
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 11204–11241
November 4-9, 2025 ©2025 Association for Computational Linguistics

LATTE: Learning to Think with Vision Specialists

Zixian Ma1,2*, Jianguo Zhang2, Zhiwei Liu2, Jieyu Zhang1, Juntao Tan2, Manli Shu2,
Juan Carlos Niebles2, Shelby Heinecke2, Huan Wang2, Caiming Xiong2,

Ranjay Krishna1, Silvio Savarese2
1University of Washington, 2Salesforce Research

Website: https://latte-web.github.io
Code: https://github.com/SalesforceAIResearch/LATTE

Abstract
While open-source vision-language models per-
form well on simple question-answering, they
still struggle with complex questions that re-
quire both perceptual and reasoning capabili-
ties. We propose LATTE, a family of vision-
language models that have LeArned to Think
wiTh vision spEcialists. By offloading percep-
tion to state-of-the-art vision models, our ap-
proach enables vision-language models to fo-
cus solely on reasoning over high-quality per-
ceptual information. To train LATTE, we syn-
thesize and filter a large dataset of 273K multi-
modal reasoning traces over perceptual outputs
of vision specialists. LATTE trained on this
data achieves significant 4-5% gains over base-
lines across 6 benchmarks covering both per-
ception and reasoning abilities. Ablation stud-
ies reveal that the effectiveness of multi-modal
reasoning traces depends on the data sources,
formats, and quality of thoughts.

1 Introduction

The landscape of real-world vision-language tasks
is vast, spanning from basic visual question answer-
ing (Antol et al., 2015), fine-grained object recog-
nition to complex multi-step geometric reason-
ing (Hu et al., 2024a). These tasks demand both per-
ception and reasoning. For instance, a user might
photograph a gas price panel and ask how much
fuel they can afford within a given budget (Fig-
ure 1). Solving this requires a model with strong
perception—localizing prices via OCR—and multi-
step reasoning to compute the answer. While pro-
prietary models like GPT-4o excel due to extensive
data and model size scaling, smaller open-source
models still struggle (Ma et al., 2024).

To narrow the gap between large proprietary
models and smaller open-source counterparts
within a reasonable budget, researchers have ex-
plored distilling perception and reasoning from

*Work done while interning at Salesforce Research

larger vision-language models (Shao et al., 2024;
Xu et al., 2025) or specialized vision models (Hu
et al., 2024b). Despite these efforts, open-source
models continue to lag behind.

We argue that the primary reason for this lag is
the perception limitations of small vision-language
models. While open-source language models have
largely caught up with their proprietary counter-
parts (Lambert et al., 2024; Bi et al., 2024), vision-
language models have yet to master heterogeneous
vision capabilities. The computer vision commu-
nity has historically tackled these capabilities sepa-
rately—e.g., DepthAnything (Yang et al., 2024)
for depth estimation and GroundingDINO (Liu
et al., 2023d) for object recognition—while uni-
fied models still lag behind (Lu et al., 2024a).
Similarly, the human brain dedicates distinct re-
gions to categorical recognition (ventral stream)
and spatial reasoning (dorsal stream) (Goodale and
Milner, 1992), with the reasoning and language-
processing frontal and temporal lobes occupying a
different volume (Keller et al., 2012). By contrast,
vision-language models remain heavily skewed to-
ward language, treating visual encoders as an af-
terthought (Deitke et al., 2024).

We depart from the learning to perceive and
reason paradigm to propose a new approach: learn-
ing to reason with vision specialists (Figure 2).
Rather than expecting a small model to master both
perception and reasoning, we leverage decades of
advancements in computer vision by relying on
specialized vision models to provide perceptual in-
formation. This allows the vision-language model
to focus exclusively on acquiring perceptual infor-
mation from vision specialists and reasoning over
them—enabling it to ‘see further by standing on the
shoulders of giants.’ Such a paradigm reduces the
burden on models to extract low-level perceptual
signals, allowing them to concentrate on higher-
level reasoning.

To implement this paradigm, we curate high-

11204

https://latte-web.github.io
https://github.com/SalesforceAIResearch/LATTE

Mantis-LLaVA-7B: 3.6

LLaVA-OV: 5.2

Mantis-LLaVA: (A)

LLaVA-OV: A. The boy can reach the book.

Q: How many gallons of supreme gasoline can
I get with $50?

A: 13.7

t0: I need to extract the price of supreme gasoline from the image.

a0: OCR(image-0)

t1: The price of supreme gasoline is $3.65 per gallon...I need to
divide $50 by $3.65.

a1: Calculate(“50 / 3.65”)

t2: The calculation shows that you can get approximately 13.7
gallons of supreme gasoline with $50.

a2: Terminate(“13.7”)

o0: “Gasoline - Self Serve - Regular - 3.49 9/10 - Plus - 3.55 9/10 -
Supreme - 3.65 9/10 - Diesel No. 2 - 3.60 9/10”

o1: 13.6986

LATTE LATTE
t0: To determine if the boy can reach the highest book, I need to analyze the image for
the boy's height and the height of the bookshelf.

Q: Can the boy reach the highest book?

(A) Yes, (B) No

A: (B)    

a0: LocalizeObjects(image-0, ["boy", "bookshelf"])

o0: [{'label': 'boy', 'bbox': [0.07, 0.48, 0.18, 0.95],
'score': 0.89},

{'label': 'bookshelf', 'bbox': [0.13, 0.01, 0.32, 0.72],
'score': 0.72}]

t1: The boy's height is below the bookshelf,
indicating he cannot reach the highest book.

a1: Terminate(“B”)

Figure 1: Example outputs of LATTE vs. SoTA open-source multi-modal language models. Our LATTE
model is able to answer challenging visual questions by reasoning over perceptual information output by vision
specialists. It does so by generating a reasoning trace over vision specialists’ outputs and producing a final answer.

quality training data in the form of multi-step rea-
soning traces that integrate perceptual information
from vision specialists. We formulate the multi-
step reasoning traces as LATTE-trace, where each
step consists of: (1) a thought for verbalized rea-
soning; (2) an action to retrieve perceptual infor-
mation from a specific vision specialist; and (3)
an observation of the returned data. Since obtain-
ing these traces at scale with human annotators
is costly, we develop two data engines for syn-
thetic data generation. First, we leverage GPT-
4o’s strong multimodal reasoning and state-of-the-
art vision specialists’ precise perception to gener-
ate large-scale synthetic reasoning traces across
diverse image sources. Second, we generate rea-
soning traces using Python programs and struc-
tured reasoning templates, comparing them against
GPT-generated traces to evaluate reasoning qual-
ity. In total, we produce over 1M reasoning traces
across 31 datasets with GPT-4o and handcrafted
programs. We then further apply filtering and mix-
ing techniques and perform extensive experiments
with different data ablations.

With the filtered 293K multi-modal reasoning
traces, we finetune small 7-8B vision-language
models to reason with vision specialists and evalu-
ate our models on 6 benchmarks covering both per-
ception and reasoning skills. We highlight four ma-
jor takeaways from our experiments: First, learning
to reason with vision specialists enables our model
to outperform vanilla instruction-tuned baseline by
significant margins on both perception and reason-
ing benchmarks, with an overall average gain of

6.4%. By contrast, the other distillation methods
lead to smaller gains or even degradation in the
perception performance. Second, our method con-
sistently outperforms the vanilla instruction-tuned
baseline by 4 − 5% on average across all bench-
marks regardless of model backbones, with stag-
gering performance gains of 10− 20% on MMVet.
Third, through data ablations, we confirm that the
quality of LATTE-trace matters more than quantity:
our best data recipe consists of only 293K LATTE-
trace which GPT-4o generated and answered cor-
rectly, and it leads to larger performance gains
than other data recipes of larger scales. Finally,
programmatically-generated LATTE-trace can hurt
model performance as a result of the worse reason-
ing quality, suggesting that again that high-quality
reasoning is crucial to the model’s performance.

To summarize, we highlight three contributions:
(1) We introduce a novel and the largest dataset
of 293K multi-modal reasoning traces that cover
31 diverse data sources and include both single-
and multi-image questions as well as image-text
interleaved traces; (2) We demonstrate the effec-
tiveness of our multi-modal reasoning data and
showcase sizable performance gains over baselines
on 6 benchmarks through extensive experiments;
(3) Finally, our ablation studies reveal new insights
into what matters in multi-modal reasoning data.
We will release all artifacts publicly.

2 Related work

We contextualize our work on multi-modal lan-
guage models and multi-modal tool use.

11205

Synthetic LATTE-trace Generation Training with LATTE-traces

LATTE-trace

Inference

OR

Vision Specialists

...

OCR Localize Depth

...

LATTE: Learning to Think with Vision Specialists

Figure 2: Overview. We propose LATTE: learning vision-language models to think with vision specialists via
synthetic multi-modal reasoning traces.

Multi-modal language models. Recently, there
have been many advances on open-source multi-
modal models (Awadalla et al., 2023; Chen et al.,
2023; Liu et al., 2023b,a, 2024; Dai et al., 2024;
Li et al., 2022, 2023b; Deitke et al., 2024). These
efforts include training multi-modal models to take
in multiple images, engage in multi-turn conver-
sations, and even understand videos (Liu et al.,
2024; Jiang et al., 2024; Li et al., 2024). For ex-
ample, LLaVA-Next achieves strong multi-image
understanding through large-scale interleaved vi-
sual instruction tuning with M4-Instruct (Liu et al.,
2024). Similarly, Mantis introduces a new large-
scale multi-image instruction tuning dataset Mantis-
Instruct for multi-image training (Jiang et al., 2024).
These efforts pave the foundation for our work on
learning vision-language models with image-text
interleaved reasoning traces.

Multi-modal tool-use. Recently, there is growing
interest in training multi-modal language models
to be better at tool use (Liu et al., 2023c; Qi et al.,
2024; Shao et al., 2024). LLaVa-Plus first shows
the possibility of training a multi-modal model to
use vision specialists (Liu et al., 2023c). Visual
Program Distillation distills tool-use and reasoning
abilities into a multi-modal model with chain-of-
thought (CoT) data obtained from programs (Hu
et al., 2024b). Similarly, Visual CoT introduces a
new synthetic CoT dataset for training multi-modal
models for enhanced reasoning (Shao et al., 2024).
More recently, LLaVa-CoT integrates both percep-
tion and reasoning from GPT-4o (Xu et al., 2025).
Another closely related work CogCoM identifies 6
useful manipulations and trains multi-modal mod-
els with synthetic chain-of-manipulation (CoM)
data (Qi et al., 2024). Nonetheless, the manipula-
tions are limited, and the authors only experiment
with 70K CoM data.

Although these works demonstrate effectiveness,
the proposed reasoning datasets are limited in scale
and diversity, and none contains multi-image ques-
tions or includes images in the reasoning chains
(Appendix A Table 9). To complement existing
works, we introduce a new large-scale dataset of
293K multi-modal interleaved reasoning traces that
cover 31 data sources and include both single-
image and multi-image questions.

3 LATTE: Learning to Think with Vision
Specialists

Our goal is to train vision-language models to rea-
son about complex multi-modal tasks with the help
of vision specialists. To train such models, we need
reasoning traces that involve (1) invoking vision
specialists and (2) reasoning over their outputs. We
refer to such data as LATTE-trace. We define a
LATTE-trace T as a sequence of steps Si, where
each step consists of thought ti, action ai and ob-
servation oi:

T = (S0, S1, ..., Sn) = (Si)
n
i=0 (1)

Si = (ti, ai, oi), ti ∈ L, ai ∈ A (2)

where L represents language space, and A is the
action space consisting of vision specialists. The
model only generates ti and ai, which the training
loss is applied on, whereas oi is obtained from the
vision specialists.
Action space. The action space A of our model
consists of vision tools that are either specialized vi-
sion models or image processing tools. Concretely,
these include OCR (JadedAI, 2025), GETOBJECTS

(Zhang et al., 2023), LOCALIZEOBJECTS (Liu
et al., 2023d), ESTIMATEOBJECTDEPTH, ESTI-
MATEREGIONDEPTH (Yang et al., 2024), DE-
TECTFACES (Li et al., 2019), CROP, ZOOMIN,

11206

t1: Then, I can extract the

numbers on the motorcycles.

a1: OCR(image-1)

t2: The motorcyclist wearing a yellow suit is the
middle one with 16 on the motorcycle.

a2: Terminate(“16”)

o1: “17, 9, 16, 2, 23”

Model-based generation

Programmatic generation

Parse

Direct Answer (Direct)
t0: After inspecting the image closely, I can
conclude that the answer is 16.

a0: Terminate(“16”)

Q: Between {obj1.name} and {obj2.name}, which is
closer to the camera?

A. {obj1.name} B. {obj2.name}

A: B

t0: I need to first get the depth of {obj1.name}.

a0: EstimateObjectDepth(image-0, {obj1.name})

o0: depth: {obj1.depth}

t1: Then, I need to estimate the depth of {obj2.name}.

a1: EstimateObjectDepth(image-0, {obj2.name})

o1: depth: {obj2.depth}

t2: I’ve gather enough information to answer...

a2: Terminate(“B”)

t0: I need to first get the depth of the ...

a0: EstimateObjectDepth(image-0,)

o0: depth:

t1: Then, I need to estimate the depth of the .

a1: EstimateObjectDepth(image-0,)

o1: depth:

t2: I’ve gather enough information to answer...

a2: Terminate(“B”)

motorcyclist
“motorcyclist...”

5.91

grass
“grass”

 5.44

Generate

Generate

Q: What is the number on the
motorcycle of the motorcyclist
wearing a yellow suit?

A: 16

Annotate

Q: Between the
and the , which is closer to the camera?

A. B.
A: B

 motorcyclist wearing a yellow suit

motorcyclist
grass

grass

obj1�
� name:

� depth:
obj2:�

� name:
� depth:

motorcyclist
wearing a yellow sui�

5.91

gras�
5.44

t0: I need to first identify the motorcyclist wearing
a yellow suit.

a0: LocalizeObjects(image-0, “motorcyclist
wearing a yellow suit”)

o0: image-1

Verify

LATTE-trace

Templates Generated QA and LATTE-trace

MLM

t0: There are two motorcyclists in yellowish suits,
but one is more neon-green than yellow. The other
motorcyclist has number 16 on their motorcycle.

a0: Terminate(“16”)

Chain-of-Thought (CoT)

OR

Figure 3: Data generation. We illustrate our model-based data generation (top) and programmatic generation
(bottom) pipelines.

GETIMAGETOTEXTSSIMILARITY, GETIMAGE-
TOIMAGESSIMILARITY, GETTEXTTOIMAGES-
SIMILARITY (Radford et al., 2021). Inspired by
prior works (Hu et al., 2024a; Gupta and Kem-
bhavi, 2022; Ma et al., 2024), we include a few
additional tools to help with reasoning: QUERY-
LANGUAGEMODEL, QUERYKNOWLEDGEBASE,
CALCULATE, and SOLVEMATHEQUATION. We
also include TERMINATE as a tool for the model to
output a final answer in the same format. See the
Appendix D for all tools’ implementation details.

