̃t + 1
, (9)

where α is the base learning rate.
During training, the diminishing HS

t and HT
t

as observed in Figure 3 can cause higher estima-
tion errors in κ̃t. To address these, we propose an
auxiliary regularization that encourages large step
sizes for both X and S, which mitigates gradient
diminishing. Specifically, we want to encourage
larger distribution drifts d(PXt,St ||PXt+1,St) for X
and d(PXt,St ||PXt,St+1) for S, apart from gradient
descending on the cross-entropy loss in (2). The
gradient update for our proposed CoMMIT at time
step t is,

θXt+1 ← θXt − βX
t · ∇θXL(St(X̃θXt

)) (10)

+ βX
t · ∇θXd(PXt,St ||PXt+1,St),

θSt+1 ← θSt − βS
t · ∇θSL(Tt(St(X)); θSt ) (11)

+ βS
t · ∇θSd(PXt,St ||PXt,St+1).

Note that the distribution drifts d(PXt,St ||PXt+1,St)
and d(PXt,St ||PXt,St+1) does not involve ground
truth labels.

Theoretical Convergence Analysis. We further
provide a theoretical analysis of our proposed CoM-
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MIT framework in Appendix A. Specifically, we
establish a new convergence bound under sufficient
assumptions for the coordinated learning rate and
regularization strategy, demonstrating that the pro-
posed method can achieve a provably faster con-
vergence rate compared to standard imbalanced
instruction tuning approaches. We further provide
the detailed proof of the proposed theorems in Ap-
pendix B. Theoretical results show that dynamic
adjustment of learning rates, guided by the multi-
modal balance coefficient, consistently accelerates
optimization and ensures sufficient learning across
modalities. We also discuss how results can be
generalized to various gradient-based optimizers.

7 Experiment

Experiment Setup We conduct experiments on
two non-text modalities, vision and audio, with
multiple instruction-tuning downstream tasks: (1)
for Vision, we evaluate the backbone MLLMs in-
cluding BLIP-2 (Li et al., 2023), InternVL2 (Chen
et al., 2024), and LLaVA-1.5 (Liu et al., 2023), on
three visual question-answering tasks: TextVQA
(Singh et al., 2019), IconQA (Lu et al., 2021),
and A-OKVQA (Schwenk et al., 2022), which fo-
cus on text recognition and reasoning, knowledge-
intensive QA, and abstract diagram understand-
ing, respectively; (2) for Audio, we leverage the
SALMONN (Tang et al., 2023a) model and eval-
uate one audio question-answering task and two
audio captioning tasks: ClothoAQA (Lipping et al.,
2022), MACS (Morato and Mesaros, 2021), and
SDD (Manco et al., 2023), which focus respec-
tively on crowdsourced audio question-answering,
acoustic scene captioning, and text-to-music gener-
ation. We include detailed implementation details
in Appendix B.4 for individual backbone MLLM.

We follow the instruction tuning diagram (Dai
et al., 2024; Tang et al., 2023a; Huang et al., 2023a),
where the parameters of backbone LLMs are fine-
tuned with LoRAs (Hu et al., 2021) and the feature
encoders are finetuned directly. We set the learn-
ing rate to 1e− 4 for all the feature encoders and
backbone LLMs in our baseline methods Constant
LR (Dai et al., 2024; Tang et al., 2023a), Feature
CD, Language CD (Wright, 2015). For Feature
CD, we first update the feature encoder until its
weights stabilize, then update the backbone LLMs.
For Language CD, the process is reversed, with
the LLMs being trained first. We also use 1e − 4
as the base learning rates for our CoMMIT vari-

ants. There are two CoMMIT variants: CoMMIT
and CoMMIT-CLR. CoMMIT is out proposed
method in this paper, while CoMMIT-CLR is an
ablation on CoMMIT, without the last regulariza-
tion terms in (10) and (11).
LLM Usage In this paper, LLMs are only used for
refining the writing of natural language.
Mitigating Oscillation and Biased Learning. In
Figure 4, we inspect the oscillation problem in
Section 5.1 by showing the value of κt with our
proposed CoMMIT and CoMMIT-CLR, compar-
ing to the three learning rate scheduling methods
described in Section 5. We report with the BLIP-2
(Li et al., 2023) backbone model on the task of
TextVQA (Singh et al., 2019). It can be observed
that both CoMMIT and CoMMIT-CLR can sta-
bilize multimodal learning with smaller standard
deviations of κt over time, thus alleviating the oscil-
lation problem in Observation 5.1 (in Section 5.1).

