
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 11139–11203
November 4-9, 2025 ©2025 Association for Computational Linguistics

Towards Infinite-Long Prefix in Transformer

Yingyu Liang†* Zhenmei Shi‡* Zhao Song¶* Chiwun Yang||*

†The University of Hong Kong, †, ‡University of Wisconsin-Madison
¶University of California, Berkeley, ||Sun Yat-sen University

Code: https://github.com/ChristianYang37/NTK-Attention

Contact: †yingyul@hku.hk, {†yliang,‡zhmeishi}@cs.wisc.edu,
¶magic.linuxkde@gmail.com, ||christiannyang37@gmail.com

Abstract

Prompting and context-based fine-tuning meth-
ods, which we call Prefix Learning, have been
proposed to enhance the performance of lan-
guage models on various downstream tasks.
They are empirically efficient and effective,
matching the performance of full parameter
fine-tuning, but the theoretical understandings
are limited. In this paper, we aim to address
this limitation by studying their ability from the
perspective of prefix length. In particular, we
provide a convergence guarantee for training
an ultra-long prefix in a stylized setting using
the Neural Tangent Kernel (NTK) framework.
Based on this strong theoretical guarantee, we
design and implement an algorithm that only
needs to introduce and fine-tune a few extra
trainable parameters instead of an infinite-long
prefix in each layer of a transformer, and can
approximate the prefix attention to a guaran-
teed polynomial-small error. Preliminary ex-
perimental results on vision, natural language,
and math data show that our method achieves
superior or competitive performance compared
to existing methods like full parameters fine-
tuning, P-Tuning V2, and LoRA. This demon-
strates our method is promising for parameter-
efficient fine-tuning.

1 Introduction

The advent of Large Language Models (LLMs)
and Vision LLMs (vLLMs) has significantly ad-
vanced the field of Artificial Intelligence (AI),
with prominent examples like ChatGPT (ChatGPT,
2022), Claude (Claude-3, 2024), Gemini (Gem-
ini, 2024). They have exhibited impressive perfor-
mances across a spectrum of tasks, encompass-
ing chat systems (Maaz et al., 2023; Xu et al.,
2023; Zheng et al., 2024), text-to-image conversion
(Qiao et al., 2019; Frolov et al., 2021; Zhang et al.,
2023a), AI mathematical inference (Hendrycks
et al., 2020; Xiong et al., 2022; Yu et al., 2023a;

*Equal contribution in alphabetical order.

Yao et al., 2023; Xiong et al., 2023b), and many
more. However, despite these advancements, pre-
existing LLMs often fall short in specialized do-
mains that demand a deeper understanding of pro-
fessional knowledge (Li et al., 2024b; Wang et al.,
2024) . This has led to the development of fine-
tuning/adaptation (Shi et al., 2022) methodologies
aimed at enhancing the proficiency of these models
in executing more specialized tasks (Mangrulkar
et al., 2022). Several notable contributions in this
area, such as LoRA (Low-Rank Adaptation, Hu
et al. (2021)), P-Tuning (Liu et al., 2021b, 2023),
and (IA)3 (Liu et al., 2022), have displayed perfor-
mances rivaling those of full-parameter fine-tuning
techniques. This underscores the potential of these
fine-tuning strategies to further refine the capabili-
ties of Large Language Models.

Among the methods proposed, most context-
based fine-tuning methods, e.g., Prompt-Tuning
(Lester et al., 2021; Liu et al., 2021a), Prefix-
Tuning (Li and Liang, 2021), P-Tuning (Liu et al.,
2023, 2021b), use enhanced input sequences (or
virtual prompt, a.k.a soft prompt) to optimize their
model outputs. These methods are gaining signif-
icant interest due to their ease of implementation
across various model architectures, and also pre-
vention of catastrophic forgetting with static pre-
trained parameters (Wang et al., 2023b; Sohn et al.,
2023; Yang et al., 2024). We call the above ap-
proaches Prefix Learning since they improve the
performance by optimizing a prefix matrix added
to the input in each attention layer of the LLMs
(see detailed formulation in Section 3).