3.1 LATTE-trace generation

We generate synthetic LATTE-trace data with two
automatic approaches: Model-based generation
and Programmatic data generation.
Model-based generation. This pipeline consists
of three steps (Figure 3 top):

1. GENERATE. First, we leverage images and
QA examples in existing visual instruction tun-
ing datasets and generate LATTE-traces to solve
the questions with GPT-4o (2024-08-06). We in-
clude diverse questions on both single-image and
multi-image examples from two large-scale in-
struction tuning datasets, Cauldron and Mantis-
Instruct (Jiang et al., 2024; Laurençon et al., 2024).
We feed the images and questions to GPT-4o and
prompt it to answer the questions by following
a LATTE-trace or just CoT when it is not nec-

essary (e. g. , the question is straightforward) or
not helpful (e. g. , the question requires domain-
specific knowledge) to call specialized vision tools
(Figure 3). We adopt ReAct-style prompting with
JSON-format for calling the vision specialists and
provide detailed instructions and examples in the
prompt (Yao et al., 2023). All prompts are in the
Appendix C.

2. VERIFY. Second, we verify GPT-4o’s gen-
erated answers against the ground-truth. We force
GPT-4o to always end with TERMINATE(answer)
and compare its prediction to the ground-truth. If
the final answer is correct, we move this LATTE-
trace to the next stage. Otherwise, we convert this
example into the direct answer (Direct) format with
the ground-truth (Figure 3).

3. PARSE. Finally, we check the JSON syntax
of each step of the LATTE-trace. Similar to the
previous stage, we again keep the LATTE-traces
free of errors and turn the others into the Direct
format with ground-truth answers.
Programmatic data generation. In addition to
distilling reasoning from proprietary models, we
implement a programmatic data generation engine
for synthesizing LATTE-traces (Figure 3 bottom)
and experiment with these data. This pipeline in-
volves two steps:

1.ANNOTATE. First, we gather existing dense
annotations of images. We adopt Visual Genome

11207

LATTE-useful
LATTE-useless

Original → Final format

Data source

LATTE-pos → LATTE

LATTE-neg → Direct
CoT-neg → Direct

CoT-pos → CoT

Distribution of LATTE-traces vs. CoTs in GPT4-generated Data across All Data Sources

Figure 4: Distribution of data formats and sources. We visualize the frequency of data formats (i.e. LATTE-
pos/neg, and CoT-pos/neg, pos = correct final answers, neg = incorrect) in the original GPT-4-generated data and in
our training data (i.e. LATTE-trace, CoT, or Direct) across all data sources. We also highlight the LATTE-useless
(i.e. % of CoT-pos − LATTE-pos > 10 or % of LATTE-neg − LATTE-pos > 10) vs. LATTE-useful datasets.

(VG) as it contains rich human annotations of ob-
jects, attributes, and relationships of the images. In
addition, we obtain depth maps of the VG images
with Depth-Anything-v2 (Yang et al., 2024).

2. GENERATE. Next, we programmatically
generate both the QA pairs and the correspond-
ing LATTE-traces with manually written templates
and dense image annotations. We reuse the pipeline
from (Zhang et al., 2024a,b) to generate QA pairs
that cover various vision capabilities such as count-
ing and spatial understanding (See Appendix E.2
for details). To generate LATTE-traces, we define
templates for thoughts, actions, and observations
across all steps and fill in the templates with the
collected annotations. In particular, we manually
design five thought templates for each action and
randomly sample one during generation. As for
actions, we manually select the specialized vision
tools for each type of questions (e. g. , ESTIMA-
TEOBJECTDEPTH for questions on objects’ rel-
ative depths, and LOCALIZE for object counting
questions, etc.) and compose templates with them.

3.2 Data filtering and mixing

We develop 3 filtering/mixing techniques, where
we vary the distribution of: (1) data formats;
(2) data sources; and (3) model- vs. program-
generated reasoning traces.
Data format. Model-generated data can be cat-
egorized into two formats: LATTE-trace or CoT
examples (Figure 3). Additionally, they are further
grouped into LATTE-trace/CoT-pos and LATTE-
trace/CoT-neg examples where the final answers
are correct and wrong respectively (Figure 4). Note
that we convert both LATTE-trace-neg and CoT-
neg examples into the Direct format with ground-

truth answers (Figure 3) so the final data format is
one of LATTE-trace, CoT, and Direct.
Data source. We also perform filtering based on
data sources as Cauldron and Mantis-Instruct cover
a wide range of tasks, some of which benefit more
from vision specialists than others. To this end, we
define LATTE-useless datasets as the ones where
GPT-4o either decides to output CoT much more
often than LATTE-trace (i.e. % of CoT-pos −
LATTE-trace-pos > 10), or reaches wrong answers
much more frequently than correct ones when using
LATTE-trace (i.e. % LATTE-trace-neg − LATTE-
trace-pos > 10) (Figure 4). The remaining datasets
are considered LATTE-useful datasets.
Program-generated data. As the distribution
of actions in model-generated data is imbalanced,
with a couple of actions such as GETOBJECTS

and OCR dominating the dataset, we also try in-
creasing action diversity by adding programmatic
traces with underrepresented actions such as LO-
CALIZEOBJECTS, and ESTIMATEREGIONDEPTH.

4 Experiments

We perform extensive experiments with small 7-
8B multi-modal models and various data recipes
on 6 benchmarks to study two questions: (1) do
LATTE-traces improve small vision-language mod-
els’ performance on both perception and reasoning
VQAs? (2) what matters in LATTE-traces?
Models. We adopt models with multi-image sup-
port as our reasoning traces include multiple im-
ages. For most experiments, we use Mantis-8B-
SigLIP-LLaMA-3 as the base model. We addition-
ally experiment with Mantis-8B-CLIP-LLaMA-
3, and LLaVA-OneVision-7B (Qwen2-7B and
SigLIP) to showcase our method’s generalizability.

11208

Table 1: LATTE vs. Vanilla IT with Different Models. LATTE leads to performance gains over Vanilla IT
regardless of the base models. The gains are 4-5% on average across all 6 benchmarks and up to 17% on MMVet.

Language / Vision
Starting

checkpoint
Method

Perception Perception + Reasoning Overall

CV-Bench BLINK RealWorldQA Avg MathVista MMStar MMVet Avg Avg

LLaMA3-8B / CLIP
Mantis

Pretrained

Vanilla IT 52.6 45.8 52.3 50.2 33.1 36.7 28.9 32.9 41.6
LATTE 56.9 49.6 51.1 52.6 36.6 40.8 45.2 40.8 46.7 (+5.1)

LLaMA3-8B / SigLIP

Vanilla IT 52.3 43.7 51.8 49.3 31.1 40.5 33.0 34.9 42.1
LATTE 57.2 47.8 53.7 52.9 34.9 44.6 45.2 41.6 47.2 (+5.1)

Mantis
Instruct-tuned

Vanilla IT 50.6 46.7 54.8 50.7 36.2 40.7 29.7 35.5 43.1
LATTE 51.7 47.3 56.1 51.7 38.9 45.1 50.0 44.7 48.2 (+5.1)

Qwen2-7B / SigLIP
LLaVa-OV
Stage 1.5

Vanilla IT 56.8 50.3 57.8 55.0 42.4 50.1 39.3 43.9 49.5
LATTE 60.2 52.6 61.1 58.0 46.9 50.8 50.9 51.2 53.8 (+4.3)

Table 2: LATTE vs. Distillation Baselines. LATTE brings substantial gains over the Vanilla IT baseline on
both perception and perception + reasoning benchmarks, whereas VPD and LLaVa-CoT result in smaller gains.
LLaVa-CoT even suffers from performance drop in perception tasks. All models were trained with 98K data.

Method
Perception Perception + Reasoning Overall

BLINK CV-Bench RealWorldQA Avg MathVista MMStar MMVet Avg Avg

Vanilla IT 44.1 49.2 41.4 44.9 31.0 39.7 27.8 32.8 38.9
VPD 41.6 48.8 44.8 45.1 (+0.2) 33.0 41.1 32.8 35.7 (+2.8) 40.4 (+1.5)
LLaVa-CoT 42.2 40.4 38.0 40.2 (-4.7) 36.7 44.6 40.2 40.5 (+7.7) 40.4 (+1.5)
LATTE 46.4 54.0 42.0 47.5 (+2.6) 36.9 44.2 47.9 43.0 (+10.2) 45.2 (+6.4)

Baselines. We compare LATTE to three types
of baselines: (1) vanilla instruction-tuning (IT):
instruction-tuning with only direct answers; (2) dis-
tillation methods that distill both perception and
reasoning from larger models into smaller mod-
els, including VPD (Hu et al., 2024b)1, LLaVa-
CoT (Xu et al., 2025), and VisCoT (Shao et al.,
2024)2; For fair comparison, we train our mod-
els and baselines with the same base model, the
same hyperparameters, and the same number of
examples; (3) multi-modal agents that use tools at
inference time, including LLaVa-Plus (Liu et al.,
2023c) and CogCoM (Qi et al., 2024).
Training details. We finetune models starting from
checkpoints at different stages – pretrained and in-
struction tuned for Mantis-8B-SigLIP-LLaMA-3,
and stage 1.5 for LLaVA-OneVision-7B – to inves-
tigate if and where LATTE-traces bring gains. We
adopt the hyperparameters from (Liu et al., 2024;
Jiang et al., 2024) and fine-tune both the language
model and the projector with learning rate = 1e−5
for 1 epoch with either NVIDIA A100s 40GB or
H100s 80GB. We additionally perform hyperpa-
rameter tuning with LLaVA-OneVision-7B and in-
clude this result in the Appendix F.

1As VPD is close-sourced, we reproduce their data by
converting LATTE-traces into CoTs in VPD’s format.

2Since VisCoT only has reasoning steps for one data source
GQA, training with its data leads to much worse performance.
We include its results in the Appendix B.3.

Evaluation setup. We select 6 VQA bench-
marks covering both perception and reasoning.
The perception-focused benchmarks include Re-
alWorldQA, CV-Bench and BLINK (Tong et al.,
2024; Schwenk et al., 2022; Fu et al., 2024; Li
et al., 2023a). We also include 3 benchmarks
that additionally test reasoning capabilities: Math-
Vista, MMStar, and MMVet (Lu et al., 2024b;
Chen et al., 2024a; Yu et al., 2024). We adapt
VLMEvalKit (Duan et al., 2024) for our evaluation,
where an LLM judge (i.e. GPT-4-turbo) is used
to score predictions between 0 and 1 compared
to the groundtruth short answers for open-ended
questions. Additional details are in Appendix G.

4.1 Do LATTE-traces improve models’
performance on both perception and
reasoning VQAs?

LATTE beats Vanilla IT on average across all
benchmarks regardless of the base model and
checkpoint, with significant gains of up to 17%
on MMVet. We fine-tune 3 different multi-modal
models with all 293K LATTE-traces starting from
different checkpoints. We observe that our method
leads to consistent gains of 4-5% in the model’s
average accuracy across 6 benchmarks compared
to the baselines instruction-tuned with the same
examples in the Direct format (Table 1). We note
that our method results in staggering gains of up

11209

100 150 200 250 300
Training Data Size (K)

30

35

40

45

50

55

Av
g

ac
cu

ra
cy

Perception

Method
Vanilla IT
VPD
LLaVa-CoT
LATTE

100 150 200 250 300
Training Data Size (K)

30

35

40

45

50

55

Av
g

ac
cu

ra
cy

Perception + Reasoning

100 150 200 250 300
Training Data Size (K)

30

35

40

45

50

55

Av
g

ac
cu

ra
cy

Overall

Figure 5: LATTE vs. Distillation Baselines across Training Data Scales. LATTE leads to consistent gains on
perception and reasoning benchmarks over the Vanilla instruction-tuned baseline across varying training data sizes –
98K, 200K and 293K – and the gains are larger than VPD’s. LLaVa-CoT only has 98K data.

Size

293K

528K

580K

815K

Data formats

LATTE-traces

+ Direct

+ CoT

+ Direct + CoT

Figure 6: Ablations on Data Formats. 293K LATTE-traces lead to the greatest gains over Vanilla IT and the
highest overall performance. Adding either CoT or Direct doesn’t bring additional gains despite the increased size.

to 17% on MMVet, which covers a wide range of
perceptual and reasoning capabilities.

LATTE leads to substantial gains over vanilla
instruction-tuning on both perception and rea-
soning benchmarks, whereas distillation base-
lines result in smaller gains or even degradation
on some perception tasks. We find that learning
to reason with vision specialists enables our model
to achieve consistent gains on perception-focused
VQA benchmarks as well as benchmarks that re-
quire both perception and reasoning, with average
gains of 2.6% and 10.2% respectively (Table 2).
By contrast, both distillation baselines VPD and
LLaVa-CoT bring much smaller gains, with an av-
erage of 1.5% across all benchmarks, compared
to ours (6.4%). Further, we observe that the same
trend holds as we scale the training data size from
98K to 200K and 293K, where our method consis-
tently brings larger gains on both perception and
perception + reasoning benchmarks (Figure 5). In-
terestingly, LLaVa-CoT even hurts the model’s per-
formance on perception benchmarks, even though
it increases the performance on the perception +
reasoning benchmarks (Table 2). This result sug-
gests that GPT4-o might still be inferior to vision
specialists on some perception tasks, as LLaVa-
CoT distills purely from GPT4-o.

LATTE scores higher on MathVista and

Table 3: LATTE vs. Multi-modal Agent Baselines.
Training with LATTE-traces leads to much larger gains.

Model Data size
Base model → Finetuned model

MathVista MMVet
LLaVA-Plus 158K — 32.5 → 35.0 (+2.5)
CogCoM 70K 34.8 → 35.7 (+0.9) 45.9 → 46.1 (+0.2)
LATTE 98K 32.7 → 36.9 (+4.2) 34.4 → 47.9 (+13.5)
LATTE 293K 32.7 → 38.9 (+6.2) 34.4 → 50.0 (+15.6)

MMVet than multi-modal agent baselines do,
and LATTE-traces bring larger gains to the base
model. We see in Table 3 that LATTE achieves
higher accuracies on MathVista and MMVet. More-
over, LATTE-traces bring much larger gains to the
base model than LLaVa-Plus and CogCoM’s data
do, despite its comparable size.

4.2 What matters in LATTE-traces?

We perform ablations with LATTE-traces to study
what matters in improving models’ performance.
For model-generated data, we explore two data
filtering techniques on (1) data formats and (2) data
sources (Figure 4).
Data quality matters more than quantity: 293K
LATTE-traces lead to higher performance than
larger mixtures of LATTE-traces and CoT or
Direct. We find that 293K LATTE-traces result in
the biggest gain of 5% on average over the baseline
across all benchmarks (Figure 6). Adding CoT

11210

Table 4: Ablations on data sources. Including all
sources hurts model’s perception and overall perfor-
mance while having only LATTE-useful datasets helps.

Data source Size Method Percept. P. + Reason. Overall

All datasets 815K
Vanilla IT 50.7 34.7 42.7
LATTE 47.7 (-3.0) 35.1 (+0.4) 41.4 (-1.4)

LATTE-useful datasets 566K
Vanilla IT 46.3 33.3 39.8
LATTE 46.8 (+0.5) 35.6 (+2.3) 41.2 (+1.4)

examples results in a smaller gain of 2.6%, even
though the training data size almost doubles (Fig-
ure 6). On the other hand, combining LATTE-trace
and Direct examples hurts the model’s performance
compared to LATTE-traces only, especially on the
perception tasks (Figure 6). We empirically ob-
serve that models trained with a mix of LATTE-
traces and Direct examples tend to adopt the Direct
format more often (around 70%) at inference time,
relying on its own weaker perceptual ability instead
of vision specialists’ and thus scoring lower.
Data sources matter too: including all
datasets hurts performance while including only
LATTE-useful datasets brings gains. Similarly,
we see that including only the LATTE-useful
datasets – where GPT-4o frequently chooses to
use vision specialists and reaches correct final an-
swers – improves the model’s average performance
compared to the baseline, while including all data
sources doesn’t (Table 4). Again, we see that a
smaller set of 566K LATTE-traces leads to better
performance than a much larger dataset (815K), im-
plying that data quality matters more than quantity.

