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Abstract
Multimodal Sentiment Analysis (MSA) is the
task of understanding human emotions by ana-
lyzing a combination of different data sources,
such as text, audio, and visual inputs. Al-
though recent advances have improved emo-
tion modeling across modalities, existing meth-
ods still struggle with two fundamental chal-
lenges: balancing global and fine-grained senti-
ment contributions, and over-reliance on the
text modality. To address these issues, we
propose DPDF-LQ (Dual-Path Dynamic Fu-
sion with Learnable Query), an architecture
that processes inputs through two complemen-
tary paths: global and local. The global path
is responsible for establishing cross-modal de-
pendencies, while the local path captures fine-
grained representations. Additionally, we intro-
duce the key module Dynamic Global Learn-
able Query Attention (DGLQA) in the global
path, which dynamically allocates weights to
each modality to capture their relevant features
and learn global representations. Extensive
experiments on the CMU-MOSI and CMU-
MOSEI benchmarks demonstrate that DPDF-
LQ achieves state-of-the-art performance, par-
ticularly in fine-grained sentiment prediction
by effectively combining global and local fea-
tures. Our code will be released at https:
//github.com/ZhouMiaoGX/DPDF-LQ.

1 Introduction

Multimodal sentiment analysis (MSA) has emerged
as a critical research area aimed at comprehensively
understanding human emotions by analyzing data
from multiple modalities—primarily text, audio,
and visual information (Poria et al., 2020). Unlike
traditional text-based sentiment analysis, MSA cap-
tures the rich tapestry of human emotional expres-
sion through facial expressions, vocal intonations,
and linguistic content, offering a more holistic view
of sentiment (Yuan et al., 2021; Gandhi et al., 2023;
Wu et al., 2025).
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Figure 1: Illustration of Our Objective: Pink Boxes De-
note Global Sentiment, Purple Boxes and Text Indicate
Local Sentiment.

Recent advances in deep learning have driven
MSA research along two primary directions: repre-
sentation learning-centered methods (Zhang et al.,
2023; Yang et al., 2023; Wang et al., 2025) and
multimodal fusion-centered methods (Zadeh et al.,
2017; Tsai et al., 2019; Wu et al., 2025). Represen-
tation learning-centered methods focus on extract-
ing meaningful features to create unified global rep-
resentations, utilizing modality-specific encoders
to capture global semantics across modalities. In
contrast, multimodal fusion-centered methods pri-
oritize designing integration mechanisms that effec-
tively combine local information from each modal-
ity, capturing fine-grained details that enhance task-
specific performance.

Despite significant progress, current MSA meth-
ods still face issues such as the inability to properly
balance global and fine-grained sentiment contribu-
tions, and over-reliance on the language modality.
Methods like ALMT (Zhang et al., 2023) primarily
capture global sentiment, whereas DEVA (Wu et al.,
2025) emphasizes local representations. As shown
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in Figure 1, ULMD (Zhu et al., 2025) attempts to
combine global and local features but struggles to
effectively integrate them. Additionally, models
like DLF (Wang et al., 2025) overemphasize text
features, neglecting audio and visual information,
limiting their use of non-verbal emotional cues.

To address these challenges, we propose DPDF-
LQ (Dual-Path Dynamic Fusion with Learnable
Query). Inspired by human emotion perception,
which combines holistic impressions with detailed
assessments, our framework introduces two com-
plementary parallel processing paths: (1) the global
path, which uses Dynamic Global Learnable Query
Attention (DGLQA) to model cross-modal depen-
dencies through a learnable query token. (2) the
local path, which uses cross-modal transformers
with concatenated audio-visual features as queries
to capture fine-grained interactions. These rep-
resentations are adaptively integrated through a
dynamic gating fusion module that balances their
contributions from the global and local paths. Fur-
thermore, the DGLQA module, introduced in the
global path, plays a pivotal role in learning global
representations by dynamically allocating weights
to each modality and effectively integrating them
to capture global features.

Our contributions are summarized as follows:

• We propose a novel multimodal sentiment
analysis method, Dual-Path Dynamic Fusion
with Learnable Query (DPDF-LQ), which en-
hances cross-modal and feature fusion, show-
ing strong performance in fine-grained senti-
ment prediction. Specifically, the global path
captures cross-modal semantic dependencies
via modality-joint attention, while the local
path focuses on fine-grained information. Ul-
timately, a dynamic gating mechanism coordi-
nates cross-path feature complementarity.