0 2000 4000 6000
Iteration

100

CoMMIT
std. = 0.13
Syn LR
std. = 0.25
CoMMIT-CLR
std. = 0.20
Language LR 
std. = 0.14
Encode LR 
std. = 0.30

Figure 4: Learning curves of the multimodal learning
balance coefficient κt for multiple methods. In addition
to the learning curve, we also report the standard devia-
tion of κt of each method.

Though Language LR ↑ also yields high stability
on κ, such learning rate adjustment method suffers
from the problems of biased learning as described
in Observation 5.2 (in Section 5.2), which poten-
tially causes insufficient training on the feature en-
coder and worse performance of instruction tuning.
Comparing CoMMIT and CoMMIT-CLR, we can
observe that CoMMIT achieves less biased learning
with the value of κt closer to 1 while demonstrat-
ing relatively milder learning oscillation with less
variant κt during training. Further, we find that the
proposed loss regularization in Section 6 also im-
proves the training balance. Accompanied by the
loss regularization and learning balance coefficient
κt, CoMMIT more effectively adapts the optimiza-
tion process for better training between the feature
encoder and LLM.
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Figure 5: Instruction-tuning learning curves of BLIP-2 on three vision-based downstream tasks.
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Figure 6: Instruction-tuning learning curves of SALMONN on three audio-based downstream tasks.

Note that SynLR with the oscillated value of
κt is our baseline Constant LR. In Figure 5 and
6, it is shown that Constant LR generally results
in a slower training rate characterized by a flatter
descent in loss values during the early stages. This
is consistent with Observation 5.1 in Section 5.1,
suggesting that the oscillation problem can slow
the convergence of MLLMs in instruction tuning.
Improved Convergence in MLLM Instruction
Tuning. We evaluate the convergence performance
of the proposed methods CoMMIT-CLR and CoM-
MIT in comparison with Constant LR in Figure
5 and 6. For visual question-answering tasks in
Figure 5, we observe that CoMMIT-CLR and CoM-
MIT can accelerate the instruction tuning of BLIP-
2 in the early stage. This is especially evident
in the case of IconQA, which is out-of-domain
for BLIP-2’s pretraining. Specifically, IconQA
requires regional-level and spatial visual under-
standing, which differs from the tasks BLIP-2 was
pre-trained on (Chen et al., 2023). In addition,
CoMMIT-CLR and CoMMIT achieve lower train-
ing losses than Constant LR, validating CoMMIT’s
improved training efficiency. This efficiency gain
is attributed to CoMMIT’s ability to mitigate the
oscillation (Section 5.1), accelerating convergence.

Similar to the vision-based tasks, we can find in
Figure 6 that CoMMIT-CLR and CoMMIT can also
converge to lower loss values in audio tasks. Specif-
ically, we observe that the CoMMIT-CLR and
CoMMIT can achieve better accelerations on the