Despite its wide use and strong empirical per-
formance, we still have a limited understanding of
why and how prefix learning operates (Wang et al.,
2023a; Petrov et al., 2024a,b). One common phe-
nomenon in prior empirical studies is that prefix
learning results in better downstream performance
when the prefix length increases (Lester et al., 2021;
Liu et al., 2023). We call this phenomenon scaling
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Figure 1: Illustration of existing prefix attention methods (Algorithm 1) and our NTK-Attention (Algorithm 2).
Compared to the former, NTK-Attention significantly reduces the number of parameters and the time complexity.
Here, X ∈ RL×d is the input of this layer, W = [WQ,WK ,WV ] is frozen weights of attention, P ∈ Rm×d is
the trainable prefix matrix and ZA ∈ Rr×s, ZB ∈ Rs×d, k ∈ Rr are the trainable parameters in our method. L is
the input length, d the input dimension, m the prefix length, and r a hyperparameter in NTK-attention (i.e., the
dimension of the constructed feature mapping; see Section 5). Note that m ≫ L and m ≫ d, and r = poly(d)
(usually be chosen to d or 2d), s ≤ ⌊d/2⌋ (low-rank of ZA, ZB) are used in our experiments.

law in prefix learning: the longer the prefix, the
larger downstream dataset the model can fit, and
thus the better performance the model would have.
Then intuitively, we would like to ask:

What happens when the prefix length is large or
even tends to infinity?

The answer to this cannot be directly figured
out via empirical evaluations, since it is impracti-
cal to implement networks with ultra-long or even
infinite prefixes in practice. Therefore, we first per-
form a theoretical analysis of prefix learning. We
study the optimization of ultra-long prefix learning
via the Neural Tangent Kernel (NTK) technique
(Jacot et al., 2018), which has been used for an-
alyzing overparameterized networks and thus is
suitable for ultra-long prefix learning. Based on
the insights gained from the analysis, we propose
our method, NTK-attention, which reparameterizes
prefix learning and can approximate infinite-long
prefix learning using a finite number of parameters.
We also conduct some empirical evaluations of our
method on vision, natural language understanding,
and math inference datasets to demonstrate its ef-
fectiveness. We have the following contributions:

• We first perform a theoretical analysis of opti-
mizing an ultra-long prefix in a stylized attention
network; see Section 4. We consider a simpli-
fied attention network, and show that when prefix
length m is sufficiently large (i.e., prefix learning
is sufficiently over-parameterized), the training
can be analyzed via NTK, which leads to our the-
oretical guarantee of convergence to small errors.
This also provides theoretical support for scaling

law in prefix learning.

• We then propose our NTK-Attention (Algo-
rithm 2), motivated by the above strong theoreti-
cal guarantee; see Section 5. Our method approx-
imates existing prefix attention (Algorithm 2) by
utilizing three trainable parameters ZA, ZB and
k, to replace the parameter in prefix attention
(the prefix matrix P ). This allows scaling the
prefix length without large memory usage and
computational time that increases with the prefix
length. It reduces the computation complexity
from O(mL) to O(L2), where L is the input
length and m is the prefix length. See Figure 1
for an illustration.

