LATTE: Learning to Think with Vision Specialists

Zixian Ma'?*, Jianguo Zhang?, Zhiwei Liu?, Jieyu Zhang!, Juntao Tan?, Manli Shu?,
Juan Carlos Niebles?, Shelby Heinecke?, Huan Wang?, Caiming Xiong?,
Ranjay Krishna'!, Silvio Savarese?

'University of Washington, 2Salesforce Research

Website: https://latte-web.github.io
Code: https://github.com/SalesforceAIResearch/LATTE

Abstract

While open-source vision-language models per-
form well on simple question-answering, they
still struggle with complex questions that re-
quire both perceptual and reasoning capabili-
ties. We propose LATTE, a family of vision-
language models that have LeArned to Think
wiTh vision spEcialists. By offloading percep-
tion to state-of-the-art vision models, our ap-
proach enables vision-language models to fo-
cus solely on reasoning over high-quality per-
ceptual information. To train LATTE, we syn-
thesize and filter a large dataset of 273K multi-
modal reasoning traces over perceptual outputs
of vision specialists. LATTE trained on this
data achieves significant 4-5% gains over base-
lines across 6 benchmarks covering both per-
ception and reasoning abilities. Ablation stud-
ies reveal that the effectiveness of multi-modal
reasoning traces depends on the data sources,
formats, and quality of thoughts.

1 Introduction

The landscape of real-world vision-language tasks
is vast, spanning from basic visual question answer-
ing (Antol et al., 2015), fine-grained object recog-
nition to complex multi-step geometric reason-
ing (Hu et al., 2024a). These tasks demand both per-
ception and reasoning. For instance, a user might
photograph a gas price panel and ask how much
fuel they can afford within a given budget (Fig-
ure 1). Solving this requires a model with strong
perception—Ilocalizing prices via OCR—and multi-
step reasoning to compute the answer. While pro-
prietary models like GPT-40 excel due to extensive
data and model size scaling, smaller open-source
models still struggle (Ma et al., 2024).

To narrow the gap between large proprietary
models and smaller open-source counterparts
within a reasonable budget, researchers have ex-
plored distilling perception and reasoning from

“Work done while interning at Salesforce Research

larger vision-language models (Shao et al., 2024;
Xu et al., 2025) or specialized vision models (Hu
et al., 2024b). Despite these efforts, open-source
models continue to lag behind.

We argue that the primary reason for this lag is
the perception limitations of small vision-language
models. While open-source language models have
largely caught up with their proprietary counter-
parts (Lambert et al., 2024; Bi et al., 2024), vision-
language models have yet to master heterogeneous
vision capabilities. The computer vision commu-
nity has historically tackled these capabilities sepa-
rately—e.g., DepthAnything (Yang et al., 2024)
for depth estimation and GroundingDINO (Liu
et al., 2023d) for object recognition—while uni-
fied models still lag behind (Lu et al., 2024a).
Similarly, the human brain dedicates distinct re-
gions to categorical recognition (ventral stream)
and spatial reasoning (dorsal stream) (Goodale and
Milner, 1992), with the reasoning and language-
processing frontal and temporal lobes occupying a
different volume (Keller et al., 2012). By contrast,
vision-language models remain heavily skewed to-
ward language, treating visual encoders as an af-
terthought (Deitke et al., 2024).

We depart from the learning to perceive and
reason paradigm to propose a new approach: learn-
ing to reason with vision specialists (Figure 2).
Rather than expecting a small model to master both
perception and reasoning, we leverage decades of
advancements in computer vision by relying on
specialized vision models to provide perceptual in-
formation. This allows the vision-language model
to focus exclusively on acquiring perceptual infor-
mation from vision specialists and reasoning over
them—enabling it to ‘see further by standing on the
shoulders of giants.” Such a paradigm reduces the
burden on models to extract low-level perceptual
signals, allowing them to concentrate on higher-
level reasoning.

To implement this paradigm, we curate high-

11204

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 11204-11241
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://latte-web.github.io
https://github.com/SalesforceAIResearch/LATTE

Gasoline Self Serve ||

Q: How many gallons of supreme gasoline can
1 get with $50?
A:13.7

Mantis-LLaVA-7B: 3.6
LLaVA-OV: 5.2 0

to: | need to extract the price of supreme gasoline from the image.
ao.: OCR(image-0)

t: The price of supreme gasoline is $3.65 per gallon...| need to
divide $50 by $3.65.
an: Calculate(“50 / 3.65")

t:: The boy's height is below the bookshelf,
indicating he cannot reach the highest book.
a:: Terminate(“B”)

t2: The calculation shows that you can get approximately 13.7
gallons of supreme gasoline with $50.
a: Terminate(“13.7")

Q: Can the boy reach the highest book?
(A) Yes, (B) No
A: (B)

Mantis-LLaVA: (A)
LLaVA-OV: A. The boy can reach the book. 0

to: To determine if the boy can reach the highest book, | need to analyze the image for
the boy's height and the height of the bookshelf.

ao: LocalizeObjects(image-0, ['boy", "bookshelf"])

Figure 1: Example outputs of LATTE vs. SoTA open-source multi-modal language models. Our LATTE
model is able to answer challenging visual questions by reasoning over perceptual information output by vision
specialists. It does so by generating a reasoning trace over vision specialists’ outputs and producing a final answer.

quality training data in the form of multi-step rea-
soning traces that integrate perceptual information
from vision specialists. We formulate the multi-
step reasoning traces as LATTE-trace, where each
step consists of: (1) a thought for verbalized rea-
soning; (2) an action to retrieve perceptual infor-
mation from a specific vision specialist; and (3)
an observation of the returned data. Since obtain-
ing these traces at scale with human annotators
is costly, we develop two data engines for syn-
thetic data generation. First, we leverage GPT-
40’s strong multimodal reasoning and state-of-the-
art vision specialists’ precise perception to gener-
ate large-scale synthetic reasoning traces across
diverse image sources. Second, we generate rea-
soning traces using Python programs and struc-
tured reasoning templates, comparing them against
GPT-generated traces to evaluate reasoning qual-
ity. In total, we produce over 1M reasoning traces
across 31 datasets with GPT-40 and handcrafted
programs. We then further apply filtering and mix-
ing techniques and perform extensive experiments
with different data ablations.

With the filtered 293K multi-modal reasoning
traces, we finetune small 7-8B vision-language
models to reason with vision specialists and evalu-
ate our models on 6 benchmarks covering both per-
ception and reasoning skills. We highlight four ma-
jor takeaways from our experiments: First, learning
to reason with vision specialists enables our model
to outperform vanilla instruction-tuned baseline by
significant margins on both perception and reason-
ing benchmarks, with an overall average gain of

6.4%. By contrast, the other distillation methods
lead to smaller gains or even degradation in the
perception performance. Second, our method con-
sistently outperforms the vanilla instruction-tuned
baseline by 4 — 5% on average across all bench-
marks regardless of model backbones, with stag-
gering performance gains of 10 — 20% on MM Vet.
Third, through data ablations, we confirm that the
quality of LATTE-trace matters more than quantity:
our best data recipe consists of only 293K LATTE-
trace which GPT-40 generated and answered cor-
rectly, and it leads to larger performance gains
than other data recipes of larger scales. Finally,
programmatically-generated LATTE-trace can hurt
model performance as a result of the worse reason-
ing quality, suggesting that again that high-quality
reasoning is crucial to the model’s performance.

To summarize, we highlight three contributions:
(1) We introduce a novel and the largest dataset
of 293K multi-modal reasoning traces that cover
31 diverse data sources and include both single-
and multi-image questions as well as image-text
interleaved traces; (2) We demonstrate the effec-
tiveness of our multi-modal reasoning data and
showcase sizable performance gains over baselines
on 6 benchmarks through extensive experiments;
(3) Finally, our ablation studies reveal new insights
into what matters in multi-modal reasoning data.
We will release all artifacts publicly.

2 Related work

We contextualize our work on multi-modal lan-
guage models and multi-modal tool use.

11205

LATTE: Learning to Think with Vision Specialists -~

% LATTE-trace |}~

Q@
MLM

&

Synthetic LATTE-trace Generation

e

‘ L;ali-z’e %\ o@@
: 5
v O e

Vision Specialists

=38

Training with LATTE-traces Inference

Figure 2: Overview. We propose LATTE: learning vision-language models to think with vision specialists via

synthetic multi-modal reasoning traces.

Multi-modal language models. Recently, there
have been many advances on open-source multi-
modal models (Awadalla et al., 2023; Chen et al.,
2023; Liu et al., 2023b,a, 2024; Dai et al., 2024,
Liet al., 2022, 2023b; Deitke et al., 2024). These
efforts include training multi-modal models to take
in multiple images, engage in multi-turn conver-
sations, and even understand videos (Liu et al.,
2024; Jiang et al., 2024; Li et al., 2024). For ex-
ample, LLaVA-Next achieves strong multi-image
understanding through large-scale interleaved vi-
sual instruction tuning with M4-Instruct (Liu et al.,
2024). Similarly, Mantis introduces a new large-
scale multi-image instruction tuning dataset Mantis-
Instruct for multi-image training (Jiang et al., 2024).
These efforts pave the foundation for our work on
learning vision-language models with image-text
interleaved reasoning traces.

Multi-modal tool-use. Recently, there is growing
interest in training multi-modal language models
to be better at tool use (Liu et al., 2023c¢; Qi et al.,
2024; Shao et al., 2024). LLaVa-Plus first shows
the possibility of training a multi-modal model to
use vision specialists (Liu et al., 2023c). Visual
Program Distillation distills tool-use and reasoning
abilities into a multi-modal model with chain-of-
thought (CoT) data obtained from programs (Hu
et al., 2024b). Similarly, Visual CoT introduces a
new synthetic CoT dataset for training multi-modal
models for enhanced reasoning (Shao et al., 2024).
More recently, LLaVa-CoT integrates both percep-
tion and reasoning from GPT-40 (Xu et al., 2025).
Another closely related work CogCoM identifies 6
useful manipulations and trains multi-modal mod-
els with synthetic chain-of-manipulation (CoM)
data (Qi et al., 2024). Nonetheless, the manipula-
tions are limited, and the authors only experiment
with 70K CoM data.

Although these works demonstrate effectiveness,
the proposed reasoning datasets are limited in scale
and diversity, and none contains multi-image ques-
tions or includes images in the reasoning chains
(Appendix A Table 9). To complement existing
works, we introduce a new large-scale dataset of
293K multi-modal interleaved reasoning traces that
cover 31 data sources and include both single-
image and multi-image questions.

3 LATTE: Learning to Think with Vision
Specialists

Our goal is to train vision-language models to rea-
son about complex multi-modal tasks with the help
of vision specialists. To train such models, we need
reasoning traces that involve (1) invoking vision
specialists and (2) reasoning over their outputs. We
refer to such data as LATTE-trace. We define a
LATTE-trace 7 as a sequence of steps .5;, where
each step consists of thought ¢;, action a; and ob-
servation o;:

T = (S0, 51, .., Sn) = (Si)iy
S; = (ti,ai,oi),ti € L,a; € A

ey
(@)

where L represents language space, and A is the
action space consisting of vision specialists. The
model only generates ¢; and a;, which the training
loss is applied on, whereas o; is obtained from the
vision specialists.
Action space. The action space A of our model
consists of vision tools that are either specialized vi-
sion models or image processing tools. Concretely,
these include OCR (JadedAl, 2025), GETOBJECTS
(Zhang et al., 2023), LOCALIZEOBIJECTS (Liu
et al., 2023d), ESTIMATEOBJECTDEPTH, ESTI-
MATEREGIONDEPTH (Yang et al., 2024), DE-
TECTFACES (Li et al., 2019), CROP, ZOOMIN,

11206

to: | need to first identify the motorcyclist wearing

a yellow suit.

wearing a yellow suit”)

t:: Then, | can extract the

a: OCR(image-1)
Q: What is the number on the

motorcycle of the motorcyclist

wearing a yellow suit? @
A:16 <A)

az: Terminate(“16”)

closer to the camera?
A. {objl.name} B. {obj2.name}
A:B

« name: oo: depth: {obj1.depth}

« depth: t:: Then, | need to estimate the depth of {obj2.name}.
obj2: ai: EstimateObjectDepth(image-0, {obj2.name})

« name: g o1 depth: {obj2.depth}

« depth: ®

t2: I've gather enough information to answer... ____

a.: Terminate(“B”)

ao: LocalizeObjects(image-0, “motorcyclist

numbers on the motorcycles.

Q: Between {obj1.name} and {obj2.name}, which is

= S S to: | need to first get the depth of {objl.name}.
obj1: a0: EstimateObjectDepth(image-0, {objl.name})

to: There are two motorcyclists in yellowish suits,
but one is more neon-green than yellow. The other
motorcyclist has number 16 on their motorcycle.
ao: Terminate("16”)

t2: The motorcyclist wearing a yellow suit is the
middle one with 16 on the motorcycle.

to: After inspecting the image closely, | can
% conclude that the answer is 16.
ao: Terminate(“16”)

Q: Between the
and the , Which is closer to the camera?

|_ 2; B &

to: | need to first get the depth of the
ao: EstimateObjectDepth(image-0,)
0o: depth:

t:: Then, | need to estimate the depth of the
a:: EstimateObjectDepth(image-0,
o:: depth:

t2: I've gather enough information to answer...
az: Terminate(“B”) %

Figure 3: Data generation. We illustrate our model-based data generation (top) and programmatic generation

(bottom) pipelines.

GETIMAGETOTEXTSSIMILARITY, GETIMAGE-
TOIMAGESSIMILARITY, GETTEXTTOIMAGES-
SIMILARITY (Radford et al., 2021). Inspired by
prior works (Hu et al., 2024a; Gupta and Kem-
bhavi, 2022; Ma et al., 2024), we include a few
additional tools to help with reasoning: QUERY-
LANGUAGEMODEL, QUERYKNOWLEDGEBASE,
CALCULATE, and SOLVEMATHEQUATION. We
also include TERMINATE as a tool for the model to
output a final answer in the same format. See the
Appendix D for all tools’ implementation details.

3.1 LATTE-trace generation

We generate synthetic LATTE-trace data with two
automatic approaches: Model-based generation
and Programmatic data generation.

Model-based generation. This pipeline consists
of three steps (Figure 3 top):

1. GENERATE. First, we leverage images and
QA examples in existing visual instruction tun-
ing datasets and generate L ATTE-traces to solve
the questions with GPT-40 (2024-08-06). We in-
clude diverse questions on both single-image and
multi-image examples from two large-scale in-
struction tuning datasets, Cauldron and Mantis-
Instruct (Jiang et al., 2024; Laurengon et al., 2024).
We feed the images and questions to GPT-4o0 and
prompt it to answer the questions by following
a LATTE-trace or just CoT when it is not nec-

essary (e.g. , the question is straightforward) or
not helpful (e. g. , the question requires domain-
specific knowledge) to call specialized vision tools
(Figure 3). We adopt ReAct-style prompting with
JSON-format for calling the vision specialists and
provide detailed instructions and examples in the
prompt (Yao et al., 2023). All prompts are in the
Appendix C.