Table 5: Ablations on programmatic LATTE-traces.
We find that training with additional programmatic
LATTE-traces doesn’t bring more gains.

M: P Data format Size MathVista Percept. + Reason. Overall

— Direct
293K

31.1 34.9 42.0
0:1 P-traces 17.3 15.9 27.2
1:0 M-traces 34.9 41.6 47.2

1:0.1 +P-traces 29K 322K 33.9 40.1 44.0
1:0.25 +P-traces 73K 366K 38.3 42.1 46.3
1:0.5 +P-traces 147K 440K 36.7 39.7 45.5
1:1 +P-traces 293K 586K 31.0 36.2 43.2

Programmatically generated LATTE-traces can
help on a certain benchmark but not overall,
likely due to the worse quality of thoughts. We
experiment with a mixture of model-generated and
programmatic reasoning traces, with ratios ranging
from 1:0.1 to 1:1. We find that training with only
programmatic LATTE-traces results in large perfor-
mance drops (Table 5). Similarly, while adding pro-
grammatic LATTE-traces can bring gains on some
benchmark (e.g. MathVista), it fails to bring over-

all gains despite the increased data size (Table 5).
This is likely due to the model’s worse reasoning
capability learned from templated thoughts. See
more details in Appendix B.2 (Figure 8).

Overall, our experiments suggest that the quality
of perceptual information and reasoning are both
crucial to improving vision-language models’ per-
formance across diverse VQAs.

4.3 Additional ablations

Table 6: Ablations on LATTE’s inference setup. The
OCR tool greatly affects model’s performance, while the
query LLM tool doesn’t; and increasing the maximum
number of tool calls doesn’t help beyond 10.

Method Percept. P. + Reason. Overall
LATTE (max 10 calls) 51.7 43.8 47.8
max 5 calls 51.7 42.8 47.2
max 20 calls 51.6 43.6 47.6
no QUERYLM 52.1 43.5 47.8
OCR with easyocr 51.4 39.9 45.7

What matters in LATTE’s inference setup? In
addition to training data, we also perform ablations
on LATTE’s inference setups, including tool abla-
tions and tool call number ablations.

First, the tool ablations include (1) excluding
the QUERYLANGUAGEMODEL tool, and (2) us-
ing EasyOCR (JadedAI, 2025) instead of GPT for
OCR. We see that removing QUERYLANGUAGE-
MODEL leads to no difference in the model’s over-
all performance (Table 6), suggesting that QUERY-
LANGUAGEMODEL is not an important tool to
the VQA benchmarks in our evaluation. Never-
theless, by using EasyOCR for OCR we do see
a large drop in the model’s performance, espe-
cially on reasoning-intensive benchmarks such as
MMVet due to EasyOCR’s less accurate outputs
(Table 6). Still, LATTE is over 2% above the
vanilla instruction-tuned baseline on average across
all benchmarks.

Second, as we adopt multi-turn conversations
for all models with our method, we can vary the
number of tool calls at inference time. We set the
maximum number of tool calls to 10 by default and
experiment with 5 and 20 tool calls. Through this
experiment, we see that the model’s scores peak
at 10 maximum tool calls, suggesting that 10 tool
calls are sufficient in most cases (Table 6).
Do LATTE-traces improve stronger base mod-
els? We further ablate on the model backbone,
as new and stronger open-source vision-language
models come out. Our results using the latest

11211

VPD LLaVA-CoT LATTE

Q: How many people are
sitting on the bed?

Select from the following
choices.

Options: A. 3, , C. 2, D. 0
B. 1

BLINK
<SUMMARY> I will analyze the image to
determine the number of people sitting on
the bed by examining the visible details and
context. </SUMMARY>

<CAPTION> The image shows a person
standing on a balance board in a living room.
In the background,

</CAPTION>

<REASONING> To determine how many
people are sitting on the bed, I will focus on
the couch in the background.

 as
indicated by their positions and the visible
parts of their bodies. </REASONING>

there is a couch with two
people sitting on it.

The couch
appears to have two people sitting on it,

<CONCLUSION> C </CONCLUSION>

t1:

a1:

The image shows
two people, but only
one is sitting on the
bed.

Terminate(“B”)

t0: To determine how many people are
sitting on the bed, I need to analyze
the image.

a0: Localize(image-0, ["person"])

o0: [{'label': 'person', 'bbox': [0.0, 0.52,
0.37, 0.81], 'score': 0.73}, {'label':
'person-2', 'bbox': [0.16, 0.05, 0.94,
0.91], 'score': 0.8}]

To determine how many people
are sitting on the bed, I need to
analyze the image.

The objects are ['armchair',
'balance', 'couch', 'game', 'game
controller', 'girl', 'person', 'living
room','man',
'play','remote','scale','stand',
'video game', 'Wii', 'Wii controller',
'woman'].

The observation indicates the
presence of a 'couch' and 'living
room',

I will verify this visually.

suggesting that people
might be sitting on the couch.

The final answer is C.

Figure 7: Qualitative analysis. Example outputs of VPD, LLaVA-CoT vs. LATTE on BLINK.

Table 7: Ablations on LATTE’s model backbone.
LATTE-traces improve stronger base models too.

Model backbone Method Percept. P. + Reason. Overall

InternVL3-8B
Vanilla IT 51.5 45.1 46.7
LATTE 54.1 54.5 52.0

Qwen2.5VL-3B
Vanilla IT 54.3 49.6 50.8
LATTE 53.4 55.7 55.1

Qwen2.5VL-7B
Vanilla IT 53.7 52.5 52.8
LATTE 56.9 57.7 57.5

vision-language models – Qwen2.5VL and In-
ternVL3 – as the base models demonstrate that our
method improves upon vanilla instruction tuning
even with strong base models (Table 7).

4.4 Error Analysis

Where does LATTE perform better than the
distillation baselines? We find that LATTE per-
forms better in fine-grained perception tasks such
as the counting questions in BLINK, while VPD
and LLaVA-CoT tend to hallucinate and make per-
ceptual errors (Figure 7).

Table 8: LATTE’s Error Types on MMVet.

Error type Subtype %

Tool call
Format 3
Value 6

Tool result — 7

Model perception
Not using tools 6
Irrelevant tools 50

Model reasoning — 28

What errors does LATTE make? On MMVet,
we find that the model’s most frequent error hap-
pens when it falls back on its own perceptual ability
after deciding not to use tools or finding the vision
tools’ outputs irrelevant/not helpful for the question
(e. g. movie, arts, or medical questions that require
domain knowledge) (Table 8). These numbers sug-
gest that the model’s performance can be improved
by diversifying tools and questions in the training

data, and strengthening reasoning.

5 Conclusion

We propose to learn vision-language models to rea-
son with vision specialists. To learn such models,
we synthesize a novel large-scale dataset of multi-
modal reasoning traces grounded on perceptual
information. With this data, we fine-tune small
vision-language models and perform extensive ex-
periments. Across 6 benchmarks covering both
perception and reasoning, we demonstrate that
our model achieves significant gains over vanilla
instruction-tuned baselines and other distillation
methods in perception and reasoning tasks.

6 Limitations

First, our method requires customized implementa-
tions of the specialized vision tools. Second, rea-
soning with the vision specialists requires addi-
tional compute at inference time. Nevertheless, it
is becoming a common practice to increase model
performance by scaling up test time compute (Ope-
nAI, 2025; Muennighoff et al., 2025). Future work
can optimize and enhance the implementations of
vision specialists, especially as the computer vision
community continues to advance vision models.
Additionally, while we try to include the most im-
portant tools for general perception and reasoning,
other types of VQA e. g. knowledge-intensive ones
might benefit from additional tools as suggested in
our error analysis. Lastly, due to the limited gener-
alization of supervised finetuning and diversity of
the visual world, researchers might need to explore
training alteratives (e. g. reinforcement learning)
for better generalization or train new models with
different vision specialists for other applications
(e. g. web navigation) or for other domains (e. g.
medical question answering).

11212

7 Acknowledgement

Zixian Ma was partially funded by Sony for this
project. Zixian Ma conducted most of this work at
a Salesforce internship.

References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. Vqa: Visual question answering.
In Proceedings of the IEEE international conference
on computer vision, pages 2425–2433.

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hes-
sel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
Yonatan Bitton, Samir Gadre, Shiori Sagawa, Je-
nia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel
Ilharco, Mitchell Wortsman, and Ludwig Schmidt.
2023. Openflamingo: An open-source framework for
training large autoregressive vision-language models.
Preprint, arXiv:2308.01390.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, and 1 others. 2024. Deepseek llm:
Scaling open-source language models with longter-
mism. arXiv preprint arXiv:2401.02954.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang
Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,
Yu Qiao, Dahua Lin, and 1 others. 2024a. Are we
on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330.

Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao
Xu, and Wanxiang Che. 2024b. M 3 cot: A novel
benchmark for multi-domain multi-step multi-modal
chain-of-thought. arXiv preprint arXiv:2405.16473.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su,
Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo,
Tong Lu, Yu Qiao, and Jifeng Dai. 2023. Internvl:
Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale N Fung, and Steven Hoi.
2024. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Advances
in Neural Information Processing Systems, 36.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini,
and 1 others. 2024. Molmo and pixmo: Open weights
and open data for state-of-the-art multimodal models.
arXiv preprint arXiv:2409.17146.

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu
Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang

Zang, Pan Zhang, Jiaqi Wang, Dahua Lin, and Kai
Chen. 2024. Vlmevalkit: An open-source toolkit for
evaluating large multi-modality models. Preprint,
arXiv:2407.11691.

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu
Wang, Xudong Lin, Dan Roth, Noah A Smith, Wei-
Chiu Ma, and Ranjay Krishna. 2024. Blink: Multi-
modal large language models can see but not perceive.
arXiv preprint arXiv:2404.12390.

Melvyn A Goodale and A David Milner. 1992. Separate
visual pathways for perception and action. Trends in
neurosciences, 15(1):20–25.

Tanmay Gupta and Aniruddha Kembhavi. 2022. Vi-
sual programming: Compositional visual reasoning
without training. ArXiv, abs/2211.11559.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Os-
tendorf, Luke Zettlemoyer, Noah A Smith, and Ran-
jay Krishna. 2024a. Visual sketchpad: Sketching as
a visual chain of thought for multimodal language
models. Preprint, arXiv:2406.09403.

Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy
Viswanathan, Kenji Hata, Enming Luo, Ranjay Kr-
ishna, and Ariel Fuxman. 2024b. Visual program
distillation: Distilling tools and programmatic rea-
soning into vision-language models. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9590–9601.

JadedAI. 2025. Easyocr.

Dongfu Jiang, Xuan He, Huaye Zeng, Con Wei, Max
Ku, Qian Liu, and Wenhu Chen. 2024. Mantis: Inter-
leaved multi-image instruction tuning. arXiv preprint
arXiv:2405.01483.

Georg B Keller, Tobias Bonhoeffer, and Mark Hübener.
2012. Sensorimotor mismatch signals in primary
visual cortex of the behaving mouse. Neuron,
74(5):809–815.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, and 1 others. 2024. T\" ulu 3: Pushing
frontiers in open language model post-training. arXiv
preprint arXiv:2411.15124.

Hugo Laurençon, Léo Tronchon, Matthieu Cord,
and Victor Sanh. 2024. What matters when
building vision-language models? Preprint,
arXiv:2405.02246.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang,
Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. 2024. Llava-
onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui
Wang, Ruimao Zhang, and Ying Shan. 2023a. Seed-
bench-2: Benchmarking multimodal large language
models. arXiv preprint arXiv:2311.17092.

11213

https://arxiv.org/abs/2308.01390
https://arxiv.org/abs/2308.01390
https://arxiv.org/abs/2407.11691
https://arxiv.org/abs/2407.11691
https://arxiv.org/abs/2406.09403
https://arxiv.org/abs/2406.09403
https://arxiv.org/abs/2406.09403
https://github.com/JaidedAI/EasyOCR
https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2405.02246

Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun
Qian, Jian Yang, Chengjie Wang, Jilin Li, and Feiyue
Huang. 2019. Dsfd: Dual shot face detector. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023b. BLIP-2: bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In ICML.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In ICML.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning.

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng
Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang Su,
Jun Zhu, Lei Zhang, Jianfeng Gao, and Chunyuan Li.
2023c. Llava-plus: Learning to use tools for creating
multimodal agents. Preprint, arXiv:2311.05437.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng
Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, and 1 others. 2023d.
Grounding dino: Marrying dino with grounded pre-
training for open-set object detection. arXiv preprint
arXiv:2303.05499.

Jiasen Lu, Christopher Clark, Sangho Lee, Zichen
Zhang, Savya Khosla, Ryan Marten, Derek Hoiem,
and Aniruddha Kembhavi. 2024a. Unified-io 2: Scal-
ing autoregressive multimodal models with vision
language audio and action. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 26439–26455.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei
Chang, Michel Galley, and Jianfeng Gao. 2024b.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In Inter-
national Conference on Learning Representations
(ICLR).

Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta,
and Ranjay Krishna. 2024. m&m’s: A benchmark
to evaluate tool-use for multi-step multi-modal tasks.
EECV 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. Preprint, arXiv:2501.19393.

OpenAI. 2025. Openai o3-mini.

Ji Qi, Ming Ding, Weihan Wang, Yushi Bai, Qingsong
Lv, Wenyi Hong, Bin Xu, Lei Hou, Juanzi Li, Yuxiao
Dong, and Jie Tang. 2024. Cogcom: Train large
vision-language models diving into details through
chain of manipulations. Preprint, arXiv:2402.04236.

Alec Radford, Jong Wook Kim, Chris Hallacy,
A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In ICML.

Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif
Ekbal, and Pushpak Bhattacharyya. 2022. Scienceqa:
A novel resource for question answering on scholarly
articles. International Journal on Digital Libraries,
23(3):289–301.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.
A-okvqa: A benchmark for visual question answering
using world knowledge. Preprint, arXiv:2206.01718.

Hao Shao, Shengju Qian, Han Xiao, Guanglu Song,
Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng
Li. 2024. Visual cot: Unleashing chain-of-thought
reasoning in multi-modal language models. Preprint,
arXiv:2403.16999.

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma,
Yann LeCun, and Saining Xie. 2024. Eyes wide shut?
exploring the visual shortcomings of multimodal llms.
Preprint, arXiv:2401.06209.

Penghao Wu and Saining Xie. 2024. V?: Guided visual
search as a core mechanism in multimodal llms. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13084–
13094.

Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao
Sun, and Li Yuan. 2025. Llava-cot: Let vision
language models reason step-by-step. Preprint,
arXiv:2411.10440.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao,
Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao.
2024. Depth anything v2. arXiv:2406.09414.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2024. Mm-vet: Evaluating large multimodal
models for integrated capabilities. In International
conference on machine learning. PMLR.

Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel,
Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali Farhadi,
Aniruddha Kembhavi, and Ranjay Krishna. 2024a.
Task me anything. arXiv preprint arXiv:2406.11775.