• We further conduct experiments on vision, lan-
guage and math datasets to verify our theoretical
results; see Section 6 and Section 7. The experi-
ments include (1) a comparison among our NTK-
Attention, full parameters fine-tuning, and LoRA
on CIFAR-100, Food-101 and Tiny-Imagenet
datasets with the same pre-trained ViT backbone;
(2) a comparison among our NTK-Attention, P-
Tuning V2, and LoRA on SuperGLUE, WikiText-
103, Penn TreeBank and LAMBADA datasets
with the same pre-trained ChatGLM3-6B and
OPT-{125M, 350M, 1.3B, 2.7B, 6.7B} family;
(3) a comparison among our NTK-Attention and
LoRA on GSM8K and MATH datasets with su-
pervised fine-tune pre-trained models LLAMA-
3.2; (4) an ablation study to validate sensitivity of
hyper-parameters in NTK-Attention; (5) a com-
parison of the computational costs between our
method and standard prefix learning on random
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data. The empirical results show that on average
our NTK-Attention method achieves better per-
formance than the competitors. For example, on
SuperGLUE datasets, it achieves an average accu-
racy that is 1.07% higher than LoRA and 12.94%
higher than P-Tuning V2. It is also observed
that our method maintains low time and memory
costs while those of prefix learning scales with
prefix length. The experimental results demon-
strate that our method is effective and efficient
and supports our theoretical analysis.

2 Related Work

Prefix Learning. Prefix Learning (Lester et al.,
2021; Ding et al., 2021; Wang et al., 2022b; Zhou
et al., 2022; Liu et al., 2021a; Petrov et al., 2024a;
Wu et al., 2023; Xiong et al., 2023a), including
Prompt-Tuning (Lester et al., 2021), Prefix-Tuning
(Li and Liang, 2021), P-Tuning (Liu et al., 2023,
2021b), Reweighted In-Context Learning (RICL)
(Chu et al., 2023) and so on, is proposed to en-
hance the performance of language models on the
downstream tasks and to reduce the costs of compu-
tational resources of fine-tuning the whole model.
Those methods optimize task-specific prompts for
downstream task improvement. On the other
hand, besides the Parameter-Efficient-Fine-Tuning
(PEFT) approaches (Mangrulkar et al., 2022) we
mentioned above, Retrieval Augmented Generation
(RAG) (Lewis et al., 2020; Jiang et al., 2023; Gao
et al., 2023b) and Chain-of-Thought (CoT) prompt-
ing (Wei et al., 2022b; Wang et al., 2022a; Fu et al.,
2022) can also be considered as prefix learning. We
conclude all these works to an optimization prob-
lem that improves the prefix based on task-specific
measurements.
Neural Tangent Kernel. Neural Tangent Kernel
(NTK) (Jacot et al., 2018) studies the gradient flow
of neural networks in the training process. They
showed neural networks are equivalent to Gaussian
processes in the infinite-width limit at initialization.
A bunch of works has explained the strong perfor-
mance and the learning ability of neural networks
at over-parameterization, such as (Li and Liang,
2018; Du et al., 2019; Song and Yang, 2019; Allen-
Zhu et al., 2019; Wei et al., 2019; Bietti and Mairal,
2019; Lee et al., 2020; Chizat and Bach, 2020; Shi
et al., 2021; Zhou et al., 2021; Seleznova and Ku-
tyniok, 2022; Gao et al., 2023a; Li et al., 2024a;
Shi et al., 2024b) and many more. Furthermore,
Arora et al. (2019) gave the first exact algorithm

on computing Convolutional NTK (CNTK), Ale-
mohammad et al. (2020) proposed Recurrent NTK,
and Hron et al. (2020) presented infinite attention
via NNGP and NTK for attention networks. These
works have demonstrated advanced performance
by utilizing NTK in different neural network archi-
tectures. In particular, Malladi et al. (2023) have
studied the training dynamic of fine-tuning LLMs
via NTK and confirmed the efficiency of such meth-
ods.
Theory of Understanding Large Language Mod-
els. Since the complicated transformer-based ar-
chitecture and stochastic optimization process of
LLMs lead the study of their behaviors to be a chal-
lenge, analyzing LLMs through some theoretical
guarantee helps in providing insights to improve
and design the next generation of AI systems. This
topic includes efficient LLMs (Alman and Song,
2023, 2024a,b; Han et al., 2024; Kacham et al.,
2023; Addanki et al., 2023; Deng et al., 2024b;
Shi et al., 2024a), optimization of LLMs (Deng
et al., 2023; Li et al., 2024a), white-box transform-
ers (Yu et al., 2023b,c; Ferrando et al., 2024; Pai
et al., 2024), analysis of emergent abilities of LLMs
(Brown et al., 2020; Wei et al., 2022a; Allen-Zhu
and Li, 2023a,c,b, 2024), etc. Especially, (Alman
and Song, 2023) proved that the hardness of atten-
tion can be achieved within n1+o(1) times execu-
tions, one effective way is to construct a high-order
polynomial mapping based on Taylor expansion of
the exponential function exp(·), and it inspired the
design of our NTK-Attention.