2. VERIFY. Second, we verify GPT-40’s gen-
erated answers against the ground-truth. We force
GPT-40 to always end with TERMINATE(answer)
and compare its prediction to the ground-truth. If
the final answer is correct, we move this LATTE-
trace to the next stage. Otherwise, we convert this
example into the direct answer (Direct) format with
the ground-truth (Figure 3).

3. PARSE. Finally, we check the JSON syntax
of each step of the LATTE-trace. Similar to the
previous stage, we again keep the LATTE-traces
free of errors and turn the others into the Direct
format with ground-truth answers.

Programmatic data generation. In addition to
distilling reasoning from proprietary models, we
implement a programmatic data generation engine
for synthesizing LATTE-traces (Figure 3 bottom)
and experiment with these data. This pipeline in-
volves two steps:

1.ANNOTATE. First, we gather existing dense
annotations of images. We adopt Visual Genome

11207

50 Distribution of LATTE-traces vs. CoTs in GPT4-generated Data across All Data Sources

.70
60
V5o
S a0
@ 30
O 20

10

Data source

Original > Final format
mmm | ATTE-pos - LATTE
CoT-pos - CoT
= | ATTE-neg - Direct
CoT-neg - Direct

&
& Data source
&

LATTE-useful
LATTE-useless

Figure 4: Distribution of data formats and sources. We visualize the frequency of data formats (i.e. LATTE-
pos/neg, and CoT-pos/neg, pos = correct final answers, neg = incorrect) in the original GPT-4-generated data and in
our training data (i.e. LATTE-trace, CoT, or Direct) across all data sources. We also highlight the LATTE-useless
(i.e. % of CoT-pos — LATTE-pos > 10 or % of LATTE-neg — LATTE-pos > 10) vs. LATTE-useful datasets.

(VG) as it contains rich human annotations of ob-
jects, attributes, and relationships of the images. In
addition, we obtain depth maps of the VG images
with Depth-Anything-v2 (Yang et al., 2024).

2. GENERATE. Next, we programmatically
generate both the QA pairs and the correspond-
ing LATTE-traces with manually written templates
and dense image annotations. We reuse the pipeline
from (Zhang et al., 2024a,b) to generate QA pairs
that cover various vision capabilities such as count-
ing and spatial understanding (See Appendix E.2
for details). To generate LATTE-traces, we define
templates for thoughts, actions, and observations
across all steps and fill in the templates with the
collected annotations. In particular, we manually
design five thought templates for each action and
randomly sample one during generation. As for
actions, we manually select the specialized vision
tools for each type of questions (e.g. , ESTIMA-
TEOBJECTDEPTH for questions on objects’ rel-
ative depths, and LOCALIZE for object counting
questions, etc.) and compose templates with them.

3.2 Data filtering and mixing

We develop 3 filtering/mixing techniques, where
we vary the distribution of: (1) data formats;
(2) data sources; and (3) model- vs. program-
generated reasoning traces.

Data format. Model-generated data can be cat-
egorized into two formats: LATTE-trace or CoT
examples (Figure 3). Additionally, they are further
grouped into LATTE-trace/CoT-pos and LATTE-
trace/CoT-neg examples where the final answers
are correct and wrong respectively (Figure 4). Note
that we convert both LATTE-trace-neg and CoT-
neg examples into the Direct format with ground-

truth answers (Figure 3) so the final data format is
one of LATTE-trace, CoT, and Direct.

Data source. We also perform filtering based on
data sources as Cauldron and Mantis-Instruct cover
a wide range of tasks, some of which benefit more
from vision specialists than others. To this end, we
define LATTE-useless datasets as the ones where
GPT-4o either decides to output CoT much more
often than LATTE-trace (i.e. % of CoT-pos —
LATTE-trace-pos > 10), or reaches wrong answers
much more frequently than correct ones when using
LATTE-trace (i.e. % LATTE-trace-neg — LATTE-
trace-pos > 10) (Figure 4). The remaining datasets
are considered LATTE-useful datasets.
Program-generated data. As the distribution
of actions in model-generated data is imbalanced,
with a couple of actions such as GETOBJECTS
and OCR dominating the dataset, we also try in-
creasing action diversity by adding programmatic
traces with underrepresented actions such as LO-
CALIZEOBJECTS, and ESTIMATEREGIONDEPTH.

4 Experiments

We perform extensive experiments with small 7-
8B multi-modal models and various data recipes
on 6 benchmarks to study two questions: (1) do
LATTE-traces improve small vision-language mod-
els’ performance on both perception and reasoning
VQASs? (2) what matters in LATTE-traces?

Models. We adopt models with multi-image sup-
port as our reasoning traces include multiple im-
ages. For most experiments, we use Mantis-8B-
SigLIP-LLaMA-3 as the base model. We addition-
ally experiment with Mantis-8B-CLIP-LLaMA-
3, and LLaVA-OneVision-7B (Qwen2-7B and
SigLIP) to showcase our method’s generalizability.

11208

Table 1: LATTE vs. Vanilla IT with Different Models. LATTE leads to performance gains over Vanilla IT
regardless of the base models. The gains are 4-5% on average across all 6 benchmarks and up to 17% on MM Vet.

Language / Vision hStall;tingt Method ‘ Perception ‘ Perception + Reasoning ‘ Overall
checkpotn | CV-Bench BLINK RealWorldQA Avg | MathVista MMStar MMVet Avg | Avg
Vanilla IT | 526 4538 523 502 | 331 36.7 289 329|416
LLaMA3-8B / CLIP
A Mantis LATTE 56.9 49.6 511 526 | 366 408 452 40.8 | 46.7 (+5.1)
Pretrained VanillaIT | 52.3 437 51.8 493 | 311 405 330 349|421
LATTE 572 478 53.7 529 | 349 446 452 416 | 47.2(+5.1
LLaMA3-8B / SigLIP 214 5.1
Mantis Vanilla IT | 50.6 467 54.8 507 | 362 40.7 297 355 43.1
Instruct-tuned LATTE 517 473 56.1 517|389 45.1 500 447 | 482 (+5.1)
y i 56. . 57. . .) 393 43,)
Qwen2. 7B /Siglip LLAV&OV VanillaIT 6.8 503 7.8 550 | 424 50.1 93 439|495
Stage 1.5 LATTE 60.2 52.6 61.1 580 | 469 50.8 509 512 | 53.8 (+4.3)

Table 2: LATTE vs. Distillation Baselines. LATTE brings substantial gains over the Vanilla IT baseline on
both perception and perception + reasoning benchmarks, whereas VPD and LLaVa-CoT result in smaller gains.
LLaVa-CoT even suffers from performance drop in perception tasks. All models were trained with 98K data.

Method ‘ Perception ‘ Perception + Reasoning ‘ Overall

| BLINK CV-Bench RealWorldQA Avg | MathVista MMStar MMVet Avg | Avg
Vanilla IT | 44.1 49.2 414 449 31.0 397 278 328 38.9
VPD 41.6 48.8 448 451(+02) | 33.0 411 328 357 (+2.8) | 404 (+1.5)
LLaVa-CoT | 422 404 38.0 40247 | 367 446 402 40.5(+7.7) | 404 (+1.5)
LATTE 46.4 54.0 42.0 475(+26) | 369 442 479 43.0(+102) | 452 (+6.4)

Baselines. We compare LATTE to three types
of baselines: (1) vanilla instruction-tuning (IT):
instruction-tuning with only direct answers; (2) dis-
tillation methods that distill both perception and
reasoning from larger models into smaller mod-
els, including VPD (Hu et al., 2024b)1, LLaVa-
CoT (Xu et al., 2025), and VisCoT (Shao et al.,
2024)%; For fair comparison, we train our mod-
els and baselines with the same base model, the
same hyperparameters, and the same number of
examples; (3) multi-modal agents that use tools at
inference time, including LLaVa-Plus (Liu et al.,
2023c) and CogCoM (Qi et al., 2024).

Training details. We finetune models starting from
checkpoints at different stages — pretrained and in-
struction tuned for Mantis-8B-SigL.IP-LLaMA-3,
and stage 1.5 for LLaVA-OneVision-7B — to inves-
tigate if and where LATTE-traces bring gains. We
adopt the hyperparameters from (Liu et al., 2024;
Jiang et al., 2024) and fine-tune both the language
model and the projector with learning rate = le —5
for 1 epoch with either NVIDIA A100s 40GB or
H100s 80GB. We additionally perform hyperpa-
rameter tuning with LLaVA-OneVision-7B and in-
clude this result in the Appendix F.

'As VPD is close-sourced, we reproduce their data by
converting LATTE-traces into CoTs in VPD’s format.

2Since VisCoT only has reasoning steps for one data source
GQA, training with its data leads to much worse performance.
We include its results in the Appendix B.3.

Evaluation setup. We select 6 VQA bench-
marks covering both perception and reasoning.
The perception-focused benchmarks include Re-
alWorldQA, CV-Bench and BLINK (Tong et al.,
2024; Schwenk et al., 2022; Fu et al., 2024; Li
et al., 2023a). We also include 3 benchmarks
that additionally test reasoning capabilities: Math-
Vista, MMStar, and MMVet (Lu et al., 2024b;
Chen et al., 2024a; Yu et al., 2024). We adapt
VLMEvalKit (Duan et al., 2024) for our evaluation,
where an LLM judge (i.e. GPT-4-turbo) is used
to score predictions between 0 and 1 compared
to the groundtruth short answers for open-ended
questions. Additional details are in Appendix G.

4.1 Do LATTE-traces improve models’
performance on both perception and
reasoning VQAs?

LATTE beats Vanilla IT on average across all
benchmarks regardless of the base model and
checkpoint, with significant gains of up to 17 %
on MMVet. We fine-tune 3 different multi-modal
models with all 293K LATTE-traces starting from
different checkpoints. We observe that our method
leads to consistent gains of 4-5% in the model’s
average accuracy across 6 benchmarks compared
to the baselines instruction-tuned with the same
examples in the Direct format (Table 1). We note
that our method results in staggering gains of up

11209

55 Perception 55 Perception + Reasoning 55 Overall
L
_50 /. .50 ,.50
3 M] 8 "
545 | 545 545 | o
8 \ / 8 ° 0\ 8 °
® ® —

g4o . Meth‘od ® 400 ® 40|
g —e— Vanilla IT 2 2 e /
I VPD <4 <4 o

35 —e— LlaVa-CoT 35 /0 35

—o— LATTE ° *
30 30 30
100 150 200 250 300 100 150 200 250 300 100 150 200 250 300

Training Data Size (K)

Training Data Size (K)

Training Data Size (K)

Figure 5: LATTE vs. Distillation Baselines across Training Data Scales. LATTE leads to consistent gains on
perception and reasoning benchmarks over the Vanilla instruction-tuned baseline across varying training data sizes —
98K, 200K and 293K — and the gains are larger than VPD’s. LLaVa-CoT only has 98K data.

Vanilla IT vs. LATTE Trained with Different Data Formats and Sizes

Perception

sy
o

N
o

Avg accuracy

Perception + Reasoning

SURRTTRNINNE

Vanilla IT
LATTE

Overall
|

Data formats
LATTE-traces
+ Direct

+ CoT

293K 528K 580K

Training Data Size

815K 293K 528K 580K

Training Data Size

815K 293K 528K 580K

Training Data Size

815K 815K + Direct + CoT

Figure 6: Ablations on Data Formats. 293K LATTE-traces lead to the greatest gains over Vanilla IT and the
highest overall performance. Adding either CoT or Direct doesn’t bring additional gains despite the increased size.

to 17% on MM Vet, which covers a wide range of
perceptual and reasoning capabilities.

LATTE leads to substantial gains over vanilla
instruction-tuning on both perception and rea-
soning benchmarks, whereas distillation base-
lines result in smaller gains or even degradation
on some perception tasks. We find that learning
to reason with vision specialists enables our model
to achieve consistent gains on perception-focused
VQA benchmarks as well as benchmarks that re-
quire both perception and reasoning, with average
gains of 2.6% and 10.2% respectively (Table 2).
By contrast, both distillation baselines VPD and
LLaVa-CoT bring much smaller gains, with an av-
erage of 1.5% across all benchmarks, compared
to ours (6.4%). Further, we observe that the same
trend holds as we scale the training data size from
98K to 200K and 293K, where our method consis-
tently brings larger gains on both perception and
perception + reasoning benchmarks (Figure 5). In-
terestingly, LLaVa-CoT even hurts the model’s per-
formance on perception benchmarks, even though
it increases the performance on the perception +
reasoning benchmarks (Table 2). This result sug-
gests that GPT4-o might still be inferior to vision
specialists on some perception tasks, as LLaVa-
CoT distills purely from GPT4-o.

LATTE scores higher on MathVista and

Table 3: LATTE vs. Multi-modal Agent Baselines.
Training with LATTE-traces leads to much larger gains.

‘ Base model — Finetuned model

Model Data size

‘ MathVista MM Vet
LLaVA-Plus 158K — 32.5 — 35.0 (+2.5)
CogCoM 70K 34.8 —35.7(+0.9) 45.9 — 46.1 (+0.2)
LATTE 98K 327 — 369 (+4.2) 344 — 479 (+13.5)
LATTE 293K 32.7 — 389 (+6.2) 34.4 — 50.0 (+15.6)

MM Vet than multi-modal agent baselines do,
and LATTE-traces bring larger gains to the base
model. We see in Table 3 that LATTE achieves
higher accuracies on MathVista and MM Vet. More-
over, LATTE-traces bring much larger gains to the
base model than LLaVa-Plus and CogCoM’s data
do, despite its comparable size.

4.2 What matters in LATTE-traces?

We perform ablations with LATTE-traces to study
what matters in improving models’ performance.
For model-generated data, we explore two data
filtering techniques on (1) data formats and (2) data
sources (Figure 4).

Data quality matters more than quantity: 293K
LATTE-traces lead to higher performance than
larger mixtures of LATTE-traces and CoT or
Direct. We find that 293K LATTE-traces result in
the biggest gain of 5% on average over the baseline
across all benchmarks (Figure 6). Adding CoT

11210

Table 4: Ablations on data sources. Including all
sources hurts model’s perception and overall perfor-
mance while having only LATTE-useful datasets helps.

Data source Size Method Percept. P. + Reason. Overall

All datasets 815K VanillaIT 50.7 34.7 42.7
LATTE = 47.7(-3.0) 35.1(+04) 414(-1.4)
VanillaIT 46.3 333 39.8

LATTE-useful datasets 566K

LATTE 46.8 (+0.5) 35.6 (+2.3) 412 (+1.4)

examples results in a smaller gain of 2.6%, even
though the training data size almost doubles (Fig-
ure 6). On the other hand, combining LATTE-trace
and Direct examples hurts the model’s performance
compared to LATTE-traces only, especially on the
perception tasks (Figure 6). We empirically ob-
serve that models trained with a mix of LATTE-
traces and Direct examples tend to adopt the Direct
format more often (around 70%) at inference time,
relying on its own weaker perceptual ability instead
of vision specialists’ and thus scoring lower.

