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Abstract

Advancements in Large Vision-Language Mod-
els (LVLMs) have demonstrated impressive
performance in image-conditioned text gen-
eration; however, hallucinated outputs—text
that misaligns with the visual input—-pose a
major barrier to their use in safety-critical
applications. We introduce CONFLVLM,
a conformal-prediction-based framework that
achieves finite-sample distribution-free statisti-
cal guarantees to the factuality of LVLM output.
Taking each generated detail as a hypothesis,
CONFLVLM statistically tests factuality via
efficient heuristic uncertainty measures to filter
out unreliable claims. We conduct extensive
experiments covering three representative ap-
plication domains: general scene understand-
ing, medical radiology report generation, and
document understanding. Remarkably, CON-
FLVLM reduces the error rate of claims gen-
erated by LLaVa-1.5 for scene descriptions
from 87.8% to 10.0% by filtering out erroneous
claims with a 95.3% true positive rate. Our re-
sults further show that CONFLVLM is highly
flexible, and can be applied to any black-box
LVLMs paired with any uncertainty measure
for any image-conditioned free-form text gener-
ation task while providing a rigorous guarantee
on controlling hallucination risk.

1 Introduction

Large Vision-Language Models (LVLMs) which
combine Large Language Models (LLMs) with
computer vision modules, have demonstrated re-
markable multi-modal abilities (Liu et al., 2024b;
Abdin et al., 2024; Meta; OpenAl). LVLMs are de-
signed to receive both free text and visual content
as inputs (e.g., images or videos) and generate text
responses to user queries about the visual input,
thus enabling a flexible conversational interface
for numerous visual perception and multi-modal
comprehension tasks. This capability has triggered
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successful developments across various application
domains, including cross-modality agents special-
izing in graphical user interface understanding and
planning (Hong et al., 2024), visual-language foun-
dation models for analyzing pathology slides (Lu
et al., 2024), and autonomous driving assistants
offering real-time decision-making (Wen et al.,
2023). Despite the excitement and new opportu-
nities LVLMs offer, they can produce hallucina-
tions (Bai et al., 2024)—text outputs that contain
erroneous, or simply fabricated, assertions that de-
viate from the visual content. This can significantly
limit their adoption in safety-critical fields, such as
healthcare and autonomous driving.

Related Work. To date, the research on LVLM
hallucinations has generally focused on two threads.
One line of work aims to build benchmarks (Li
et al., 2023; Yin et al., 2023a; Lovenia et al., 2023;
Sunetal., 2023; Kaul et al., 2024; Guan et al., 2024;
Jing et al., 2023) and metrics (Rohrbach et al., 2018;
Li et al., 2023; Jing et al., 2023) for assessing and
analyzing hallucinations in popular LVLMs. Most
studies in this area concentrate on object hallucina-
tion in discriminative question-answering tasks (Li
et al., 2023; Yin et al., 2023a; Lovenia et al., 2023),
with a lesser focus on other types of hallucina-
tion in free-text generation tasks (Jing et al., 2023;
Kaul et al., 2024; Guan et al., 2024). The other
line of work aims to develop strategies to mitigate
LVLM hallucinations. Notable strategies in this
line of investigation include refining the training
and instruction tuning phases by optimizing the
loss function (Jiang et al., 2024) or alignment ob-
jective (Zhao et al., 2023; Gunjal et al., 2024; Sun
et al., 2023), as well as enhancing the inference
phase by designing new decoding algorithms (Leng
et al., 2024; Favero et al., 2024; Deng et al., 2024).
However, these solutions are often resource-heavy
and lack flexibility, typically requiring model re-
training or white-box access during decoding. By
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Figure 1: Overview: given user-specified error tolerance A, error rate «, and a calibration dataset, CONFLVLM re-
turns a more reliable response for any new image and prompt at inference time through sampling, decomposing
D, filtering I, and merging M, to ensure that the risk of the final response Y * is controlled with high probability.
Illustrative examples, one for each application domain, are provided for outcome demonstration, where claims
are highlighted to indicate CONFLVLM’s confidence using specific conformity score and error tolerance level.
Unhighlighted claims correspond to low confidence in factuality check.

contrast, post hoc correction methods offer a more
flexible approach, which improves responses from
any black-box LVLMs through the assistance of
external language or vision modules (Yin et al.,
2023b), dedicated revisor model (Zhou et al., 2023),
or self-revision techniques (Lee et al., 2023). How-
ever, the current collection of methods relies solely
on heuristics and lacks rigorous statistical guaran-
tees of factuality for the revised output, a necessity
in mission-critical application domains.

Our Contribution. To address these challenges,
in this study, we introduce CONFLVLM, a frame-
work with statistical guarantees on output factuality
(alignment of text response with visual context) that
seamlessly integrates with LVLMs of any architec-
ture, complexity, and purpose. CONFLVLM treats
LVLM-generated free text as a series of individual
claims, each corresponding to a testable hypoth-
esis. Each claim is then evaluated for its factu-
ality using discriminative mechanisms built from
the same (or auxiliary) LVLM to filter out unsup-
ported claims and retain those that meet factual
standards. To provide statistical guarantees on
the factuality of retained claims, CONFLVLM em-
ploys a conformal prediction framework that al-

lows control for flexible error rates, as well as er-
ror tolerance levels, defined by users to suit spe-
cific application needs. By leveraging the generally
more stable discriminative capabilities of LVLMs
through calculating and ranking predefined con-
formity scores, CONFLVLM enables quantitative
factual assessments. We demonstrate the effective-
ness of CONFLVLM across three representative
domains, i.e., general scene understanding (Sec-
tion 4), medical radiology report generation (Sec-
tion 5), and document understanding (Section 6), to
validate its effectiveness in ensuring a desired level
of response factuality for various state-of-the-art
LVLMs and explore multiple potentially useful con-
formity scores. Our results, covering over 81, 000
claims generated from eight popular LVLMs, estab-
lish CONFLVLM as a general-purpose framework
that operates with any LVLM in an assumption- and
finetuning-free manner, thus promoting trustwor-
thiness in LVLM applications broadly. Moreover,
this work opens up a novel research space, where
each component of CONFLVLM invites further
innovation to improve the rigorous guarantee of
hallucination mitigation for multi-modal models.
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2 Preliminaries

2.1 Large Vision-Language Models

Large Vision-Language Models (LVLM) are gen-
erative models that are typically composed of a
visual model h(-), a language model parameterized
by 6, and a fusion model g(-). The most popular
implementations of LVLMs, such as Llava (Liu
et al., 2024b), combine a pre-trained visual encoder
(e.g., CLIP (Radford et al., 2021)) and a pre-trained
Large Language Model (LLM) (e.g., Vicuna (Chi-
ang et al., 2023)) by training a projection network
as the fusion model to convert extracted visual fea-
tures into the LLM’s embedding space in a pro-
cess known as visual instruction tuning. During
inference, an LVLM takes an input image I and
a text prompt X = [xy, ..., x;|, and outputs a text
response Y = [yy,...,y,,], where x; and y; are
individual tokens. This is achieved by first con-
verting the image into a sequence of visual tokens
using the visual model V' = [vy, ..., vg] = go h(I)
and then sampling the response from the condi-
tional distribution in an autoregressive manner:

po(Y|X, V) =II;L i po(y;| X, V. Ysy).

Hallucination of LVLMs. Hallucination origi-
nates from the space of language models, where
the generated text response is either non-factual
(conflicts with verifiable facts) or unfaithful (does
not follow the user’s instructions). In the context
of LVLMs, hallucination refers to the phenomenon
where the generated text response deviates from the
provided visual content. Common types of LVLM
hallucinations include object hallucination (e.g.,
falsely identifying non-existent objects), attribute
hallucination (e.g., wrong color, shape, or mate-
rial), and relation hallucination (e.g., human-object
interaction, relative position) (Bai et al., 2024).

2.2 Split Conformal Prediction

Split conformal prediction (SCP) (Vovk et al.,
2005; Shafer and Vovk, 2008) is a distribution-free
method for quantifying the uncertainty of black-
box prediction algorithms by constructing predic-
tion sets with finite-sample coverage properties.

Coverage Guarantee. For a black-box predic-
tion function f : X — Y, let {(X;,V;)} ]
be an exchangeable set of feature and label pairs
sampled from the joint distribution on X x ).
The goal of split conformal prediction is to use
the calibration data {(X;,Y;)}? ; and f to con-
struct a prediction set C : X — 2Y for the new

data point such that it achieves valid coverage,
i.e., containing the true label with high probabil-
ity P(Yyq1 € C’(Xn+1)) > 1 — « for any user-
specified error rate « € (0,1).