3 Preliminary: General Prefix Learning

In this section, we provide the detailed formulation
for prefix learning, which optimizes prefix matrices
in the attention layers of transformer-based LLMs.
Transformer Network with Prefix. Let X ∈
RL×d be an input matrix to the transformer net-
work, where L and d are the input length and di-
mension. An N -layer transformer network with an
initial-layer prefix matrix P(0) ∈ Rm(0)×d and a po-
sitional embedding matrix E ∈ R(m(0)+L)×d first

concatenate S(0) :=
[
P⊤
(0), X

⊤
]⊤
∈ R(m(0)+L)×d,

then the output of the whole model is defined as:
fT (X) := TF(N) ◦ · · · ◦ TF(1)(S(0) + E), where
the ℓ-th layer of transformer block for ℓ ∈ [N ], is
then given by: TF(ℓ)(X) := FF(ℓ) ◦ PAttn(ℓ)(X).
Denote L′ := m(0)+L. The feed-forward network:
FF(ℓ)(X) := ReLU(XW(ℓ),1 + 1L′b⊤(ℓ),1)W

⊤
(ℓ),2
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+ 1L′b⊤(ℓ),1 + X, where W(ℓ),1,W(ℓ),2 ∈ Rd×d1 ,
b1 ∈ Rd1 , b2 ∈ Rd, and d1 represent the hidden
dimension of feed-forward. For simplicity, we con-
sider only the single-head attention network with
prefix learning:

PAttn(ℓ)(X) := Softmax(
Q(ℓ)K

⊤
(ℓ),P√
d

)V(ℓ),P +X,

where Q(ℓ) := XW(ℓ),Q ∈ RL′×d,K(ℓ),P =

S(ℓ)W(ℓ),K , V(ℓ),V = S(ℓ)W(ℓ),Q ∈ R(m(ℓ)+L′)×d.

Notably, S(ℓ) :=
[
P⊤
(ℓ), X

⊤
]⊤
∈ R(m(ℓ)+L′)×d

be the concatenation of the prefix and the input,
and trainable prefix matrix P(ℓ) ∈ Rm(ℓ)×d stands
for m(ℓ) virtual token vectors (or soft prompt).
W(ℓ),Q,W(ℓ),K ,W(ℓ),V ∈ Rd×d are query, key, and
value parameter matrices in ℓ-layer, respectively.
Specifically, the length of prefix matrix m(ℓ) ≥ 0
for ℓ ∈ {0, · · · , N} in each layer can be personal-
ized due to some specific requirement.
General Prefix Learning Framework. The
concept of Prefix Learning contains P-Tuning
(Liu et al., 2023, 2021b), Prefix-Tuning (Li
and Liang, 2021). Essentially, they are all
searching for the optimal prefix for a specific
task based on a strong pre-trained language
model. We note the pre-trained weights θ =
{W(ℓ),Q,W(ℓ),K ,W(ℓ),V ,W(ℓ),1,W(ℓ),2, b(ℓ),1,

b(ℓ),2}Nℓ=1 are all frozen during the optimization
process of prefix learning. Besides, prefix param-
eters of the whole model, θp = {P(ℓ)}Nℓ=0 are
trainable or adjustable for parameter-efficient-fine-
tuning. Denote the dataset as Dpl = {(Xi, Yi)}ni=1

where n is the dataset size, and Xi, Yi ∈ RL×d.
Let γ(·, ·) denote the loss function for the specific
task (e.g., prompting, context-based fine-tuning,
etc). The training objective of prefix learning is:

min
θp
Lpl(θp) :=

n∑

i=1

γ(fT (Xi), Yi). (1)