• We design a Dynamic Global Learnable Query
Attention (DGLQA) layer that achieves joint
semantic fusion of video, audio, and text
through dynamic weight allocation. It adap-
tively balances multimodal contributions in
the global path, which is responsible for learn-
ing global representations.

• We validate our approach through comprehen-
sive experiments on two benchmark datasets,
showing that DPDF-LQ consistently outper-
forms strong baselines across both benchmark
datasets.

2 Related Work

In this section, we review previous work on mul-
timodal sentiment analysis from two perspectives:
representation learning-centered methods and mul-
timodal fusion-centered methods.

2.1 Representation Learning-Centered
Methods

Representation learning-centered methods focus
on extracting meaningful features to create uni-
fied global representations. By using modality-
specific encoders, they capture global semantics
across modalities, facilitating more comprehensive
sentiment analysis. Yang et al., 2022 presents FD-
MER, which strategically decomposes multimodal
information into modality-invariant and modality-
specific representations through dedicated common
and private encoders. Zhang et al., 2023 uses lan-
guage modality to guide the representation learning
of other modalities, laying the a hierarchical frame-
work where linguistic features serve as anchors
for cross-modal alignment. Yang et al., 2023 in-
troduces a contrastive learning framework called
ConFEDE that decomposes features into modality-
specific and shared components, enabling more
effective cross-modal integration while preserving
unique modality characteristics. Moreover, Wang
et al., 2025 employs disentanglement techniques to
separate sentiment-relevant from irrelevant infor-
mation in multimodal representations, addressing a
key limitation in previous approaches by explicitly
modeling and filtering modality-specific noise.

2.2 Multimodal Fusion-Centered Methods

Multimodal fusion-centered methods focus on com-
bining local information from multiple modali-
ties. These approaches capture complementary
signals and inter-modal dynamics, improving senti-
ment analysis by emphasizing fine-grained details
within each modality. Early methods such as Zadeh
et al., 2017 employed outer product to capture com-
plex inter-modal interactions, establishing funda-
mental approaches for combining heterogeneous
data sources. More sophisticated techniques subse-
quently emerged, including Tsai et al., 2019, which
introduced cross-modal attention mechanisms for
unaligned sequences, enabling more dynamic inte-
gration of temporal information across modalities.
Building upon these foundations, Wu et al., 2025
enhances fusion by translating visual-audio con-
tent into textual descriptions, creating a unified
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Figure 2: The architecture of our proposed DPDF-LQ for multimodal sentiment analysis. The framework processes
inputs through two parallel paths: (1) a global path using Dynamic Global Learnable Query Attention (DGLQA) to
capture cross-modal dependencies, and (2) a local path extracting fine-grained features using cross-attention. These
complementary representations are adaptively integrated by a dynamic gating module for final sentiment prediction.

representation space that facilitates more coherent
integration of multimodal cues. These advance-
ments in fusion strategies complement representa-
tion learning approaches by providing frameworks
to effectively combine the learned features for im-
proved sentiment analysis performance.

In addition, some researchers have adopted hy-
brid approaches that combine elements of both
representation learning and fusion, such as Zhu
et al., 2025, which integrates label generation with
decomposition techniques to leverage advantages
from both methodological categories. However, ex-
isting hybrid approaches often lack a mechanism
to dynamically balance global and local contribu-
tions. In contrast, DPDF-LQ introduces a dynamic
gating mechanism that adaptively balances both
global and local contributions, thereby enhancing
the overall robustness and stability of the model.

3 Methodology

3.1 Overview
The overall workflow of our proposed Dual-Path
Dynamic Fusion Network with Learnable Query
(DPDF-LQ) for multimodal sentiment analysis is
shown in Figure 2. DPDF-LQ projects inputs into
a unified space through parallel paths. The global
path processes the first token from each modality
through a DGLQA encoder to capture cross-modal
dependencies, then refines them via text-guided

cross-attention. The local path extracts fine-grained
features using cross-attention with audio-video fea-
tures as queries. A dynamic gating module in-
tegrates these complementary representations for
sentiment prediction.