Data sources matter too: including all
datasets hurts performance while including only
LATTE-useful datasets brings gains. Similarly,
we see that including only the LATTE-useful
datasets — where GPT-40 frequently chooses to
use vision specialists and reaches correct final an-
swers — improves the model’s average performance
compared to the baseline, while including all data
sources doesn’t (Table 4). Again, we see that a
smaller set of 566K LATTE-traces leads to better
performance than a much larger dataset (815K), im-
plying that data quality matters more than quantity.

Table 5: Ablations on programmatic LATTE-traces.
We find that training with additional programmatic
LATTE-traces doesn’t bring more gains.

M:P Data format Size ‘ MathVista Percept. + Reason. Overall

— Direct 31.1 349 42.0
0:1 P-traces 293K 17.3 15.9 272
1:0 M-traces 349 41.6 47.2
1:0.1 +P-traces 29K 322K 33.9 40.1 44.0
1:0.25 +P-traces 73K 366K 38.3 42.1 46.3
1:0.5 +P-traces 147K 440K 36.7 39.7 455
1:1 +P-traces 293K 586K 31.0 36.2 43.2

Programmatically generated LATTE-traces can
help on a certain benchmark but not overall,
likely due to the worse quality of thoughts. We
experiment with a mixture of model-generated and
programmatic reasoning traces, with ratios ranging
from 1:0.1 to 1:1. We find that training with only
programmatic LATTE-traces results in large perfor-
mance drops (Table 5). Similarly, while adding pro-
grammatic LATTE-traces can bring gains on some
benchmark (e.g. MathVista), it fails to bring over-

all gains despite the increased data size (Table 5).
This is likely due to the model’s worse reasoning
capability learned from templated thoughts. See
more details in Appendix B.2 (Figure 8).

Opverall, our experiments suggest that the quality
of perceptual information and reasoning are both
crucial to improving vision-language models’ per-
formance across diverse VQAs.

4.3 Additional ablations

Table 6: Ablations on LATTE’s inference setup. The
OCR tool greatly affects model’s performance, while the
query LLM tool doesn’t; and increasing the maximum
number of tool calls doesn’t help beyond 10.

Method Percept. P.+ Reason. Overall
LATTE (max 10 calls) 51.7 43.8 47.8
max 5 calls 51.7 42.8 47.2
max 20 calls 51.6 43.6 47.6
no QUERYLM 52.1 43.5 47.8
OCR with easyocr 514 39.9 45.7

What matters in LATTE’s inference setup? In
addition to training data, we also perform ablations
on LATTE’s inference setups, including tool abla-
tions and tool call number ablations.

First, the tool ablations include (1) excluding
the QUERYLANGUAGEMODEL tool, and (2) us-
ing EasyOCR (JadedAl, 2025) instead of GPT for
OCR. We see that removing QUERYLANGUAGE-
MODEL leads to no difference in the model’s over-
all performance (Table 6), suggesting that QUERY-
LANGUAGEMODEL is not an important tool to
the VQA benchmarks in our evaluation. Never-
theless, by using EasyOCR for OCR we do see
a large drop in the model’s performance, espe-
cially on reasoning-intensive benchmarks such as
MM Vet due to EasyOCR’s less accurate outputs
(Table 6). Still, LATTE is over 2% above the
vanilla instruction-tuned baseline on average across
all benchmarks.

Second, as we adopt multi-turn conversations
for all models with our method, we can vary the
number of tool calls at inference time. We set the
maximum number of tool calls to 10 by default and
experiment with 5 and 20 tool calls. Through this
experiment, we see that the model’s scores peak
at 10 maximum tool calls, suggesting that 10 tool
calls are sufficient in most cases (Table 6).

Do LATTE-traces improve stronger base mod-
els? We further ablate on the model backbone,
as new and stronger open-source vision-language
models come out. Our results using the latest

11211

To determine how many people
are sitting on the bed, | need to
analyze the image.

The objects are [‘armchair’,
'balance’, 'couch’, 'game’, 'game
controller!, 'girl', 'person’, 'living
room''man’,
'play’/remote’'scale’/stand’,
'video game', 'Wii', '"Wii controller’,
'woman'].

The observation indicates the
presence of a 'couch' and 'living
room', suggesting that people
might be sitting on the couch.

Q: How many people are
sitting on the bed?
Select from the following
choices.
Options: A. 3,

| will verify this visually.

,C.2,D.0 The final answer is C. o

<SUMMARY> | will analyze the image to
determine the number of people sitting on
the bed by examining the visible details and
context. </SUMMARY>

<REASONING> To determine how many
people are sitting on the bed, | will focus on
the couch in the background. The couch
appears to have two people sitting on it, as

indicated by their positions and the visible A
parts of their bodies. </REASONING>

<CONCLUSION> ¢ </coNcLusion> (€3

to: To determine how many people are
sitting on the bed, | need to analyze
the image.

ao: Localize(image-0, ["person"])

I ! t
o
- I an

<CAPTION> The image shows a person
standing on a balance board in a living room.
In the background, there is a couch with two
people sitting on it. </CAPTION>

4

Figure 7: Qualitative analysis. Example outputs of VPD, LLaVA-CoT vs. LATTE on BLINK.

Table 7: Ablations on LATTE’s model backbone.
LATTE-traces improve stronger base models too.

Model backbone Method Percept. P.+ Reason. Overall
InternVL3-8B VanillaIT = 51.5 45.1 46.7
LATTE 54.1 54.5 52.0
Qwen2.5VL-3B VanillaIT ~ 54.3 49.6 50.8
LATTE 534 55.7 55.1
Qwen2.5VL-7B Vanilla IT 53.7 52.5 52.8
LATTE 56.9 57.7 57.5

vision-language models — Qwen2.5VL and In-
ternVL3 — as the base models demonstrate that our
method improves upon vanilla instruction tuning
even with strong base models (Table 7).

4.4 Error Analysis

Where does LATTE perform better than the
distillation baselines? We find that LATTE per-
forms better in fine-grained perception tasks such
as the counting questions in BLINK, while VPD
and LLaVA-CoT tend to hallucinate and make per-
ceptual errors (Figure 7).

Table 8: LATTE’s Error Types on MM Vet.

Error type Subtype %

Tool call Format 3
Value

Tool result — 7

. Not using tools 6
Model perception
percep Irrelevant tools 50

Model reasoning ~— 28

What errors does LATTE make? On MM Vet,
we find that the model’s most frequent error hap-
pens when it falls back on its own perceptual ability
after deciding not to use tools or finding the vision
tools’ outputs irrelevant/not helpful for the question
(e. g. movie, arts, or medical questions that require
domain knowledge) (Table 8). These numbers sug-
gest that the model’s performance can be improved
by diversifying tools and questions in the training

data, and strengthening reasoning.

5 Conclusion

We propose to learn vision-language models to rea-
son with vision specialists. To learn such models,
we synthesize a novel large-scale dataset of multi-
modal reasoning traces grounded on perceptual
information. With this data, we fine-tune small
vision-language models and perform extensive ex-
periments. Across 6 benchmarks covering both
perception and reasoning, we demonstrate that
our model achieves significant gains over vanilla
instruction-tuned baselines and other distillation
methods in perception and reasoning tasks.

6 Limitations

First, our method requires customized implementa-
tions of the specialized vision tools. Second, rea-
soning with the vision specialists requires addi-
tional compute at inference time. Nevertheless, it
is becoming a common practice to increase model
performance by scaling up test time compute (Ope-
nAl, 2025; Muennighoff et al., 2025). Future work
can optimize and enhance the implementations of
vision specialists, especially as the computer vision
community continues to advance vision models.
Additionally, while we try to include the most im-
portant tools for general perception and reasoning,
other types of VQA e. g. knowledge-intensive ones
might benefit from additional tools as suggested in
our error analysis. Lastly, due to the limited gener-
alization of supervised finetuning and diversity of
the visual world, researchers might need to explore
training alteratives (e. g. reinforcement learning)
for better generalization or train new models with
different vision specialists for other applications
(e.g. web navigation) or for other domains (e. g.
medical question answering).

11212

7 Acknowledgement

Zixian Ma was partially funded by Sony for this
project. Zixian Ma conducted most of this work at
a Salesforce internship.

References

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. Vqa: Visual question answering.
In Proceedings of the IEEE international conference
on computer vision, pages 2425-2433.

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hes-
sel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
Yonatan Bitton, Samir Gadre, Shiori Sagawa, Je-
nia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel
Ilharco, Mitchell Wortsman, and Ludwig Schmidt.
2023. Openflamingo: An open-source framework for
training large autoregressive vision-language models.
Preprint, arXiv:2308.01390.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, and 1 others. 2024. Deepseek llm:
Scaling open-source language models with longter-
mism. arXiv preprint arXiv:2401.02954.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang
Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,
Yu Qiao, Dahua Lin, and 1 others. 2024a. Are we
on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330.

Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao
Xu, and Wanxiang Che. 2024b. M 3 cot: A novel
benchmark for multi-domain multi-step multi-modal
chain-of-thought. arXiv preprint arXiv:2405.16473.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su,
Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo,
Tong Lu, Yu Qiao, and Jifeng Dai. 2023. Internvl:
Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale N Fung, and Steven Hoi.
2024. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Advances
in Neural Information Processing Systems, 36.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini,
and 1 others. 2024. Molmo and pixmo: Open weights
and open data for state-of-the-art multimodal models.
arXiv preprint arXiv:2409.17146.

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu
Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang

Zang, Pan Zhang, Jiaqi Wang, Dahua Lin, and Kai
Chen. 2024. VIimevalkit: An open-source toolkit for
evaluating large multi-modality models. Preprint,
arXiv:2407.11691.

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu
Wang, Xudong Lin, Dan Roth, Noah A Smith, Wei-
Chiu Ma, and Ranjay Krishna. 2024. Blink: Multi-
modal large language models can see but not perceive.
arXiv preprint arXiv:2404.12390.

Melvyn A Goodale and A David Milner. 1992. Separate
visual pathways for perception and action. Trends in
neurosciences, 15(1):20-25.

Tanmay Gupta and Aniruddha Kembhavi. 2022. Vi-
sual programming: Compositional visual reasoning
without training. ArXiv, abs/2211.11559.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Os-
tendorf, Luke Zettlemoyer, Noah A Smith, and Ran-
jay Krishna. 2024a. Visual sketchpad: Sketching as
a visual chain of thought for multimodal language
models. Preprint, arXiv:2406.09403.

Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy
Viswanathan, Kenji Hata, Enming Luo, Ranjay Kr-
ishna, and Ariel Fuxman. 2024b. Visual program
distillation: Distilling tools and programmatic rea-
soning into vision-language models. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9590-9601.

JadedAl. 2025. Easyocr.

Dongfu Jiang, Xuan He, Huaye Zeng, Con Wei, Max
Ku, Qian Liu, and Wenhu Chen. 2024. Mantis: Inter-
leaved multi-image instruction tuning. arXiv preprint
arXiv:2405.01483.

Georg B Keller, Tobias Bonhoeffer, and Mark Hiibener.
2012. Sensorimotor mismatch signals in primary
visual cortex of the behaving mouse. Neuron,
74(5):809-815.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, and 1 others. 2024. T\" ulu 3: Pushing
frontiers in open language model post-training. arXiv
preprint arXiv:2411.15124.

Hugo Laurencon, Léo Tronchon, Matthieu Cord,
and Victor Sanh. 2024. What matters when
building vision-language models? Preprint,
arXiv:2405.02246.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang,
Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. 2024. Llava-
onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui
Wang, Ruimao Zhang, and Ying Shan. 2023a. Seed-
bench-2: Benchmarking multimodal large language
models. arXiv preprint arXiv:2311.17092.

11213

https://arxiv.org/abs/2308.01390
https://arxiv.org/abs/2308.01390
https://arxiv.org/abs/2407.11691
https://arxiv.org/abs/2407.11691
https://arxiv.org/abs/2406.09403
https://arxiv.org/abs/2406.09403
https://arxiv.org/abs/2406.09403
https://github.com/JaidedAI/EasyOCR
https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2405.02246

Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun
Qian, Jian Yang, Chengjie Wang, Jilin Li, and Feiyue
Huang. 2019. Dsfd: Dual shot face detector. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023b. BLIP-2: bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In ICML.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In ICML.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning.

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng
Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang Su,
Jun Zhu, Lei Zhang, Jianfeng Gao, and Chunyuan Li.
2023c. Llava-plus: Learning to use tools for creating
multimodal agents. Preprint, arXiv:2311.05437.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng
Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, and 1 others. 2023d.
Grounding dino: Marrying dino with grounded pre-
training for open-set object detection. arXiv preprint
arXiv:2303.05499.

Jiasen Lu, Christopher Clark, Sangho Lee, Zichen
Zhang, Savya Khosla, Ryan Marten, Derek Hoiem,
and Aniruddha Kembhavi. 2024a. Unified-io 2: Scal-
ing autoregressive multimodal models with vision
language audio and action. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 26439-26455.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei
Chang, Michel Galley, and Jianfeng Gao. 2024b.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In Inter-
national Conference on Learning Representations
(ICLR).

Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta,
and Ranjay Krishna. 2024. m&m’s: A benchmark
to evaluate tool-use for multi-step multi-modal tasks.
EECV 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. Preprint, arXiv:2501.19393.

OpenAl. 2025. Openai 03-mini.

Ji Qi, Ming Ding, Weihan Wang, Yushi Bai, Qingsong
Lv, Wenyi Hong, Bin Xu, Lei Hou, Juanzi Li, Yuxiao
Dong, and Jie Tang. 2024. Cogcom: Train large
vision-language models diving into details through
chain of manipulations. Preprint, arXiv:2402.04236.

Alec Radford, Jong Wook Kim, Chris Hallacy,
A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In ICML.

Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif
Ekbal, and Pushpak Bhattacharyya. 2022. Scienceqa:
A novel resource for question answering on scholarly

articles. International Journal on Digital Libraries,
23(3):289-301.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.
A-okvqa: A benchmark for visual question answering
using world knowledge. Preprint, arXiv:2206.01718.

Hao Shao, Shengju Qian, Han Xiao, Guanglu Song,
Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng
Li. 2024. Visual cot: Unleashing chain-of-thought
reasoning in multi-modal language models. Preprint,
arXiv:2403.16999.

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma,
Yann LeCun, and Saining Xie. 2024. Eyes wide shut?
exploring the visual shortcomings of multimodal 1lms.
Preprint, arXiv:2401.06209.

Penghao Wu and Saining Xie. 2024. V?: Guided visual
search as a core mechanism in multimodal llms. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13084—
13094.

Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao
Sun, and Li Yuan. 2025. Llava-cot: Let vision
language models reason step-by-step. Preprint,
arXiv:2411.10440.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao,
Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao.
2024. Depth anything v2. arXiv:2406.09414.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2024. Mm-vet: Evaluating large multimodal
models for integrated capabilities. In International
conference on machine learning. PMLR.

Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel,
Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali Farhadi,
Aniruddha Kembhavi, and Ranjay Krishna. 2024a.
Task me anything. arXiv preprint arXiv:2406.11775.

11214

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2311.05437
https://arxiv.org/abs/2311.05437
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://openai.com/index/openai-o3-mini/
https://arxiv.org/abs/2402.04236
https://arxiv.org/abs/2402.04236
https://arxiv.org/abs/2402.04236
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2403.16999
https://arxiv.org/abs/2403.16999
https://arxiv.org/abs/2401.06209
https://arxiv.org/abs/2401.06209
https://arxiv.org/abs/2411.10440
https://arxiv.org/abs/2411.10440
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

Jieyu Zhang, Le Xue, Linxin Song, Jun Wang, Weikai
Huang, Manli Shu, An Yan, Zixian Ma, Juan Carlos
Niebles, Silvio Savarese, Caiming Xiong, Zeyuan
Chen, Ranjay Krishna, and Ran Xu. 2024b. Provi-
sion: Programmatically scaling vision-centric instruc-
tion data for multimodal language models. Preprint.

Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li,
Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin, Tong
Luo, Yaqgian Li, Shilong Liu, and 1 others. 2023.
Recognize anything: A strong image tagging model.
arXiv preprint arXiv:2306.03514.

11215

A Dataset and model comparison

We summarize the differences between our work
and the other multi-modal CoT datasets includ-
ing ScienceQA, M3COT, Visual CoT, VPD, V*,
LLaVa-Plus, LLaVA-CoT, CogCoM in Table 9.

B Additional results

B.1 Additional qualitative examples

We present additional successful outputs of
LATTE across both single-image and multi-image
examples in Figures 10 and 11 as well as failure
cases in Figure 12.

B.2 Qualitative error analysis

Why does adding programmatic LATTE-trace
help on MathVista but hurt MMVet perfor-
mance? We observe that adding programmatic
LATTE-trace can result in up to 3% gain on Math-
Vista and 9% drop on MMVet. Upon analysis,
we discover that programmatic LATTE-trace im-
proves the general VQA split in MathVista the
most by almost 9%. This is because LOCALIZE is
helpful for these questions, and our programmatic
data includes many LOCALIZE instances that al-
low LATTE to learn to use it effectively (Figure 8).
Conversely, programmatic data hurts LATTE’s per-
formance on MM Vet most likely due to the model’s
worse reasoning ability as a result of the simple and
rigid thoughts generated with templates in our pro-
grammatic data (Figure 8).

B.3 Additional quantitative results

We report additional quantitative results of data ab-
lations on Mantis-CLIP in Table 14, where we see
the same trends we observe with Mantis-SigLIP:
the smallest dataset of 293K LATTE-trace exam-
ples leads to the highest absolute performance
and gain compared to other datasets with a mix
of LATTE-trace, CoT, and/or Direct examples at
larger scales.

Visual-CoT Performance. We experimentally
compare LATTE to Visual-CoT. We finetune
Mantis-LLaVA-Pretrained (LLama3+SigLIP) with
Visual CoT and compare its performance with
LATTE (Table 10). We use 413K examples where
the bounding boxes are valid and within the image.
We find that the models trained with Visual CoT
data achieve an average accuracy of 39.3% (much
lower as Visual COT’s data are mostly Text/Doc
images and contain only bboxes without natural
language thoughts) on the benchmarks.

Performance gain with LATTE inference. We
compare the model’s performance when trained
with a random mix of 293K LATTE-traces and
Direct data (1:1) and tested with LATTE format vs.
Direct prompt. We find that the model achieves an
average of 50.3% when tested following LATTE
format vs. 48% with the Direct prompt (Table 11),
suggesting that reasoning with vision specialists at
inference time improves model’s performance.
Hyperparameter tuning Additional gains can
be achieved by tuning the vision encoder, train-
ing with a smaller learning rate or for more
epochs. Last but not least, our hyperparameter tun-
ing experiments with LLaVa-OV-Stagel.5 suggest
that we can further improve the model’s absolute
performance by tuning the vision encoder, train-
ing with a smaller learning rate and/or for longer
epochs (Figure 9).

C Model-based data generation

C.1 Generation prompt

We present the full data generation prompt used in
our model-based data generation pipeline in List-
ing 2.

C.2 Dataset statistics

We present a table with detailed statistics of the
LATTE-trace 293K dataset in Table 15.

D Action implementation

Our Python implementation of all actions can be
found in Listing 1.

E Programmatic data generation

E.1 QA and action templates

We present the question-answer and corresponding
action templates used in our programatic data gen-
eration in Table 16. We design 16 different question
templates for both single-image and multi-image
examples that cover 5 capabilities: attribute recog-
nition, counting, 2D and 3D spatial understanding,
and multi-image understanding.

E.2 Thought templates

We also present the five thought templates in List-
ing 3 we define for each action, where one of them
is randomly sampled and used during generation.

11216

Table 9: Dataset and model comparison.

| Dataset | Model
Paper Training set size Data Tool number Multi- Multi- Inference- Multi-
source image modal time tool- image
number questions reasoning | use support
chain*
Science QA (Saikh | 12.6K 1 X X X X X
et al., 2022)
M3CoT (Chenetal., | 7.8K 2 X X X X X
2024b)
VPD (Hu et al.,| 90K 6 6 X X X X
2024b)
LLaVA-CoT (Xu | 100K 10 X X X X X
et al., 2025)
V#* (Wu and Xie,| 206K 3 1 X X X
2024)
LLaVA-Plus (Liu | 158K 6 12 (or 19 counting X X X
et al., 2023c¢) compositional ones)
VisualCoT (Shao | 98K (+340K with 12 2 X X
et al., 2024) bboxes but no
thoughts)
CogCoM (Qi et al.,| 70K 3 6 X X
2024)
LATTE 293K (+over IM 31 15 tools (see Sec-
program gener- tion 2)
ated reasoning
traces)

*The reasoning chain contains not just texts but also images.

Table 10: VisCoT results Table 12: Additional training hyperparameters for
Mantis-SigLIP and Mantis-CLIP.

Method A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg

T S B B oD B oM D B Name Value
bf16 TRUE
tf32 True

Table 11: LATTE vs. Direct inference per_device_train_batch_size 1

Test prompt A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg I:)er—(leViCe—e\/al—batCl'l—SIZe 1

Duea 819 g 312 a1 w1 30 63 o2 o gradient_accumulation_steps 16
weight_decay 0
warmup_ratio 0.03
Ir_scheduler_type cosine
lora_enabled FALSE

E.3 Example action distribution glora_enabled FALSE
max_seq_len 8192

We plot example distributions of all actions before
and after adding programmatic LATTE-trace 73K
data in Figure 13.

F Additional training details

We report additional training hyperparameters for
Mantis models and LLaVA-OV in Table 12 and 13
respectively.

11217

MathVista LATTE trained with M-traces

+ P-traces

and small green metallic cars, | need to
analyze the image.
a0: GetObjects(image-0)

‘floor!, 'lego’, 'miniature’, 'motorbike’,
‘motorcycle’, 'toy', 'toy car']

/

Q: Is the number of dirtbikes
less than the number of

i ? .
small green metallic cars? image to count them.

to: To determine the number of dirtbikes

0o: ['ambulance’, 'bicycle’, 'bus', 'car', 'table’,

t:: The observation doesn't clearly specify
the number of dirtbikes and small green
metallic cars. | need to visually inspect the

to: To determine the answer, | need to identify the number of
dirtbikes and small green metallic cars in the image.

ao: Localize(image-0, ["dirtbike", "small green metallic car"])

oo: [{'label': 'dirtbike’, 'bbox": [0.53, 0.2, 0.72, 0.47], 'score': 0.66},
{'label": 'dirtbike-2', 'bbox": [0.41, 0.24, 0.47, 0.36], 'score": 0.44},
{'label': 'dirtbike-3', 'bbox": [0.52, 0.45, 0.67, 0.6], 'score': 0.5},
{'label': 'small green metallic car’, 'bbox": [0.5, 0.25, 0.56, 0.34],
'score': 0.61}]

t:: There are three dirtbikes and one small green metallic car.
Therefore, the number of dirtbikes is not less than the number

|
|
I
1
1
I
I
|
I
I
1
I
I
I
|
1 of small green metallic cars.
I

1

A. Yes; B. No ar: Terminate("A”) 9 ar: Terminate('2") v
MMVet

| to! | need to extract the text from the image to find the last equation.
48+a=50 (15+a=17 ! a0: OCR(image-0)

1 00t The texts in the image are: 1.5+ a =7.10.34 +y = 39

1 '
10+a=12 |34+y=39 | t: The last equation is '34 +y = 39" To find |t The last equation in the image is 34 +y = 39.

i the value of y, I need to solve this equation.: Therefore, y is 39.
Q: What is y in the last | au Calculate(“39 - 34”) o | a: Terminate("39") 0
equation? A: 5 1oon 5 !

Figure 8: Qualitative analysis. Examples of LATTE success and failure after adding programmatic LATTE-traces.

Avg. Accuracy Change Compared to Default Hyperparams
(LR=1e-5, Tune vision=No, Epoch=1)
LR=5e-5

LR=5e-6

Tune vision

Hyperparam change

Tune vision,
2 Epochs

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0
Delta in Avg. Accuracy (%)

Figure 9: Hyperparameter ablations. Additional gains
can be achieved with a smaller learning rate for the
language model, tuning the vision encoder, and training
for more epochs.

Table 13: Additional training hyperparameters for
LLaVA-OV.

Name Value

bf16 TRUE

tf32 True
mm_vision_tower_Ir 2.00E-06
mm_projector_type mlp2x_gelu

mm_vision_select_layer -2
image_aspect_ratio anyres_max_9
image_grid_pinpoints "(1x1),...,(6x6)"
mm_patch_merge_type spatial_unpad
per_device_train_batch_size 1
per_device_eval_batch_size 1
gradient_accumulation_steps 16
weight_decay 0

warmup_ratio 0.03
Ir_scheduler_type cosine
model_max_length 8192

G Additional evaluation details

We present additional inference and evaluation
details in Table 17 and the LLM judge prompts
used for MM Vet and MathVista from VLMEvalKit

(Duan et al., 2024) in Listings 4 and 5.

H License

The datasets and models are for research purposes
only in support of an academic paper. All artifacts
from this paper are licensed under the noncommer-
cial license CC-BY-NC 4.0. Some of our models
were built with Meta Llama 3, which is licensed un-
der the Meta Llama 3 Community License, Copy-
right © Meta Platforms, Inc. All Rights Reserved.

11218

Table 14: Additional Results on Model-generated data ablations with Mantis-CLIP. We observe similar results
of data ablations on Mantis-CLIP as on Mantis-SigLIP.

Data source Final data format Size Model A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg Delta
Direct sogc Mantis-CLIP 807 458 31 422 367 289 627 523 478
LATTE-trace LATTE 811 49.6 366 428 408 452 633 511 513 35

All datasets Direct ssog Mantis-CLIP 820 472 315 406 383 314 633 490 479
LATTE-trace+ CoT LATTE 826 477 359 383 396 434 610 511 499 20
Direct g15g Mantis-CLIP 81.0 473 329 4713 381 291 630 510 487
LATTE-trace+ CoT+ Direct LATTE 813 431 327 480 377 310 587 76 415 12
Direct Mantis-CLIP 791 441 309 394 355 300 627 498 465

LATTE-useful datasets | g traces CoT+ Direct ~00F LATTE 807 416 35 410 382 361 590 482 470 06

e diagrams below show two pure samples of gas In identical closed, rgid ¢

e e e e ot someles nave e e monne. Q: Compare the average kinetic energies of the particles in each sample. Which sample has the

— higher temperature? Sample A or sample B?
- A: Sample A
L
A po to: To determine which sample has a higher temperature, | need to compare the average kinetic
' energies of the particles in each sample using the formula: KE = 0.5 * m * v*2, where m is the mass
® o and v is the velocity. Since both samples have the same number of particles, the sample with the
e o higher average kinetic energy will have the higher temperature.
ao: Calculate(“0.5 * 44 x 830**2")
Sample A Sample 8 00: 15155800.0
Mass of each parice: 44 u s of exch paric: 36 u

t: Now, | need to calculate the average kinetic energy for Sample B to compare.

an: Calculate("0.5 * 36 x 690**2")

o1 8569800.0

t2: The average kinetic energy for Sample A is 15,155,800, and for Sample B is 8,569,800. Since
Sample A has a higher average kinetic energy, it has the higher temperature.

az: Terminate(“Sample A”)

Average particle speed: 830 m/s Average particle speed: 690 m/s.

Q: Is the trash can empty or full?

A: Empty

to: The image shows a trash bin with a hand placing a bag inside. | need to determine if the trash bin is
empty or full.

a0: GetObjects(image-0)

oo: ['bag!, 'bin’, 'box’, 'container’, 'dish washer', 'drawer’, ‘food’, 'home appliance’, 'person’, 'kitchen’,
‘kitchen counter', 'kitchen sink', 'lid", '‘package’, 'plastic’, 'sink’, 'stand’, 'woman']

t:: The observation indicates the presence of a bag and a bin, but it doesn't specify the contents of the
bin. Based on the image, the trash bin appears to be empty as there is no visible trash inside. o
ai: Terminate(“cmpty”)

Q: How to cook this dish?

A: This dish is called "Strawberry Rhubarb Pie". This strawberry rhubarb pie is a favorite springtime

| dessert in our house...Ingredients: 1 cup white sugar, 2 cup all-purpose flour...2 tablespoons white
sugar...Step 1: Preheat oven to 400 degrees F (200 degrees C)...Step 8: Bake at 400 degrees F (200

degrees C), for 35 to 40 minutes, or until bubbly and brown. Cool on rack.

to: The image shows a pie, likely a strawberry pie. | need to provide a general recipe for cooking a pie.

a0: QueryLanguageModel(“How to cook a strawberry pie?”)

00: Cooking a strawberry pie is a delightful process, and here's a simple recipe to guide you:

Ingredients: For the Pie Crust:\n- 2 %z cups all-purpose flour\n- 1 cup (2 sticks) unsalted butter, ... Va

teaspoon salt\n- 2 tablespoons unsalted butter, cut into small pieces...

t:: | have enough information to provide a general recipe for cooking a strawberry pie.

ai: Terminate("Cooking a strawberry pie involves making a pie crust and filling with strawberries and

sugar. Ingredients: For the Pie Crust:\n- 2 2 cups all-purpose flour\n- 1 cup (2 sticks) unsalted

butter, cold and cut into small pieces...For the Filling:- 5 cups fresh strawberries, hulled and o

halved\n- ¥ cup granulated sugar\n-...9. **Fill the Pie:** Pour the filling into the pie crust”)

Q: Given the following images of art paintings, use the first image as the reference image, and
determine which one of the second or the third image shares the same style as the reference image?
Select from the following choices.