4 Scaling Law in Prefix Learning

In this section, we first introduce an interesting phe-
nomenon, scaling law in prefix learning, commonly
observed by some prior prefix learning works in
Section 4.1. Thus, we give our explanation utiliz-
ing the Neural Tangent Kernel(NTK) framework
(Jacot et al., 2018) in Section 4.2, where NTK is a
popular tool in analyzing overparameterized neural
networks, including LLM (Malladi et al., 2023).

4.1 Previous Observation
A rich line of studies (Lester et al., 2021; Liu
et al., 2023; Reynolds and McDonell, 2021; Arora
et al., 2022; Brown et al., 2020; Dong et al., 2022;
Von Oswald et al., 2023; Fu et al., 2022; Agarwal
et al., 2024) have reported a common observation
that as the prefix length increases, the model’s abil-
ity to master complex skills also improves. Specifi-
cally, the performance of fine-tuned models is en-
hanced when the prefix length grows within a cer-
tain range. A similar trend is observed in prompting
methods and in-context learning, where longer and
more complex prompts lead to better inference abil-
ities in LLMs, and providing more examples in ICL
results in improved performance. We summarize
this as the scaling law in prefix learning: the longer
the prefix length for fine-tuning, the larger dataset
the model can fit, thus, the more complicated skill
it can master. This motivates investigating prefix
learning with long prefixes.

4.2 Theoretical Guarantee via NTK
In our theory, we consider only fine-tuning one
certain prefix matrix P(ℓ) ∈ θp for 0 ≤ ℓ ≤ N ,
where fine-tuning the whole θp is a composition
case of the former learning process. On the other
hand, we choose γ(X,Y ) := ∥X − Y ∥2F as the
training objective for searching the optimal prefix.
Moreover, we give a mild assumption in the NTK
framework (also used in (Malladi et al., 2023)):

Assumption 4.1. We define a matrix H∗ ∈
Rn×n and its (i, j)-th entry ∀i, j ∈ [n] is
H∗

i,j := ⟨vec(dγ(fT (Xi),Yi)
dP(ℓ)

), vec(
dγ(fT (Xj),Yj)

dP(ℓ)
)⟩,

where vec(·) flattens any matrix row-wise to a vec-
tor. We assume H∗ is a positive definite (PD) ma-
trix such that its minimum eigenvalue is positive
λ := λmin(H

∗) > 0.

Then the informal version of our main theorem
is given as follows:

Theorem 4.2 (Main result, informal version
of Theorem K.2). Let B := O(

√
log(nd/δ)),

ϵ, δ ∈ (0, 0.1). For any prefix matrix P(ℓ) ∈
θp for ℓ ∈ [0, N ], we choose m(ℓ) =
λ−2 poly(n, d, exp(B)). If Assumption 4.1 holds,
then fine-tuning P(ℓ) using gradient descent over
T = Ω((m(ℓ)ηλ)

−1 log(nd/ϵ)) iterations with
learning rate η = λm−1

(ℓ)/ poly(n, d, exp(B))

leads Lpl(θp) ≤ ϵ.

Discussion. Theorem 4.2 mainly describes the fol-
lowing fact for any dataset with n data points. After
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initializing the prefix matrix from a normal distri-
bution, assuming the minimum eigenvalue of NTK
λ > 0, setting m(ℓ) to be a large enough value so
that the network is sufficiently over-parameterized.
Then with proper learning rate, the loss can be min-
imized in finite training time to an arbitrarily small
error ϵ. Corresponding to the real-world implemen-
tation, it explains that adequately long prefix learn-
ing can master downstream tasks when fine-tuning
LLMs. Furthermore, it also helps us understand the
working mechanism of prefix learning, inspiring us
to explore the direction of using ultra-long prefixes.