11214

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2311.05437
https://arxiv.org/abs/2311.05437
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://openai.com/index/openai-o3-mini/
https://arxiv.org/abs/2402.04236
https://arxiv.org/abs/2402.04236
https://arxiv.org/abs/2402.04236
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2403.16999
https://arxiv.org/abs/2403.16999
https://arxiv.org/abs/2401.06209
https://arxiv.org/abs/2401.06209
https://arxiv.org/abs/2411.10440
https://arxiv.org/abs/2411.10440
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

Jieyu Zhang, Le Xue, Linxin Song, Jun Wang, Weikai
Huang, Manli Shu, An Yan, Zixian Ma, Juan Carlos
Niebles, Silvio Savarese, Caiming Xiong, Zeyuan
Chen, Ranjay Krishna, and Ran Xu. 2024b. Provi-
sion: Programmatically scaling vision-centric instruc-
tion data for multimodal language models. Preprint.

Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li,
Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin, Tong
Luo, Yaqian Li, Shilong Liu, and 1 others. 2023.
Recognize anything: A strong image tagging model.
arXiv preprint arXiv:2306.03514.

11215

A Dataset and model comparison

We summarize the differences between our work
and the other multi-modal CoT datasets includ-
ing ScienceQA, M3COT, Visual CoT, VPD, V*,
LLaVa-Plus, LLaVA-CoT, CogCoM in Table 9.

B Additional results

B.1 Additional qualitative examples
We present additional successful outputs of
LATTE across both single-image and multi-image
examples in Figures 10 and 11 as well as failure
cases in Figure 12.

B.2 Qualitative error analysis
Why does adding programmatic LATTE-trace
help on MathVista but hurt MMVet perfor-
mance? We observe that adding programmatic
LATTE-trace can result in up to 3% gain on Math-
Vista and 9% drop on MMVet. Upon analysis,
we discover that programmatic LATTE-trace im-
proves the general VQA split in MathVista the
most by almost 9%. This is because LOCALIZE is
helpful for these questions, and our programmatic
data includes many LOCALIZE instances that al-
low LATTE to learn to use it effectively (Figure 8).
Conversely, programmatic data hurts LATTE’s per-
formance on MMVet most likely due to the model’s
worse reasoning ability as a result of the simple and
rigid thoughts generated with templates in our pro-
grammatic data (Figure 8).

B.3 Additional quantitative results
We report additional quantitative results of data ab-
lations on Mantis-CLIP in Table 14, where we see
the same trends we observe with Mantis-SigLIP:
the smallest dataset of 293K LATTE-trace exam-
ples leads to the highest absolute performance
and gain compared to other datasets with a mix
of LATTE-trace, CoT, and/or Direct examples at
larger scales.
Visual-CoT Performance. We experimentally
compare LATTE to Visual-CoT. We finetune
Mantis-LLaVA-Pretrained (LLama3+SigLIP) with
Visual CoT and compare its performance with
LATTE (Table 10). We use 413K examples where
the bounding boxes are valid and within the image.
We find that the models trained with Visual CoT
data achieve an average accuracy of 39.3% (much
lower as Visual COT’s data are mostly Text/Doc
images and contain only bboxes without natural
language thoughts) on the benchmarks.

Performance gain with LATTE inference. We
compare the model’s performance when trained
with a random mix of 293K LATTE-traces and
Direct data (1:1) and tested with LATTE format vs.
Direct prompt. We find that the model achieves an
average of 50.3% when tested following LATTE
format vs. 48% with the Direct prompt (Table 11),
suggesting that reasoning with vision specialists at
inference time improves model’s performance.
Hyperparameter tuning Additional gains can
be achieved by tuning the vision encoder, train-
ing with a smaller learning rate or for more
epochs. Last but not least, our hyperparameter tun-
ing experiments with LLaVa-OV-Stage1.5 suggest
that we can further improve the model’s absolute
performance by tuning the vision encoder, train-
ing with a smaller learning rate and/or for longer
epochs (Figure 9).

C Model-based data generation

C.1 Generation prompt

We present the full data generation prompt used in
our model-based data generation pipeline in List-
ing 2.

C.2 Dataset statistics

We present a table with detailed statistics of the
LATTE-trace 293K dataset in Table 15.

D Action implementation

Our Python implementation of all actions can be
found in Listing 1.

E Programmatic data generation

E.1 QA and action templates

We present the question-answer and corresponding
action templates used in our programatic data gen-
eration in Table 16. We design 16 different question
templates for both single-image and multi-image
examples that cover 5 capabilities: attribute recog-
nition, counting, 2D and 3D spatial understanding,
and multi-image understanding.

E.2 Thought templates

We also present the five thought templates in List-
ing 3 we define for each action, where one of them
is randomly sampled and used during generation.

11216

Table 9: Dataset and model comparison.

Paper
Dataset Model

Training set size Data
source
number

Tool number Multi-
image
questions

Multi-
modal
reasoning
chain*

Inference-
time tool-
use

Multi-
image
support

Science QA (Saikh
et al., 2022)

12.6K 1 ✗ ✗ ✗ ✗ ✗

M3CoT (Chen et al.,
2024b)

7.8K 2 ✗ ✗ ✗ ✗ ✗

VPD (Hu et al.,
2024b)

90K 6 6 ✗ ✗ ✗ ✗

LLaVA-CoT (Xu
et al., 2025)

100K 10 ✗ ✗ ✗ ✗ ✗

V* (Wu and Xie,
2024)

206K 3 1 ✗ ✗ ✗ ✓

LLaVA-Plus (Liu
et al., 2023c)

158K 6 12 (or 19 counting
compositional ones)

✗ ✗ ✓ ✗

VisualCoT (Shao
et al., 2024)

98K (+340K with
bboxes but no
thoughts)

12 2 ✗ ✗ ✓ ✓

CogCoM (Qi et al.,
2024)

70K 3 6 ✗ ✗ ✓ ✓

LATTE 293K (+over 1M
program gener-
ated reasoning
traces)

31 15 tools (see Sec-
tion 2)

✓ ✓ ✓ ✓

*The reasoning chain contains not just texts but also images.

Table 10: VisCoT results

Method A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg

VPD-LLaVA 80.7 43.9 35.1 40.8 40.1 40.6 61.3 45.1 48.5
VisCoT-LLaVA 67.9 39.4 12.9 36.1 36.0 26.7 61.3 34.0 39.3

Table 11: LATTE vs. Direct inference

Test prompt A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg

LATTE 82.1 45.9 37.0 39.8 43.4 46.7 66.0 41.6 50.3
Direct 81.9 46.6 31.2 42.1 39.1 35.0 68.3 40.2 48.0

E.3 Example action distribution

We plot example distributions of all actions before
and after adding programmatic LATTE-trace 73K
data in Figure 13.

F Additional training details

We report additional training hyperparameters for
Mantis models and LLaVA-OV in Table 12 and 13
respectively.

Table 12: Additional training hyperparameters for
Mantis-SigLIP and Mantis-CLIP.

Name Value

bf16 TRUE
tf32 True
per_device_train_batch_size 1
per_device_eval_batch_size 1
gradient_accumulation_steps 16
weight_decay 0
warmup_ratio 0.03
lr_scheduler_type cosine
lora_enabled FALSE
qlora_enabled FALSE
max_seq_len 8192

11217

t0: To determine the answer, I need to identify the number of
dirtbikes and small green metallic cars in the image.

a0:

t1:

a1: Terminate()

Localize(image-0, ["dirtbike", "small green metallic car"])

There are three dirtbikes and one small green metallic car.
Therefore, the number of dirtbikes is not less than the number
of small green metallic cars.

“B”

o0: [{'label': 'dirtbike', 'bbox': [0.53, 0.2, 0.72, 0.47], 'score': 0.66},

{'label': 'dirtbike-2', 'bbox': [0.41, 0.24, 0.47, 0.36], 'score': 0.44},

{'label': 'dirtbike-3', 'bbox': [0.52, 0.45, 0.67, 0.6], 'score': 0.5},

{'label': 'small green metallic car', 'bbox': [0.5, 0.25, 0.56, 0.34],
'score': 0.61}]

t0: I need to extract the text from the image to find the last equation.

a0: OCR(image-0)

o0: The texts in the image are: 1. 5 + a = 7...10. 34 + y = 39

t1: The last equation in the image is 34 + y = 39.

a1: Terminate()
Therefore, y is 39.

“39”

t1: The last equation is '34 + y = 39'. To find
the value of y, I need to solve this equation.

a1: Calculate(“39 - 34”)

o1: 5

t0: To determine the number of dirtbikes
and small green metallic cars, I need to
analyze the image.

a0: GetObjects(image-0)

o0: ['ambulance', 'bicycle', 'bus', 'car', 'table',
'floor', 'lego', 'miniature', 'motorbike',
'motorcycle', 'toy', 'toy car']

LATTE trained with M-traces + P-traces

Q: Is the number of dirtbikes
less than the number of
small green metallic cars? 
A. Yes; B. No

Q: What is y in the last
equation? A: 5

MathVista

MMVet

t1: The observation doesn't clearly specify
the number of dirtbikes and small green
metallic cars. I need to visually inspect the
image to count them.

a1: Terminate(“A”)

Figure 8: Qualitative analysis. Examples of LATTE success and failure after adding programmatic LATTE-traces.

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Delta in Avg. Accuracy (%)

LR=5e-5

LR=5e-6

Tune vision

Tune vision,
 2 Epochs

H
yp

er
pa

ra
m

 c
ha

ng
e

Avg. Accuracy Change Compared to Default Hyperparams
 (LR=1e-5, Tune vision=No, Epoch=1)

Figure 9: Hyperparameter ablations. Additional gains
can be achieved with a smaller learning rate for the
language model, tuning the vision encoder, and training
for more epochs.

Table 13: Additional training hyperparameters for
LLaVA-OV.

Name Value

bf16 TRUE
tf32 True
mm_vision_tower_lr 2.00E-06
mm_projector_type mlp2x_gelu
mm_vision_select_layer -2
image_aspect_ratio anyres_max_9
image_grid_pinpoints "(1x1),...,(6x6)"
mm_patch_merge_type spatial_unpad
per_device_train_batch_size 1
per_device_eval_batch_size 1
gradient_accumulation_steps 16
weight_decay 0
warmup_ratio 0.03
lr_scheduler_type cosine
model_max_length 8192

G Additional evaluation details

We present additional inference and evaluation
details in Table 17 and the LLM judge prompts
used for MMVet and MathVista from VLMEvalKit

(Duan et al., 2024) in Listings 4 and 5.

H License

The datasets and models are for research purposes
only in support of an academic paper. All artifacts
from this paper are licensed under the noncommer-
cial license CC-BY-NC 4.0. Some of our models
were built with Meta Llama 3, which is licensed un-
der the Meta Llama 3 Community License, Copy-
right © Meta Platforms, Inc. All Rights Reserved.

11218

Table 14: Additional Results on Model-generated data ablations with Mantis-CLIP. We observe similar results
of data ablations on Mantis-CLIP as on Mantis-SigLIP.

Data source Final data format Size Model A-OKVQA BLINK MathVista MMMU MMStar MMVet MMVP RealWorldQA Avg Delta

All datasets

Direct
293K

Mantis-CLIP 80.7 45.8 33.1 42.2 36.7 28.9 62.7 52.3 47.8
LATTE-trace LATTE 81.1 49.6 36.6 42.8 40.8 45.2 63.3 51.1 51.3 3.5

Direct
580K

Mantis-CLIP 82.0 47.2 31.5 40.6 38.3 31.4 63.3 49.0 47.9
LATTE-trace+ CoT LATTE 82.6 47.7 35.9 38.3 39.6 43.4 61.0 51.1 49.9 2.0

Direct
815K

Mantis-CLIP 81.0 47.3 32.9 47.3 38.1 29.1 63.0 51.0 48.7
LATTE-trace+ CoT+ Direct LATTE 81.3 43.1 32.7 48.0 37.7 31.0 58.7 47.6 47.5 -1.2

LATTE-useful datasets
Direct

566K
Mantis-CLIP 79.1 44.1 30.9 39.4 35.5 30.1 62.7 49.8 46.5

LATTE-trace+ CoT+ Direct LATTE 80.7 41.6 31.5 41.0 38.2 36.1 59.0 48.2 47.0 0.6

Q: Is the trash can empty or full?

A: Empty 

Q: Given the following images of art paintings, use the first image as the reference image, and
determine which one of the second or the third image shares the same style as the reference image? 
Select from the following choices. 
A. the second image 
B. the third image

Q: You are a judge in a photography competition, and now you are given the four images. Please
examine the details and tell which one of them is most likely to be a real photograph. 
Select from the following choices. 

B. the second image, C. the third imageA. the first image,

t0: The image shows a trash bin with a hand placing a bag inside. I need to determine if the trash bin is
empty or full.

a0: GetObjects(image-0)

t1: The observation indicates the presence of a bag and a bin, but it doesn't specify the contents of the
bin. Based on the image, the trash bin appears to be empty as there is no visible trash inside.

a1: Terminate(“ ”)

o0: ['bag', 'bin', 'box', 'container', 'dish washer', 'drawer', 'food', 'home appliance', 'person', 'kitchen',
'kitchen counter', 'kitchen sink', 'lid', 'package', 'plastic', 'sink', 'stand', 'woman']

empty

t0: To determine which image shares the same style as the reference image, I need to analyze the
styles of the images.

a0: GetImageToImagesSimilarity("image-0", ["image-1", "image-2"])

t1: The similarity scores indicate that image-2 is more similar to the reference image than image-1.
Therefore, the third image shares the same style as the reference image.

a1: Terminate(“ ”)

o0: {'best_image': 'image-2', 'best_image_index': 1, 'similarity': [0.49, 0.65]}

B

image-0 image-1

image-0 image-1

image-2 image-3

image-2

Q: Compare the average kinetic energies of the particles in each sample. Which sample has the
higher temperature? Sample A or sample B? 
A: Sample A

t0: To determine which sample has a higher temperature, I need to compare the average kinetic
energies of the particles in each sample using the formula: KE = 0.5 * m * v^2, where m is the mass
and v is the velocity. Since both samples have the same number of particles, the sample with the
higher average kinetic energy will have the higher temperature.

a0: Calculate(“0.5 * 44 * 830**2”)

t1: Now, I need to calculate the average kinetic energy for Sample B to compare.

a1: Calculate(“0.5 * 36 * 690**2”)

t2: The average kinetic energy for Sample A is 15,155,800, and for Sample B is 8,569,800. Since
Sample A has a higher average kinetic energy, it has the higher temperature.

a2: Terminate(“ ”)

o0: 15155800.0

o1: 8569800.0

Sample A

t0: To determine which image is most likely a real photograph, I need to analyze the content and
context of each image.

a0: GetObjects(“image-0”)

t1: The first image shows a person playing a game, likely a sport, on a field. This suggests it is a real
photograph. I will now check the other images.

a1: GetObjects(“image-1”)

t2: The second image shows a person playing in water, likely at a beach or lake, which is also a real
photograph. I will now check the third image.

a2: GetObjects(“image-2”)

t3: The third image shows a person swimming in water, which is also a real photograph. I will now
check the fourth image.

a3: GetObjects(“image-3”)

t4: All four images depict real-life scenes with people engaging in activities like playing sports or
swimming. However, the first image shows a person playing a sport on a field, which is a more typical
setting for a real photograph compared to the others.

a4: Terminate(“ ”)

o0: ['baseball hat', 'CD', 'dive', 'field', 'floor', 'frisbee', 'game', 'grass', 'person', 'lush', 'man', 'play', 'rugby
player', 'tackle']

o1: ['ball', 'beach ball', 'frisbee', 'girl', 'jump', 'lake', 'sea', 'play', 'splash', 'throw', 'water', 'woman', 'yellow']

o2: ['swimwear', 'bikini', 'bikini top', 'blue', 'girl', 'jump', 'sea', 'water', 'woman']

o3:['swimwear', 'catch', 'CD', 'frisbee', 'girl', 'jump', 'lake', 'pink', 'play', 'throw', 'water', 'woman']

A

t0: The image shows a pie, likely a strawberry pie. I need to provide a general recipe for cooking a pie.

a0: QueryLanguageModel(“How to cook a strawberry pie?”)

t1: I have enough information to provide a general recipe for cooking a strawberry pie.

a1: Terminate(“

”)

o0: Cooking a strawberry pie is a delightful process, and here's a simple recipe to guide you:
Ingredients: For the Pie Crust:\n- 2 ½ cups all-purpose flour\n- 1 cup (2 sticks) unsalted butter, ... ¼
teaspoon salt\n- 2 tablespoons unsalted butter, cut into small pieces...