audio captioning tasks of MACS and SDD, com-
pared to training on the audio question-answering
task of ClothoAQA. Since audio captioning tasks
need more adaptation in MLLMs to generate rela-
tively longer context and align the generation distri-
bution with specific tasks, the coordinated learning
rate scheduling method in Section 6 can more dy-
namically adjust the learning rate for less learned
components at each model update step. In addi-
tion, we show that the proposed loss regularization
method adopted in CoMMIT can actively promote
the difference in MLLM’s generation distribution
between optimization steps, which can better bene-
fit tasks, such as audio captioning, that require the
model to generate longer contexts. Such improved
convergence is associated with our proposed bal-
ancing strategy that improves on the oscillation and
biased learning problem as discussed.
Improved Downstream Performance across
Modalities. In Table 1, We evaluate the perfor-
mance of the proposed methods CoMMIT-CLR
and CoMMIT, comparing with three baselines Con-
stant LR, Feature CD, and Language CD. Among
the three baselines, we observe that coordinate gra-
dient descend methods have the most improvement
compared to the constant learning rate methods that
show significant learning tendencies towards a cer-
tain modality (e.g., Language CD in SDD, and Fea-
ture CD in A-OKVQA and ClothoAQA). However,
since such learning balance varies in downstream
tasks, coordinate descend methods cannot consis-
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Model Task Constant
LR

Feature
CD

Language
CD

CoMMIT
CLR CoMMIT

BLIP-2
A-OKVQA 54.06 57.99 49.87 60.44 64.37
IconQA 37.16 35.48 34.47 39.09 38.65
TextVQA 26.48 18.00 19.44 27.66 28.12

SALMONN
ClothoAQA 42.49 45.80 38.52 52.86 50.55
MACS 24.60 22.41 23.64 23.81 25.06
SDD 15.10 5.70 15.74 15.07 15.33

InternVL2
A-OKVQA 76.59 73.19 79.47 78.00 80.52
IconQA 80.94 83.20 81.60 80.85 82.87
TextVQA 65.22 65.60 65.08 65.18 67.00

LLaVA-1.5
A-OKVQA 79.20 77.64 76.94 77.82 79.55
IconQA 64.09 64.16 58.17 65.78 69.60
TextVQA 41.98 43.34 49.32 47.80 49.30

Table 1: Instruction tuning results for four MLLMs: BLIP-2, SALMONN, InternVL2-8B, and LLaVA-1.5-7B.
These are pre-trained LLMs in vision and audio respectively. For questions-answering tasks like A-OKVQA,
IconQA, TextVQA, and ClothoAQA, we report the accuracy score of the generated answers. For audio captioning
tasks (MACS and SDD), we report the Rouge-L metric that compares the generated caption with candidate captions.
We highlight the best method in bold font for each downstream task of instruction tuning.

Method A-OKVQA TextVQA IconVQA

LR=1e-5 50.30 27.58 35.45
LR=1e-4 54.06 26.48 37.16
LR=1e-3 45.24 20.60 34.93
CoMMIT 64.37 28.12 38.65

Table 2: Comparison on A-OKVQA, TextVQA, and
IconVQA with BLIP-2 backbone model. Baselines are
Constant LR that direct fine tune the backbone model
with various learning rate.

tently improve MLLM instruction tuning, while ar-
bitrarily inclining towards only a certain modality
can result in inferior model performance (e.g., Fea-
ture CD in SDD and Language CD in A-OKVQA).

Different from the fixed learning tendency which
needs to be predetermined by coordinate descend
methods, the proposed coordinated learning rate
scheduling method can dynamically adapt learn-
ing rates for multimodal components and balance
the multimodal joint training. With better coor-
dinated multimodal learning, CoMMIT-CLR and
CoMMIT consistently improve Constant LR across
modalities and downstream tasks. In addition, the
proposed regularization in CoMMIT can promote
larger step sizes in gradient descent, which enlarges
differences in the generated output distributions be-
tween different time steps. This prevents learning
from being stuck at local optima, which can be es-
pecially beneficial for modality-specific captioning
tasks whose optimization space can be relatively
larger than question-answering tasks.
Comparing various learning rates. In Table 2,
we compare CoMMIT with results of constant LR
with different learning rates. We report the results

on tasks of A-OKVQA, TextVQA, and Icon-VQA
with BLIP-2 backbone model. We can observe that
our proposed CoMMIT outperforms the Constant
LR baselines by a significant margin. In addition,
we can also find that no fixed value of learning rate
consistently yields the best performance for Con-
stant LR, while our proposed CoMMIT can dynam-
ically adjust its learning rate. These results demon-
strate the necessity and effectiveness of dynamic
learning rate adjustment for balanced learning be-
tween the feature encoder and LLM in multimodal
instruction tuning.