A. the second image

B. the third image

to: To determine which image shares the same style as the reference image, | need to analyze the
styles of the images.

ao: GetimageTolmagesSimilarity("image-0", ['image-1", "image-2"])

oo: {'best_image'": 'image-2', 'best_image_index" 1, 'similarity": [0.49, 0.65]}

t:: The similarity scores indicate that image-2 is more similar to the reference image than image-1.
Therefore, the third image shares the same style as the reference image.

a:: Terminate(“2") o

Q: You are a judge in a photography competition, and now you are given the four images. Please
examine the details and tell which one of them is most likely to be a real photograph.

Select from the following choices.

A.the firstimage, B. the second image, C. the third image

to: To determine which image is most likely a real photograph, | need to analyze the content and
context of each image.

ao: GetObjects(“image-0")

oo: ['baseball hat', 'CD’, 'dive', 'field’, 'floor’, 'frisbee’, 'game’, 'grass', 'person/, 'lush’, 'man’, 'play’, 'rugby
player’, 'tackle']

t:: The first image shows a person playing a game, likely a sport, on a field. This suggests it is a real
photograph. | will now check the other images.

ai: GetObjects(“image-1")

o:: ['ball’, 'beach ball', 'frisbee’, 'girl', jump’, 'lake’, 'sea’, 'play’, 'splash’, 'throw', 'water', 'woman’, 'yellow']
t:: The second image shows a person playing in water, likely at a beach or lake, which is also a real
— photograph. | will now check the third image.

a:: GetObjects(“image-2")

oz: ['swimwear', 'bikini', 'bikini top', 'blue’, 'girl', 'jump’, 'sea’, 'water’, 'woman']

t:: The third image shows a person swimming in water, which is also a real photograph. | will now
check the fourth image.

a:: GetObjects(“image-3")

oa:['swimwear', ‘catch’, 'CD', 'frisbee’, 'girl', 'jump’, 'lake’, 'pink’, 'play’, 'throw', ‘water’, 'woman']

ta: All four images depict real-life scenes with people engaging in activities like playing sports or
swimming. However, the first image shows a person playing a sport on a field, which is a more typical
setting for a real photograph compared to the others. o
a.: Terminate(“/")

Figure 10: We present additional successful examples of LATTE.
11219

3
CALZONE 1,0

Q: Can the boy reach the highest book?
(A) Yes,

to: To determine if the boy can reach the highest book, | need to analyze the image for the boy's
height and the height of the bookshelf.

ao: LocalizeObjects(image-0, ["boy", "bookshelf"])

t:: The boy's height is below the bookshelf, indicating he cannot
reach the highest book.
a:: Terminate(“2")

Q: What is the total price for a bottle of Merlot and a bottle of Cabernet shown in the image?
A: $249.98

to: | need to extract the prices of the Merlot and Cabernet from the image to calculate the total price.
a0: OCR(image-0)

t:: The prices for the Merlot and Cabernet are $139.99 and $109.99, respectively. | can now calculate
the total price.
a:: Calculate(“139.99 + 109.99")

ta: The total price for a bottle of Merlot and a bottle of Cabernet is $249.98.
a:: Terminate(" ")

Q: | am getting two margherita pizza and one calzone. How much should I pay in total?
A:25.80

to: | need to extract the prices of the margherita pizza and calzone from the image to calculate the
total cost.
a0: OCR(image-0)

t:: The price of a margherita pizza is 5.90€, and the price of a calzone is 14.00€. | need to calculate
the total cost for two margherita pizzas and one calzone.
a:: Calculate(“2 * 5.90 + 14.00")

t2: The total cost for two margherita pizzas and one calzone is 25.80€.
a:: Terminate(” ")

Q: How many yellow stars are on a colorful bridge?
A.4,B.3, .

to: To determine the number of yellow stars on the bridge, | need to analyze the image for stars.
ao: GetObjects(image-0)

t:: The object detection did not identify yellow stars specifically. | need to visually inspect the image
to count the yellow stars on the bridge.
air N/A

t2: | need to visually inspect the image to count the yellow stars on the bridge.
a:: LocalizeObjects(image-0, “star”)

ts: The image shows two stars detected on the bridge. This matches option C.
as: Terminate(“C")

Q: Can you give a short introduction to this painting?

A: The Arnolfini Portrait (or The Arnolfini Wedding, The Arnolfini Marriage, the Portrait of Giovanni
Arnolfini and his Wife, or other titles) is a 1434 oil painting on oak panel by the Early Netherlandish
painter Jan van Eyck. It forms a full-length double portrait, believed to depict the Italian merchant
Giovanni di Nicolao Arnolfini and his wife, presumably in their residence at the Flemish city of Bruges.

to | can provide information about the painting based on general knowledge.
ao: QueryKnowledgeBase("The Arnolfini Portrait”)
00:

t: | have enough information to provide a short introduction to the painting.
a: Terminate ("

Q: What are all the Chinese scene text in the image?
A: BB <AND>ZE<AND>EMAEH B CHEE<AND>BRRWHTRE | <AND> S RH S 1218588

to: | need to extract the text from the image to identify the Chinese scene text.
a0: OCR(image-0)

t:: The extracted text provides the Chinese scene text from the image.
ai: Terminate(” ")

: We present additional successful examples of LATTE.

11220

Q: From which angle is this image taken?
,B. Side

to: To determine the angle of the image, | need to analyze the perspective and orientation of the snake.
a0: GetObjects(image-0)

oo: ['branch’, 'green’, 'log', 'reptile’, 'sit’, 'snake’, 'stool’, 'tail', 'tree’, 'tree branch’, 'tree trunk’, 'twig']

t:: The image shows a snake from a side view, as the snake's body is visible from the side rather than
directly facing the camera.

ai: Terminate(“B") 9

Q: Is the wind blowing the flag?
A. Yes,

to: To determine if the wind is blowing the flag, | need to analyze the image for signs of movement or
distortion in the flag.

a0: GetObjects(image-0)

oo: ['blue’, 'flag’, 'flag pole!, 'fly’, 'mast’, 'pole’, 'sky’, 'wave', 'wind']}

t:: The presence of 'wind' and 'wave' in the detected objects suggests that the flag is indeed being
blown by the wind.

a:: Terminate(“A") o

Q: Which type of eggs are in the corner of the picture?
A. Quail eggs,

to: To determine the type of eggs in the corner of the image, | need to analyze the visual characteristics
of the eggs.

a0: GetObjects(image-0)

0o: ['bakery’, 'bread’, 'butter’, 'table’, 'dip’, 'dough’, ‘flour, 'food’, 'hummus', 'pastry’, 'platter’, ‘tray’, 'type']
t:: The object detection did not identify the eggs specifically. However, based on the visual
characteristics of the eggs in the image, they appear to be quail eggs due to their small size.

a: Terminate(“A”) 9

Q: An object is placed at a distance of 1.5f from a converging lens of focal length f, as shown. What
type of image is formed and what is its size relative to the object? Type/Size

A. Virtual/Larger

B. Virtual/Same size

C. Real/Smaller

to:To determine the type and size of the image formed, we need to analyze the position of the object
f 2 3 relative to the focal length.", "actions": [{" arguments": {"query": ""}}1}

ao: QueryLanguageModel(“What type of image is formed when an object is placed at a distance of
1.5f from a converging lens of focal length ?”)

00: When an object is placed at a distance of 1.5 times the focal length (1.5f) from a converging lens
the lens forms a real, inverted, and magnified image...Additionally, to find the magnification \\(m \\),
we use:\n\n\\[\nm = \\frac{v}{u} = \\frac{\\frac{3f}{5}}{1."}

t: The image is real and inverted, and the magnification indicates that the image size is larger than
the object.

a:: Terminate("A")

of f

.
=

Q: Who created this image?
B. EDVARD MUNCH, C. EDGAR DEGAS, D. ANDY WARHOL

to: To determine the creator of the artwork in image-0, | need to analyze its style and characteristics.
ao: QueryLanguageModel("Who created the painting with a dark, expressive style often associated
with emotional intensity?")

00: The painting style you're describing sounds like it could be associated with several artists, but

one of the most prominent figures known for a dark, expressive style and emotional intensity is

Edvard Munch. His famous painting "The Scream" epitomizes such characteristics...’}

t:: Based on the description of a dark, expressive style often associated with emotional intensity,
Edvard Munch is the most likely creator.

a: Terminate(“B”) 9

Q: The picture shows the microscopy of Mr Tan's gastric tumour. Which of the following statements is
CORRECT?

A. The findings show an adenoma

B. The findings show a squamous cell carcinoma

D. The findings show diffuse signet ring cell adenocarcinoma the Flemish city of Bruges.

to: To determine the correct statement, | need to analyze the microscopic features in the image.

ao: QueryLanguageModel(“What are the microscopic features of adenoma, squamous cell
carcinoma, intestinal type adenocarcinoma, and diffuse signet ring cell adenocarcinoma?”)

0o: “The microscopic features of the mentioned conditions are distinct and reflective of their
pathological origins: 1. **Adenoma**: - **Architectural Features**: Typically show glandular
structures with some degree of dysplasia...3. **Intestinal Type Adenocarcinoma**: - **Architectural
Features**: Gland-forming neoplasm with varying degrees of differentiation...’})

t:: The image shows a gastric tumour with specific architectural and cellular features. Based on the
options, diffuse signet ring cell adenocarcinoma is known for its distinct signet ring cells, which may
be present in the image.

a:: Terminate(“D") 0

Figure 12: We present additional failure cases of LATTE.

11221

Table 15: Detailed statistics of the LATTE-trace 293K dataset.

Original Dataset Subset Instance # Max Image# AvglImage# Max Turn# Avg Turn #
ai2d 694 2 1 6 2
aokvqa 6322 5 1.1 7 2.1
chartqa 4726 2 1 10 2.1
cocoqga 13289 3 1.1 4 2
dvqga 2158 2 1 7 2.5
iconqa 3791 3 1.1 5 2.2
infographic_vqa 3822 3 1 9 23
mimic_cgd 6899 6 2.1 7 2.8
nlvr2 9716 4 2.1 6 2.5
Cauldron ocrvqa 22991 2 1 7 2
scienceqa 850 2 1 6 2.3
st_vqa 11322 3 1 8 2
tabmwp 14548 1 1 10 2.5
tallyqa 16171 3 1.4 5 2.1
textvqa 15475 5 1 6 2.1
visual 7w 4773 3 1.1 5 2.1
vqarad 115 2 1 4 2.2
vgav2 13394 5 1.2 6 2.1
VST 1864 2 1.2 4 2.1
birds-to-words 742 4 2 5 2.7
coinstruct 31773 8 23 8 2.2
contrastive_caption 4296 8 3.6 6 2
dreamsim 1738 3 3 3 2
iconga 6660 7 2.6 6 2.2
Mantis imagecode 559 18 10.1 10 3.1
lrv_multi 3401 9 33 6 2.2
multi_vqa 2089 7 3.8 8 2.6
nlvr2 5436 4 2 5 2.5
spot-the-diff 2591 5 2.8 8 3
nextqa 3057 15 8.2 9 23
llava_665k_multi 77843 11 22 10 2.1
Total 293105 18 2.2 10 2.3
Table 16: Templates for programmatic data generation.
of input images ~ Capabilities Question Template Action Template
How many {object} are there?
Counting Among {objects}, which is the most frequent object?

Among {objects}, which object appears the least?

Counting, Attribute recognition

How many {attribute} {object} are there? LocalizeObjects

2D spatial reasoning

Among {objects}, which is on the most left side?
Among {objects}, which is on the most right side?
Among {objects}, which is on the most top side?
Among {objects}, which is on the most bottom side?

3D spatial reasoning

‘Which of {objects} is closer? LocalizeObjects, EstimateRegionDepth x2

‘Which of {objects} is farther?

OR, EstimateObjectDepth x2

2-3

Multi-image understanding

Multi-image understanding, Counting
Multi-image understanding, Counting
Multi-image understanding, Counting

‘Which image has {object}?

How many {object} are in in these images?
Which image has most {object}?

‘Which image has least {object}?

LocalizeObjects x N

Multi-image understanding, Attribute recognition

‘Which image has {attribute} {object}?

Multi-image understanding, Attribute recognition, Counting How many {attribute} {object} in these images?

Table 17: Additional inference and evaluation details.

Stage Name Value
do_sample FALSE
Inference temperature 0
max_new_tokens 2000
max_consecutive_auto_reply 10
1Im judge for multiple choice & yes/no questions gpt-3.5-turbo-0125
. 1Im judge for short answer questions (i.e. MM Vet, MathVista) gpt-4-1106-preview
Evaluation .
1Im judge max_new_tokens 2048
1Im judge retry 5

11222

M-CoTA 293K

Action Distribution of Model-genearated Data vs. Model + Program Data Mixture
B M-COTA 293K + P-COTA 73K

177934
175 1
150 4
125 A
3 i 99099
< 100 94861
c
=)
o
o
75 A
50 1
36691 35910
251
14105
0 0078 890 411 2916 1314 43 99 g9 39
@ a 3 = @ > > o T v > £ Q c
i §8§ § §Ff £ F i 2 Ff 55 & ¢
= = @) 35 = x @ 3 & L o i)
g & g g % E £ & & T £ N g
g g § § & s 5§ & & § 5 &
& N F 5 q g ¢ T F 7 s
8 g & g § 5 8 ¢ g 7
s g g s & 2 5 i 3
¥FooB £ 2 ¥ 3 £ E
£ £ £ & & & g &
k3 o
A & £ & < g
g 5
s & &
&
Action
. model and program data mixtures

Figure 13: Action distribution of model-generated data vs

11223

1 class BaseAction:

nnn

3 This is the Action class for agent to use.

4 Using this Action class to wrap APIs, tools, models as an Action of an agent
B Dom

6

7 def __init__(

8 self,

9 id: int,

nn

10 description: str =
11 args_spec: dict = {3},

12 rets_spec: dict = {3},

13 examples: List = []

14) —> None:

15 o

16 the agent action should be connected with data and env
17 Args:

18 id: the id of the action

19 description: the description of the action

20 args_spec: the specification of the arguments
21 rets_spec: the specification of the returns
22 examples: a list of examples of the action

24 self.name = self.__class__.__name__

25 self.id = id

26 self.description = description

27 self.args_spec = args_spec

28 self.rets_spec = rets_spec

29 self.examples = examples

30 self.device = "cuda:0" if torch.cuda.is_available() else "cpu”
31

32 def __call__(self, x*kwargs) -> str:

33 e

34 implement the Action as

35 e

36 raise NotImplementedError

37

o

9 class OCR(BaseAction):

40 def __init__(self, id) -> None:

41 description = "Extract texts from an image or return an empty string if no text is in the
image. Note that the texts extracted may be incorrect or in the wrong order. It should be used
as a reference only."