Cooking a strawberry pie involves making a pie crust and filling with strawberries and
sugar. Ingredients: For the Pie Crust:\n- 2 ½ cups all-purpose flour\n- 1 cup (2 sticks) unsalted
butter, cold and cut into small pieces...For the Filling:- 5 cups fresh strawberries, hulled and
halved\n- ¾ cup granulated sugar\n-...9. **Fill the Pie:** Pour the filling into the pie crust

Q: How to cook this dish?

A: This dish is called "Strawberry Rhubarb Pie". This strawberry rhubarb pie is a favorite springtime
dessert in our house...Ingredients: 1 cup white sugar, ½ cup all-purpose flour...2 tablespoons white
sugar...Step 1: Preheat oven to 400 degrees F (200 degrees C)...Step 8: Bake at 400 degrees F (200
degrees C), for 35 to 40 minutes, or until bubbly and brown. Cool on rack.     

Figure 10: We present additional successful examples of LATTE.

11219

Q: How many yellow stars are on a colorful bridge?

A. 4, B. 3, D. 1C. 2,

Q: What are all the Chinese scene text in the image?

A: 马曳<AND>著<AND>每个人都有自己的困境<AND>但总会被光亮吸引<AND>身不由己地慢慢靠近

t0: To determine the number of yellow stars on the bridge, I need to analyze the image for stars.

a0: GetObjects(image-0)

t1: The object detection did not identify yellow stars specifically. I need to visually inspect the image
to count the yellow stars on the bridge.

a1: N/A

t2: I need to visually inspect the image to count the yellow stars on the bridge.

a2: LocalizeObjects(image-0, “star”)

t3: The image shows two stars detected on the bridge. This matches option C.

a3: Terminate(“ ”)

o0: ['building', 'car', 'christmas light', 'city', 'city street', 'light', 'night', 'night view', 'tower', 'road', 'street
scene']

o1: N/A

o2: [{'label': 'star', 'bbox': [0.84, 0.56, 0.87, 0.6], 'score': 0.56},

{'label': 'star-2', 'bbox': [0.53, 0.63, 0.56, 0.66], 'score': 0.5}]}

C

Q: Can you give a short introduction to this painting? 
A: The Arnolfini Portrait (or The Arnolfini Wedding, The Arnolfini Marriage, the Portrait of Giovanni
Arnolfini and his Wife, or other titles) is a 1434 oil painting on oak panel by the Early Netherlandish
painter Jan van Eyck. It forms a full-length double portrait, believed to depict the Italian merchant
Giovanni di Nicolao Arnolfini and his wife, presumably in their residence at the Flemish city of Bruges.

t0: I can provide information about the painting based on general knowledge.

a0: QueryKnowledgeBase(“The Arnolfini Portrait”)

o0:

t1: I have enough information to provide a short introduction to the painting.

a1: Terminate(“

”)

“The Arnolfini Portrait (or The Arnolfini Wedding) is an oil painting on oak panel by the Early
Netherlandish painter Jan van Eyck, dated 1434 and now in the National Gallery, London. It is a full-
length double portrait, believed to depict the Italian merchant Giovanni di Nicolao Arnolfini and his
wife, presumably in their residence at the Flemish city of Bruges. (url: https://en.wikipedia.org/wiki/
Arnolfini_Portrait)

The Arnolfini Portrait is a full-length double portrait by Jan van Eyck, depicting
Giovanni di Nicolao Arnolfini and his wife in their residence at Bruges. It is an oil painting on oak
panel, dated 1434, and is now in the National Gallery, London

Q: I am getting two margherita pizza and one calzone. How much should I pay in total? 
A: 25.80

t0: I need to extract the prices of the margherita pizza and calzone from the image to calculate the
total cost.

a0: OCR(image-0)

t1: The price of a margherita pizza is 5.90€, and the price of a calzone is 14.00€. I need to calculate
the total cost for two margherita pizzas and one calzone.

a1: Calculate(“2 * 5.90 + 14.00”)

t2: The total cost for two margherita pizzas and one calzone is 25.80€.

a2: Terminate(“ ”)

o0: The text on the blackboard reads:\n\n**PIZZA**\n\n- Margherita 5.90€\n- Capricciosa
8.50€...Funghi 6.90€\n\n**Calzone 14,00**\n\n**WI-FI FREE inside**'

o1: 25.8

25.80€

t0: I need to extract the text from the image to identify the Chinese scene text.

a0: OCR(image-0)

t1: The extracted text provides the Chinese scene text from the image.

a1: Terminate(“ ”)

o0: The text in the image is:\n\n马叙 —— 著 \n细细密密的光 \n\n每个人都有自己的困境， \n却总会被光亮
吸引，身不由己地慢慢靠近

细细密密的光\n每个人都有自己的困境，\n却总会被光亮吸引，身不由己地慢慢靠近。

t0: To determine if the boy can reach the highest book, I need to analyze the image for the boy's
height and the height of the bookshelf.

a0: LocalizeObjects(image-0, ["boy", "bookshelf"])

t1: The boy's height is below the bookshelf, indicating he cannot

reach the highest book.

a1: Terminate(“ ”)

o0: [{'label': 'boy', 'bbox': [0.07, 0.48, 0.18, 0.95], 'score': 0.89},

{'label': 'bookshelf', 'bbox': [0.13, 0.01, 0.32, 0.72], 'score': 0.72}]

B

Q: Can the boy reach the highest book?

(A) Yes, (B) No    

t0: I need to extract the prices of the Merlot and Cabernet from the image to calculate the total price.

a0: OCR(image-0)

t1: The prices for the Merlot and Cabernet are $139.99 and $109.99, respectively. I can now calculate
the total price.

a1: Calculate(“139.99 + 109.99”)

t2: The total price for a bottle of Merlot and a bottle of Cabernet is $249.98.

a2: Terminate(“ ”)

o0: Here are the texts from the image: NORTHSTAR MERLOT COLUMBIA VALLEY 3.0 L
139.99...CHATEAU ST MICHELLE COLD CREEK CABERNET COLUMBIA VALLEY 3.0 L **109.99** ...

o1: 249.98

$249.98

Q: What is the total price for a bottle of Merlot and a bottle of Cabernet shown in the image?

A: $249.98     

Figure 11: We present additional successful examples of LATTE.

11220

Q: Who created this image?

 B. EDVARD MUNCH, C. EDGAR DEGAS, D. ANDY WARHOLA. PAUL CÉZANN,

Q: Which type of eggs are in the corner of the picture?

A. Quail eggs, B. Chicken eggs

t0: To determine the creator of the artwork in image-0, I need to analyze its style and characteristics.

a0: QueryLanguageModel("Who created the painting with a dark, expressive style often associated
with emotional intensity?")

t1: Based on the description of a dark, expressive style often associated with emotional intensity,
Edvard Munch is the most likely creator.

a1: Terminate(“ ”)

o0: The painting style you're describing sounds like it could be associated with several artists, but
one of the most prominent figures known for a dark, expressive style and emotional intensity is
Edvard Munch. His famous painting "The Scream" epitomizes such characteristics...'}

B

Q: The picture shows the microscopy of Mr Tan's gastric tumour. Which of the following statements is
CORRECT?

A. The findings show an adenoma

B. The findings show a squamous cell carcinoma

D. The findings show diffuse signet ring cell adenocarcinoma the Flemish city of Bruges.
C. The findings show intestinal type adenocarcinoma

Q: Is the wind blowing the flag?

A. Yes, B. No

t0: To determine if the wind is blowing the flag, I need to analyze the image for signs of movement or
distortion in the flag.

a0: GetObjects(image-0)

t1: The presence of 'wind' and 'wave' in the detected objects suggests that the flag is indeed being
blown by the wind.

a1: Terminate(“ ”)

o0: ['blue', 'flag', 'flag pole', 'fly', 'mast', 'pole', 'sky', 'wave', 'wind']}

A

t0: To determine the type of eggs in the corner of the image, I need to analyze the visual characteristics
of the eggs.

a0: GetObjects(image-0)

t1: The object detection did not identify the eggs specifically. However, based on the visual
characteristics of the eggs in the image, they appear to be quail eggs due to their small size.

a1: Terminate(“ ”)

o0: ['bakery', 'bread', 'butter', 'table', 'dip', 'dough', 'flour', 'food', 'hummus', 'pastry', 'platter', 'tray', 'type']

A

t0: To determine the angle of the image, I need to analyze the perspective and orientation of the snake.

a0: GetObjects(image-0)

t1: The image shows a snake from a side view, as the snake's body is visible from the side rather than
directly facing the camera.

a1: Terminate(“ ”)

o0: ['branch', 'green', 'log', 'reptile', 'sit', 'snake', 'stool', 'tail', 'tree', 'tree branch', 'tree trunk', 'twig']

B

Q: From which angle is this image taken?

, B. Side    A. Front

t0: To determine the correct statement, I need to analyze the microscopic features in the image.

a0: QueryLanguageModel(“What are the microscopic features of adenoma, squamous cell
carcinoma, intestinal type adenocarcinoma, and diffuse signet ring cell adenocarcinoma?”)

o0:

t1: The image shows a gastric tumour with specific architectural and cellular features. Based on the
options, diffuse signet ring cell adenocarcinoma is known for its distinct signet ring cells, which may
be present in the image.

a1: Terminate(“ ”)

“The microscopic features of the mentioned conditions are distinct and reflective of their
pathological origins: 1. **Adenoma**: - **Architectural Features**: Typically show glandular
structures with some degree of dysplasia...3. **Intestinal Type Adenocarcinoma**: - **Architectural
Features**: Gland-forming neoplasm with varying degrees of differentiation...'})

D

t0:To determine the type and size of the image formed, we need to analyze the position of the object
relative to the focal length.", "actions": [{"name": "", "arguments": {"query": ""}}]}

a0: QueryLanguageModel(“What type of image is formed when an object is placed at a distance of
1.5f from a converging lens of focal length f?”)

t1: The image is real and inverted, and the magnification indicates that the image size is larger than
the object.

a1: Terminate(“ ”)

o0: When an object is placed at a distance of 1.5 times the focal length (1.5f) from a converging lens,
the lens forms a real, inverted, and magnified image...Additionally, to find the magnification \\(m \\),
we use:\n\n\\[\nm = \\frac{v}{u} = \\frac{\\frac{3f}{5}}{1.'}

A

Q: An object is placed at a distance of 1.5f from a converging lens of focal length f, as shown. What
type of image is formed and what is its size relative to the object? Type/Size

A. Virtual/Larger 
B. Virtual/Same size 
C. Real/Smaller 
D. Real/Larger    

Figure 12: We present additional failure cases of LATTE.

11221

Table 15: Detailed statistics of the LATTE-trace 293K dataset.

Original Dataset Subset Instance # Max Image # Avg Image # Max Turn # Avg Turn #

Cauldron

ai2d 694 2 1 6 2
aokvqa 6322 5 1.1 7 2.1
chartqa 4726 2 1 10 2.1
cocoqa 13289 3 1.1 4 2
dvqa 2158 2 1 7 2.5
iconqa 3791 3 1.1 5 2.2
infographic_vqa 3822 3 1 9 2.3
mimic_cgd 6899 6 2.1 7 2.8
nlvr2 9716 4 2.1 6 2.5
ocrvqa 22991 2 1 7 2
scienceqa 850 2 1 6 2.3
st_vqa 11322 3 1 8 2
tabmwp 14548 1 1 10 2.5
tallyqa 16171 3 1.4 5 2.1
textvqa 15475 5 1 6 2.1
visual7w 4773 3 1.1 5 2.1
vqarad 115 2 1 4 2.2
vqav2 13394 5 1.2 6 2.1
vsr 1864 2 1.2 4 2.1

Mantis

birds-to-words 742 4 2 5 2.7
coinstruct 31773 8 2.3 8 2.2
contrastive_caption 4296 8 3.6 6 2
dreamsim 1738 3 3 3 2
iconqa 6660 7 2.6 6 2.2
imagecode 559 18 10.1 10 3.1
lrv_multi 3401 9 3.3 6 2.2
multi_vqa 2089 7 3.8 8 2.6
nlvr2 5436 4 2 5 2.5
spot-the-diff 2591 5 2.8 8 3
nextqa 3057 15 8.2 9 2.3
llava_665k_multi 77843 11 2.2 10 2.1

Total 293105 18 2.2 10 2.3

Table 16: Templates for programmatic data generation.

of input images Capabilities Question Template Action Template

1

Counting
How many {object} are there?

LocalizeObjects

Among {objects}, which is the most frequent object?
Among {objects}, which object appears the least?

Counting, Attribute recognition How many {attribute} {object} are there?

2D spatial reasoning

Among {objects}, which is on the most left side?
Among {objects}, which is on the most right side?
Among {objects}, which is on the most top side?
Among {objects}, which is on the most bottom side?

3D spatial reasoning Which of {objects} is closer? LocalizeObjects, EstimateRegionDepth x2
OR, EstimateObjectDepth x2Which of {objects} is farther?

2-3

Multi-image understanding Which image has {object}?

LocalizeObjects x N

Multi-image understanding, Counting How many {object} are in in these images?
Multi-image understanding, Counting Which image has most {object}?
Multi-image understanding, Counting Which image has least {object}?
Multi-image understanding, Attribute recognition Which image has {attribute} {object}?
Multi-image understanding, Attribute recognition, Counting How many {attribute} {object} in these images?

Table 17: Additional inference and evaluation details.

Stage Name Value

Inference

do_sample FALSE
temperature 0
max_new_tokens 2000
max_consecutive_auto_reply 10

Evaluation

llm judge for multiple choice & yes/no questions gpt-3.5-turbo-0125
llm judge for short answer questions (i.e. MMVet, MathVista) gpt-4-1106-preview
llm judge max_new_tokens 2048
llm judge retry 5

11222

Figure 13: Action distribution of model-generated data vs. model and program data mixtures.