8 Conclusion

In this work, we address the challenge of imbal-
anced learning between the feature encoder and the
backbone LMM during MLLM instruction tuning.
Through theoretical analysis and empirical observa-
tions, we uncovered how this imbalance can lead to
the dilemmas of oscillation and biased learning. To
mitigate these problems, we proposed CoMMIT,
a novel approach that dynamically coordinates the
learning rates of the feature encoder and LLM back-
bone. Our CoMMIT also included regularization
on the gradient gradients that promotes training
sufficiency. Our theoretical and empirical analyses
demonstrate that CoMMIT improves the balance
between the training of the feature encoder and the
LLM. Experiments across multiple vision and au-
dio downstream instruction tuning tasks illustrate
that the training with CoMMIT for MLLMs is
more effective compared to baselines.
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9 Limitation

While our framework demonstrates compatibility
with open-source LLMs to ensure reproducibility
and controlled experimentation, its integration with
API-based models remains unexplored. This focus
aligns with common research practices prioritizing
transparent benchmarking, though we acknowledge
that real-world deployment scenarios may involve
complex model ecosystems. Future work could
investigate adapter mechanisms to bridge this gap,
but such extensions lie beyond our current scope
of foundational multimodal learning dynamics.
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A Theoretical Analysis

In this section, we present the computation and proof of a new convergence bound with our proposed
method CoMMIT. Our theoretical analysis demonstrates that it achieves a faster convergence rate compared
to the imbalanced MLLM instruction tuning.

A.1 Setup and Notations
Consider a non-convex random objective function F : Rd → R expressed as the average of K component
functions, F (x) = 1

K

∑K
k=1 fk(x), where each fk(x) is an i.i.d sample. Our goal is to minimize E [F (x)]

over x ∈ Rd. We also define Ek−1 as the conditional expectation with respect to f1, f2, · · · , fk. Following
the notation in Adam (Kingma and Ba, 2014), let mk, vk, xk ∈ Rd be vectors at iteration k. The i-
th component of each vector is denoted by mk,i, vk,i, xk,i. Building upon the insight of Défossez et
al. (Défossez et al., 2020) regarding the presence of two bias correction terms mk and vk, we define

αk,i = αi

√
1−βk

2
1−β2

. Notably, we opt to drop the correction term for mk due to its faster convergence
compared to vk.

Aligned with our proposed methodology, we incorporate two additional terms into the original Adam
algorithm. To prevent learning from oscillating too heavily toward either S or X , we adapt λ according
to the moving average κ̃. To mitigate the risk of vanishing or exploding gradients, we introduce h(x) as
an extra term in the gradient updates defined in Section 6 to enhance training stability and support the
overall robustness of the learning process. We fix β1 = 0, 0 < β2 ≤ 1, αk,i > 0, ϵ = 10−8, and initialize
m0 = 0 and v0 = 0. The updated rules follow,

vk,i = β2vk−1,i + (λ∇ifk(xk−1) +∇ihk(xk−1))
2 (12)

xk,i = xk−1,i − αk
λ∇ifk(xk−1) +∇ihk(xk−1)√

vk,i + ϵ
(13)

Throughout the proof, we assume the norm of the gradients ∥∇f(x) +∇h(x)∥ is bounded by R−√ϵ.
The small constant ϵ is used for numerical stability.

A.2 Necessary Assumptions
We state the necessary assumptions (Bertsekas et al., 2003) commonly used when analyzing the conver-
gence of stochastic algorithms for non-convex problems:

Assumption A.1. The minimum value of f(x) is lower-bounded,

∀x ∈ Rd, f∗ = min f(x).

Assumption A.2. The gradient of the non-convex objective function f is L-Liptchitz continuous (Nesterov,
2013). Then ∀x, y ∈ Rd, the following inequality holds,

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥x− y∥22.