42 args_spec = {"image": "the image to extract texts from."}

43 rets_spec = {"text": "the texts extracted from the image."?}

44 examples = [{"name”: "OCR", "arguments”: {"image": "image-0"}}]

45

16 super().__init__(

47 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

48)

49

50 def __call__(self, image, tool_version=LATEST_GPT_MODEL_ID):

51 if tool_version == "easyocr":

52 import easyocr

53 import io

54 reader = easyocr.Reader(["en"]) # Load the OCR model into memory

55 image = image_processing(image)

56 if isinstance(image, str):

57 # If image is a path, use it directly

58 image_path_or_bytes = (

59 image if os.path.exists(image) else get_full_path_data(image)

60)

61 else:

62 # If image is an Image object, convert it to a bytes stream

63 buffer = io.BytesIO()

64 image.save(buffer, format="JPEG")

65 buffer.seek(®)

66 image_path_or_bytes = buffer

11224

90

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135

result = reader.readtext(image_path_or_bytes)

result_text = [text for _, text, _ in result]

result_formatted = {"text": ", ".join(result_text)}
else:

from openai import OpenAl

import base64

client = OpenAl(api_key=o0s.getenv("OPENAI_API_KEY"))

def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8")

image_path = image_processing(image, return_path=True)
base64_image = encode_image(image_path)

response = client.chat.completions.create(
model=tool_version,
messages=[
{
"role” . "user”,
"content”: [
{"type": "text", "text": f"What are the texts in the image?"},
{
"type" : "image_url"”,
"image_url”: {
"url”: f"data:image/jpeg;base64,{base64_image}",
}’
}7
]’
}
]’
max_tokens=300,

)

result_formatted = {"text": response.choices[@].message.content}

return result_formatted

class GetObjects(BaseAction):

def __init__(self, id) -> None:

description = "Using this function to get objects in an image."

args_spec = {"image": "the image to get objects from."}

rets_spec = {"objects”: "the objects detected in the image."”}

examples = [{"name”: "GetObjects”, "arguments”: {"image": "image-0"}}]

super().__init__(

id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples

)
def __call__(self, image, tool_version="https://huggingface.co/xinyul205/recognize-anything-

plus-model/resolve/main/ram_plus_swin_large_14m.pth?download=true"):

from ram.models import ram_plus
from ram import get_transform, inference_ram_openset as inference

model_path_or_url = tool_version
image_size = 384
transform = get_transform(image_size=image_size)

vit_size = "swin_1"

load model

model = ram_plus(pretrained=model_path_or_url,
image_size=image_size,
vit=vit_size)

model.eval()

model = model.to(self.device)

image = image_processing(image)

image = transform(image).unsqueeze(@).to(self.device)

tags = inference(image, model)

objs = tags.split(” | ")

11225

136
137
138
139
140
141
142
143

144
145
146
147
148

149

150
151
152

153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183
184

185
186

187

188
189

return {"objects”: objs}

class VisualizeRegionsOnImage(BaseAction):

def __init__(self, id) -> None:

description = "Using this function to label regions on an image.”
args_spec = {"image": "the image to label.”,
"regions”: "the regions to label on the image, where each region is

represented by a dictionary with the region's bounding box and label text (can be empty string
)'”’
"color"”: "an optional argument that specifies the color of the bounding box."

}
rets_spec = {"image"”: "the image with regions labeled."}
examples = [

"name"”: "VisualizeRegionsOnImage”, "arguments”: {"image": "image-0", "regions": [{"
label”: "", "bbox": [0.3, 0.2, 0.5, 0.41}1}3,
{"name"”: "VisualizeRegionsOnImage"”, "arguments”: {"image"”: "image-0", "regions": [{"
label”: "cat"”, "bbox": [0.3, 0.2, 0.5, 0.4]}], "color”: "red"}}

]

super().__init__(
id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

)

def __call__(self, image, regions: List[Region], color='yellow', width=4):
image = image_processing(image)
text_color = 'black'
W,H = image.size
imgl = image.copy()
draw = ImageDraw.Draw(img1)
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSansMono-Bold.ttf"', 16)
for i, obj in enumerate(regions):
bbox = obj['bbox"']
bbox = bbox[@] * W, bbox[1] * H, bbox[2] *x W, bbox[3] * H
draw.rectangle(bbox, outline=color, width=width)
x1, y1, x2, y2 = bbox
label = obj['label'] if "label” in obj else ""
w,h = font.getsize(label)
if x1 +w>Wor y2 +h > H:
draw.rectangle((x1, y2 - h, x1 + w, y2), fill=color)
draw.text((x1, y2-h),label,fill=text_color,font=font)
else:
draw.rectangle((x1, y2, x1 + w, y2 + h), fill=color)
draw.text((x1, y2),label,fill=text_color,font=font)
return {"image"”: imgl}

class LocalizeObjects(BaseAction):

def __init__(self, id) -> None:
description = "Localize one or multiple objects/regions with bounding boxes. This tool may
output objects that don't exist or miss objects that do. You should use the output only as
weak evidence for reference. When answering questions about the image, you should double-check
the detected objects. You should be especially cautious about the total number of regions
detected, which can be more or less than the actual number.”
args_spec = {
"image": "the image to localize objects/regions in.",
"objects": "a list of object names to localize. e.g. ['dog', 'cat', 'person']. the
model might not be able to detect rare objects or objects with complex descriptionriptions.”
3
rets_spec = {"image"”: "the image with objects localized and visualized on it.", "regions":
"the regions of interests localized in the image, where each region is represented by a
dictionary with the region's label text, bounding box and confidence score. The confidence
score is between @ and 1, where 1 means the model is very confident. Note that both the
bounding boxes and confidence scores can be unreliable and should only be used as reference."}
examples = [{"name"”: "LocalizeObjects"”, "arguments”: {"image": "image-0", "objects”: ["dog
", "cat"1}}]

super().__init__(

11226

190

191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206
207
208
209

10

12
13

4

16
17
18
9

220

221
222
223
224
225
226
227
228
229

230

234
235

236

238

239

240
241
242

244
245
246
247
248
249
250

251

id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples

def

)

__call__(self, image, objects: List[str]):

from groundingdino.util.inference import load_model, load_image, predict, annotate
import cv2

text = ". ".join(objects)

model = load_model("”/user/mma/mma/GroundingDINO/groundingdino/config/

GroundingDINO_SwinT_OGC.py",

def

"/user/mma/mma/GroundingDINO/weights/groundingdino_swint_ogc.pth",
device=self.device)

BOX_TRESHOLD = @.35

TEXT_TRESHOLD = 0.25

image_path = image_processing(image, return_path=True)

original_image = image_processing(image)

image_source, image = load_image(image_path)

boxes, logits, phrases = predict(
model=model,
image=image,
caption=text,
box_threshold=BOX_TRESHOLD,
text_threshold=TEXT_TRESHOLD

)
objects = []
obj_cnt = {3}

for i in range(len(boxes)):
xyxy = box_convert(boxes=boxes[i], in_fmt="cxcywh"”, out_fmt="xyxy").numpy()
bbox = [round(val, 2) for val in list(xyxy)]
score = round(logits[i].item(), 2)
phrase = phrases[i]
obj_cnt[phrase] = obj_cnt.get(phrase, @) + 1
phrase = f"{phrase}-{obj_cnt[phrase]}" if obj_cnt[phrase] > 1 else phrase
objects.append({"label”: phrase, "bbox": bbox, "score": score})
visualize = VisualizeRegionsOnImage (@)
results = visualize(image=original_image, regions=objects)
tagged_image = results[”image"]
results_formatted = {"regions”: objects, "image": tagged_image}
return results_formatted

class Crop(BaseAction):

__init__(self, id) -> None:
description = "Crop an image with the bounding box. It labels the cropped region with a

bounding box and crops the region with some margins around the bounding box to help with
contextual understanding of the region.”

args_spec = {
"image": "the image to crop.”,
"bbox": "the bbox to crop. It should be a list of [left, top, right, bottom], where

each value is a float between @ and 1 to represent the percentage of the image width/height
and how far it is from the top left corner at [0, 0].",

3
rets_spec = {"image": "the cropped image."}
examples = [{"name"”: "Crop”, "arguments”: {"image"”: "image-0", "bbox": [0.33, 0.21, 0.58,

0.4613}}1]

super().__init__(
id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples

)

def __call__(self, image, bbox):

image = image_processing(image)

if isinstance(bbox, str):
try:
bbox = ast.literal_eval(bbox)
except:

11227

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271

272
273

274

275
276
277
278
279

280
281
282

283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

313

bbox = []

use_percent = (all(x <= 1.0 for x in bbox))
if not use_percent:
raise ValueError("Bounding box coordinates must be between @ and 1.")

visualize = VisualizeRegionsOnImage(Q)
results = visualize(image=image, regions=[{"label”: "", "bbox": bbox}1)
image = results["image"]

W, H = image.size

bbox = [bbox[@] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H]
bbox = expand_bbox(bbox, image.size)

out_img = image.crop(bbox)

return {"image": out_img}

class ZoomIn(BaseAction):

def __init__(self, id) -> None:
description = "Zoom in on a region of the input image. This tool first crops the specified
region from the image with the bounding box and then resizes the cropped region to create the
zoom effect. It also adds some margins around the cropped region to help with contextual
understanding of the region.”
args_spec = {
"image": "the image to zoom in on.",
"bbox": "The bbox should be a list of [left, top, right, bottom], where each value is
a float between @ and 1 to represent the percentage of the image width/height and how far it
is from the top left corner at [0, 0].",
"zoom_factor”: "the factor to zoom in by. It should be greater than 1.",
3
rets_spec = {"image": "the zoomed in image."}
examples = [
{"name"”: "ZoomIn", "arguments”: {"image": "image-0", "bbox": [0.4, 0.3, 0.5, 0.4], "
zoom_factor”: 2}},

]

super().__init__(
id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

)

def __call__(self, image, bbox, zoom_factor):
if zoom_factor <= 1:
raise ValueError("Zoom factor must be greater than 1 to zoom in")

image = image_processing(image)
use_percent = (all(x <= 1.0 for x in bbox))
if not use_percent:
raise ValueError("Bounding box coordinates must be between @ and 1.")

crop = Crop(@)
cropped_image = crop(image, bbox)["image"]

W, H = cropped_image.size

Calculate the size of the zoomed image
new_width = int(W * zoom_factor)
new_height = int(H * zoom_factor)

Resize the cropped image to create the zoom effect
zoomed_image = cropped_image.resize((new_width, new_height), Image.LANCZOS)
return {'image': zoomed_image}

class GetImageToImagesSimilarity(BaseAction):

def __init__(self, id) -> None:
description = "Get the similarity between one image and a list of other images. Note that
this similarity score may not be accurate and should be used as a reference only."
args_spec = {
"image": "the reference image.",

11228

314 "other_images"”: "the other images to compare to the reference image.",

315 }

316 rets_spec = {"similarity”: "the CLIP similarity scores between the reference image and the
other images.", "best_image_index": "the index of the most similar image."?}

317 examples = [

318 {"name"”: "GetImageToImagesSimilarity"”, "arguments”: {"image"”: "image-0", "other_images
": ["image-1", "image-2"1}}

319]

320

321 super().__init__(

322 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

323)

324

325 def __call__(self, image, other_images, tool_version='ViT-H-14-378-quickgelu’,
other_images_raw=None) :

326 import torch

327 import open_clip

328 original_images = other_images_raw

329 model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained='
dfn5b')

330 model.eval()

331 image = image_processing(image)

332 images = [image_processing(image) for image in other_images]

333

334 image = preprocess(image).unsqueeze(0)

335 images = torch.stack([preprocess(image) for image in images])

36

337 with torch.no_grad(), torch.cuda.amp.autocast():

338 imagel1_features = model.encode_image(image)

339 image2_features = model.encode_image(images)

340

341 imagel_features /= imagel_features.norm(dim=-1, keepdim=True)

342 image2_features /= image2_features.norm(dim=-1, keepdim=True)

343

344 probs = imagel_features @ image2_features.T

345 sim_scores = [round(sim_score, 2) for sim_score in probs[@].tolist()]

346 best_image_match = torch.argmax(probs).item()

347 return {'similarity': sim_scores, "best_image_index": best_image_match, "best_image":

original_images[best_image_match]}
348
349
350 class GetImageToTextsSimilarity(BaseAction):

351 def __init__(self, id) -> None:

352 description = "Get the similarity between one image and a list of texts. Note that this
similarity score may not be accurate and should be used as a reference only."

353 args_spec = {

354 "image": "the reference image.",

355 "texts": "a list of texts to compare to the reference image.”,

356 }

357 rets_spec = {"similarity”: "the CLIP similarity between the image and the texts.”, "
best_text_index": "the index of the most similar text.”, "best_text”: "the most similar text."
}

358 examples = [

359 {"name": "GetImageToTextsSimilarity"”, "arguments”: {"image"”: "image-0", "texts": ["a
cat”, "a dog"l1}}

360 1

361

362 super().__init__(

363 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

364)

365

366 def __call__(self, image, texts, tool_version='ViT-H-14-378-quickgelu'):

367 import torch

368 import open_clip

369

370 model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained="'
dfn5b")

11229

371 model.eval() # model in train mode by default, impacts some models with BatchNorm or
stochastic depth active

372 tokenizer = open_clip.get_tokenizer(tool_version)

373

374 image = preprocess(image_processing(image)).unsqueeze(0)

375 text = tokenizer(texts)

376

377 with torch.no_grad(), torch.cuda.amp.autocast():

378 image_features = model.encode_image(image)

379 text_features = model.encode_text(text)

380 image_features /= image_features.norm(dim=-1, keepdim=True)

381 text_features /= text_features.norm(dim=-1, keepdim=True)

382

383 probs = image_features @ text_features.T

384 sim_scores = [round(sim_score, 2) for sim_score in probs[@].tolist()]
385 best_text_match = torch.argmax(probs).item()

386 return {'similarity': sim_scores, "best_text_index": best_text_match, "best_text"”: texts[

best_text_match]}

380 class GetTextToImagesSimilarity(BaseAction):

390 def __init__(self, id) -> None:

391 description = "Get the similarity between one text and a list of images. Note that this
similarity score may not be accurate and should be used as a reference only."