3.2 Multimodal Input Representation
Our model processes three modalities: text (t),
video (v), and audio (a). We use pre-extracted fea-
ture sequences for each modality. For any modality
m ∈ {t, v, a}, the feature Xm ∈ Rlm×dm comes
from corresponding pre-processing tools: BERT
(Devlin et al., 2019) for text, OpenFace (Tadas
et al., 2018) for video, and Librosa (McFee et al.,
2015) for audio. Here, lm and dm represent se-
quence length and feature dimension, respectively.

3.3 Global Path
The global path captures holistic multimodal senti-
ment representation through hierarchical attention-
driven feature extraction, integrating all modalities
within a structured attention framework, enabling
modeling of cross-modal dependencies.

3.3.1 Modality-Specific Projection Layers
We first project heterogeneous features into a com-
mon semantic space:

Xm = FC (Xm) ∈ Rlm×dm ,m ∈ {v, a, t} (1)

Hm = Trans (Xm) ∈ Rlm×dm (2)
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where Trans denotes the Transformer layer and FC
represents a linear operation.

We use Transformer layers with global tokens,
placing a learnable token at the beginning of each
sequence to capture global information, similar to
the approach used in the Vision Transformer (ViT)
architecture (Dosovitskiy et al., 2021). From the
projected sequence, we extract these tokens:

hm = Hm[0, :] ∈ Rlt×d (3)

where hm encapsulates the holistic information of
each modality, and lt is the standardized sequence
length (8 in our implementation).

3.3.2 Dynamic Global Learnable Query
Attention

After obtaining modality-specific representations,
we propose a Dynamic Global Learnable Query
Attention (DGLQA) encoder consisting of: (1) a
DGLQA mechanism that adaptively attends to fea-
tures from different modalities, and (2) a Channel
Attention Block that enhances important feature
channels.

To enable multi-level attention, we pass text fea-
tures ht through a text encoder with n− 1 layers:

hit = TextEncoderi−1

(
hi−1
t

)
, i ∈ (1, n− 1) (4)

where hit is the i-th layer output. We mark the
original feature ht as h0t , and concatenate these
into ht−list =

(
h0t , h

1
t , ..., h

n−1
t

)
.

Figure 3 shows the DGLQA encoder workflow.
It uses a learnable query LQ ∈ Rlt×d as an in-
teraction hub, where LQ0 is randomly initialized.
In each layer, query LQi−1 updates by interact-
ing with all modalities and is enhanced through
channel attention.

DGLQA concatenates features from all modali-
ties:

Con = Concat
(
hi−1
t , ha, hv

)
∈ Rlt×3d (5)

We compute queries, keys, and values:

Qc = WQ
c · LQi−1 ∈ Rnh×lt×dh (6)

Kc = WK
c · Con ∈ R3×nh×lt×dh (7)

Vc = W V
c · Con ∈ R3×nh×lt×dh (8)

where dh is the dimension of each attention head,
and nh is the number of attention heads.

Keys and values are reshaped to separate modal-
ities m ∈ {t, a, v}:

Km ∈ Rnh×lt×dh , Vm ∈ Rnh×lt×dh (9)

We compute attention maps and outputs for each
modality:

Attnm = Softmax
(
Qc ·KT

m√
dh

)
(10)

Outm = Attnm · Vm ∈ Rnh×lt×dh (11)

A dynamic gating mechanism weights the con-
tribution of each modality:

Mean = Mean (Con)∈ R3d (12)

Gate = Softmax (Wg ·Mean)∈ R3 (13)

The function Mean here is used to calculate the
arithmetic mean value of the elements within the
input.

The gate values are applied to the attention out-
puts:

Fused =
∑

m∈{t,a,v}
Gate[m] ·Outm (14)

The updated query is obtained through:

LQi = LQi−1 + FC (Fused) (15)

Channel Attention enhances important feature
dimensions:

z =
1

lt

lt∑

j=1

LQi[j, :] ∈ Rd (16)

11370



s = σ (W2 (GELU (W1 (z)))) (17)

LQ′
i = LQi ⊙ s (18)

where W1 ∈ Rd×d/r, W2 ∈ Rd/r×d, r is the reduc-
tion ratio (typically 4), and ⊙ represents channel-
wise multiplication.