Conformal Calibration. Suppose there is a con-
formity score function S(X,Y") € R that measures
how well a given sample conforms to the observed
data. The split conformal procedure uses the cali-
bration data set {(X}, Y;)}7; to derive conformity
scores {S(X;,Y;) " ,, where a larger value indi-
cates the model is more confident about the predic-
tion being true. To calibrate the prediction set to
the desired level of coverage, we then compute a
threshold 7 that is approximately the 1 — o quantile
of the conformity scores. At the time of inference,
given a new data point X, 1, we construct the pre-
dictionsetas C'(X,11) = {y € ¥ : S(X,y) > 7}.
If the data are exchangeable, then this prediction
set will satisfy the desired coverage property.

3 Ensuring Factuality for LVLMs

3.1 Problem Formulation

Given a pair of image and text prompt
(In+1, Xn+1) and a set of n calibration data points,
our goal is to generate a reliable response Y7,
using the LVLM, such that it contains a low error
with high probability; i.e.,

P(L(Y 1 Ing1) SA) 21 —a, )

where L : Y X T — Rar is a monotonic loss func-
tion that measures the level of misalignment be-
tween the statement and the image (e.g., the oc-
currence of object hallucination, or inaccuracy in
item attribute or quantity) and A is a user-specified
tolerance. A larger loss indicates a greater amount
of error, while a loss of zero indicates that the state-
ment made in the response is factual with respect
to the provided image. We define £(J, ) = 0,
which indicates that we do not penalize the model
for abstaining from responding when it is uncertain,
as here we only focus on the assurance of factuality
while neglecting other aspects of reliability such as
omission of information. The choice among differ-
ent loss functions offers the flexibility to provide a
statistical guarantee with respect to a user-defined,
quantifiable measure of factuality.

3.2 Error Control in LVLMs

Due to the open-set and free-form nature of the
natural language output, directly attempting to con-
struct prediction sets is not attainable for genera-
tive models like LVLMs. Instead, we adapt the
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recently proposed conformal factuality (Mohri and
Hashimoto; Cherian et al., 2024) framework to the
multi-modal setting as the central tool for achiev-
ing statistical guarantees on the factuality of LVLM
outputs. The key idea is to exploit the connection
between linguistic entailments and uncertainty sets
to back off from the original statement (uncensored
response from LVLM) by gradually removing unre-
liable claims with high uncertainty until the desired
level of correctness is achieved.

Error Control Procedure. We start by defining a
scoring function r(C? 415 Int1) € R that captures
the system’s confidence about the claim concerning
the provided visual context, where a larger score
indicates that the claim is more aligned with the
provided image and, thus, is more likely to be true.
Given I,41 and X, 41, we execute the following

steps to generate a more reliable response Y, ;:

(1) Initial Hypothesis Generation: Sample an
initial response Y,.; from the LVLM
po(Y|Xn+1, Voy1), where Vipn = g o
h(Ln+1).

(2) Decomposition: Apply a decomposition oper-
ator D to breakdown the initial response into a
set of individual claims: C), 11 = D(Y,41) =

{C 15

(3) Individual Hypothesis Testing: Define the fil-
tering operator as F'(Cp41;7) = {Cf1+1 :
r(C’fLH, In+1) > 7}. Generate a filtered set
of claims F(Cy11;7) € Cphy1. This step
can be thought of as testing each individual

hypothesis C? 11 and accepting the hypothe-

sis only if the test statistic r(C’i 1o Ing1) is

greater than the chosen threshold 7.

(4) Combination: Apply a merge operator M to
combine the filtered claims into the final re-
sponse Y, | = M (F(Cpp1;7)).

Calibration. Next, to calibrate the filtering oper-
ator I, we set the conformity score S for each set
of claims to be the minimum threshold that ensures
the loss of the filtered set of claims is controlled to
be within tolerance:

S(Cn+1,ln+1) = inf{T : E(F(Cn+1;7),1n+1) S )\}

Finally, we implement the calibrated filter-
ing operator as I'(Cpy1) = F(Chy1;7) =
{C?  : r(I,C),,) > 7}, where 7 is set to

n

-th quantile of the conformity
scores {S(C}, I;)}}_, estimated on the calibration
dataset.

The following theorem indicates that if the data
are exchangeable, the response produced using the
calibrated filtering operator will satisfy the error
control objective in Ineq. 1.

be the [(rD(1-0)]

Theorem 3.1 (SCP Coverage Guarantee (Shafer
and Vovk, 2008)). Define the error scores E; =
{E(CZ,IZ) : CZ € CZ} Let {(Xujw C;, Ez) ?jll
be exchangeable, then the following lower bound

holds for any o € (n%_l, 1):

P(E(F(Cn+1),ln+1) < /\) >1—a

If the loss function is monotonic, meaning
that E(Fl(CZ,Iz)) < ﬁ(FQ(Cz,IZ>) for any
By (Ci, ;) C Fg(C’i, I;), then the following upper
bound also holds:

l1—a+

1 .
P P(E(F(Cn+1),ln+1) < )\).

Proof. Without loss of generality, let us assume
that the conformity scores are sorted as s; < so <
...8n, Where s; = S(Cj, I;). Notice that under
the definition of S, the event {s,+1 < 7} implies
{E(F(Cn+1), In+1) < A}. By exchangeability,

P(5n+1 < Sf(n—‘rl)(l—a)'\) = W >1—

a, which implies the result. To prove the upper
bound, notice that the two events {s,+1 < 7} and
{E(F(Cn+1), Int1) < A} are now equivalent if
the loss function is monotone. The result can then
be obtained through P(Sn+1 < 3[(n+1)(1fozﬂ) =

n+1)(l—«a 1—a)(n+1)+1
[r+0-0)] ¢ Q-a)nbDAL _ 3 gy L

O]

3.3 Deriving Conformity Scores

In practice, the decomposition operator can be im-
plemented by prompting the language model part
of the LVLM, which does not rely on any exter-
nal resources. To derive the conformity scores,
we will need to find a suitable scoring function
7(C4, I;). Built on conformal prediction, our frame-
work should maintain valid coverage with any ar-
bitrary heuristic scores. However, in practice, a
score that better captures the relevance between a
claim C; and the given image I; can enable a better
tradeoff (i.e., allowing the same coverage guaran-
tee while filtering out less content). We primarily
consider the following two types of scores.
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Internal Scores. We consider the following
scores to capture the internal confidence of an
LVLM regarding a statement. (1) Log Probabil-
ity of Text Tokens: we compute the log probability
of text tokens from the claim given only the text
prompt as 7(C;, I;) = log pe(C;| X;), which does
not make use of the visual context and thus serves
as a language prior baseline. (2) Log Probability
of Text Tokens Conditioned on Image: we com-
pute the log probability of text tokens from the
claim conditioned on both the visual and the text
prompt as r(Cy, I;) = log pe(C;| X, Vi), which is
the visual instruction tuning objective (Liu et al.,
2024b) of most LVLMSs. (3) Log Probability Ratio:
finally, we consider the ratio between the two prob-
abilities, i.c., r(C;, I;) = log LAY This is
motivated by the observation that most hallucina-
tions in LVLMs occur because their language prior
tend to dominate visual perception during decod-
ing (Favero et al., 2024; Leng et al., 2024; Liu et al.,
2024c), and the probability ratio can be an infor-
mative measure of the true influence of the visual
prompt regardless of the language prior.

External Scores. In addition to internal scores,
we also consider capturing the confidence in a
statement regarding an image using a (lightweight)
external model. Energy-based models (LeCun
et al.,, 2006) £ : Y x Z — R are particularly
suited for this task as they are trained to map
image-text pairs to a scalar energy score so that
e EMI) o P(Y,I). As such, we can simply set
the scoring function to return the negative energy
score, 7(C;, I;) = —E(C;, I;).

4 Case Study I: General Scene
Understanding

4.1 Setup

We first evaluate the LVLM factuality framework
for general scene understanding tasks. To do
so, we use 500 randomly selected images from
the MSCOCO (Lin et al., 2014) validation set
with more than three objects (same as the POPE
dataset (Li et al., 2023)).

LVLMs. We use four start-of-the-art LVLMs
for the evaluation of the scene understand-
ing task, including three open-sourced
models LLaVA-1.5 (Liu et al, 2024b),
Phi-3.5-vision-instruct (Abdin et al.,
2024), Llama-3.2-11B-Vision (Meta), and one
close-sourced model GPT-40-mini (OpenAl).

We prompt each LVLM to generate a detailed
description for each image and decompose the
original response into independent claims. Our
prompts are provided in the Appendix.