392 args_spec = {

393 "text": "the reference text.",

394 "images”: "a list of images to compare to the reference text.”,

395 }

396 rets_spec = {"similarity”: "the CLIP similarity between the image and the texts.”, "
best_image_index"”: "the index of the most similar image."}

397 examples = [

398 {"name": "GetTextToImagesSimilarity"”, "arguments”: {"text”: "a black and white cat”, "
images”: ["image-0", "image-1"13}}

399]

400

401 super().__init__(

402 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

403)

404

405 def __call__(self, text, images, tool_version='ViT-H-14-378-quickgelu'):

406 import torch

407 import open_clip

408 original_images = images

409 model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained="'
dfn5b')

410 model.eval() # model in train mode by default, impacts some models with BatchNorm or
stochastic depth active

411 tokenizer = open_clip.get_tokenizer(tool_version)

412

413 text = tokenizer([text])

414 images = [image_processing(image) for image in images]

415 images = torch.stack([preprocess(image) for image in images])

416

417 with torch.no_grad(), torch.cuda.amp.autocast():

418 image_features = model.encode_image(images)

419 text_features = model.encode_text(text)

420 image_features /= image_features.norm(dim=-1, keepdim=True)

421 text_features /= text_features.norm(dim=-1, keepdim=True)

422

423 probs = text_features @ image_features.T

424 sim_scores = [round(sim_score, 2) for sim_score in probs[@].tolist()]

425 best_image_match = torch.argmax(probs).item()

426 return {'similarity': sim_scores, "best_image_index": best_image_match, "best_image":

original_images[best_image_match]}
427
428
429 class EstimateObjectDepth(BaseAction):
430 def __init__(self, id) -> None:

11230

431

I
>
DR

b

434
435
436
437

439
440
441
442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461
462
463

464

465
466
467
468

469
470
471

472
473
474
475
476
477
478

479
480
481

description = "Estimate the depth of an object in an image using DepthAnything model. It
returns an estimated depth value of the object specified by the a brief text description. The
smaller the value is, the closer the object is to the camera, and the larger the farther. This
tool may help you to better reason about the spatial relationship, like which object is
closer to the camera.”
args_spec = {
"image": "the image to get the depth from."”,
"object”: "a short description of the object to get the depth from.",
3
rets_spec = {"depth”: "the estimated depth of the object."}
examples = [
{"name"”: "EstimateObjectDepth”, "arguments”: {"image"”: "image-0", "object”: "a black
cat”}},
]

super().__init__(
id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

)

def __call__(self, image, object, mode="mean"):

action = LocalizeObjects(0)

results = action(image=image, objects=[object])

if len(results["regions”]) == 0:
return {"depth”: "Object not found.”}

else:
use the best match object's bbox
best_match = np.argmax([region["”score”"] for region in results[”regions”]1])
bbox = results["regions"”][best_match]["bbox"]
depth_estimator = EstimateRegionDepth (@)
return depth_estimator(image=image, bbox=bbox, mode=mode)

class EstimateRegionDepth(BaseAction):

def __init__(self, id) -> None:
description = "Estimate the depth of a region in an image using DepthAnything model. It
returns an estimated depth value of the region specified by the input bounding box. The
smaller the value is, the closer the region is to the camera, and the larger the farther. This
tool may help you to better reason about the spatial relationship, like which object is
closer to the camera. "
args_spec = {

"image": "the image to get the depth from."”,

"bbox": "the bbox of the region to get the depth from. It should be a list of [left,
top, right, bottom], where each value is a float between @ and 1 to represent the percentage
of the image width/height and how far it is from the top left corner at [0, 0].",

"mode”: "the mode to get the depth. It should be one of 'center' or 'average'.
center' returns the depth of the center of the region. 'average' returns the average depth of
the region.",

3
rets_spec = {"depth”: "the estimated depth of the region."}
examples = [
"name"”: "EstimateRegionDepth”, "arguments”: {"image": "image-0", "bbox": [0.3, 0.2,
0.5, 0.413}3,
1

super().__init__(
id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

)

def __call__(self, image, bbox: List[str], mode="mean"):

import numpy as np

from scipy import stats

image = image_processing(image)

depth_model = pipeline(task="depth-estimation”, model="depth-anything/Depth-Anything-V2-
Small-hf", device=self.device)

result = depth_model(image)

depth = result["predicted_depth"”J[@].numpy()

depth = depth.max() - depth # smaller values in depth map are farther from the camera so
reversing the values

H, W = depth.shape

11231

483
484
485
486
487
488
489
490

191
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

518

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

538

539
540
541
542
543
544
545
546
547
548
549

550

use_percent = all(x <= 1.0 for x in bbox)
if not use_percent:
raise ValueError("Bounding box coordinates must be between @ and 1.")
bbox = [bbox[@] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H]
if mode == "center":
X, y = (bbox[@] + bbox[2]) / 2, (bbox[1] + bbox[3]1) / 2
X, y = int(x), int(y)
depth_value = depthly, x]
elif mode == "mean":
x1, y1, x2, y2 = bbox
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
depth_value = np.mean(depth[y1:y2, x1:x2])
elif mode == "mode":
x1, y1, x2, y2 = bbox
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
mode_result = stats.mode(depth[y1:y2, x1:x2])
depth_value = mode_result.mode[0]
else:
raise NotImplementedError(f"”Depth mode {mode} is not supported.”)
return {"depth”: round(depth_value, 2)}

class Calculate(BaseAction):

def __init__(self, id) -> None:

description = "Calculate a math expression.”
args_spec = {"expression”: "the math expression to calculate.”}
rets_spec = {"result”: "the result of the math expression."}
examples = [
{"name": "Calculate”, "arguments”: {"expression”: "2 + 2"}},
{"name"”: "Calculate”, "arguments”: {"expression”: "4x9x84"}},
{"name"”: "Calculate", "arguments": {"expression": "5-4/2"}},
1

super().__init__(
id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

)

def __call__(self, expression):
result = eval(expression)
return {"result”: result}

class SolveMathEquation(BaseAction):

def __init__(self, id) -> None:
description = "Using this action to solve a math problem with WolframAlpha."
args_spec = {"query”: "a question that involves a math equation to be solved.”}
rets_spec = {"result”: "the result of the query."}
examples = [
{"name"”: "SolveMathEquation”, "arguments"”: {"query": "2 + 2=?"}},
"name”: "SolveMathEquation”, "arguments”: {"query"”: "x*2 + 2x + 1 = @, what is x?"}},

]

self.client = wolframalpha.Client(os.getenv("WOLFRAM_ALPHA_API_KEY"))
super().__init__(
id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

)

def __call__(self, query):
from urllib.error import HTTPError

is_success = False
res = self.client.query(query)
if not res["@success"]:

return (
"Your Wolfram query is invalid. Please try a new query for wolfram.",

11232

is_success,

551

552)

553 assumption = next(res.pods).text

554 answer = ""

555 for result in res["pod"]:

556 if result[”@title"] == "Solution":

557 answer = result["subpod”]["plaintext"”]

558 if result["@title"] == "Results” or result["@title"”] == "Solutions”:
559 for i, sub in enumerate(result["subpod”]):

560 answer += f"ans {i}: " + sub["plaintext”] + "\n"

561 break

562 if answer == "":

563 answer = next(res.results).text

564

565 if answer is None or answer == "":

566 return {"result”: "No good Wolfram Alpha Result was found"}
567 else:

568 return {"result”: answer}

569

570

571 class DetectFaces(BaseAction):

572 def __init__(self, id) -> None:

573 description = "Using this function to detect faces in an image.”
574 args_spec = {"image": "the image to detect faces from."}

575 rets_spec = {"image": "the image with objects localized and visualized on it."”, "regions":

"the regions of the faces detected, where each regin is represented by a dictionary with the
region's label text and bounding box."}

576 examples = [

577 {"name"”: "DetectFaces”, "arguments”: {"image": "image-0"}}

578 1

579 import face_detection

580 ckpt_path = f"/root/.cache/torch/hub/checkpoints/WIDERFace_DSFD_RES152.pth"

581 if not os.path.exists(ckpt_path):

582 from huggingface_hub import hf_hub_download

583 hf_hub_download(repo_id="user/mma", filename="WIDERFace_DSFD_RES152.pth", local_dir="/

root/.cache/torch/hub/checkpoints/")

585 self.model = face_detection.build_detector(

586 "DSFDDetector”, confidence_threshold=.5, nms_iou_threshold=.3)

587 super().__init__(

588 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

589)

590

591 def enlarge_face(self,box,W,H,f=1.5):

592 x1,y1,x2,y2 = box

593 w = int((f-1)*(x2-x1)/2)

594 h = int((f-1)x(y2-y1)/2)

595 x1 = max(@,x1-w)

596 y1 = max(0,yl1-h)

597 x2 = min(W, x2+w)

598 y2 = min(H,y2+h)

599 return [x1,y1,x2,y2]

600

601 def __call__(self, image):

602 import numpy as np

603 image = image_processing(image)

604

605 with torch.no_grad():

606 faces = self.model.detect(np.array(image))

607

608 W,H = image.size

609 objs = []

610 for i,box in enumerate(faces):

611 x1,y1,x2,y2,c = [int(v) for v in box.tolist()]

612 normalized_bbox = [x1/W, y1/H, x2/W, y2/H]

613 objs.append(dict(

614 bbox=[round(num, 2) for num in normalized_bbox],

615 label=f'face {i+1}' if i > @ else 'face’,

616))

11233

617 visualize = VisualizeRegionsOnImage (@)

618 results = visualize(image=image, regions=objs)

619 tagged_image = results["image"]

620 results_formatted = {"regions”: objs, "image": tagged_image}
621 return results_formatted

622
623

624 class QuerylLanguageModel (BaseAction):

625 def __init__(self, id) -> None:

626 description = "Using this function to ask a language model a question.”

627 args_spec = {"query”: "the question to ask the language model."}

628 rets_spec = {"result”: "the response from the language model."}

629 examples = [

630 {"name"”: "QuerylLanguageModel”, "arguments": {"query"”: "What is the capital of France?”
1

631 1

632 super().__init__(

633 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

634)

635

636 def __call__(self, query):

637 from openai import OpenAI

638 client = OpenAl(api_key=o0s.getenv("OPENAI_API_KEY"))

639

640 response = client.chat.completions.create(

641 model=LATEST_GPT_MODEL_ID,

642 messages=[

643 {

644 "role” . "user”,

645 "content”: [

646 {"type": "text"”, "text": f"{query}"},

647 :l ’

648 }

649])

650 max_tokens=300,

651)

652

653 return {'result': response.choices[0].message.content}

654
655

656 class QueryKnowledgeBase(BaseAction):

657 def __init__(self, id) -> None:

658 description = "Using this function to query a knowledge base."”

659 args_spec = {"query”: "the query to search in a knowledge base such as wikipedia."}

660 rets_spec = {"result”: "the answer from the knowledge base.”}

661 examples = [

662 "name”: "QueryKnowledgeBase"”, "arguments”: {"query"”: "Paris”"}},

663]

664

665 super().__init__(

666 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

667)

668

669 def __call__(self, query, lang="en"”, sentences=2, knowledge_base="wikipedia"):

670 if knowledge_base == "wikipedia”:

671 # Set the language for Wikipedia (default is 'en' for English)

672 wikipedia.set_lang(lang)

673

674 # Search Wikipedia for pages related to the query

675 search_results = wikipedia.search(query)

676 if not search_results:

677 return {"No results found."}

678

679 # Get the summary of the first search result

680 page = wikipedia.page(search_results[0])

681 summary = wikipedia.summary(page.title, sentences=sentences)

682 result = {

683 "title": page.title,

11234

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

701
702
703
704

"url”: page.url,
"summary"”: summary
3
return result
else:
raise NotImplementedError(f"”Knowledge base {knowledge_base} is not supported.”)

class Terminate(BaseAction):
def __init__(self, id) -> None:

description = "Using this function to finish the task.”

args_spec = {"answer"”: "the final answer."}

rets_spec = {"answer"”: "the final answer."}

examples = [{"name”: "Terminate”, "arguments”: {"answer": "yes"}}]

super().__init__(
id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

)

def __call__(self, answer):
return {"answer”: answer}

Listing 1: Python implementation of all actions

11235

16

19

29

[BEGIN OF GOAL]

You are a helpful assistant, and your goal is to solve the # USER REQUEST #. You can either rely
on your own capabilities or perform actions with external tools to help you. A list of all
available actions are provided to you in the below.

[END OF GOAL]

[BEGIN OF ACTIONS]

Name: OCR

Description: Extract texts from an image or return an empty string if no text is in the image.
Note that the texts extracted may be incorrect or in the wrong order. It should be used as a
reference only.

Arguments: {'image': 'the image to extract texts from.'}
Returns: {'text': 'the texts extracted from the image.'}
Examples:

"name”: "OCR", "arguments”: {"image": "image-0"}}

3 Name: LocalizeObjects

Description: Localize one or multiple objects/regions with bounding boxes. This tool may output
objects that don't exist or miss objects that do. You should use the output only as weak
evidence for reference. When answering questions about the image, you should double-check the
detected objects. You should be especially cautious about the total number of regions detected
, which can be more or less than the actual number.

Arguments: {'image': 'the image to localize objects/regions in.', 'objects': "a list of object
names to localize. e.g. ['dog', 'cat', 'person']. the model might not be able to detect rare
objects or objects with complex descriptionriptions.”}

Returns: {'image': 'the image with objects localized and visualized on it.', 'regions': "the
regions of interests localized in the image, where each region is represented by a dictionary
with the region's label text, bounding box and confidence score. The confidence score is
between @ and 1, where 1 means the model is very confident. Note that both the bounding boxes
and confidence scores can be unreliable and should only be used as reference.”}

Examples:

{"name": "LocalizeObjects”, "arguments": {"image"”: "image-0", "objects": ["dog", "cat"]1}}

Name: GetObjects
Description: Using this function to get objects in an image.

Arguments: {'image': 'the image to get objects from.'}

23 Returns: {'objects': 'the objects detected in the image.'}
Examples:
{"name": "GetObjects"”, "arguments”: {"image": "image-0"}}

Name: EstimateRegionDepth
Description: Estimate the depth of a region in an image using DepthAnything model. It returns an
estimated depth value of the region specified by the input bounding box. The smaller the value
is, the closer the region is to the camera, and the larger the farther. This tool may help
you to better reason about the spatial relationship, like which object is closer to the camera

Arguments: {'image': 'the image to get the depth from.', 'bbox': 'the bbox of the region to get
the depth from. It should be a list of [left, top, right, bottom], where each value is a float
between @ and 1 to represent the percentage of the image width/height and how far it is from
the top left corner at [0, 0].'}

Returns: {'depth': 'the estimated depth of the region.'}

Examples:

{"name": "EstimateRegionDepth", "arguments”: {"image": "image-0", "bbox": [0.3, 0.2, 0.5, 0.4]}}

Name: EstimateObjectDepth

Description: Estimate the depth of an object in an image using DepthAnything model. It returns an
estimated depth value of the object specified by the a brief text description. The smaller the
value is, the closer the object is to the camera, and the larger the farther. This tool may
help you to better reason about the spatial relationship, like which object is closer to the
camera.