Now we connect our theory to the scaling law
in prefix learning. Following (Kaplan et al., 2020),
we focus on the relationship between the loss and
the computational cost. We provide a theoretical
confirmation of the scaling law in prefix learning.

Proposition 4.3 (Scaling Law in Prefix Learning).
We define N := O(

∑N
ℓ=0m(ℓ)d) as the number

of parameters, D := O(n) as the size of training
dataset, Ccpt := O(NDT ) as the total compute
cost, and α := nd. We choose T as Theorem 4.2,
then the loss of training, denotes L, satisfies:

L ≈ α

exp( 1αηλCcpt)
.

Proposition 4.3, following Theorem 4.2, shows
that the training loss of the prefix learning con-
verges exponentially as we increase the computa-
tional cost Ccpt, which primarily depends on the
number of parameters and the training time in pre-
fix learning, further indicating a possible relation-
ship for formulating scaling law in prefix learning.

Algorithm 1 Prefix Attention

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value
weights WQ,WK ,WV ∈ Rd×d, trainable pre-
fix matrix P ∈ Rm×d

Output: Exact output Attn ∈ RL×d

1: procedure PREFIXATTEN(X)
2: S ←

[
P⊤, X⊤]⊤

3: Q,KP , VP ← XWQ, SWK , SWV

4: A← exp(QK⊤
P /
√
d)

5: D ← diag(A1m+L)
6: return D−1AVP

7: end procedure

Algorithm 2 NTK-Attention

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value
weights WQ,WK ,WV ∈ Rd×d, trainable
weights ZA ∈ Rr×s, ZB ∈ Rs×d and k ∈ Rr

Output: Approx output T ∈ RL×d

1: procedure NTK-ATTEN(X)
2: Q,K, V ← XWQ, XWK , XWV ,
3: Â← exp(QK⊤/

√
d)

4: D̂ ← diag(Â1L +Φ(Q)k)
5: T ← D̂−1(ÂV +Φ(Q)ZA · ZB)
6: return T
7: end procedure

5 NTK-Attention: Approximate
Infinite-Long Prefix Attention

The preceding section discussed the convergence
guarantee of training sufficiently long prefixes in
transformer-based models. This strong theoretical
property inspires us to scale up the prefix length
m (We omit the notation of layer number (ℓ) in
further derivations). However, such prefix learning
(Algorithm 1) necessitates a time complexity of
O(mLd+ L2d) in each layer of the model, this is
impractical due to a large m. This section proposes
an approximate algorithm to make long prefix learn-
ing practical. Our algorithm, NTK-Attention, is
designed to output an approximation of PAttn(X)
in each layer of the model within O(L1+o(1)) and
without using the long prefix matrix P . We present
the derivation and motivation of our algorithm in
Section 5.1, formalize the NTK-Attention algo-
rithm in Section 5.2, and provide an approximation
guarantee in Section 5.3.

5.1 Derivation: Replacing Prefix P with
Trainable Parameters Z, k

There exists a wealth of attention approximation
algorithms capable of executing attention computa-
tions within n1+o(1) time (Han et al., 2024; Liang
et al., 2024a,b). However, our focus lies predom-
inantly with the polynomial method (Tsai et al.,
2019; Katharopoulos et al., 2020). Our method
has exhibited exceptional performance in terms of
time and space complexity through the use of a
streaming algorithm.
Polynomial method. In attention networks, the
query, key, and value state matrices, denoted as
Q,K, V ∈ RL×d, are assumed to have all entries
bounded (Alman and Song, 2023). Under this con-
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dition, the polynomial method first constructs a
linear mapping ϕ : Rd → Rr, where r = poly(d)
(Alman and Song, 2023), and it satisfies the follow-
ing relation (i, j ∈ [L], Qi,Kj ∈ Rd represent the
i-th row of Q and the j-th row of K respectively):