The final updated query uses a residual connec-
tion:

LQi = LQ′
i + LQi ∈ Rlt×d (19)

3.3.3 Cross-Attention and Feature Refinement
After obtaining the enhanced query representations
through the DGLQA encoder, we apply a series
of refinement operations to further improve the
feature representation before final prediction.

To capture fine-grained local patterns within the
feature space, we first apply a depthwise convolu-
tion to the learnable query:

LQ′ = DepthwiseConv (LQn) (20)

where the depthwise convolution uses a kernel size
of 3, followed by GELU activation and batch nor-
malization. This operation is computationally effi-
cient while enhancing the local receptive field of
each feature channel.

Next, to integrate global semantic information
from text, we use the refined learnable query as
the source and the highest-level text features as the
target in a cross-attention mechanism. This cross-
attention mechanism is detailed in Zhang et al.,
2023, which references the work of Tsai et al.,
2019 :

f = CrossAttn
(
LQ′, hn−1

t

)
[0, :] (21)

Where hn−1
t is the output from the final layer of the

text encoder, and we extract the first token (CLS
token) as the global representation.

To dynamically balance contributions from the
learnable query and text features, and suppress po-
tential redundancy, we introduce an adaptive gating
mechanism:

Gin = Concat
(
LQ′, hn−1

t , f
)

(22)

G = σ (FC (Gin)) (23)

LQ′′ = G⊙ LQ′ + (1−G)⊙ hn−1
t (24)

This gating mechanism adaptively adjusts the bal-
ance between the learnable query and text features.

Finally, we use cross-attention once again to ex-
tract the global features.

fglobal = CrossAttn(LQ′′, hn−1
t )[0, :] (25)

This completes the global path, which produces
fglobal ∈ Rd, a comprehensive representation that
captures complex cross-modal interactions. This
feature will later be combined with local feature
to produce the final sentiment prediction, allowing
global semantics and fine-grained details to com-
plement each other.

3.4 Local Path
While the global path captures cross-modal depen-
dencies, the local path focuses on preserving emo-
tional local details and extracting fine-grained fea-
tures. This complementary design ensures that fine-
grained audio-visual cues, which may be underrep-
resented in text, are effectively captured, enabling
the model to balance global context and local pre-
cision.

3.4.1 Modality-Specific Projections
Similar to the global path, we project each modal-
ity’s features into a common feature space. For
visual features, we first apply spatial attention us-
ing convolutional operations to enhance spatial pat-
terns:

Xv = SpatialAttention (Xv) (26)

SpatialAttention uses depthwise separable convolu-
tions to capture local visual dependencies.

We then project all modalities into a unified rep-
resentation space:

Xm = FC (Xm) ∈ Rlm×dm ,m ∈ {v, a, t} (27)

Hm = Trans (Xm) ∈ Rlm×dm (28)

Unlike the global path, where only the first to-
ken (CLS token) is processed for each modality,
the local path processes the entire sequence of pro-
jected features, preserving the complete temporal
and sequential information from each modality.

3.4.2 Cross-Modal Transformer Fusion
The key characteristic of the local path is its use
of cross-attention with audio and visual features as
queries:

Cona+v = Concat (Ha, Hv) (29)

flocal = CrossAttn (Ht, Cona+v) [0, :] (30)

Here, the text features serve as the source and the
concatenated audio-visual features as targets, allow-
ing the text to guide the integration of fine-grained
local cues while preserving complementary infor-
mation from audio and visual modalities.
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By extracting the first token of the output, we
obtain a local feature flocal ∈ Rd that preserves fine-
grained features and local details while allowing
for cross-modal interactions.

3.5 Dynamic Gate Fusion and Prediction
After obtaining the global representation fglobal ∈
Rd from the global path and the local representa-
tion flocal ∈ Rd from the local path, we employ
a dynamic gate fusion mechanism to adaptively
integrate these complementary features. We first
concatenate these representations:

Z = Concat
(
fglobal, flocal

)
∈ R2d (31)

The dynamic fusion gate is then computed
through a nonlinear transformation:

Z ′ = GELU (FC (Z)) (32)

FG = Softmax
(
FC

(
Z ′)) ∈ R2 (33)

This adaptive gate mechanism dynamically adjusts
the weight of each path based on the specific input
sample.