Arguments: {'image': 'the image to get the depth from.', 'object': 'a short description of the
object to get the depth from.'}

Returns: {'depth': 'the estimated depth of the object.'}

Examples:

{"name": "EstimateObjectDepth"”, "arguments": {"image"”: "image-0", "object”: "a black cat”}}

Name: Crop

> Description: Crop an image with the bounding box. It labels the cropped region with a bounding box

and crops the region with some margins around the bounding box to help with contextual
understanding of the region.

11236

v

64

3 Arguments: {'image': 'the image to crop.', 'bbox': 'the bbox to crop. It should be a list of [left,

top, right, bottom], where each value is a float between @ and 1 to represent the percentage
of the image width/height and how far it is from the top left corner at [0, @].'}
Returns: {'image': 'the cropped image.'}
Examples:
{"name": "Crop", "arguments”: {"image": "image-0", "bbox": [0.33, 0.21, 0.58, 0.46]1}}

Name: ZoomIn

Description: Zoom in on a region of the input image. This tool first crops the specified region
from the image with the bounding box and then resizes the cropped region to create the zoom
effect. It also adds some margins around the cropped region to help with contextual
understanding of the region.

Arguments: {'image': 'the image to zoom in on.', 'bbox': 'The bbox should be a list of [left, top,
right, bottom], where each value is a float between @ and 1 to represent the percentage of
the image width/height and how far it is from the top left corner at [0, @].', 'zoom_factor':
'the factor to zoom in by. It should be greater than 1.'}

Returns: {'image': 'the zoomed in image.'}

Examples:

3 {"name": "ZoomIn", "arguments”: {"image": "image-0", "bbox": [0.4, 0.3, 0.5, 0.4], "zoom_factor”:

23}

Name: QuerylLanguageModel
Description: Using this function to ask a language model a question.

Arguments: {'query': 'the question to ask the language model.'}

Returns: {'result': 'the response from the language model.'}

Examples:

{"name": "QuerylLanguageModel”, "arguments”: {"query”: "What is the capital of France?"}}

Name: GetImageTolImagesSimilarity

3 Description: Get the similarity between one image and a list of other images. Note that this

similarity score may not be accurate and should be used as a reference only.

Arguments: {'image': 'the reference image.', 'other_images': 'the other images to compare to the
reference image.'}

Returns: {'similarity': 'the CLIP similarity scores between the reference image and the other
images.', 'best_image_index': 'the index of the most similar image.'}

Examples:

{"name": "GetImageToImagesSimilarity”, "arguments”: {"image": "image-0", "other_images"”: ["image

-1", "image-2"1}}

Name: GetImageToTextsSimilarity
Description: Get the similarity between one image and a list of texts. Note that this similarity
score may not be accurate and should be used as a reference only.

Arguments: {'image': 'the reference image.', 'texts': 'a list of texts to compare to the reference
image. '}
Returns: {'similarity': 'the CLIP similarity between the image and the texts.', 'best_text_index':
'the index of the most similar text.', 'best_text': 'the most similar text.'}
3 Examples:
{"name": "GetImageToTextsSimilarity"”, "arguments”: {"image"”: "image-0", "texts"”: ["a cat”, "a dog
"133}

Name: GetTextToImagesSimilarity
Description: Get the similarity between one text and a list of images. Note that this similarity
score may not be accurate and should be used as a reference only.

Arguments: {'text': 'the reference text.', 'images': 'a list of images to compare to the reference
text.'}

Returns: {'similarity': 'the CLIP similarity between the image and the texts.', 'best_image_index':
'the index of the most similar image.'}

Examples:

{"name": "GetTextToImagesSimilarity"”, "arguments”: {"text”: "a black and white cat”, "images": ["

image-0", "image-1"]}}

3 Name: DetectFaces

Description: Using this function to detect faces in an image.

Arguments: {'image': 'the image to detect faces from.'}

Returns: {'image': 'the image with objects localized and visualized on it.', 'regions': "the
regions of the faces detected, where each regin is represented by a dictionary with the region
's label text and bounding box."}

Examples:

{"name": "DetectFaces”, "arguments": {"image"”: "image-0"}}

11237

=
O

146

148

149

150

151

Name: QueryKnowledgeBase
Description: Using this function to query a knowledge base.

Arguments: {'query': 'the query to search in a knowledge base such as wikipedia.'}
3 Returns: {'result': 'the answer from the knowledge base.'}

Examples:

{"name": "QueryKnowledgeBase"”, "arguments": {"query"”: "Paris"}}

Name: Calculate
Description: Calculate a math expression.

Arguments: {'expression': 'the math expression to calculate.'}

Returns: {'result': 'the result of the math expression.'}

Examples:

{"name": "Calculate", "arguments": {"expression”: "2 + 2"}}

{"name": "Calculate”, "arguments”: {"expression”: "4x9%84"}}
"name”: "Calculate”, "arguments"”: {"expression”: "5-4/2"}}

Name: SolveMathEquation
Description: Using this action to solve a math problem with WolframAlpha.

Arguments: {'query': 'a question that involves a math equation to be solved.'}
Returns: {'result': 'the result of the query.'}

Examples:

{"name": "SolveMathEquation”, "arguments”: {"query": "2 + 2=?"}}

{"name": "SolveMathEquation”, "arguments": {"query": "x*2 + 2x + 1 = 0@, what is x?"}}

Name: Terminate
Description: Using this function to finish the task.

Arguments: {'answer': 'the final answer.'}

Returns: {'answer': 'the final answer.'}

Examples:

{"name": "Terminate”, "arguments”: {"answer"”: "yes"}}

[END OF ACTIONS]

[BEGIN OF TASK INSTRUCTIONS]

1. You must only select actions from # ACTIONS #.

2. You can only call one action at a time.

3. If no action is needed, please make actions an empty list (i.e. ''actions'': []).
4. You must always call Terminate with your final answer at the end.

[END OF TASK INSTRUCTIONS]

[BEGIN OF FORMAT INSTRUCTIONS]

Your output should be in a strict JSON format as follows:

{"thought": "the thought process, or an empty string”, "actions”: [{"name"”: "actionl1”, "arguments":
{"argument1": "valuel”, "argument2": "value2"}}]1}

[END OF FORMAT INSTRUCTIONS]

[BEGIN OF EXAMPLES]:
USER REQUEST #:
In image-0, Which of the two objects on the plate is the biggest?
A. The pile of scrambled eggs is the biggest.
B. The strawberries are the biggest object.
Please answer directly with only the letter of the correct option and nothing else.
RESPONSE #:
{"thought”: "To determine which of the two objects on the plate is larger, I need to analyze the

size of the scrambled eggs, and the strawberries”, "actions”: [{"name”: "LocalizeObjects", "
arguments”: {"image"”: "image-@", "objects": ["scrambled eggs"”, "strawberries”1}}1}
3 OBSERVATION:

{"image": "image-1", "regions": [{"label”: "eggs"”, "bbox": [0.5, 0.6, 0.6, 0.8], "score": 0.85},
{"label”: "strawberries”, "bbox": [0.4, 0.5, 0.45, @.7], "score": 0.54}]}

{"thought": "To calculate the area of a bounding box, we can use the formula: area = (x_max -
x_min) * (y_max - y_min). We first get the area of the scrambled eggs."”, "actions”: [{"name”:
"Calculate”, "arguments”: {"expression”: "(0.6-0.5) x (0.8-0.6)"}}]1}

OBSERVATION:
7 {"result”: "0.02"}
{"thought": "Then, we also calculate the area of the strawberries.”, "actions”: [{"name": "
Calculate”, "arguments”: {"expression”: "(0.45-0.4) x (0.7-0.5)"}3}]1}
OBSERVATION:

{"result": "0.01"}
{"thought": "Since 0.02 > 0.01, it is apparent that the eggs cover a larger area within their
bounding box.", "actions”": [{"name": "Terminate”, "arguments”: {"answer”: "A"}3}1}

11238

152
153

154

155

156

15

158

159

160
161
162
163
164
165
166
167
168

169
170

178

179

180
181

USER REQUEST #:
Given the input image image-@, How many pedestrians are there in the image? Please answer
directly with a single word or number.
RESPONSE #:

{"thought": "To determine the number of pedestrians, I need to first localize them on the image.",
"actions”: [{"name”: "LocalizeObjects”, "arguments”: {"image": "image-0", "objects”: ["person
"13313

OBSERVATION:

{"image": "image-1", "regions": [{"label”: "person”, "bbox": [0.77, ©.47, 0.79, 0.54], "score":
0.83}, {"label”: "person-2", "bbox": [0.69, ©0.49, 0.7, 0.52], "score": 0.43}]1}

{"thought"”: "The LocalizeObjects action returns two regions for \"person\"”, but one of the regions
has a lower confidence score. Upon a closer look at the output image image-1, we can see that
there is actually only one pedestrian in the image.”, "actions”: [{"name”: "Terminate”, "

arguments”: {"answer”: "1"3}}1}

USER REQUEST #:
Based on image-0, is the object on top bigger than the object below?
A. The object on the bottom is bigger.
B. The object on top is bigger.
C. Both objects are the same size.
Please answer directly with only the letter of the correct option and nothing else.
RESPONSE #:
{"thought": "By looking at the image, we can see that both objects are game consoles of the same
brand and size.”, "actions”: [{"name"”: "Terminate”, "arguments”: {"answer"”: "C"3}}1}

USER REQUEST #:
What is x in the image?
RESPONSE #:

3 {"thought": "To get the result of the equation, I need to first extract the equation from the

image."”, "actions”: [{"name”: "OCR", "arguments”: {"image": "image-0"3}3}1}
OBSERVATION:
{"text": "x-2%3=0"}
{"thought"”: "The math equation is 'x-273=0', and I need to find x. I can solve it with a math-

related tool."”, "actions”: [{"name”: "SolveMathEquation”, "arguments”: {"query": "x-2"3=0,
what is x?"3}3}1}

OBSERVATION:

{"result”: "x = 8"}

{"thought": "As suggested in the last observation, the answer is 8.", "actions”: [{"name": "
Terminate”, "arguments”: {"answer”: "8"}}1}

[END OF EXAMPLES]

Listing 2: Model-based data generation system prompt

11239

1 def GetObjects_template():

2 thought_templates = ["I need to check what objects are present in the {image_kw}.",

3 "I need to analyze the {image_kw} for context.”

4 "I need to identify the objects in the {image_kw}.",

5 "To answer the question, let's first analyze the {image_kw}.",

6 "To answer the question, analyzing the objects in the {image_kw} is

19
20
21

39

40

def

def

def

def

necessary."]
return thought_templates

LocalizeObjects_template():

thought_templates = ["I need to analyze the positions of {objects} in the {image_kw}.",
"I need to analyze the locations of {objects} in the {image_kw}.",
"I need to localize the {objects} based on the {image_kw}.",
"I'11 identify the positions of {objects} in the {image_kw}.",
"I need to determine the positions of {objects} by analyzing the {image_kw

}.u]
return thought_templates

EstimateObjectDepth_template():

thought_templates = ["I should estimate the depth of {object} to determine whether it is

closer or farther."”,

"I will estimate the depth of {object}."”,

"I need to estimate the depth for {object} to make a comparison.”,
determine how far {object} is, I need to evaluate the distance to it.

"To

n
’

"I now need to estimate the depth for {object}.”]

return thought_templates

EstimateRegionDepth_template():

thought_templates = ["I should estimate the objects' depths to determine which one is closer.”,

"I need to estimate the region's depth in the image.",
"I need to determine the depths of the detected objects based on their

positions.",

"I need to estimate the depth of the objects to make a comparison.”,
determine the relative proximity of the objects in the image, I need

"To

to estimate the depth of each object."]

return thought_templates

Terminate_template():

thought_templates = ["Based on the information above, I can conclude that the answer is {

answer}",

"Based on a close analysis of the {image_kw} and additional information

above, I believe the answer is {answer}.”,

"I have analyzed the {image_kw} and the information above, and I believe
the answer is {answer}.”
"The {image_kw} and the information above suggest that the answer is {

answer}.",

"According to the content of the {image_kw} and the observations, I can

’

conclude that the answer is {answer}."]

return thought_templates

Listing 3: Thought templates for each action

11240

SRENY

10

Compare the ground truth and prediction from AI models, to give a correctness score for the
prediction. <AND> in the ground truth means it is totally right only when all elements in the
ground truth are present in the prediction, and <OR> means it is totally right when any one
element in the ground truth is present in the prediction. The correctness score is 0.0 (
totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Just
complete the last space of the correctness score.

Question | Ground truth | Prediction | Correctness

What is x in the equation? | -1 <AND> -5 | x = -1 or x = -5 | 1.0

Can you explain this meme? | This meme is poking fun at the fact that the names of the countries
Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful
green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that
the person has trust issues because the names of these countries do not accurately represent
their landscapes. | The meme talks about Iceland and Greenland. It's pointing out that despite

their names, Iceland is not very icy and Greenland isn't very green. | 0.4

Can you explain this meme? | This meme is poking fun at the fact that the names of the countries
Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful
green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that
the person has trust issues because the names of these countries do not accurately represent
their landscapes. | The meme is using humor to point out the misleading nature of Iceland's
and Greenland's names.

Iceland, despite its name, has lush green landscapes while Greenland is mostly covered in ice and
snow. The text 'This is why I have trust issues' is a playful way to suggest that these
contradictions can lead to distrust or confusion. The humor in this meme is derived from the
unexpected contrast between the names of the countries and their actual physical
characteristics. | 1.0

What is x in the equation? | -1 <AND> -5 | x = 3 | 0.0

What is x in the equation? | -1 <AND> -5 | x = -1 | 0.5

What is x in the equation? | -1 <AND> -5 | x = -5 | 0.5

What is x in the equation? | -1 <AND> -5 | x = -5 0or 5| 0.5
| |
|

Listing 4: LLM judge prompt for MM Vet

Please read the following example. Then extract the answer from the model response and type it at
the end of the prompt.

3 Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1,

16
17
18

19

20

2, 3, at the end.
Question: Which number is missing?
Model response: The number missing in the sequence is 14.
Extracted answer: 14

Hint: Please answer the question requiring a floating-point number with one decimal place and
provide the final value, e.g., 1.2, 1.3, 1.4, at the end.

Question: What is the fraction of females facing the camera?

Model response: The fraction of females facing the camera is 0.6,

which means that six out of ten females in the group are facing the camera.

Extracted answer: 0.6

Hint: Please answer the question requiring a floating-point number with two decimal places and
provide the final value, e.g., 1.23, 1.34, 1.45, at the end.
Question: How much money does Luca need to buy a sour apple candy and a butter-scotch candy? (Unit:
$)
Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy.
Extracted answer: 1.45

Hint: Please answer the question requiring a Python list as an answer and provide the final list,
e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.

Question: Between which two years does the line graph saw its maximum peak?

Model response: The line graph saw its maximum peak between 2007 and 2008.

Extracted answer: [2007, 2008]

Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the
end.

Question: What fraction of the shape is blue?

Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5

Model response: The correct answer is (B) 8/11.

Extracted answer: B

Listing 5: LLM judge prompt for MathVista

11241