Error Annotation and Loss Function. We con-
sider the following five types of errors for scene
understanding: (1) Object identification: The claim
involves hallucinated or wrongly identified objects;
(2) Attribute (in)accuracy: The claim involves in-
correct attributes (e.g., color, size, shape); (3) Spa-
tial relations: The claim involves incorrect spatial
relationships between objects; (4) Interaction/Ac-
tion (in)accuracy: The claim involves incorrect or
hallucinated action or interaction; and (5) Quan-
titative information: The claim involves incorrect
numeric details (e.g., the wrong object count). We
prompt GPT-4o to label each claim as either correct
or belonging to one or more error categories. In
practice, the loss function can be tailored accord-
ing to specific use cases. For our experiments, we
consider a cumulative loss function that assigns
a loss score to each response based on the total
error its claims contain. Specifically, all claims
start with a loss score equal to 0. For each “Ob-
ject identification” error contained in a claim, the
loss is increased by 3; for every other type of error
contained, the loss is increased by 1. A correct
claim thus receives a loss of 0. This choice of loss
structure reflects the common consensus that hal-
lucinating non-existing objects is typically more
harmful compared to other types of hallucinations.

Scoring Function. We use two configurations
of pretrained CLIP (Radford et al., 2021) mod-
els, CLIP-ViT-Base with 32px patch size and
CLIP-ViT-Large with 14pz patch size, to derive
the normalized image and text embeddings and
compute the dot product as external confidence
scores.

4.2 Results

CONFLVLM Achieves Any Desired Level of
Coverage. We examine the validity of CON-
FLVLM by measuring the empirical coverage (ra-
tio of responses that satisfy E(F(Cn+1), Iny1)) <
A over total number of responses) under different
levels of desired (theoretical) coverage determined
by 1 — a. We set the error tolerance A to 0 (most
restrictive) and report the results over 50 random
splits of calibration (400 data points for establish-
ing conformal prediction) and test data (100 data
points for computing the empirical coverage). The
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Figure 2: Alignment between empirical and desired (the-
oretical) coverage in scene understanding (with A = 0).
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ting where the LVLM-generated responses are returned
to users without using CONFLVLM.
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results in Fig. 2 confirm that CONFLVLM can
achieve the desired level of coverage with all types
of scoring functions and for all LVLMs considered.
By contrast, Vanilla LVLM (i.e., responses without
filtration) leads to significantly low coverage that
signals a failure in the model’s reliability.

CONFLVLM Achieves Higher Filtering Effi-
ciency Than Baselines. Approaching the desired
coverage level of 1 — « involves flagging and filter-
ing out low-confidence claims and, in some cases,
abstaining from providing a response. Next, we
analyze the ratio of claims being filtered out by
CONFLVLM (Fig. 3) and the associated rate of
abstention (Fig. 4). We observe a general trend
where the ratio of filtered claims and the absten-
tion rate increase as the desired coverage level
rises. This is expected as the unfiltered responses
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Figure 4: Abstention rate with varying coverage using
different scoring functions in scene understanding (with
A=0).

from LVLMs contain a large number of non-factual
claims (e.g., 87.8% responses from LLaVA-1.5 are
erroneous), and thus ensuring a lower error rate
requires the framework to be more conservative
and filter more content. When comparing across
different scoring functions, it can be seen that, in
the case of LLaVA-1.5, the external confidence
scores based on CLIP models achieve a lower ra-
tio of filtered claims and also a lower abstention
rate than internal scores. This is notable because
LLaVA-1.5 uses CLIP as the visual encoder, which
implies that there may be certain deficiencies in
the visual instruction tuning process. However,
such a trend is weaker or non-existent with other
LVLMs. This may be because claims generated
by other LVLMs are typically longer and contain
more details, which is more difficult to capture us-
ing CLIP. When comparing across LVLMs, we see
that GPT-40-mini requires filtering out much fewer
claims to achieve the desired coverage, which is be-
cause GPT-40-mini has better empirical factuality
performance compared to other models.

Now we analyze how accurate CONFLVLM is
in filtering out nonfactual claims. To our knowl-
edge, there are no existing baselines with statis-
tical factuality guarantees. Thus, we consider a
simple Random Filtering baseline beyond Vanilla
LVLM, which drops claims uniformly at random
with probability «. As shown in Table 1, for
LLaVA-1.5 with the setting of &« = 0.1, A = 0,
CONFLVLM achieves a high true positive rate
(TPR, or Recall) of 0.953 and a relatively high
F1 score of 0.504. Vanilla LVLM, in contrast, has
a TPR of 0 and F1 of 0, as it does not perform any
filtration. When randomly dropping 10% claims,
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Table 1: Claim-level results on the scene understand-
ing task using CLIP-ViT-Large as scoring function
(CONFLVLM with o = 0.1, A = 0).

LVLM
LLaVA-1.5

| Configuration | TPRt F1t

Vanilla LVLM 0.0 0.0
Random Filtering | 0.104 0.158
CONFLVLM 0.953  0.504

Vanilla LVLM 0.0 0.0
Random Filtering | 0.102 0.145
CONFLVLM 0.945  0.401

Vanilla LVLM 0.0 0.0
Random Filtering | 0.099 0.121
CONFLVLM 0.936 0.269

Vanilla LVLM 0.0 0.0
Random Filtering | 0.106 0.070
CONFLVLM 0.850  0.100

Phi-3.5-vision
-instruct

Llama-3.2-11B-vision

GPT-40-mini

Random Filtering reaches a TPR of 0.104 and an F1
of 0.158, which are approximately 9x and 3.2x
lower than those achieved by CONFLVLM. We
have similar observations for other LVLMs and
these highlight the utility of CONFLVLM in identi-
fying nonfactual claims. It is also evident that other
LVLMs with CONFLVLM implemented demon-
strate lower values of TPR and F1 compared to
LLaVA-1.5, e.g., GPT-40-mini achieves a TPR of
0.850 and an F1 of 0.100. This occurs because
models like GPT-40-mini typically generate more
comprehensive descriptions of an image, leading to
a higher number of claims, and, at the same time, a
smaller proportion of nonfactual claims (examples
in Appendix). In other words, the task of identi-
fying nonfactual claims itself is much harder for
GPT-40-mini than for LLaVA-1.5. Nonetheless,
CONFLVLM still outperforms the baselines.

Error Tolerance Allows Flexible Control Over
Coverage-Utility Tradeoff. To study the im-
pact of error tolerance, we plot the ratio
of claims filtered and abstention rate using
Llama-3.2-11B-Vision with varying A while
keeping o = 0.1 in Fig. 5a. We observe the ex-
pected behavior that CONFLVLM will filter out
less content and abstain less as the error toler-
ance increases. In Fig. 5b, we plot the model’s
response distributions with different error toler-
ances and using CLIP-ViT-Large as the scoring
function. When the error tolerance is set to oo,
i.e., using the raw LVLM output without censoring,
the model can generate detailed responses (75% re-
sponses have > 10 claims) but also have high risks
of hallucination (more than 50% responses have
loss > 3). As the error tolerance decreases, the loss
of responses gradually reduces with the number of
claims. For example, an error tolerance is set to
3, which reduces more than 75% of responses to
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Figure 5: Comparison of L1ama-3.2-11B-Vision’s re-

sponse with different error tolerances (\) while fixing
a = 0.1 in scene understanding.

below 2, with the median of the number of claims
being 4. This shows that error tolerance can serve
as an additional tuning knob that allows the user to
flexibly choose the desired level of error within the
acceptable range of utility.

S Case Study II: Medical Report
Generation

5.1 Setup

Next, we evaluate CONFLVLM on the radiology
report generation task. We sample 500 chest X-
ray images from the MIMIC-CXR (Johnson et al.,
2019) dataset, each from a distinct patient.

LVLMs. We consider the following three
medical-domain LVLMs for this task: (1)
Llava-Med (Li et al.,, 2024a) is a biomedical
LVLM instruction-tuned on several corpora in
the biomedicine domain. We use the latest v1.5
Mistral 7B version. (2) CvT2DistilGPT2 (Nicol-
son et al., 2023) is LVLM based on the encoder-
to-decoder architecture developed for chest X-ray
report generation. The originally released model
weights are trained on the MIMIC-CXR dataset.
To avoid data leakage, we retrain the model on
a disjoint subset of MIMIC-CXR that does not
contain any patients involved in our evaluation.
(3) MAIRA-2 (Bannur et al., 2024) is the latest
radiology-specific LVLM developed by Microsoft
Research. It is based on a similar architecture as
LlaVa, featuring a Rad-DINO visual encoder and
a language model based on Vicuna 7B v1.5 for
grounded report generation.
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Figure 6: MAIRA-2 results in medical report generation.