The fused representation comes into being via a
weighted sum calculation:

ffused = FG[0] · fglobal + FG[1] · flocal (34)

The final sentiment prediction is generated by:

ŷ = FC(ffused) ∈ R1 (35)

In practice, we use 8-head attention in all trans-
former components to model the relationships be-
tween modalities. The dynamic gate adaptively
balances global and local features, suppressing re-
dundant signals while emphasizing complementary
information, allowing the model to focus on the
most informative aspects for each input.

3.6 Overall Learning Objectives
Our model is trained using a straightforward mean
squared error loss function for sentiment regres-
sion:

L =
1

N

N∑

n=1

||yn − ŷn||22 (36)

where N represents the batch size, yn is the ground
truth sentiment score, and ŷn is our model’s predic-
tion.

Our simple optimization objective makes DPDF-
LQ easy to train compared to methods with multi-
ple optimization goals, without requiring extensive
hyperparameter tuning.

4 Experiments

4.1 Datasets

We evaluate our approach on two widely used
benchmark datasets for multimodal sentiment anal-
ysis: MOSI and MOSEI.

MOSI. The CMU Multimodal Opinion Senti-
ment Intensity (MOSI) dataset (Zadeh et al., 2016)
contains 2,199 short video segments extracted from
93 YouTube movie review videos involving 89
speakers. Each segment is annotated with senti-
ment scores ranging from -3 (strongly negative)
to 3 (strongly positive). Following standard prac-
tice, we use the official split with 1,284 segments
for training, 229 segments for validation, and 686
segments for testing. The dataset provides aligned
multimodal features across language, visual, and
acoustic modalities.

MOSEI. The CMU Multimodal Opinion Sen-
timent and Emotion Intensity (MOSEI) dataset
(Bagher Zadeh et al., 2018) is a larger-scale bench-
mark containing 23,453 video segments from 1,000
YouTube speakers (57% male, 43% female) dis-
cussing various topics. The dataset features greater
diversity in terms of speakers, topics, and record-
ing conditions (including variations in illumina-
tion, head poses, and occlusions). Each segment
is labeled with sentiment scores from -3 (strongly
negative) to 3 (strongly positive). We follow the
standard data split of 16,326 segments for training,
1,871 for validation, and 4,659 for testing.

4.2 Evaluation Metrics

Following established practices in multimodal sen-
timent analysis (Yu et al., 2020, 2021; Zhang et al.,
2023), we evaluate our approach using multiple
metrics to provide a comprehensive assessment of
performance. For classification tasks, we report
binary classification accuracy (Acc-2), F1 score,
five-class accuracy (Acc-5), and seven-class accu-
racy (Acc-7). For regression tasks, we report Mean
Absolute Error (MAE) and Correlation (Corr). Fur-
thermore, Acc-2 and F1 are reported under two set-
tings: negative/non-negative (including zero) and
negative/positive (excluding zero) (Hazarika et al.,
2020). For all metrics except MAE, higher values
indicate better performance.

4.3 Baselines

To rigorously evaluate the effectiveness of our
DPDF-LQ framework, we conduct extensive ex-
periments under the same settings on a range of
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Model
MOSI MOSEI

Acc-2 F1 Acc-5 Acc-7 MAE↓ Corr Acc-2 F1 Acc-5 Acc-7 MAE↓ Corr
LMF† 77.9/79.18 77.8/79.15 38.13 33.82 0.95 0.651 80.54/83.48 80.94/83.36 52.99 51.79 0.576 0.717
MFN† 77.67/78.87 77.63/78.90 40.47 35.83 0.927 0.67 78.94/82.86 79.55/82.85 52.76 51.34 0.573 0.718
MuIT† 79.71/80.98 79.63/80.95 42.68 36.91 0.88 0.702 81.15/84.63 81.56/84.52 54.18 52.84 0.559 0.733
MISA† 81.84/83.54 81.82/83.58 47.08 41.37 0.777 0.778 80.67/84.67 81.12/84.66 53.63 52.05 0.558 0.752
Self-MM† 83.44/85.46 83.36/85.43 53.47 46.67 0.708 0.796 83.76/85.15 83.82/84.9 55.53 53.87 0.531 0.765
TETFN† 83.24/85.37 83.13/85.33 53.64 45.77 0.708 0.798 84.12/86.21 84.35/86.11 55.78 53.9 0.537 0.767
ConFEDE* 84.4/85.82 84.36/85.82 52.62 46.27 0.741 0.783 82.83/85.53 83.09/85.38 54.86 53.06 0.538 0.771
ALMT* 83.38/85.82 83.17/85.7 53.25 46.79 0.725 0.787 83.28/85.44 82.87/85.25 53.25 53.04 0.543 0.765
ULMD* 83.09/85.82 82.88/85.71 54.23 47.81 0.7 0.799 82.59/85.75 83/85.71 55.31 53.81 0.531 0.771
DEVA 84.4/86.29 84.48/86.3 51.78 46.32 0.730 0.787 83.26/86.13 82.93/86.21 55.32 52.26 0.541 0.769
DLF –/85.06 –/85.04 52.33 47.08 0.731 0.781 –/85.42 –/85.27 55.7 53.9 0.536 0.764
DPDF-LQ 84.11/86.59 83.88/86.45 54.81 48.54 0.682 0.803 83/86.21 83.36/86.14 55.93 54.07 0.529 0.774