11223

1 class BaseAction:
2 """
3 This is the Action class for agent to use.
4 Using this Action class to wrap APIs, tools, models as an Action of an agent
5 """
6

7 def __init__(
8 self,
9 id: int,

10 description: str = "",
11 args_spec: dict = {},
12 rets_spec: dict = {},
13 examples: List = []
14) -> None:
15 """
16 the agent action should be connected with data and env
17 Args:
18 id: the id of the action
19 description: the description of the action
20 args_spec: the specification of the arguments
21 rets_spec: the specification of the returns
22 examples: a list of examples of the action
23 """
24 self.name = self.__class__.__name__
25 self.id = id
26 self.description = description
27 self.args_spec = args_spec
28 self.rets_spec = rets_spec
29 self.examples = examples
30 self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
31

32 def __call__(self, **kwargs) -> str:
33 """
34 implement the Action as
35 """
36 raise NotImplementedError
37

38

39 class OCR(BaseAction):
40 def __init__(self, id) -> None:
41 description = "Extract texts from an image or return an empty string if no text is in the

image. Note that the texts extracted may be incorrect or in the wrong order. It should be used
as a reference only."

42 args_spec = {"image": "the image to extract texts from."}
43 rets_spec = {"text": "the texts extracted from the image."}
44 examples = [{"name": "OCR", "arguments": {"image": "image-0"}}]
45

46 super().__init__(
47 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
48)
49

50 def __call__(self, image, tool_version=LATEST_GPT_MODEL_ID):
51 if tool_version == "easyocr":
52 import easyocr
53 import io
54 reader = easyocr.Reader(["en"]) # Load the OCR model into memory
55 image = image_processing(image)
56 if isinstance(image, str):
57 # If image is a path, use it directly
58 image_path_or_bytes = (
59 image if os.path.exists(image) else get_full_path_data(image)
60)
61 else:
62 # If image is an Image object, convert it to a bytes stream
63 buffer = io.BytesIO()
64 image.save(buffer, format="JPEG")
65 buffer.seek(0)
66 image_path_or_bytes = buffer
67

11224

68 result = reader.readtext(image_path_or_bytes)
69 result_text = [text for _, text, _ in result]
70 result_formatted = {"text": ", ".join(result_text)}
71 else:
72 from openai import OpenAI
73 import base64
74 client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
75

76 def encode_image(image_path):
77 with open(image_path, "rb") as image_file:
78 return base64.b64encode(image_file.read()).decode('utf-8')
79

80 image_path = image_processing(image, return_path=True)
81 base64_image = encode_image(image_path)
82

83 response = client.chat.completions.create(
84 model=tool_version,
85 messages=[
86 {
87 "role" : "user",
88 "content": [
89 {"type": "text", "text": f"What are the texts in the image?"},
90 {
91 "type" : "image_url",
92 "image_url": {
93 "url": f"data:image/jpeg;base64,{base64_image}",
94 },
95 },
96],
97 }
98],
99 max_tokens=300,

100)
101 result_formatted = {"text": response.choices[0].message.content}
102

103 return result_formatted
104

105

106 class GetObjects(BaseAction):
107 def __init__(self, id) -> None:
108 description = "Using this function to get objects in an image."
109 args_spec = {"image": "the image to get objects from."}
110 rets_spec = {"objects": "the objects detected in the image."}
111 examples = [{"name": "GetObjects", "arguments": {"image": "image-0"}}]
112

113 super().__init__(
114 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
115)
116

117 def __call__(self, image, tool_version="https://huggingface.co/xinyu1205/recognize-anything-
plus-model/resolve/main/ram_plus_swin_large_14m.pth?download=true"):

118 from ram.models import ram_plus
119 from ram import get_transform, inference_ram_openset as inference
120

121 model_path_or_url = tool_version
122 image_size = 384
123 transform = get_transform(image_size=image_size)
124

125 vit_size = "swin_l"
126 # load model
127 model = ram_plus(pretrained=model_path_or_url,
128 image_size=image_size,
129 vit=vit_size)
130 model.eval()
131 model = model.to(self.device)
132 image = image_processing(image)
133 image = transform(image).unsqueeze(0).to(self.device)
134 tags = inference(image, model)
135 objs = tags.split(" | ")

11225

136 return {"objects": objs}
137

138

139 class VisualizeRegionsOnImage(BaseAction):
140 def __init__(self, id) -> None:
141 description = "Using this function to label regions on an image."
142 args_spec = {"image": "the image to label.",
143 "regions": "the regions to label on the image, where each region is

represented by a dictionary with the region's bounding box and label text (can be empty string
).",

144 "color": "an optional argument that specifies the color of the bounding box."
145 }
146 rets_spec = {"image": "the image with regions labeled."}
147 examples = [
148 {"name": "VisualizeRegionsOnImage", "arguments": {"image": "image-0", "regions": [{"

label": "", "bbox": [0.3, 0.2, 0.5, 0.4]}]}},
149 {"name": "VisualizeRegionsOnImage", "arguments": {"image": "image-0", "regions": [{"

label": "cat", "bbox": [0.3, 0.2, 0.5, 0.4]}], "color": "red"}}
150]
151

152 super().__init__(
153 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
154)
155

156 def __call__(self, image, regions: List[Region], color='yellow', width=4):
157 image = image_processing(image)
158 text_color = 'black'
159 W,H = image.size
160 img1 = image.copy()
161 draw = ImageDraw.Draw(img1)
162 font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSansMono-Bold.ttf', 16)
163 for i, obj in enumerate(regions):
164 bbox = obj['bbox']
165 bbox = bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H
166 draw.rectangle(bbox, outline=color, width=width)
167 x1, y1, x2, y2 = bbox
168 label = obj['label'] if "label" in obj else ""
169 w,h = font.getsize(label)
170 if x1 + w > W or y2 +h > H:
171 draw.rectangle((x1, y2 - h, x1 + w, y2), fill=color)
172 draw.text((x1, y2-h),label,fill=text_color,font=font)
173 else:
174 draw.rectangle((x1, y2, x1 + w, y2 + h), fill=color)
175 draw.text((x1, y2),label,fill=text_color,font=font)
176 return {"image": img1}
177

178

179 class LocalizeObjects(BaseAction):
180 def __init__(self, id) -> None:
181 description = "Localize one or multiple objects/regions with bounding boxes. This tool may

output objects that don't exist or miss objects that do. You should use the output only as
weak evidence for reference. When answering questions about the image, you should double-check
the detected objects. You should be especially cautious about the total number of regions
detected, which can be more or less than the actual number."

182 args_spec = {
183 "image": "the image to localize objects/regions in.",
184 "objects": "a list of object names to localize. e.g. ['dog', 'cat', 'person']. the

model might not be able to detect rare objects or objects with complex descriptionriptions."
185 }
186 rets_spec = {"image": "the image with objects localized and visualized on it.", "regions":

"the regions of interests localized in the image, where each region is represented by a
dictionary with the region's label text, bounding box and confidence score. The confidence
score is between 0 and 1, where 1 means the model is very confident. Note that both the
bounding boxes and confidence scores can be unreliable and should only be used as reference."}

187 examples = [{"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects": ["dog
", "cat"]}}]

188

189 super().__init__(

11226

190 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=
examples

191)
192

193 def __call__(self, image, objects: List[str]):
194 from groundingdino.util.inference import load_model, load_image, predict, annotate
195 import cv2
196 text = ". ".join(objects)
197 model = load_model("/user/mma/mma/GroundingDINO/groundingdino/config/

GroundingDINO_SwinT_OGC.py",
198 "/user/mma/mma/GroundingDINO/weights/groundingdino_swint_ogc.pth",
199 device=self.device)
200 BOX_TRESHOLD = 0.35
201 TEXT_TRESHOLD = 0.25
202 image_path = image_processing(image, return_path=True)
203 original_image = image_processing(image)
204 image_source, image = load_image(image_path)
205

206 boxes, logits, phrases = predict(
207 model=model,
208 image=image,
209 caption=text,
210 box_threshold=BOX_TRESHOLD,
211 text_threshold=TEXT_TRESHOLD
212)
213

214 objects = []
215 obj_cnt = {}
216 for i in range(len(boxes)):
217 xyxy = box_convert(boxes=boxes[i], in_fmt="cxcywh", out_fmt="xyxy").numpy()
218 bbox = [round(val, 2) for val in list(xyxy)]
219 score = round(logits[i].item(), 2)
220 phrase = phrases[i]
221 obj_cnt[phrase] = obj_cnt.get(phrase, 0) + 1
222 phrase = f"{phrase}-{obj_cnt[phrase]}" if obj_cnt[phrase] > 1 else phrase
223 objects.append({"label": phrase, "bbox": bbox, "score": score})
224 visualize = VisualizeRegionsOnImage(0)
225 results = visualize(image=original_image, regions=objects)
226 tagged_image = results["image"]
227 results_formatted = {"regions": objects, "image": tagged_image}
228 return results_formatted
229

230

231 class Crop(BaseAction):
232 def __init__(self, id) -> None:
233 description = "Crop an image with the bounding box. It labels the cropped region with a

bounding box and crops the region with some margins around the bounding box to help with
contextual understanding of the region."

234 args_spec = {
235 "image": "the image to crop.",
236 "bbox": "the bbox to crop. It should be a list of [left, top, right, bottom], where

each value is a float between 0 and 1 to represent the percentage of the image width/height
and how far it is from the top left corner at [0, 0].",

237 }
238 rets_spec = {"image": "the cropped image."}
239 examples = [{"name": "Crop", "arguments": {"image": "image-0", "bbox": [0.33, 0.21, 0.58,

0.46]}}]
240

241 super().__init__(
242 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
243)
244

245 def __call__(self, image, bbox):
246 image = image_processing(image)
247

248 if isinstance(bbox, str):
249 try:
250 bbox = ast.literal_eval(bbox)
251 except:

11227

252 bbox = []
253

254 use_percent = (all(x <= 1.0 for x in bbox))
255 if not use_percent:
256 raise ValueError("Bounding box coordinates must be between 0 and 1.")
257

258 visualize = VisualizeRegionsOnImage(0)
259 results = visualize(image=image, regions=[{"label": "", "bbox": bbox}])
260 image = results["image"]
261

262 W, H = image.size
263 bbox = [bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H]
264 bbox = expand_bbox(bbox, image.size)
265 out_img = image.crop(bbox)
266 return {"image": out_img}
267

268

269 class ZoomIn(BaseAction):
270 def __init__(self, id) -> None:
271 description = "Zoom in on a region of the input image. This tool first crops the specified

region from the image with the bounding box and then resizes the cropped region to create the
zoom effect. It also adds some margins around the cropped region to help with contextual
understanding of the region."

272 args_spec = {
273 "image": "the image to zoom in on.",
274 "bbox": "The bbox should be a list of [left, top, right, bottom], where each value is

a float between 0 and 1 to represent the percentage of the image width/height and how far it
is from the top left corner at [0, 0].",

275 "zoom_factor": "the factor to zoom in by. It should be greater than 1.",
276 }
277 rets_spec = {"image": "the zoomed in image."}
278 examples = [
279 {"name": "ZoomIn", "arguments": {"image": "image-0", "bbox": [0.4, 0.3, 0.5, 0.4], "

zoom_factor": 2}},
280]
281

282 super().__init__(
283 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
284)
285

286 def __call__(self, image, bbox, zoom_factor):
287 if zoom_factor <= 1:
288 raise ValueError("Zoom factor must be greater than 1 to zoom in")
289

290 image = image_processing(image)
291 use_percent = (all(x <= 1.0 for x in bbox))
292 if not use_percent:
293 raise ValueError("Bounding box coordinates must be between 0 and 1.")
294

295 crop = Crop(0)
296 cropped_image = crop(image, bbox)["image"]
297

298 W, H = cropped_image.size
299

300 # Calculate the size of the zoomed image
301 new_width = int(W * zoom_factor)
302 new_height = int(H * zoom_factor)
303

304 # Resize the cropped image to create the zoom effect
305 zoomed_image = cropped_image.resize((new_width, new_height), Image.LANCZOS)
306 return {'image': zoomed_image}
307

308

309 class GetImageToImagesSimilarity(BaseAction):
310 def __init__(self, id) -> None:
311 description = "Get the similarity between one image and a list of other images. Note that

this similarity score may not be accurate and should be used as a reference only."
312 args_spec = {
313 "image": "the reference image.",

11228

314 "other_images": "the other images to compare to the reference image.",
315 }
316 rets_spec = {"similarity": "the CLIP similarity scores between the reference image and the

other images.", "best_image_index": "the index of the most similar image."}
317 examples = [
318 {"name": "GetImageToImagesSimilarity", "arguments": {"image": "image-0", "other_images

": ["image-1", "image-2"]}}
319]
320

321 super().__init__(
322 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
323)
324

325 def __call__(self, image, other_images, tool_version='ViT-H-14-378-quickgelu',
other_images_raw=None):

326 import torch
327 import open_clip
328 original_images = other_images_raw
329 model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained='

dfn5b')
330 model.eval()
331 image = image_processing(image)
332 images = [image_processing(image) for image in other_images]
333

334 image = preprocess(image).unsqueeze(0)
335 images = torch.stack([preprocess(image) for image in images])
336

337 with torch.no_grad(), torch.cuda.amp.autocast():
338 image1_features = model.encode_image(image)
339 image2_features = model.encode_image(images)
340

341 image1_features /= image1_features.norm(dim=-1, keepdim=True)
342 image2_features /= image2_features.norm(dim=-1, keepdim=True)
343

344 probs = image1_features @ image2_features.T
345 sim_scores = [round(sim_score, 2) for sim_score in probs[0].tolist()]
346 best_image_match = torch.argmax(probs).item()
347 return {'similarity': sim_scores, "best_image_index": best_image_match, "best_image":

original_images[best_image_match]}
348

349

350 class GetImageToTextsSimilarity(BaseAction):
351 def __init__(self, id) -> None:
352 description = "Get the similarity between one image and a list of texts. Note that this

similarity score may not be accurate and should be used as a reference only."
353 args_spec = {
354 "image": "the reference image.",
355 "texts": "a list of texts to compare to the reference image.",
356 }
357 rets_spec = {"similarity": "the CLIP similarity between the image and the texts.", "

best_text_index": "the index of the most similar text.", "best_text": "the most similar text."
}

358 examples = [
359 {"name": "GetImageToTextsSimilarity", "arguments": {"image": "image-0", "texts": ["a

cat", "a dog"]}}
360]
361

362 super().__init__(
363 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
364)
365

366 def __call__(self, image, texts, tool_version='ViT-H-14-378-quickgelu'):
367 import torch
368 import open_clip
369

370 model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained='
dfn5b')

11229

371 model.eval() # model in train mode by default, impacts some models with BatchNorm or
stochastic depth active

372 tokenizer = open_clip.get_tokenizer(tool_version)
373

374 image = preprocess(image_processing(image)).unsqueeze(0)
375 text = tokenizer(texts)
376

377 with torch.no_grad(), torch.cuda.amp.autocast():
378 image_features = model.encode_image(image)
379 text_features = model.encode_text(text)
380 image_features /= image_features.norm(dim=-1, keepdim=True)
381 text_features /= text_features.norm(dim=-1, keepdim=True)
382

383 probs = image_features @ text_features.T
384 sim_scores = [round(sim_score, 2) for sim_score in probs[0].tolist()]
385 best_text_match = torch.argmax(probs).item()
386 return {'similarity': sim_scores, "best_text_index": best_text_match, "best_text": texts[

best_text_match]}
387

388

389 class GetTextToImagesSimilarity(BaseAction):
390 def __init__(self, id) -> None:
391 description = "Get the similarity between one text and a list of images. Note that this

similarity score may not be accurate and should be used as a reference only."
392 args_spec = {
393 "text": "the reference text.",
394 "images": "a list of images to compare to the reference text.",
395 }
396 rets_spec = {"similarity": "the CLIP similarity between the image and the texts.", "

best_image_index": "the index of the most similar image."}
397 examples = [
398 {"name": "GetTextToImagesSimilarity", "arguments": {"text": "a black and white cat", "

images": ["image-0", "image-1"]}}
399]
400

401 super().__init__(
402 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
403)
404

405 def __call__(self, text, images, tool_version='ViT-H-14-378-quickgelu'):
406 import torch
407 import open_clip
408 original_images = images
409 model, _, preprocess = open_clip.create_model_and_transforms(tool_version, pretrained='

dfn5b')
410 model.eval() # model in train mode by default, impacts some models with BatchNorm or

stochastic depth active
411 tokenizer = open_clip.get_tokenizer(tool_version)
412

413 text = tokenizer([text])
414 images = [image_processing(image) for image in images]
415 images = torch.stack([preprocess(image) for image in images])
416

417 with torch.no_grad(), torch.cuda.amp.autocast():
418 image_features = model.encode_image(images)
419 text_features = model.encode_text(text)
420 image_features /= image_features.norm(dim=-1, keepdim=True)
421 text_features /= text_features.norm(dim=-1, keepdim=True)
422

423 probs = text_features @ image_features.T
424 sim_scores = [round(sim_score, 2) for sim_score in probs[0].tolist()]
425 best_image_match = torch.argmax(probs).item()
426 return {'similarity': sim_scores, "best_image_index": best_image_match, "best_image":

original_images[best_image_match]}
427

428

429 class EstimateObjectDepth(BaseAction):
430 def __init__(self, id) -> None:

11230

431 description = "Estimate the depth of an object in an image using DepthAnything model. It
returns an estimated depth value of the object specified by the a brief text description. The
smaller the value is, the closer the object is to the camera, and the larger the farther. This
tool may help you to better reason about the spatial relationship, like which object is
closer to the camera."