Error Annotation and Loss Function. We lever-
age GPT-4o for error annotation. To ensure quality,
we provide GPT-40 with the ground truth report
written by qualified physicians in addition to the
chest X-ray images. This eliminates the require-
ment for GPT-40 to understand the actual medical
image as it can verify the veracity of each claim by
just checking if it is entailed by the ground truth re-
port. Specifically, the errors are categorized as: (1)
Conflicting error: The claim directly contradicts
information provided in the ground truth report;
(2) Implausible error: The claim does not directly
conflict with or align with the ground truth report,
and is implausible within the given context; and
(3) Plausible error: The claim does not directly
conflict with or align with the ground truth report,
but remains plausible. Similar to scene understand-
ing, we assign each occurrence of errors (1)-(3) a
loss of 3, 2, and 1, respectively, and compute the
accumulated loss as the final loss for each response.

Scoring Function. We use BiomedCLIP (Zhang
et al., 2023) to compute similarity between claim
and image pairs as the external confidence score.

5.2 Results

Given limited space, we present the results of
MAIRA-2 and defer other LVLMs to the Appendix.

We plot the empirical coverage versus desired
coverage in Fig. 6a. The results verify that CON-
FLVLM can achieve tight error control in the re-
vised responses after filtering. This is particularly
important considering that medical report genera-
tion is a much more challenging task that requires
precise control over the risk of output hallucination.

We plot the average ratio of claims filtered and
abstention rate at various desired levels of cover-
age in Fig. 6b and Fig. 6c, respectively, given fixed
A = 0. We observe a trend similar to the scene un-
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Figure 7: LLaVA-NeXT results in document understand-
ing.

derstanding task, where the ratio of filtered claims
and abstention rate increases with the desired cov-
erage level. Notably, given a fixed coverage level,
BiomedCLIP archives the lowest ratio of filtered
claims and abstention rate among all scoring func-
tions. Fig. 6d and Fig. 6e present the results with
varying error tolerance while keeping o = 0.1. In
particular, changing A from 0 to 3 reduces the ab-
stention rate by more than half, while still maintain-
ing a relatively low error (compared to the median
of the loss of unfiltered responses, which is 7).

6 Case Study III: Document
Understanding

6.1 Setup

Finally, we evaluate CONFLVLM on the document
understanding task, where we randomly select 500
invoice scan/images from the SROIE (Huang et al.,
2019) dataset.

LVLMs. We consider two LVLMs,
LLaVA-Next (Liu et al.,, 2024a), which is
the latest model in the LLaVA family with enhanced

visual reasoning and OCR capabilities, and
Phi-3.5-vision-instruct.
Error Annotation and Loss Function. We con-

sider the following error types for this task: (1)
Field misinterpretation: Incorrectly identify impor-
tant fields such as mistaking "Subtotal" for "Total
Amount", or misrecognizing non-existing fields.
(2) Numerical and quantitative errors: Incorrect
amounts, totals, or quantity values, as well as cal-
culation discrepancies (e.g., subtotal, tax, and to-
tal relationship). (3) Date error: Misrecongizing
date or misinterpreting date formats. (4) Item er-
ror: Misrecongizing item or item details, or falsely
identifying non-existing items. (5) Other errors:
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Other errors such as misspelling or misrecogniz-
ing character, layout, and alignment issues. Each
occurrence of Numerical and Date Errors gets an
additional loss of 3, each occurrence of field or
item error gets an additional loss of 2, and the oc-
currence of other errors gets an additional loss of 1.
Similar to other tasks, we compute the accumulated
loss for each response.

Scoring Function. We use LayoutlLMv3 (Huang
et al., 2022) which is a pre-trained multi-modal
transformer to derive embeddings for the claim text
and document images and compute their cosine
similarity as the external confidence score.

6.2 Results

We now show the results of LLaVA-NeXT and defer
the results of other models to the Appendix.

We first verify the alignment of empirical cov-
erage and desired coverage in Fig. 7a. The results
show that CONFLVLM can achieve a precise level
of coverage on the document understanding task.

Next, we investigate the ratio of filtered claims
and abstention rate with varying « and fixed A = 1
in Fig. 7b and Fig. 7c, respectively, and with vary-
ing A and fixed o = 0.1 in Fig. 7d and Fig. 7e,
respectively. Besides the general trend that increas-
ing desired coverage or reducing the error toler-
ance would result in filtering out more content and
more frequently abstaining, we additionally ob-
serve that LayoutLMv3 achieves significantly lower
rates compared to other scoring functions based on
the LVLM’s internal confidence, e.g., preserving
approximately 10% more content when o = 0.4.
This shows that a small dedicated model is more
accurate than LVLMs in terms of verifying the fac-
tuality of claims regarding document images.

7 Discussion

Impact of Calibration Data Size. We have con-
sidered a fixed calibration data size of 400. To
study the impact of calibration data size, we use
Llama-3.2-11B-Vision as an example and vary
the calibration data from 50 to 400 samples, each
with 50 random train-test splits, and plot the empir-
ical coverage and ratio of claims filtered of three
sets of (a, \) parameters in Fig. 8. We observe that
CONFLVLM can consistently achieve the desired
level of coverage while maintaining the same ratio
of filtered claims regardless of the calibration data
size, though a larger calibration dataset could help
reduce the result variance.
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Figure 8: Impact of calibration data size on the empirical
coverage and utility of L1ama-3.2-11B-Vision on the
scene understanding task (with 95% CI).

Discriminative vs. Generative Models. In
our experiments, we observe that in many cases
small discriminative vision-language models (e.g.,
BiomedCLIP for medical report generation and
LayoutLMv3 for document understanding) outper-
form LVLMs in terms of capturing the relevance
between a text claim and an image. One poten-
tial reason is that, compared to large generative
models, small discriminative models are easier to
optimize and can learn useful representations more
efficiently. This hints that besides serving as the
image encoder, these models can be used as critics
to censor LVLM outputs and improve factuality
with lower computational costs.

8 Conclusion

In this work, we propose CONFLVLM, a frame-
work for achieving statistical factuality guarantee
of LVLM output through decomposing responses
into individual verifiable hypotheses and filtering
out those with low confidence given the image con-
tent. We demonstrate with three application do-
mains that by choosing the desired error rate and
tolerance, CONFLVLM offers users flexible con-
trol over the hallucination risk of LVLM output.
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Limitations

Our study, while demonstrating the effectiveness
of CONFLVLM in providing statistical guarantees
on the factuality of LVLM-generated content, has
two limitations. First, the current framework as-
sumes exchangeability of the calibration and test
datasets. Although this is a mild assumption (more
relaxed than the common L.I.D. assumption), it may
not always hold in applications where distribution
shifts frequently occur. Addressing this limitation
would require extending the framework to handle
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such distributional changes robustly. Discussions
on potential solutions can be found in Appendix
Section C. Second, while CONFLVLM is flexi-
ble and broadly applicable, it inherently involves a
trade-off between factuality guarantees and content
utility: an increase in the desired level of coverage
naturally results in more aggressive filtering and re-
duced response informativeness. Future work may
investigate methods to better balance this trade-off
(e.g., train a better scoring module), enhancing fac-
tual accuracy without compromising on utility.
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A Additional Results

A.1 Comparison to Heuristic-based
Mitigation

Woodpecker. Heuristic-based mitigation, such
as Woodpecker (Yin et al., 2023b), relies on
a series of external models, including BLIP-2,
GroundingDINO, and proprietary models such as
GPT, to reduce object hallucination, and thus it
is not readily applicable to the specialized do-
mains considered in our paper (i.e., medicine and
finance). Even if Woodpecker is applicable, unlike
our method which is driven by a confidence score,
Woodpecker is driven by the matching of textual
claims to objects extracted from the image. In this
sense, when Woodpecker fails to match an object,
it filters out the claim. As such, our method of-
fers a continuous confidence score that is tunable,
whereas Woodpecker only offers a binary match/no
match strategy. We conducted additional experi-
ments on the scene understanding task by randomly
selecting 100 images and measuring Woodpecker’s
claim filtering efficiency (in terms of TPR) and

final response accuracy, with results shown in Ta-
ble 2. We observe that Woodpecker suffers from
low TPR in claim filtering and low final response
accuracy, partially due to GroundingDINO’s high
FPR in open-set object detection.

Table 2: Comparison to heuristic-based mitigation.