A.3 Convergence Analysis
Following the second Theorem outlined by Défossez et al. (Défossez et al., 2020), we calculate the
convergence bound of our algorithm with a dynamic learning rate and loss function.

Theorem A.3. Given the assumptions from Appendix A.2 and applying Lemma B.2, for all components of
the step sizes and gradients, update αi with the corresponding value from HS

t and HT
t . Let {xk} be a

sequence generated by the optimizer, with 0 < β2 ≤ 1, and αi > 0. For any time step K, we have,

E
[
∥∇F (xk)

2
2∥
]
≤ 2R

F (x0)− f∗

λαiK
+ C (14)

where

C =
1

K

(
2αiR√
1− β2

+
α2
iL

2(1− β2)

)
ln

(
(1− βk

2 )R
2

(1− β2)ϵβ2

)
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The detailed proof is provided in Appendix B.3.
CoMMIT adjusts both λ and h(x) to balance multimodal learning progress. The parameter λ, which

measures the balance between feature and language learning, remains greater than 1 during training,
driven by the balance metric κ̃. By avoiding learning oscillations, λ can grow even larger, contributing
to faster learning. When κ̃ > 1, the model suffers from insufficient feature learning. CoMMIT reduces
the learning rate of the LLM to balance learning, ensuring λ = κ̃t+1

κ̃t−1+1 > 1. Conversely, when κ̃ < 1,

the model suffers from insufficient language learning, ensuring λ = 1/κ̃t+1
1/κ̃t−1+1 > 1. Notably, ∇h(x)

is directly added to ∇f(x) to induce gradient changes, which further contributes to the increase of λ,
resulting in a faster convergence rate.

In this section, we show the proof using Adam as the base optimizer. Due to the reason that CoMMIT
does not modify the optimization algorithm itself, the theorem can also be extended to any gradient-based
optimization method such as the stochastic gradient descent.

B Proof

B.1 Learning balance in multimodal joint training

Proof. According to Lipschitz continuity in cross-entropy loss function (Mao et al., 2023), there exists a
sequence of Tt and St during MLLM instruction tuning, where multimodal components are jointly trained.
Given the two metric spaces, (R, l2) of the cross-entropy losses and (H, d) of the generation distributions,
there exists 0 < γ < 1 such that, at each optimization step t,

∥∥L (PXt,St)− L
(
PXt+1,St+1

)∥∥
2
≤ γd

(
PXt+1,St+1 ||PXt,St

)
, (15)

where the metric d measures the change in the prediction distribution PXt,St ∈ H as the multimodal
components X and S are updated. Based on the triangle inequality in metric space, a joint step of
multimodal learning is bounded by the combination of two components’ separate step forward,

d
(
PXt+1,St+1 ||PXt,St

)
≤ d

(
PXt+1,St ||PXt,St

)
+ d

(
PXt,St+1 ||PXt,St

)
, (16)

where the first term represents the change due to updating the X-component while keeping S fixed, and
the second term represents the change due to updating the S-component.

Then we can derive the multimodal gradient estimated bounds based on MLLM’s generative perfor-
mance in its metric space d shown in the Theorem 4.2.

B.2 Controlling Deviation from Descent Direction

Following the first Lemma outlined by Défossez et al. (Défossez et al., 2020), where the expected update
direction can positively correlate with the gradient (Sashank et al., 2018), we aim to control the deviation
from the descent direction to enhance convergence.