432 args_spec = {
433 "image": "the image to get the depth from.",
434 "object": "a short description of the object to get the depth from.",
435 }
436 rets_spec = {"depth": "the estimated depth of the object."}
437 examples = [
438 {"name": "EstimateObjectDepth", "arguments": {"image": "image-0", "object": "a black

cat"}},
439]
440

441 super().__init__(
442 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
443)
444

445 def __call__(self, image, object, mode="mean"):
446 action = LocalizeObjects(0)
447 results = action(image=image, objects=[object])
448 if len(results["regions"]) == 0:
449 return {"depth": "Object not found."}
450 else:
451 # use the best match object's bbox
452 best_match = np.argmax([region["score"] for region in results["regions"]])
453 bbox = results["regions"][best_match]["bbox"]
454 depth_estimator = EstimateRegionDepth(0)
455 return depth_estimator(image=image, bbox=bbox, mode=mode)
456

457

458 class EstimateRegionDepth(BaseAction):
459 def __init__(self, id) -> None:
460 description = "Estimate the depth of a region in an image using DepthAnything model. It

returns an estimated depth value of the region specified by the input bounding box. The
smaller the value is, the closer the region is to the camera, and the larger the farther. This
tool may help you to better reason about the spatial relationship, like which object is
closer to the camera. "

461 args_spec = {
462 "image": "the image to get the depth from.",
463 "bbox": "the bbox of the region to get the depth from. It should be a list of [left,

top, right, bottom], where each value is a float between 0 and 1 to represent the percentage
of the image width/height and how far it is from the top left corner at [0, 0].",

464 # "mode": "the mode to get the depth. It should be one of 'center' or 'average'. '
center' returns the depth of the center of the region. 'average' returns the average depth of
the region.",

465 }
466 rets_spec = {"depth": "the estimated depth of the region."}
467 examples = [
468 {"name": "EstimateRegionDepth", "arguments": {"image": "image-0", "bbox": [0.3, 0.2,

0.5, 0.4]}},
469]
470 super().__init__(
471 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
472)
473

474 def __call__(self, image, bbox: List[str], mode="mean"):
475 import numpy as np
476 from scipy import stats
477 image = image_processing(image)
478 depth_model = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-

Small-hf", device=self.device)
479 result = depth_model(image)
480 depth = result["predicted_depth"][0].numpy()
481 depth = depth.max() - depth # smaller values in depth map are farther from the camera so

reversing the values
482 H, W = depth.shape

11231

483

484 use_percent = all(x <= 1.0 for x in bbox)
485 if not use_percent:
486 raise ValueError("Bounding box coordinates must be between 0 and 1.")
487 bbox = [bbox[0] * W, bbox[1] * H, bbox[2] * W, bbox[3] * H]
488 if mode == "center":
489 x, y = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
490 x, y = int(x), int(y)
491 depth_value = depth[y, x]
492 elif mode == "mean":
493 x1, y1, x2, y2 = bbox
494 x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
495 depth_value = np.mean(depth[y1:y2, x1:x2])
496 elif mode == "mode":
497 x1, y1, x2, y2 = bbox
498 x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
499 mode_result = stats.mode(depth[y1:y2, x1:x2])
500 depth_value = mode_result.mode[0]
501 else:
502 raise NotImplementedError(f"Depth mode {mode} is not supported.")
503 return {"depth": round(depth_value, 2)}
504

505

506 class Calculate(BaseAction):
507 def __init__(self, id) -> None:
508 description = "Calculate a math expression."
509 args_spec = {"expression": "the math expression to calculate."}
510 rets_spec = {"result": "the result of the math expression."}
511 examples = [
512 {"name": "Calculate", "arguments": {"expression": "2 + 2"}},
513 {"name": "Calculate", "arguments": {"expression": "4*9*84"}},
514 {"name": "Calculate", "arguments": {"expression": "5-4/2"}},
515]
516

517 super().__init__(
518 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
519)
520

521 def __call__(self, expression):
522 result = eval(expression)
523 return {"result": result}
524

525

526 class SolveMathEquation(BaseAction):
527 def __init__(self, id) -> None:
528 description = "Using this action to solve a math problem with WolframAlpha."
529 args_spec = {"query": "a question that involves a math equation to be solved."}
530 rets_spec = {"result": "the result of the query."}
531 examples = [
532 {"name": "SolveMathEquation", "arguments": {"query": "2 + 2=?"}},
533 {"name": "SolveMathEquation", "arguments": {"query": "x^2 + 2x + 1 = 0, what is x?"}},
534]
535

536 self.client = wolframalpha.Client(os.getenv("WOLFRAM_ALPHA_API_KEY"))
537 super().__init__(
538 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
539)
540

541 def __call__(self, query):
542 from urllib.error import HTTPError
543

544 is_success = False
545

546 res = self.client.query(query)
547

548 if not res["@success"]:
549 return (
550 "Your Wolfram query is invalid. Please try a new query for wolfram.",

11232

551 is_success,
552)
553 assumption = next(res.pods).text
554 answer = ""
555 for result in res["pod"]:
556 if result["@title"] == "Solution":
557 answer = result["subpod"]["plaintext"]
558 if result["@title"] == "Results" or result["@title"] == "Solutions":
559 for i, sub in enumerate(result["subpod"]):
560 answer += f"ans {i}: " + sub["plaintext"] + "\n"
561 break
562 if answer == "":
563 answer = next(res.results).text
564

565 if answer is None or answer == "":
566 return {"result": "No good Wolfram Alpha Result was found"}
567 else:
568 return {"result": answer}
569

570

571 class DetectFaces(BaseAction):
572 def __init__(self, id) -> None:
573 description = "Using this function to detect faces in an image."
574 args_spec = {"image": "the image to detect faces from."}
575 rets_spec = {"image": "the image with objects localized and visualized on it.", "regions":

"the regions of the faces detected, where each regin is represented by a dictionary with the
region's label text and bounding box."}

576 examples = [
577 {"name": "DetectFaces", "arguments": {"image": "image-0"}}
578]
579 import face_detection
580 ckpt_path = f"/root/.cache/torch/hub/checkpoints/WIDERFace_DSFD_RES152.pth"
581 if not os.path.exists(ckpt_path):
582 from huggingface_hub import hf_hub_download
583 hf_hub_download(repo_id="user/mma", filename="WIDERFace_DSFD_RES152.pth", local_dir="/

root/.cache/torch/hub/checkpoints/")
584

585 self.model = face_detection.build_detector(
586 "DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3)
587 super().__init__(
588 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
589)
590

591 def enlarge_face(self,box,W,H,f=1.5):
592 x1,y1,x2,y2 = box
593 w = int((f-1)*(x2-x1)/2)
594 h = int((f-1)*(y2-y1)/2)
595 x1 = max(0,x1-w)
596 y1 = max(0,y1-h)
597 x2 = min(W,x2+w)
598 y2 = min(H,y2+h)
599 return [x1,y1,x2,y2]
600

601 def __call__(self, image):
602 import numpy as np
603 image = image_processing(image)
604

605 with torch.no_grad():
606 faces = self.model.detect(np.array(image))
607

608 W,H = image.size
609 objs = []
610 for i,box in enumerate(faces):
611 x1,y1,x2,y2,c = [int(v) for v in box.tolist()]
612 normalized_bbox = [x1/W, y1/H, x2/W, y2/H]
613 objs.append(dict(
614 bbox=[round(num, 2) for num in normalized_bbox],
615 label=f'face {i+1}' if i > 0 else 'face',
616))

11233

617 visualize = VisualizeRegionsOnImage(0)
618 results = visualize(image=image, regions=objs)
619 tagged_image = results["image"]
620 results_formatted = {"regions": objs, "image": tagged_image}
621 return results_formatted
622

623

624 class QueryLanguageModel(BaseAction):
625 def __init__(self, id) -> None:
626 description = "Using this function to ask a language model a question."
627 args_spec = {"query": "the question to ask the language model."}
628 rets_spec = {"result": "the response from the language model."}
629 examples = [
630 {"name": "QueryLanguageModel", "arguments": {"query": "What is the capital of France?"

}},
631]
632 super().__init__(
633 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
634)
635

636 def __call__(self, query):
637 from openai import OpenAI
638 client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
639

640 response = client.chat.completions.create(
641 model=LATEST_GPT_MODEL_ID,
642 messages=[
643 {
644 "role" : "user",
645 "content": [
646 {"type": "text", "text": f"{query}"},
647],
648 }
649],
650 max_tokens=300,
651)
652

653 return {'result': response.choices[0].message.content}
654

655

656 class QueryKnowledgeBase(BaseAction):
657 def __init__(self, id) -> None:
658 description = "Using this function to query a knowledge base."
659 args_spec = {"query": "the query to search in a knowledge base such as wikipedia."}
660 rets_spec = {"result": "the answer from the knowledge base."}
661 examples = [
662 {"name": "QueryKnowledgeBase", "arguments": {"query": "Paris"}},
663]
664

665 super().__init__(
666 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
667)
668

669 def __call__(self, query, lang="en", sentences=2, knowledge_base="wikipedia"):
670 if knowledge_base == "wikipedia":
671 # Set the language for Wikipedia (default is 'en' for English)
672 wikipedia.set_lang(lang)
673

674 # Search Wikipedia for pages related to the query
675 search_results = wikipedia.search(query)
676 if not search_results:
677 return {"No results found."}
678

679 # Get the summary of the first search result
680 page = wikipedia.page(search_results[0])
681 summary = wikipedia.summary(page.title, sentences=sentences)
682 result = {
683 "title": page.title,

11234

684 "url": page.url,
685 "summary": summary
686 }
687 return result
688 else:
689 raise NotImplementedError(f"Knowledge base {knowledge_base} is not supported.")
690

691

692 class Terminate(BaseAction):
693 def __init__(self, id) -> None:
694 description = "Using this function to finish the task."
695 args_spec = {"answer": "the final answer."}
696 rets_spec = {"answer": "the final answer."}
697 examples = [{"name": "Terminate", "arguments": {"answer": "yes"}}]
698

699 super().__init__(
700 id=id, description=description, args_spec=args_spec, rets_spec=rets_spec, examples=

examples
701)
702

703 def __call__(self, answer):
704 return {"answer": answer}

Listing 1: Python implementation of all actions

11235

1 [BEGIN OF GOAL]
2 You are a helpful assistant, and your goal is to solve the # USER REQUEST #. You can either rely

on your own capabilities or perform actions with external tools to help you. A list of all
available actions are provided to you in the below.

3 [END OF GOAL]
4

5 [BEGIN OF ACTIONS]
6 Name: OCR
7 Description: Extract texts from an image or return an empty string if no text is in the image.

Note that the texts extracted may be incorrect or in the wrong order. It should be used as a
reference only.

8 Arguments: {'image': 'the image to extract texts from.'}
9 Returns: {'text': 'the texts extracted from the image.'}

10 Examples:
11 {"name": "OCR", "arguments": {"image": "image-0"}}
12

13 Name: LocalizeObjects
14 Description: Localize one or multiple objects/regions with bounding boxes. This tool may output

objects that don't exist or miss objects that do. You should use the output only as weak
evidence for reference. When answering questions about the image, you should double-check the
detected objects. You should be especially cautious about the total number of regions detected
, which can be more or less than the actual number.

15 Arguments: {'image': 'the image to localize objects/regions in.', 'objects': "a list of object
names to localize. e.g. ['dog', 'cat', 'person']. the model might not be able to detect rare
objects or objects with complex descriptionriptions."}

16 Returns: {'image': 'the image with objects localized and visualized on it.', 'regions': "the
regions of interests localized in the image, where each region is represented by a dictionary
with the region's label text, bounding box and confidence score. The confidence score is
between 0 and 1, where 1 means the model is very confident. Note that both the bounding boxes
and confidence scores can be unreliable and should only be used as reference."}

17 Examples:
18 {"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects": ["dog", "cat"]}}
19

20 Name: GetObjects
21 Description: Using this function to get objects in an image.
22 Arguments: {'image': 'the image to get objects from.'}
23 Returns: {'objects': 'the objects detected in the image.'}
24 Examples:
25 {"name": "GetObjects", "arguments": {"image": "image-0"}}
26

27 Name: EstimateRegionDepth
28 Description: Estimate the depth of a region in an image using DepthAnything model. It returns an

estimated depth value of the region specified by the input bounding box. The smaller the value
is, the closer the region is to the camera, and the larger the farther. This tool may help
you to better reason about the spatial relationship, like which object is closer to the camera
.

29 Arguments: {'image': 'the image to get the depth from.', 'bbox': 'the bbox of the region to get
the depth from. It should be a list of [left, top, right, bottom], where each value is a float
between 0 and 1 to represent the percentage of the image width/height and how far it is from
the top left corner at [0, 0].'}

30 Returns: {'depth': 'the estimated depth of the region.'}
31 Examples:
32 {"name": "EstimateRegionDepth", "arguments": {"image": "image-0", "bbox": [0.3, 0.2, 0.5, 0.4]}}
33

34 Name: EstimateObjectDepth
35 Description: Estimate the depth of an object in an image using DepthAnything model. It returns an

estimated depth value of the object specified by the a brief text description. The smaller the
value is, the closer the object is to the camera, and the larger the farther. This tool may
help you to better reason about the spatial relationship, like which object is closer to the
camera.