Claim Filtering

Method Efficiency (TPR) Response Accuracy 1
Woodpecker | 59.1% | 41%
CoVe | 37.0% | 23%
VCD (8 =0.1) 35.5% 20%
VCD (8 =10.2) 34.8% 24%
VCD (8 =0.3) 33.0% 22%
ICD (8 =0.1,P) 41.1% 26%
ICD (8 =0.1,N) 41.5% 26%
ICD (8 =0.2,P) 41.5% 27%
ICD (8 = 0.2,N) 41.5% 27%
CONFLVLM | 95.3% | 90%

Other Mitigation. We additionally compare
CONFLVLM with other prominent hallucination
mitigation methods that do not rely on extensive
external resources, including Chain-of-Verification
(CoVe) and enhanced self-revision approaches, in-
cluding Visual Contrastive Decoding (VCD) and
Instruction Contrastive Decoding (ICD).

* Chain-of-Verification (CoVe): The CoVe method,
originally introduced by Dhuliawala et al. (2024),
was primarily proposed for text-only data. To
ensure a fair comparison in our visual setting, we
adapted CoVe by first decomposing the LVLM’s
response into individual claims (atomic factoids)
and then invoking the model to verify each claim
independently using separate prompts.

* Visual Contrastive Decoding (VCD): VCD (Leng
et al., 2024) aims to reduce the model’s over-
reliance on statistical bias and unimodal priors
that lead to object hallucinations, by modifying
the decoding process to contrast output distribu-
tions from original and distorted visual inputs.

e Instruction Contrastive Decoding (ICD): Simi-
larly to VCD, ICD (Wang et al., 2024) improves
decoding by contrasting between two distribu-
tions induced by the original instruction and the
disturbance instruction.

We evaluated CONFLVLM against CoVe, VCD,
and ICD using LLaVA-1.5 on the scene understand-
ing task. For VCD and ICD, we used their original
code implementations open-sourced by the authors.
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Following the setup in their papers, we employed
the VCD/ICD method to predict the factuality of
each claim. As recommended in the original pa-
pers, we set « = 1 for both VCD and ICD. For
VCD, we used a noise step of 500 and explored
different 5 values. For ICD, we additionally con-
sidered its combination with both positive (P) and
negative (N) prefixes. Similarly to the experiments
for comparison with Woodpecker, we used a ran-
domly selected set of 100 images (containing 788
claims in total) and measured claim filtering effi-
ciency (in terms of True Positive Rate) and final
response accuracy. The results are presented in
Table 2. As the results demonstrate, CONFLVLM
significantly outperforms CoVe, VCD, and ICD in
both claim filtering efficiency and final response
accuracy.

A.2 Annotation Reliability

Human Raters. We used GPT-40 for assisting
with annotating error types. To verify its annota-
tion quality, we randomly select a subset of 50
images and 1,182 associating claims generated
by LLaVA-1.5 on the scene understanding task,
and recruit two human annotators to generate in-
dependent error type annotations. The instruction
provided to the human raters is analogous to the
prompt shown in Table 4. The measured averaged
Intraclass Correlation Coefficient (ICC) between
GPT-40 and human annotations is 0.85, with the
95% CI being [0.82,0.87]. This result confirmed
that the annotations show high inter-rater reliabil-
ity (by convention, any ICC value above 0.75 is
considered to be good reliability).

LVLM Raters. We measured the averaged ICC
between GPT-40 and Gemini-1.5-pro on the
scene understanding task to be 0.81, with the 95%
CI being [0.77, 0.85], which shows high inter-rater
reliability.

A.3 LVLM Output Distribution

In Fig. 9, we compare the quality of vanilla LVLM
outputs (i.e., raw responses without filtering any
claim) by visualizing the distribution of the number
of claims and loss per response. An ideal LVLM
should be expressive (output more claims) while
maintaining a low risk of hallucination (yield low
loss values). On the scene understanding task,
GPT-40-mini clearly outperforms other models but
is still prone to errors. On the medical report gen-
eration task, CvT2DistilGPT2 and MAIRA-2 both
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Figure 9: Comparison of the quality of raw LVLM
responses.

outperform LLaVA-Med by a large margin, but still
have very high loss values in most responses. Sim-
ilarly, on the document understanding tasks, both
model show a long tail in loss distribution. These
observations necessitate the adoption of error con-
trol methods with statistical guarantees.

A.4 Omitted Results from Main Paper

Here we provide the omitted results from main
paper for medical report generation and document
understanding.

Medical Report Generation. Fig. 10 compares
the empirical and desired coverage of L1aVa-Med,
CvT2DistilGPT2, and MAIRA-2 on the medical
report generation task. The same conclusion is
drawn as in the general scene understanding setting:
CONFLVLM achieves the desired level of cover-
age across all types of scoring functions, whereas
Vanilla LVLM (i.e., responses without any filtra-
tion) produces significantly low coverage. Fig. 11
shows the average ratio of filtered claims across a
range of desired coverage, whereas Fig. 12 presents
the abstention rate as a function of desired cover-
age.
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(theoretical) coverage on the medical report generation
task (with A = 0). Vanilla LVLM (red dashed line)
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responses are returned to users without using CON-
FLVLM.

Figure 12: Abstention rate with varying coverage using
different scoring functions on the medical report gener-
ation task (with A = 0).
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Figure 11: Average ratio of claims filtered with varying
coverage using different scoring functions on the medi-
cal report generation task (with A = 0).

Document Understanding. Fig. 13
shows the alignment between the empiri-
cal and desired coverage of LLaVA-Next
and Phi-3.5-vision-instruct using CON-
FLVLM on the document understanding task. The
same conclusions regarding model coverage are
reached as in the other two image understanding
settings. Fig. 14 shows the average ratio of
filtered claims across a range of desired coverage,
whereas Fig. 15 presents the abstention rate as
a function of desired coverage. In Fig. 16, we
compare LLaVa-NeXT’s response with different
error tolerances and a fixed error rate.

A.5 Response-level and Claim-level Results

In Table 3, we show the response-level (rate of
responses containing at least one error and the aver-
age loss per response) and claim-level (TPR, FNR,
and F1 for detecting erroneous responses) results
under various o, A configurations on the scene un-
derstanding task. Results are averaged over 50
random data splits.

A.6 Empirical Coverage and Utility with
A>0

In addition to the plots in the main paper with
A = 0, we plot the empirical coverage, ratio of
claims filtered, and abstention rate with error toler-

-~ VanillalVIM  —&- LayoutLMv3 LogpText —F- LogPmage & LogP-Ratio

Figure 13: Alignment between the empirical and desired
(theoretical) coverage on the document understanding
task (with A\ = 0). Vanilla LVLM (red dashed line)
refers to the base setting where the LVLM-generated
responses are returned to users without using CON-
FLVLM.

ance A = 1,2 for scene understanding in Fig. 17,
Fig. 18, and Fig. 19, for medical report generation
in Fig. 20, Fig. 21, and Fig. 22, and for document
understanding in Fig. 23, Fig. 24, and Fig. 25, re-
spectively.

A.7 Examples

We include additional examples of applying CON-
FLVLM to control error in responses from LVLMs
for scene understanding (Fig. 26), medical report
generation (Fig. 27), and document understanding
(Fig. 28).

B Implementation Details

Prompts for Image-conditioned Free-text Gen-
eration. We use the following prompt for eval-
uating LVLMs on the scene and document under-
standing tasks: “(Image) Provide a detailed de-
scription of the given image.”. To evaluate medical
(radiology) report generation, we use the follow-
ing prompt for LLaVA-Med: “(Image) What does
the chest X-ray show?”, whereas CvT2DistilGPT2
and MAIRA-2 do not require any text prompt for
generating reports.

Prompts for Error Annotation. We include our
prompts for LLM-assisted error annotation of the
scene understanding, medical report generation,
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Figure 15: Abstention rate with varying coverage using
different scoring functions on the document understand-
ing task (with A = 0).

and document understanding tasks in Table 4, 5,
and 6, respectively.

Decomposition and Merge Operators. We im-
plement the decomposition and merging opera-
tions by prompting the language model part of
the LVLM. For rare cases where the LVLM does
not support or cannot correctly implement the
decomposing operation (e.g., dedicated models
such as MAIRA-2 and CvT2DistilGPT2), we use
GPT-40-mini as the substitute model to imple-
ment the decomposition and combination oper-
ations. The prompt for decomposing claims is
“Breakdown the above statement into a set of in-
depedent and self-contained claims. Each claim
should be a short sentence. Output only a num-
bered list of claims.”. The prompt for merging
claims is “Merge the above claims about an image
into a cohesive statement. Reuse the words from
the original claims and do not generate any new
claims.”.