Lemma B.1. For all k ∈ N∗ and R ≥ ∥∇f(x) +∇h(x)∥+√ϵ, the gradient update follows a descent
direction,

Ek−1

[
∇iF (xk−1)

λ∇ifk(xk−1) +∇ihk(xk−1)√
ϵ+ vk,i

]
− λ(∇iF (xk−1))

2

2
√
ϵ+ ṽk,i

≥ ∇iF (xk−1)∇ihk(xk−1)

2
√
ϵ+ ṽk,i

− 2REk−1

[
(λ∇ifk(xk−1) +∇ihk(xk−1))

2

ϵ+ vk,i

]
. (17)

Proof. Denote F = ∇iF (xk−1), f = λ∇ifk(xk−1), h = ∇ihk(xk−1), and ṽk,i = β2vk−1,i +

Ek−1

[
(λ∇ifk(xk−1) +∇ihk(xk−1))

2
]
, we get:

Ek−1

[
F (f + h)√
ϵ+ vk,i

]
= Ek−1

[
F (f + h)√
ϵ+ ṽk,i

]
+ Ek−1

[
F (f + h)

(
1√

ϵ+ vk,i
− 1√

ϵ+ ṽk,i

)]
(18)
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We know that g and ṽk,i are independent given f1, f2, · · · , fn−1. h and ṽk,i are also independent based
on our settings which do not affect the momentum, we have,

Ek−1

[
F (f + h)√
ϵ+ ṽk,i

]
=

λF 2

√
ϵ+ ṽk,i

+
Fh√
ϵ+ ṽk,i

(19)

The only thing we need to do is control the deviation of the second term in (18). Applying Cauchy-
Schwarz (Steele, 2004),

RHS = F (f + h)
Ek−1

[
(f + h)2

]
− (f + h)2

√
ϵ+ vk,i

√
ϵ+ ṽk,i(

√
ϵ+ vk,i +

√
ϵ+ ṽk,i)

≤ F (f + h)
Ek−1

[
(f + h)2

]
√
ϵ+ vk,i(ϵ+ ṽk,i)

+ F (f + h)
(f + h)2√

ϵ+ vk,i(ϵ+ ṽk,i)
. (20)

By applying the inequality ab ≤ 1
2λb

2 + λ
2a

2 with λ =

√
ϵ+ṽk,i
2 , a = F√

ϵ+ṽk,i
, and b =

(f+h)Ek−1[(f+h)2]√
ϵ+ṽk,i

√
ϵ+vk,i

,

the conditional expectation of the first term in (20) can be bounded as,

Ek−1

[
F (f + h)

Ek−1

[
(f + h)2

]
√
ϵ+ vk,i(ϵ+ ṽk,i)

]
≤ Ek−1

[
F 2

4
√
ϵ+ ṽk,i

+
(f + h)2Ek−1

[
(f + h)2

]2
√

ϵ+ ṽk,i
3
(ϵ+ vk,i)

]

≤ F 2

4
√
ϵ+ ṽk,i

+ Ek−1

[
(f + h)2Ek−1

[
(f + h)2

]
√

ϵ+ ṽk,i(ϵ+ vk,i)

]

≤ F 2

4
√
ϵ+ ṽk,i

+REk−1

[
(f + h)2

ϵ+ vk,i

]
, (21)

with respect to the fact that ϵ+ ṽk,i ≥ Ek−1

[
(f + h)2

]
and Ek−1

[
(f + h)2

]
≤ R.

Similarly, applying the inequality ab ≤ λ
2a

2 + 1
2λb

2 with λ =

√
ϵ+ṽk,i

2Ek−1[(f+h)2]
, a = F (f+h)√

ϵ+ṽk,i
, and

b = (f+h)2

ϵ+vk,i
, the conditional expectation of the second term in (20) can be bounded as,

Ek−1

[
F

(f + h)2(f + h)√
ϵ+ vk,i(ϵ+ ṽk,i)

]
≤ Ek−1

[
F 2

4
√
ϵ+ ṽk,i

(f + h)2

Ek−1 [(f + h)2]
+

Ek−1

[
(f + h)2

]
√

ϵ+ ṽk,i

(f + h)4

(ϵ+ vk,i)2

]

≤ F 2

4
√
ϵ+ ṽk,i

+ Ek−1

[
Ek−1

[
(f + h)2

]
√
ϵ+ ṽk,i

(f + h)2

(ϵ+ vk,i)

]

≤ F 2

4
√
ϵ+ ṽk,i

+REk−1

[
(f + h)2

ϵ+ vk,i

]
, (22)

given again Ek−1

[
(f + h)2

]
≤ R.