Table 1: Performance comparison on MOSI and MOSEI datasets. The best results are highlighted in bold; † denotes
results obtained from Mao et al., 2022; * indicates our reproduced results; unmarked results are directly cited from
original papers. – denotes that the metric was not reported in the original work.

state-of-the-art approaches, such as LMF (Liu et al.,
2018), MFN (Zadeh et al., 2018), MuIT (Tsai et al.,
2019), MISA (Hazarika et al., 2020), Self-MM (Yu
et al., 2021), TETFN (Wang et al., 2023), Con-
FEDE (Yang et al., 2023), ALMT (Zhang et al.,
2023), ULMD (Zhu et al., 2025), DEVA (Wu et al.,
2025), and DLF (Wang et al., 2025).

4.4 Comparison of Results

Table 1 compares our DPDF-LQ with state-of-the-
art methods on the MOSI and MOSEI datasets.

On MOSI, DPDF-LQ achieves SOTA perfor-
mance in fine-grained metrics: Acc-7 (48.54%,
representing a +1.46% improvement over DLF),
MAE (0.682), and Corr (0.803), while maintain-
ing competitive binary accuracy (86.59%). The
improvements in Acc-5 (54.81%) and F1 score
(86.45%) further validate our approach’s effective-
ness in capturing nuanced sentiment expressions.

On MOSEI, DPDF-LQ achieves superior per-
formance across most key metrics: Acc-7 reaches
54.07% (+0.17% over the previous best), MAE is
0.529, and Corr is 0.774. It also achieves com-
petitive F1 (86.14%) and strong Acc-5 (55.93%),
highlighting its strength in modeling sentiment in-
tensity at a fine-grained level.

The dual-path architecture consistently outper-
forms single-path baselines (e.g., +2.27% Acc-7
over ConFEDE) by capturing both local nuances
and global context. While some baselines perform
well on binary classification, DPDF-LQ excels in
fine-grained sentiment analysis and is vital for ap-
plications that model sentiment intensity in detail.

4.5 Ablation Study

Table 2 presents our ablation studies on the MOSI
and MOSEI benchmarks, evaluating the impact
of different modalities, components, and attention
mechanisms to validate the key innovations in our
proposed DPDF-LQ framework for multimodal
sentiment analysis.

4.5.1 Effect of Modalities
We first examine the contribution of each modal-
ity (T: text, A: audio, V: visual) by systematically
removing them from the multimodal input. Re-
sults show that while removing visual (w/o V) or
audio (w/o A) modalities results in only minor per-
formance degradation (less than 1%), removing
text (w/o T) leads to substantial performance drops
(over 32% in accuracy), confirming text as the dom-
inant modality for sentiment analysis.

4.5.2 Effect of Components
Next, we evaluate the impact of key components:
Local Path (LPath), Global Path (GPath), Gate
Mechanism, and Dynamic Global Learnable Query
Attention (DGLQA). Removing any component
causes performance drops, with GPath removal be-
ing most impactful on MOSI (5.10% drop) and
LPath removal on MOSEI (3.78% drop). These
results validate our dual-path architecture design
and fusion mechanism.