C Additional Discussions

Coverage vs. Reliability. Although our method
can achieve the precise coverage as specified by the
user, the statistical guarantee only holds marginally
with split conformal prediction. However, con-
ditional guarantees may be required for certain
applications, e.g., to ensure health equity among
groups of patients in healthcare. Future work could
consider the integration with advanced conformal
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Figure 16: Comparison of LLaVa-NeXT’s response with
different error tolerances (\) while fixing & = 0.1 on
the document understanding task.

Table 3: Response- and claim-level results on the scene
understanding task (averaged over 50 random splits).

) Response-level Claim-level
LVIM Configuration |- pote AverageLoss | TPR FNR I
Vanilla 08782 55028 00 10 00
a=01A=0| 0.102 0206 0953 0047 0504
LLaVA-1.5 a=0LA=2| 0212 0529 0886 0.114 0507
a=03A=0| 0291 0780 0836 0.164 0503
a=031=2| 0536 1771 0637 0363 0499
Vanilla 0.850 3895 ] 00 10 00
a=01A=0| 0094 0147 0945 0055 0401
Phi-3.5-vision-instruct | @ =0.1,A =2 0.288 0.611 0.829 0.171 0392
a=031=0| 0306 0655 0818 0182 039
a=032=2| 0648 1911 0480 0520 0345
Vanilla 0793 3129 [ 00 10 00
a=01,A=0| 0105 0205 0936 0064 0269
Llama-3.2-11B-vision |a=0.1,A=2| 0232 0543 0831 0169 0266
a=03A=0| 0306 0714 0772 0228 0264
a=031=2| 0628 1805 0408 0592 0227
Vanilla 0493 1265 ] 00 10 00
a=01A=0| 0097 0168 0850 0.150 0.100
GPT-do-mini a=01A=2| 0285 0552 0544 0456 0099
a=03A=0| 0300 058 0510 0490 0.0988
a=032=2| 0493 1.265 00 10 00

methods to achieve conditional validity (Gibbs
et al., 2023). Besides coverage, investigating other
important aspects of LVLM reliability, such as
omission, and designing better scoring functions to
achieve the same level of coverage while preserv-
ing more content are also interesting avenues for
future research.

Distribution Shift. Our LVLM factuality frame-
work follows the standard conformal prediction
setting by assuming data exchangeability (a weaker
notion than IID). In cases where this may not hold,
there are alternative strategies that one could in-
voke, such as periodically updating the calibra-
tion set or applying a discount factor to older sam-
ples. For significant shifts, such as out-of-domain
data, incorporating an additional OOD detection
layer (Li et al., 2024b) can help to empirically pre-
serve coverage.

D License of Artifacts

Datasets. The MSCOCO and SROIE datasets are
released under a Creative Commons Attribution 4.0
License. MIMIC-CXR is released under a Phys-
ioNet Credentialed Health Data License 1.5.0.

Models.
munity license.

LLaVA-1.5 is under the Llama-2 com-
Phi-3.5-vision-instruct is
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Table 4: Data annotation prompt for scene understanding.

Error annotation prompt for scene understanding

System “You are an expert annotator tasked with evaluating statements generated by a vision-language model (VLM).
Given an image and a claim, your task is to verify the factuality of the claim based on how well it aligns with the provided
image. You should focus only on significant or material correctness, ignoring minor differences or non-essential details,
especially in spatial relationships or specific object types.

The errors are categorized as follows: 1. **Object Identification (Object)**: The claim involves hallucinated or wrongly
identified objects. Ignore minor distinctions between similar objects (e.g., slotted spoon vs regular spoon) unless it
Sfundamentally changes the meaning of the claim. 2. **Attribute Accuracy (Attribute)**: The claim involves incorrect
attributes (e.g., color, size, shape). Only flag attributes if they are critical to the understanding of the claim. 3. **Spatial
Relations (Spatial)**: The claim involves incorrect spatial relationships between objects. Only flag spatial errors if they
significantly change the scene (e.g., "above the water" vs. "in the water" can be ignored unless the context requires
precision). 4. **Interaction/Action Accuracy (Interaction)**: The claim involves incorrect or hallucinated action or
interaction. 5. **Quantitative Information (Quantitative)**: The claim involves incorrect numeric details (e.g., wrong
object count).

For each claim, generate a JSON object with four fields: - "reasoning": a brief explanation of why the claim is correct
or incorrect. - "label": a boolean value (True or False) where True means the claim is factually correct, and False
means it is incorrect. - "error_type": a list of error types (e.g., ["Object”, "Attribute"]) if the claim contains errors, or
an empty list if the claim is fully correct.

Example: Given an image of two orange cats, and the following list of claims: 1. This image features several cute cats.
2. There are a total number of three cats. 3. One cat is orange, the others are black. 4. There is also a dog behind the
cats.

Return: [ {"reasoning": "The claim is general and no significant error can be found.", "label": true, "error_type": []},
{"reasoning": "There are two cats in the image, not three.", "label": false, "error_type": ["Quantitative"]}, { "reasoning":
"One cat is orange, but the other is not black.", "label": false, "error_type": ["Quantitative", "Attribute"]}, { "reasoning":
"There is no dog in the image.", "label": false, "error_type": ["Object"]} ]

User “List of claims: {claims} For each claim, return a JSON object with "reasoning", "label" (true or false),

"o

"error_type" (might contain multiple types from ["Object", "Attribute”, "Spatial”, "Interaction”, "Quantitative"]). ”

under the MIT license. Llama-3.2-11B-vision
is under the Llama-3.2 community license.
L1laVa-Med is under the Apache license 2.0 license.
CvT2DistilGPT2 is under the GNU General Pub-
lic License v3.0. MAIRA-2 is under the Microsoft
research license. LLaVA-Next is under the Apache-
2.0 license.
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Table 5: Data annotation prompt for medical report generation.

Error annotation prompt for medical report generation

System “You are an experienced radiologist tasked with evaluating statements generated by a Medical Al model. Given
a chest x-ray image, a ground truth report generated by expert human radiologist, and a claim generated by the Al
model, your task is to verify the factuality of the claim based on how well it aligns with the provided ground truth report.
IMPORTANT: A claim should be deemed correct only if it is directly entailed by the ground truth report.

The errors are categorized as follows: 1. **Conflicting Error (Conflicting)**: The claim directly contradicts information
provided in the ground truth report. 2. **Implausible Error (Implausible)**: The claim does not directly conflict with
or align with the ground truth report, and is implausible within the given context. 3. **Plausible Error (Plausible)**:
The claim does not directly conflict with or align with the ground truth report, but remains plausible within the given
context.
For each claim, generate a JSON object with four fields: - "reasoning": a brief explanation of why the claim is correct
or incorrect. - "label": a boolean value (True or False) where True means the claim is factually correct, and False
means it is incorrect. - "error_type": a list of error types (e.g., ["Conflicting", "Plausible"]) if the claim contains errors,
or an empty list if the claim is fully correct.

Example: Given a chest x-ray report and the following list of claims: 1. There is no evidence of lung consolidation. 2.
The heart size is mildly enlarged. 3. There are signs of a pleural effusion.

Return: [ "reasoning": "The ground truth report confirms no lung consolidation.", "label": true, "error_type": [],
"reasoning": "The ground truth report describes the heart size as normal.", "label": false, "error_type": ["Conflicting"],
"reasoning": "The ground truth report does not mention a pleural effusion, but it is a plausible interpretation in some
cases.", "label": false, "error_type": ["Plausible"] | ”

User “List of claims: {claims} For each claim, return a JSON object with "reasoning", "label" (true or false),
"error_type" (might contain multiple types from ["Conflicting"”, "Implausible”, "Plausible"]). ”

Table 6: Data annotation prompt for document understanding.

Error annotation prompt for document understanding

System “You are an expert annotator tasked with evaluating statements generated by a Document AI model. Given a
ground truth document (image and text) and a claim, your task is to verify the factuality of the claim based on how well
it aligns with the provided document.

The errors are categorized as follows: 1. **Field Misinterpretation (Field)**: Incorrectly identify important fields
such as mistaking "Invoice Date" for "Due Date", "Subtotal" for "Total Amount", or misrecognize non-existing field.
2. **Numerical and Quantitative Errors (Numerical)**: Incorrect amounts, totals, or quantity values, as well as
calculation discrepancies (e.g., subtotal, tax, and total relationship). 3. **Date Error (Date)**: Misrecongizing date
or misinterpreting date formats. 4. **Item Error (Item)**: Misrecongizing item or item details, or falsely identifying
non-existing item. 5. **Other Errors (Other)**: Other errors such as misspell or misrecognize character, layout and
alignment issues.