36 Arguments: {'image': 'the image to get the depth from.', 'object': 'a short description of the
object to get the depth from.'}

37 Returns: {'depth': 'the estimated depth of the object.'}
38 Examples:
39 {"name": "EstimateObjectDepth", "arguments": {"image": "image-0", "object": "a black cat"}}
40

41 Name: Crop
42 Description: Crop an image with the bounding box. It labels the cropped region with a bounding box

and crops the region with some margins around the bounding box to help with contextual
understanding of the region.

11236

43 Arguments: {'image': 'the image to crop.', 'bbox': 'the bbox to crop. It should be a list of [left,
top, right, bottom], where each value is a float between 0 and 1 to represent the percentage
of the image width/height and how far it is from the top left corner at [0, 0].'}

44 Returns: {'image': 'the cropped image.'}
45 Examples:
46 {"name": "Crop", "arguments": {"image": "image-0", "bbox": [0.33, 0.21, 0.58, 0.46]}}
47

48 Name: ZoomIn
49 Description: Zoom in on a region of the input image. This tool first crops the specified region

from the image with the bounding box and then resizes the cropped region to create the zoom
effect. It also adds some margins around the cropped region to help with contextual
understanding of the region.

50 Arguments: {'image': 'the image to zoom in on.', 'bbox': 'The bbox should be a list of [left, top,
right, bottom], where each value is a float between 0 and 1 to represent the percentage of
the image width/height and how far it is from the top left corner at [0, 0].', 'zoom_factor':
'the factor to zoom in by. It should be greater than 1.'}

51 Returns: {'image': 'the zoomed in image.'}
52 Examples:
53 {"name": "ZoomIn", "arguments": {"image": "image-0", "bbox": [0.4, 0.3, 0.5, 0.4], "zoom_factor":

2}}
54

55 Name: QueryLanguageModel
56 Description: Using this function to ask a language model a question.
57 Arguments: {'query': 'the question to ask the language model.'}
58 Returns: {'result': 'the response from the language model.'}
59 Examples:
60 {"name": "QueryLanguageModel", "arguments": {"query": "What is the capital of France?"}}
61

62 Name: GetImageToImagesSimilarity
63 Description: Get the similarity between one image and a list of other images. Note that this

similarity score may not be accurate and should be used as a reference only.
64 Arguments: {'image': 'the reference image.', 'other_images': 'the other images to compare to the

reference image.'}
65 Returns: {'similarity': 'the CLIP similarity scores between the reference image and the other

images.', 'best_image_index': 'the index of the most similar image.'}
66 Examples:
67 {"name": "GetImageToImagesSimilarity", "arguments": {"image": "image-0", "other_images": ["image

-1", "image-2"]}}
68

69 Name: GetImageToTextsSimilarity
70 Description: Get the similarity between one image and a list of texts. Note that this similarity

score may not be accurate and should be used as a reference only.
71 Arguments: {'image': 'the reference image.', 'texts': 'a list of texts to compare to the reference

image.'}
72 Returns: {'similarity': 'the CLIP similarity between the image and the texts.', 'best_text_index':

'the index of the most similar text.', 'best_text': 'the most similar text.'}
73 Examples:
74 {"name": "GetImageToTextsSimilarity", "arguments": {"image": "image-0", "texts": ["a cat", "a dog

"]}}
75

76 Name: GetTextToImagesSimilarity
77 Description: Get the similarity between one text and a list of images. Note that this similarity

score may not be accurate and should be used as a reference only.
78 Arguments: {'text': 'the reference text.', 'images': 'a list of images to compare to the reference

text.'}
79 Returns: {'similarity': 'the CLIP similarity between the image and the texts.', 'best_image_index':

'the index of the most similar image.'}
80 Examples:
81 {"name": "GetTextToImagesSimilarity", "arguments": {"text": "a black and white cat", "images": ["

image-0", "image-1"]}}
82

83 Name: DetectFaces
84 Description: Using this function to detect faces in an image.
85 Arguments: {'image': 'the image to detect faces from.'}
86 Returns: {'image': 'the image with objects localized and visualized on it.', 'regions': "the

regions of the faces detected, where each regin is represented by a dictionary with the region
's label text and bounding box."}

87 Examples:
88 {"name": "DetectFaces", "arguments": {"image": "image-0"}}
89

11237

90 Name: QueryKnowledgeBase
91 Description: Using this function to query a knowledge base.
92 Arguments: {'query': 'the query to search in a knowledge base such as wikipedia.'}
93 Returns: {'result': 'the answer from the knowledge base.'}
94 Examples:
95 {"name": "QueryKnowledgeBase", "arguments": {"query": "Paris"}}
96

97 Name: Calculate
98 Description: Calculate a math expression.
99 Arguments: {'expression': 'the math expression to calculate.'}

100 Returns: {'result': 'the result of the math expression.'}
101 Examples:
102 {"name": "Calculate", "arguments": {"expression": "2 + 2"}}
103 {"name": "Calculate", "arguments": {"expression": "4*9*84"}}
104 {"name": "Calculate", "arguments": {"expression": "5-4/2"}}
105

106 Name: SolveMathEquation
107 Description: Using this action to solve a math problem with WolframAlpha.
108 Arguments: {'query': 'a question that involves a math equation to be solved.'}
109 Returns: {'result': 'the result of the query.'}
110 Examples:
111 {"name": "SolveMathEquation", "arguments": {"query": "2 + 2=?"}}
112 {"name": "SolveMathEquation", "arguments": {"query": "x^2 + 2x + 1 = 0, what is x?"}}
113

114 Name: Terminate
115 Description: Using this function to finish the task.
116 Arguments: {'answer': 'the final answer.'}
117 Returns: {'answer': 'the final answer.'}
118 Examples:
119 {"name": "Terminate", "arguments": {"answer": "yes"}}
120

121 [END OF ACTIONS]
122

123 [BEGIN OF TASK INSTRUCTIONS]
124 1. You must only select actions from # ACTIONS #.
125 2. You can only call one action at a time.
126 3. If no action is needed, please make actions an empty list (i.e. ''actions'': []).
127 4. You must always call Terminate with your final answer at the end.
128 [END OF TASK INSTRUCTIONS]
129

130 [BEGIN OF FORMAT INSTRUCTIONS]
131 Your output should be in a strict JSON format as follows:
132 {"thought": "the thought process, or an empty string", "actions": [{"name": "action1", "arguments":

{"argument1": "value1", "argument2": "value2"}}]}
133 [END OF FORMAT INSTRUCTIONS]
134

135 [BEGIN OF EXAMPLES]:
136 # USER REQUEST #:
137 In image-0, Which of the two objects on the plate is the biggest?
138 A. The pile of scrambled eggs is the biggest.
139 B. The strawberries are the biggest object.
140 Please answer directly with only the letter of the correct option and nothing else.
141 # RESPONSE #:
142 {"thought": "To determine which of the two objects on the plate is larger, I need to analyze the

size of the scrambled eggs, and the strawberries", "actions": [{"name": "LocalizeObjects", "
arguments": {"image": "image-0", "objects": ["scrambled eggs", "strawberries"]}}]}

143 OBSERVATION:
144 {"image": "image-1", "regions": [{"label": "eggs", "bbox": [0.5, 0.6, 0.6, 0.8], "score": 0.85},

{"label": "strawberries", "bbox": [0.4, 0.5, 0.45, 0.7], "score": 0.54}]}
145 {"thought": "To calculate the area of a bounding box, we can use the formula: area = (x_max -

x_min) * (y_max - y_min). We first get the area of the scrambled eggs.", "actions": [{"name":
"Calculate", "arguments": {"expression": "(0.6-0.5) * (0.8-0.6)"}}]}

146 OBSERVATION:
147 {"result": "0.02"}
148 {"thought": "Then, we also calculate the area of the strawberries.", "actions": [{"name": "

Calculate", "arguments": {"expression": "(0.45-0.4) * (0.7-0.5)"}}]}
149 OBSERVATION:
150 {"result": "0.01"}
151 {"thought": "Since 0.02 > 0.01, it is apparent that the eggs cover a larger area within their

bounding box.", "actions": [{"name": "Terminate", "arguments": {"answer": "A"}}]}

11238

152

153 # USER REQUEST #:
154 Given the input image image-0, How many pedestrians are there in the image? Please answer

directly with a single word or number.
155 # RESPONSE #:
156 {"thought": "To determine the number of pedestrians, I need to first localize them on the image.",

"actions": [{"name": "LocalizeObjects", "arguments": {"image": "image-0", "objects": ["person
"]}}]}

157 OBSERVATION:
158 {"image": "image-1", "regions": [{"label": "person", "bbox": [0.77, 0.47, 0.79, 0.54], "score":

0.83}, {"label": "person-2", "bbox": [0.69, 0.49, 0.7, 0.52], "score": 0.43}]}
159 {"thought": "The LocalizeObjects action returns two regions for \"person\", but one of the regions

has a lower confidence score. Upon a closer look at the output image image-1, we can see that
there is actually only one pedestrian in the image.", "actions": [{"name": "Terminate", "
arguments": {"answer": "1"}}]}

160

161 # USER REQUEST #:
162 Based on image-0, is the object on top bigger than the object below?
163 A. The object on the bottom is bigger.
164 B. The object on top is bigger.
165 C. Both objects are the same size.
166 Please answer directly with only the letter of the correct option and nothing else.
167 # RESPONSE #:
168 {"thought": "By looking at the image, we can see that both objects are game consoles of the same

brand and size.", "actions": [{"name": "Terminate", "arguments": {"answer": "C"}}]}
169

170 # USER REQUEST #:
171 What is x in the image?
172 # RESPONSE #:
173 {"thought": "To get the result of the equation, I need to first extract the equation from the

image.", "actions": [{"name": "OCR", "arguments": {"image": "image-0"}}]}
174 OBSERVATION:
175 {"text": "x-2^3=0"}
176 {"thought": "The math equation is 'x-2^3=0', and I need to find x. I can solve it with a math-

related tool.", "actions": [{"name": "SolveMathEquation", "arguments": {"query": "x-2^3=0,
what is x?"}}]}

177 OBSERVATION:
178 {"result": "x = 8"}
179 {"thought": "As suggested in the last observation, the answer is 8.", "actions": [{"name": "

Terminate", "arguments": {"answer": "8"}}]}
180

181 [END OF EXAMPLES]

Listing 2: Model-based data generation system prompt

11239

1 def GetObjects_template():
2 thought_templates = ["I need to check what objects are present in the {image_kw}.",
3 "I need to analyze the {image_kw} for context."
4 "I need to identify the objects in the {image_kw}.",
5 "To answer the question, let's first analyze the {image_kw}.",
6 "To answer the question, analyzing the objects in the {image_kw} is

necessary."]
7 return thought_templates
8

9 def LocalizeObjects_template():
10 thought_templates = ["I need to analyze the positions of {objects} in the {image_kw}.",
11 "I need to analyze the locations of {objects} in the {image_kw}.",
12 "I need to localize the {objects} based on the {image_kw}.",
13 "I'll identify the positions of {objects} in the {image_kw}.",
14 "I need to determine the positions of {objects} by analyzing the {image_kw

}."]
15 return thought_templates
16

17 def EstimateObjectDepth_template():
18 thought_templates = ["I should estimate the depth of {object} to determine whether it is

closer or farther.",
19 "I will estimate the depth of {object}.",
20 "I need to estimate the depth for {object} to make a comparison.",
21 "To determine how far {object} is, I need to evaluate the distance to it.

",
22 "I now need to estimate the depth for {object}."]
23 return thought_templates
24

25

26 def EstimateRegionDepth_template():
27 thought_templates = ["I should estimate the objects' depths to determine which one is closer.",

28 "I need to estimate the region's depth in the image.",
29 "I need to determine the depths of the detected objects based on their

positions.",
30 "I need to estimate the depth of the objects to make a comparison.",
31 "To determine the relative proximity of the objects in the image, I need

to estimate the depth of each object."]
32 return thought_templates
33

34 def Terminate_template():
35 thought_templates = ["Based on the information above, I can conclude that the answer is {

answer}",
36 "Based on a close analysis of the {image_kw} and additional information

above, I believe the answer is {answer}.",
37 "I have analyzed the {image_kw} and the information above, and I believe

the answer is {answer}.",
38 "The {image_kw} and the information above suggest that the answer is {

answer}.",
39 "According to the content of the {image_kw} and the observations, I can

conclude that the answer is {answer}."]
40 return thought_templates

Listing 3: Thought templates for each action

11240

1 Compare the ground truth and prediction from AI models, to give a correctness score for the
prediction. <AND> in the ground truth means it is totally right only when all elements in the
ground truth are present in the prediction, and <OR> means it is totally right when any one
element in the ground truth is present in the prediction. The correctness score is 0.0 (
totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Just
complete the last space of the correctness score.

2 Question | Ground truth | Prediction | Correctness
3 --- | --- | --- | ---
4 What is x in the equation? | -1 <AND> -5 | x = 3 | 0.0
5 What is x in the equation? | -1 <AND> -5 | x = -1 | 0.5
6 What is x in the equation? | -1 <AND> -5 | x = -5 | 0.5
7 What is x in the equation? | -1 <AND> -5 | x = -5 or 5 | 0.5
8 What is x in the equation? | -1 <AND> -5 | x = -1 or x = -5 | 1.0
9 Can you explain this meme? | This meme is poking fun at the fact that the names of the countries

Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful
green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that
the person has trust issues because the names of these countries do not accurately represent
their landscapes. | The meme talks about Iceland and Greenland. It's pointing out that despite
their names, Iceland is not very icy and Greenland isn't very green. | 0.4

10 Can you explain this meme? | This meme is poking fun at the fact that the names of the countries
Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful
green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that
the person has trust issues because the names of these countries do not accurately represent
their landscapes. | The meme is using humor to point out the misleading nature of Iceland's
and Greenland's names.

11 Iceland, despite its name, has lush green landscapes while Greenland is mostly covered in ice and
snow. The text 'This is why I have trust issues' is a playful way to suggest that these
contradictions can lead to distrust or confusion. The humor in this meme is derived from the
unexpected contrast between the names of the countries and their actual physical
characteristics. | 1.0

Listing 4: LLM judge prompt for MMVet

1 Please read the following example. Then extract the answer from the model response and type it at
the end of the prompt.

2

3 Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1,
2, 3, at the end.

4 Question: Which number is missing?
5 Model response: The number missing in the sequence is 14.
6 Extracted answer: 14
7

8 Hint: Please answer the question requiring a floating-point number with one decimal place and
provide the final value, e.g., 1.2, 1.3, 1.4, at the end.

9 Question: What is the fraction of females facing the camera?
10 Model response: The fraction of females facing the camera is 0.6,
11 which means that six out of ten females in the group are facing the camera.
12 Extracted answer: 0.6
13

14 Hint: Please answer the question requiring a floating-point number with two decimal places and
provide the final value, e.g., 1.23, 1.34, 1.45, at the end.

15 Question: How much money does Luca need to buy a sour apple candy and a butter-scotch candy? (Unit:
$)

16 Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy.
17 Extracted answer: 1.45
18

19 Hint: Please answer the question requiring a Python list as an answer and provide the final list,
e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.

20 Question: Between which two years does the line graph saw its maximum peak?
21 Model response: The line graph saw its maximum peak between 2007 and 2008.
22 Extracted answer: [2007, 2008]
23

24 Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the
end.

25 Question: What fraction of the shape is blue?
26 Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5
27 Model response: The correct answer is (B) 8/11.
28 Extracted answer: B

Listing 5: LLM judge prompt for MathVista

11241