4.5.3 Attention Mechanism Variants
We further investigate alternative attention mech-
anisms: (1) Cross-Attention (CA): our specific
flow design outperforms alternatives; (2) LPath
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Method
MOSI MOSEI

Acc-5 MAE↓ Acc-7 MAE↓
DPDF-LQ 54.81 0.682 54.07 0.529

Effect of Modalities
w/o V 54.63 0.684 53.34 0.534
w/o A 54.61 0.685 53.77 0.531
w/o T 22.35 1.406 26.72 0.945
w/o A&V 54.55 0.686 53.21 0.537
w/o T&V 23.18 1.406 26.36 0.944
w/o T&A 21.14 1.408 28.80 0.920

Effect of Components
w/o LPath 52.92 0.718 50.29 0.560
w/o GPath 49.71 0.746 51.77 0.542
w/o Gate 53.21 0.702 53.60 0.532
w/o DGLQA 51.17 0.724 53.12 0.539

Attention Mechanism Variants
w/o GPath CA 53.17 0.707 53.29 0.542
LPath CA↔GPath CA 48.10 0.752 51.77 0.547
DGLQA→Std.A 31.78 0.844 49.24 0.574
DGLQA→AHL 52.33 0.730 50.57 0.558

Table 2: Results of ablation studies on MOSI and MO-
SEI. Metrics (Acc-5, Acc-7, and MAE) are reported for
different ablations.

CA↔GPath CA: swapping attention flows between
paths significantly decreases performance; (3) Stan-
dard Attention (Std.A): replacing DGLQA with
standard attention leads to a substantial perfor-
mance drops (23.03% on MOSI); (4) Adaptive
Hyper-modality Learning (AHL) (Zhang et al.,
2023): although better than standard attention, it
still lags behind our DGLQA.

These findings demonstrate the effectiveness and
necessity of our DGLQA design.

4.5.4 Complexity Analysis
Our model contains 224.88M parameters and re-
quires 8.70G FLOPs for a single forward pass, with
an average inference time of 1.53ms per sample on
an NVIDIA 3090 GPU. Although our model has a
comparatively large parameter count, each of the
two paths can operate independently.

4.6 Further Analysis

4.6.1 Dual-Path Attention
In Figure 4, we present the average cross-attention
matrices from our dual-path model on the MOSEI
dataset. The global path tends to focus on posi-
tions conveying overarching semantic information,
while the local path prefers positions with rich fine-
grained audio-visual details.

These complementary patterns are further sup-
ported by our ablation findings in Table 2: remov-

Figure 4: Visualization of average cross-attention
weights on the MOSEI dataset. The left shows the
global attention matrix, and the right shows the local at-
tention matrix. Color intensity denotes attention weight
(darker colors indicate higher values).

Figure 5: Fine-grained evaluation on MOSI. HN: Highly
Negative; N: Negative; WN:Weakly Negative; WP:
Weak Positive; P: Positive; HP: Highly Positive.

ing the local path (w/o LPath) reduces Acc7 on
MOSEI from 54.07% to 50.29%, whereas remov-
ing the global path (w/o GPath) decreases it to
51.77%. Overall, the visualization and ablation
results indicate that the dual-path design effectively
captures complementary global and fine-grained
local information.

4.6.2 Fine-Grained Prediction
As shown in Figure 5, our model shows signifi-
cant advances in fine-grained sentiment analysis,
achieving strong performance on moderate senti-
ment classes ("WN": 90%, "N": 86%), while strug-
gling with extreme sentiments ("HN": 8%, "HP":
14%). The high correlation (r=0.803) between pre-
dicted and ground-truth distributions confirms its
ability to capture sentiment nuances, though further
work is needed to better handle intensity extremes.

4.6.3 Multi-run Reliability
To ensure the robustness and statistical reliability
of our proposed DPDF-LQ framework, we con-
ducted five independent runs with different random
seeds, repeating the training and evaluation process.
Figure 6 shows the comparison of DPDF-LQ and
ALMT across key metrics on the CMU-MOSI and
CMU-MOSEI datasets. Each bar represents the
average over five runs, with error bars indicating
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Figure 6: Multi-run performance on MOSI and MOSEI.
Bars show the mean over five runs; error bars indicate
standard deviation.

the standard deviation.
The results show that DPDF-LQ consistently

outperforms ALMT across most metrics with low
variance, indicating stable performance likely at-
tributable to the dual-path design and Dynamic
Global Learnable Query Attention.