For each claim, generate a JSON object with four fields: - "reasoning": a brief explanation of why the claim is correct
or incorrect. - "label": a boolean value (True or False) where True means the claim is factually correct, and False
means it is incorrect. - "error_type": a list of error types (e.g., ["Numerical", "Item"]) if the claim contains errors, or an
empty list if the claim is fully correct.

Example: Given an invoice of buying a Chopping Board at a shop named Walmart, and the following list of claims:
1. This image is a printed invoice. 2. The merchant name is Wallmart. 3. The items listed on the receipt include two
Chopping Board, and a Knife.

Return: [ "reasoning": "The image shows a printed invoice.", "label": true, "error_type": [], "reasoning": "The
merchant name is spelled incorrectly.", "label": false, "error_type": ["Other"], "reasoning": "Only one Chopping
Board, and no Knife purchased.", "label": false, "error_type": ["Numerical”, "Item"], |
User “List of claims: {claims} For each claim, return a JSON object with "reasoning", "label" (true or false),
"error_type" (might contain multiple types from ["Field", "Numerical", "Date", "Item", "Other"]). ”
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Figure 19: Abstention rate with varying coverage using

different scoring functions on the scene understanding
task with different error tolerances (\).

MAIRA-2

LLaVA-Med 5 CVT2DistiIGPT2
g Ay Al A
g 0.9 /i g 0.9 ,I g 0.9 /I
308 i’ 308 308
o I/ o 2 o
So7 I‘E’ So7 So7 Z&
= = =
P

Eos 1 Eos Sos i I

06 07 08 09 06 07 08 09 06 07 08 09

Desired Coverage (1 - alpha) Desired Coverage (1 - alpha) Desired Coverage (1 - alpha)

~% BiomedCLIP % LogPText —F LogP-mage —% LogP-Ratio
@X=1
LLaVA-Med CVT2DistiIGPT2 5 MAIRA-2
g Ao Al A
oo P oo ,l goo . /i
208 308 208
8 I/ S 8
Sor ,I‘ ,If‘ So7 I ,I/ Sor /%%
= = =
o

Eos I Eos ? Eos i

06 ; 08 09 08 08

Desired Coverage (1 - alpha) Deslred Coverage (1- alpha) Des\red Coverage (1 - alpha)

-%- BiomedCLIP —F LogPText ~—F- LogPdmage —% LogP-Ratio

b)yA=2

Figure 20: Comparison of empirical and desired (theo-
retical) coverage on the medical report generation task
with different error tolerances (\).
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Figure 21: Average ratio of claims filtered with varying
coverage using different scoring functions on the medi-
cal report generation task with different error tolerances
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Figure 22: Abstention rate with varying coverage using

different scoring functions on the medical report gener-
ation task with different error tolerances ().
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Figure 23: Comparison of empirical and desired (theo-
retical) coverage on the document understanding task
with different error tolerances (\).
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Figure 24: Average ratio of claims filtered with varying
coverage using different scoring functions on the docu-
ment understanding task with different error tolerances
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Figure 25: Abstention rate with varying coverage using
different scoring functions on the document understand-
ing task with different error tolerances (\).
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Claims

Final Response
(@=0.1,1=0)

Final Response
(@=0.2,1=1)

Final Response
(@=0.3,1=2)

LLaVA-1.5

The image features a bathroom with a
large bathtub sitting next to a toilet. The
bathtub is filled with water, and there is
a potted plant placed nearby. The
bathroom also has a sink and a mirror,
which is located above the sink. The
overall atmosphere of the bathroom
appears to be clean and well-maintained.

&

w

o

~

The image features a bathroom.
The bathroom has a large bathtub
filled with water.

There is a toilet in the bathroom
There is a potted plant placed
nearby.

The bathroom has a sink.

The bathroom has a mirror located
above the sink

The overall atmosphere of the
bathroom appears to be clean and
well-maintained.

The overall atmosphere of the bathroom
appears to be clean and well-maintained,

(Claim 7)

The image showcases a clean and well-
maintained bathroom.

(Claim 1,7)

The image showcases a bathroom with a
large bathtub filled with water, a sink,
and a clean, well-maintained
atmosphere.

(Claim 1,2,5,7)

Phi-3.5-
vision-
instruct

The image captures a serene bathroom
scene. Dominating the space is a
bathtub, its gray tiles contrasting with
the white sink that sits atop a marble
countertop. The bathtub is equipped
with a showerhead, ready to provide a
relaxing bath. A small plant adds a touch
of greenery to the room, placed on the
floor next to the bathtub. The floor is
adorned with tiles in shades of blue and
green, adding a pop of color to the
otherwise neutral palette. A towel is
casually draped over the bathtub,
suggesting recent use. The walls, covered
in gray tiles, reflect the light, enhancing
the brightness of the room. A window
punctuates one of the walls, allowing
natural light to filter in and illuminate the
space. The overall layout and design of
the bathroom suggest a modern and
stylish interior.

o

~

The bathroom features a gray tiled
bathtub and a white sink
Ashowerhead is installed on the
bathtub

Asmall plant is placed on the floor
next to the bathtub.

The floor is covered with blue and
green tiles.

Atowel is draped over the bathtub.
The walls are covered in gray tiles.
Awindow is present on one of the
walls.

[Abstained]

The bathroom has a gray tiled bathtub
and a white sink, with a small plant
placed on the floor next to the bathtub.

(Claim 1, 3)

The bathroom features a gray tiled
bathtub and a white sink. A showerhead
is installed on the bathtub, and a small
plant is placed on the floor nextto it. The
floor is covered with blue and green tiles,
and a towel is draped over the bathtub.
The walls are covered in gray tiles.

(Claim 1,2, 3, 4,5, 6)

Llama-3.2-11B-
vision

The image depicts a bathroom with a
large bathtub, sink, and toilet. The room
is tiled in gray and brown marble-
patterned tiles, with a white sink and
toilet. A potted plant sits in the corner of
the room, and a white towel is placed on
the floor next to the bathtub. The
bathtub is white and has a decorative
border around it. The floor is made up of
large, square tiles in a checkerboard
pattern, with alternating gray and brown
colors. The walls are also tiled in the
same pattern as the floor.

* **Bathtub:**
* White
* Decorative border around it
* Located in the corner of the room
**Sink:**
* White
* Located on the left side of the room
* Has a marble-patterned countertop
* **Tojlet:**

* White

* Located on the left side of the room
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The image depicts a bathroom.
The bathroom has a large bathtub.
The bathroom has a sink.

The bathroom has a toilet.

The room is tiled in gray and brown
marble-patterned tiles

The sink is white.

The toilet is white.

A potted plant sits in the comer of
the room.

Awhite towel is placed on the floor
next to the bathtub.

The bathtub is white.

. The bathtub has a decorative border

around it.

The floor is made up of large, square
tiles in a checkerboard pattern

The floor tiles are alternating gray
and brown colors.

[Abstained]

The image depicts a bathroom with a
large bathtub, tiled in gray and brown
marble-patterned tiles, and a white
towel placed on the floor next to the
bathtub.

(Claim 1, 2,5,9)

The image depicts a bathroom with a
large bathtub, a sink, and a toilet. The
bathroom is tiled in gray and brown
marble-patterned tiles. A potted plant
sits in the comer of the room. A white
towel is placed on the floor next to the
bathtub. The bathtub is white and has a
decorative border around it. The floor is
made up of large, square tiles in a
checkerboard pattern, with the tiles
alternating gray and brown colors. The
room has a white bathtub, a sink, and a
toilet. The bathroom has a white towel, a
potted plant, and a decorative border
around the bathtub.

(Claim 1,2, 3,4,5,8,9,10,11, 12, 13)

GPT-40-mini

The image depicts a spacious bathroom
with a modern and stylish design. The
walls are covered with large, gray-green
tiles that create a cohesive ool
throughout the room. The flooring
features a diamond pattern with
alternating squares of beige and teal,
adding a touch of color and visual
interest. On the left side, there is a round
white sink mounted on a marble
countertop, which has a sharp, angular
design that complements the
contemporary aesthetic. Below the sink,
there is a white toilet, neatly positioned.
Adjacent to the sink is a bathtub, which
is built into the wall. It has a sleek,
rectangular shape and features
decorative tiles along its edge, giving it
an elegant touch. Above the bathtub,
there is a faucet, and the space is well-lt,
likely by natural light coming from the
windows positioned near the ceiling. In
the corner, a potted plant adds a hint of
greenery, enhancing the bathroom's
fresh and inviting atmosphere. On the
floor, there are several white bath mats,
providing comfort and warmth
underfoot. To the right, there's  yellow
cabinet with a textured surface, offering
storage space and contributing a pop of
color to the otherwise muted palette.
Additionally, a small basket with flowers
is placed on top of the cabinet, adding a
decorative element to the overall decor.
The overall ambiance of the bathroom is
serene and well-organized, making it a
relaxing space.
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The bathroom has a modern and
stylish design.