Putting inequalities (21) and (22) back into (20) gives,

Ek−1

[
F (f + h)

(
1√

ϵ+ vk,i
− 1√

ϵ+ ṽk,i

)]
≤ F 2

2
√

ϵ+ ṽk,i
+ 2REk−1

[
(f + h)2

ϵ+ vk,i

]
(23)

And, therefore, adding (23) and (19) into (18) finishes the proof.

B.3 Proof of Convergence
In this section, we prove the theorem A.3.

Proof. Given αk = α
√

1−βk
2

1−β2
, we apply the Assumption A.2 and get,

F (xk) ≤ F (xk−1)− αk∇F (xk−1)
Tuk +

α2
kL

2
∥uk∥22. (24)
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Since we define the bound R ≥ ∥∇f(x) +∇h(x)∥+√ϵ, it follows that
√

ϵ+ ṽk,i ≤ R
√∑n−1

j=0 β
j
2. By

applying this inequality, we obtain,

αk

(
(λ∇iF (xk−1))

2

2
√
ϵ+ ṽk,i

+
∇iF (xk−1)∇ihk(xk−1)

2
√
ϵ+ ṽk,i

)

≥ α

(
(λ∇iF (xk−1))

2

2R
+
∇iF (xk−1)∇ihk(xk−1)

2R

)
. (25)

By taking the conditional expectation, we apply (25) to Lemma B.1 to derive results from (24),

Ek−1 [F (xK)] ≤ Ek−1 [F (xk−1)]−
αλ

2R
∥∇F (xk)

2
2∥

− α

2R
(∇F (xk)

T∇h(xk)) +
(
2αkR+

α2
kL

2

)
E
[
∥uk∥22

]
(26)

Summing the previous inequality over all k and taking the full expectation with respect to the fact that
α ≥ αk

√
1− β2. By applying Lemma 5.2 from Défossez et al. (Défossez et al., 2020), we get the final

bound,

E
[
∥∇F (xk)

2
2∥
]
≤ 2R

F (x0)− f∗

α(1 + λ)K
+

(
2αR√
1− β2

+
α2L

2(1− β2)

)(
1

K
ln

(
(1− βn

2 )R
2

(1− β2)ϵ

)
− ln(β2)

)

(27)

B.4 Implementation Details
We include specific implementation details for each backbone MLLM we used:

• BLIP-2 consists of a vision Q-Former and a backbone OPT-2.7B LLM (Zhang et al., 2022). We
fine-tune the Q-Former module as the feature encoder and freeze the visual encoder. We apply LoRA
to the BLIP-2 model using a rank of 16, an alpha of 32, and a dropout rate of 0.05.

• InternVL2 consists of the InternViT model as the visual encoder and a backbone InternLM-7B-Chat
(Chen et al., 2024). We fine-tune the cross-attention layer as the feature encoder, which encodes
the encoded visual representations into multimodal tokens, and freeze the visual encoder. We apply
LoRA to the BLIP-2 model using a rank of 16, an alpha of 32, and a dropout rate of 0.05.

• LLaVA-1.5 consists of the CLIP-L-336px as the visual encoder and a backbone Vicuna-7B (Chiang
et al., 2023). We fine-tune the projection layer as the feature encoder, which is a linear layer
connecting the encoded image and LLM’s word embedding space, and freeze the visual encoder. We
apply LoRA to the BLIP-2 model using a rank of 16, an alpha of 32, and a dropout rate of 0.05.

• SALMONN extracts both speech and audio features from waveforms and composes these low-level
features by a learnable audio Q-Former structure as the feature encoder. The audio tokens generated
by the audio Q-Former are prefixed to the language instruction tokens, which are then input to the
backbone Vicuna-7B LLM (Chiang et al., 2023).

Computation Resources Our model is trained on 4 A100 GPUs with 40GB memory. The average
training time is about 8 hours.
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