5 Conclusion

We propose DPDF-LQ, a dual-path framework
for multimodal sentiment analysis that integrates
global understanding and fine-grained local infor-
mation through Dynamic Global Learnable Query
Attention (DGLQA) and adaptive fusion. Exten-
sive experiments on the CMU-MOSI and CMU-
MOSEI benchmarks show that DPDF-LQ achieves
state-of-the-art performance, particularly in fine-
grained sentiment prediction. Ablation studies vali-
date the contribution of each component, and our
method addresses key challenges in multimodal
fusion. Overall, this work advances sentiment anal-
ysis by combining comprehensive global under-
standing with precise local feature extraction.

Limitations

Our model struggles with extreme sentiment predic-
tions and requires careful hyperparameter tuning.
The dual-path design is relatively complex, limit-
ing deployment in resource-constrained settings. It
has not been extensively tested on real-world data
with diverse linguistic and cultural expressions.

Ethical Considerations

This work enhances multimodal sentiment analysis
and may benefit fields like education, but raises
privacy and ethical risks in behavioral monitoring.
Users should follow regulations, obtain consent,
and ensure oversight in high-stakes scenarios.
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A Appendix

A.1 Hyperparameter Settings
Table 3 presents the optimal hyperparameter con-
figurations for our DPDF-LQ model on both MOSI
and MOSEI datasets. Most hyperparameters re-
main identical across both datasets.

Parameter MOSI MOSEI
Learnable query length 8 8
Learnable query dimension 128 128
DGLQA depth 3 3
GPath CA depth 2 4
LPath CA depth 2 2
Hidden dimension 256 256
Learning rate 1e− 4 1e− 4

Weight decay 1e− 4 1e− 4

Batch size 64 64

Table 3: Optimal hyperparameters for DPDF-LQ

A.2 Impact of Hyperparameters
Figure 7 illustrates the effect of component depth
on model’s performance. For DGLQA, a depth of
3 provides the best trade-off, yielding the highest
correlation (0.803) while maintaining a robust Acc-
5 of 54.81%. For GPath CA, a depth of 2 yields the
optimal results across both datasets, with deeper
settings showing diminishing returns. GPath depth
2 is critical for MOSI, whereas MOSEI is less sen-
sitive to this parameter.
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Figure 7: Impact of Model Depth on Performance

A.3 About Gate Weight
Our dynamic gate mechanism shows different
weighting patterns between datasets. MOSI bal-
ances path contributions (Global: 0.435±0.161, Lo-
cal: 0.565±0.161), with high variance for sample-
specific adaptation. MOSEI favors local features
more (Global: 0.316±0.062, Local: 0.684±0.062),
with lower variance.

A.4 Impact of Larger Language Models
We further evaluate the influence of stronger lan-
guage models by replacing BERT-base with BERT-
large under identical experimental settings. This
allows us to isolate the effect of increased language
model capacity on the DPDF-LQ framework. Ta-
ble 4 presents the results in vertical format for both
the MOSI and MOSEI datasets.

Metric DPDF-LQ (B) DPDF-LQ (L)

MOSI

Acc-2 84.11 / 86.59 86.15 / 88.26
F1 83.88 / 86.45 86.12 / 88.25
Acc-5 54.81 54.96
Acc-7 48.54 48.63
MAE 0.682 0.638
Corr 0.803 0.838

MOSEI

Acc-2 83 / 86.21 83.37 / 86.65
F1 83.36 / 86.14 83.77 / 86.63
Acc-5 55.93 56.66
Acc-7 54.07 54.88
MAE 0.529 0.517
Corr 0.774 0.789

Table 4: Performance of DPDF-LQ with BERT-base
(B) and BERT-large (L) on MOSI and MOSEI. Bold
numbers indicate better metric.

Using BERT-large reduces MAE and slightly
improves Acc-2 and Acc-7 on MOSI and MOSEI,
reflecting more accurate regression performance
and finer-grained sentiment modeling. In the exper-
iments, some hyperparameters differed between the
two setups, but the results show that our model can
effectively leverage the larger language model. To
maintain fair comparison with baselines and com-
putational efficiency, we still report experimental
results using BERT-base.
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