The walls are covered with large,
gray-green tiles.

The flooring features a diamond
pattern with alternating squares of
beige and teal.

There is a round white sink mounted
on a marble countertop.

The marble countertop has a sharp,
angular design.

Below the sink, there is a white toilet.
Adjacent to the sink is a bathtub built
into the wall.

The bathtub has a sleek, rectangular

Decorative tiles are featured along
the edge of the bathtub.

. There is a faucet above the bathtub.
. The space is well-it, likely by natural

light from windows near the ceiling.

. Apotted plant i placed in the corer

of the bathroom.

. The potted plant adds a hint of

greenery to the space.

. There are several white bath mats on

the floor.
The bath mats provide comfort and
warmth underfoot.

. To the right, there is a yellow cabinet

with a textured surface.

. The yellow cabinet offers storage

space.
. The yellow cabinet contributes a pop

of color to the bathroom.

. A small basket with flowers is placed

on top of the cabinet.

. The basket adds a decorative

element to the overall decor.

. The overall ambiance of the

bathroom is serene and well-
organized.

. The bathroom is a relaxing space.

The bathroom has a modern and stylish
design, with decorative tiles featured
along the edge of the bathtub and a
potted plant placed in the corner.

(Claim 1,9, 12)

The bathroom has a modern and stylish
design, with walls covered in large, gray-
green tiles and flooring featuring a
diamond pattern with alternating
squares of beige and teal. A round white
sink is mounted on a marble countertop,
which has a sharp, angular design. Below
the sink is a white toilet, and adjacent to
the sinkis a sleek, rectangular bathtub
built into the wall, with decorative tiles
featured along its edge. A faucet is
placed above the bathtub. A potted plant
is placed in the corner of the bathroom,
while several white bath mats on the
floor provide comfort and warmth
underfoot. The yellow cabinet
contributes a pop of color, and the
basket adds a decorative element to the
overall decor. The overall ambiance is
serene, well-organized, and relaxing.

(Claim1,2,3,4,5,6,7,8,9,10,12, 14,
15, 18, 20, 21, 22)

The bathroom has a modern and stylish
design, with large gray-green tiles
covering the walls and a diamond-
patterned floor featuring alternating
squares of beige and teal. A round white
sinkis mounted on a marble countertop
with a sharp, angular design, positioned
above a white toilet. Adjacent to the sink
is a sleek, rectangular bathtub built into
the wall, accented with decorative tiles
along its edge and topped with a faucet.
The space is well-it, likely from natural
light filtering through windows near the
ceiling, enhancing its serene and relaxing
ambiance. A potted plant in the corer
adds a hint of greenery, while several
white bath mats provide comfort and
warmth underfoot. To the right, a
textured yellow cabinet adds a pop of
color and offers storage space, topped
with a small basket of flowers for a
decorative touch. The overall
atmosphere is serene, well-organized,
and inviting.

(Claim1, 2, 3,4, 5,6,7,8 9,10,11,
12,13, 14, 15, 16,17, 18, 19, 20, 21, 22)
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Figure 26: Examples of responses on the scene understanding task.



Image [LY] Initial Response Claims Final Response Final Response Final Response
(@=0.1,1=0) (@=0.2,1=1) (@=031=2)
LLaVA-Med The chest X-ray shows bilateral 1. The chest X-ray shows bilateral [Abstained] The chest X-ray shows bilateral The chest X-ray shows bilateral
infiltrates, which are abnormal infilrates infiltrates. infilrates.
substances or collections of cells that 2. Bilateral infiltrates are abnormal
have entered the lung tissue. These substances or collections of cels that (Claim 1) (Claim 1)
infiltrates can be caused by various have entered the lung tissue.
factors, such as infections, inflammation, 3. These infiltrates can be caused by
or other lung conditions. various factors, such as infections,
inflammation, or other lung
conditions.

CyT2DistilGPT2 in comparison with the study of there is 1. There is little change in the study [Abstained] There is no evidence of acute There is no evidence of acute
little change and no evidence of acute results cardiopulmonary disease or pleural cardiopulmonary disease, the cardiac
cardiopulmonary disease. cardiac 2. There s no evidence of acute effusion. silhouette is at the upper limits of
silhouette is at the upper limits of cardiopulmonary disease. normal in size, and there is no pleural
normal in size. no vascular congestion 3. The cardiac silhouette is at the upper (Claim2, 5) effusion.
pleural effusion or acute focal limits of normal in size.
pneumonia. 4. There is no vascular congestion (Claim2,3,5)

5. There s no pleural effusion.
6. There is no acute focal pneumonia.
MATRA-2 The heart size s top normal. The hilar 1. The heart size is top normal. There is no evidence of focal There is no evidence of focal The lungs are clear, with no evidence of
and mediastinal contours are normal. 2. The hilar contours are normal. consolidations concerning for consolidations concerning for focal consolidations concerning for
The lungs are clear without evidence of 3. The mediastinal contours are normal.  pneumonia. pneumonia, and there is no pleural pneumonia or pleural effusion.
focal consolidations concerning for 4. The lungs are clear effusion.
pneumonia. There is no pleural effusion 5. There is no evidence of focal (Claims) (Claim4,5,6)
or pneumothorax. The visualized osseous consolidations concerning for (Claim’s, 6)
structures are unremarkable. pneumonia.
6. There s no pleural effusion.
7. There is no pneumothorax.
8. The visualized osseous structures are
unremarkable.
Figure 27: Examples of responses on the medical report generation task.
Final Response Final Response Final Response
Image wim Initial Response Claims (@s01900) @m02001) (@n03902)
LLaVA-NeXT The image displays a tax invoice from a 1. The image displays a tax invoice. [Abstained] The invoice is dated "15/10/2017". The image displays a tax invoice dated
company named "Gardenia Bakery (KL) 2. The invoice i from a company 15/10/2017.
Sdn Bnd" with a reference number named "Gardenia Bakery (KL) Sdn (Claim 4)
"139986 X". The invoice is addressed to a Bhd" (Claim 1,4)
customer named "Makassar Fresh 3. The invoice is addressed to a
Market SON BHD" and is dated customer named “Makassar Fresh
"15/10/2017". The invoice i for a Market SDN BHD".
purchase made at a location in Selangor, 4. The invoice is dated "15/10/2017".
Malaysia. 5. The invoice lists several items with
The invoice lsts several items with their their respective quantities, unit
respective quantities, unit prices, and prices, and total prices.
total prices. The items include "0.C. 6. The items include "0.C. White",
White", "Wholemeal “Wholemeal”, "0.C. Jumbo", and "CR-
“CR-chocolate". The total amount due chocolate.
for the purchase is 23.56 Malaysian 7. The total amount due for the
Ringgit. purchase is 23.56 Malaysian Ringgit.
The invoice also includes a note stating 8. The invoice includes a note stating
that the customer is required to make that the customer i required to
necessary adjustments to the invoice make necessary adjustments to the
based on the actual quantity received. invoice based on the actual quantity
received.
R The image you've shared is 2 tax invoice 1 The image is a tax invoice from @ The invoice number is 7015F710. The invoice number is 7015F710 and the ~ The invoice is printed in black and white
vision- from a gardenia bakery. The invoice is gardenia bakery. total amount due is 23.56. and has the number 7015710, The total
instruct printed in black and white, with the text 5 the invoice is printed in black and (Claim's) amount due is 23.56.
clearly legible. The bakery's contact white, (Claims, )
information is prominently displayed at 3. The bakery's contact information is (Claim 2, 5,7)
the top of the page. The invoice is prominently displayed at the top of
addressed to a customer named Rizwan, the page
located in Jaya, Selangor. The invoice 4. The ewolce Is addressed toa
number is 7015F710, and it was issued customer named Rizwan, located in
on the 15th of October, 2017. The total Jaya, Selangor
amount due is 23.56. The invoice details 5 T Tvoice number is 7015F710.
the items purchased, their quantities, 6. The invoice was issued on the 15th of
and their prices. It also includes the total October, 2017,
cost of the supplies and the total payable 7. Ty total amount due is 23.56.
amount. The invoice is signed by the 5 The involce details the ftems
bakery's representative, E&E purchased, their quantities, and their
prices.
9. Italso includes the total cost of the
supplies and the total payable
amount.
10. The invoice is signed by the bakery's

representative, E&E.

Figure 28: Examples of responses on the document understanding task.
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