ϕ(Qi)
⊤ϕ(Kj) ≈ exp(Q⊤

i Kj/
√
d). (2)

Here, the mapping ϕ(·) is constructed based on
the Taylor expansion of the exponential function,
and the larger value of r ≥ d would bring the ap-
proximation (Eq. (2)) with a smaller error. This
is guaranteed by Lemma 3.4 in Alman and Song
(2023), refer to a copy in Lemma L.7. The i-
th row of the approximate attention (denoted as
PolyAttni ∈ R1×d) then can be computed as

follows: PolyAttni :=
ϕ(Qi)

⊤ ∑L
j=1 ϕ(Kj)V

⊤
j

ϕ(Qi)⊤
∑L

j=1 ϕ(Kj)
∈

R1×d,∀i ∈ [L].
Recall that given an input matrix X ∈ RL×d,

thus, Q = XWQ, and we have
[
KP , VP

]
=[

P
X

]
·
[
WK ,WV

]
=

[
PWK PWV

XWK XWV

]
. Let

KC := PWK , VC := PWV ∈ Rm×d and K :=
XWK , V := XWV ∈ RL×d. We expand the i-th
row of the prefix attention, PAttni(X) ∈ R1×d as:

PAttni(X)

=
exp(Q⊤

i K
⊤/
√
d)V + exp(Q⊤

i K
⊤
C /
√
d)VC

exp(Q⊤
i K

⊤/
√
d)1L + exp(Q⊤

i K
⊤
C /
√
d)1m

≈ exp(Q⊤
i K

⊤/
√
d)V + ϕ(Qi)

⊤Z

exp(Q⊤
i K

⊤/
√
d)1L + ϕ(Qi)⊤k

where Z ∈ Rr×d, k ∈ Rr, and

Z =

m∑

j=1

ϕ(KC,j)V
⊤
C,j , k =

m∑

j=1

ϕ(KC,j). (3)

Here, the first step explicitly computes the softmax
function, and the second step holds since replacing
exp(Q⊤

i K
⊤/
√
d) by Eq. (2), which is

exp(Q⊤
i K

⊤
C,j/
√
d) ≈ ϕ(Qi)

⊤ϕ(KC,j), ∀j ∈ [m].

Therefore, checking the training process of P ,
we observe that P is updating iff Z and k are
updating. Hence, we can replace P by utilizing
trainable parameters Z and k in Eq. (3) to re-
parameterize the prefix attention. This is the key to
how NTK-Attention approximates prefix attention
without a large number of parameters.

5.2 Algorithm
Our analysis shows that as the prefix length ap-
proaches infinity, the model performance converges
to an optimal point. Rather than implementing im-
practically long prefixes, we leverage polynomial
approximation of the exponential attention kernel
to capture this behavior efficiently. This reformu-
lation allows us to replace a large prefix matrix P
with compact parameters Z and k that approximate
infinite-length prefix effects while requiring only
O(rd+ r) parameters instead of O(md).

To present our algorithm, based on ϕ, we
define: Φ(A) =

[
ϕ(A1,∗), · · · , ϕ(AL,∗)

]⊤ ∈
RL×r,∀A ∈ RL×d. Below we present our NTK-
Attention method in Algorithm 2, and for compari-
son also present the traditional prefix attention for
prefix learning in Algorithm 1.
Implementation Detail of ϕ. In order to find a
balance between approximation and efficient com-
putation of NTK-Attention, we use the first-order
polynomial method. Higher-order polynomial ap-
proximations could indeed improve performance
at the cost of increased computation. Our first-
order approximation balances theoretical guaran-
tees with practical efficiency. In particular, we
choose r = d, and the function ϕ is given by
ϕ(z) := d−

1
4 ·(z◦1z≥0d

+exp(z)◦1z<0d
)+1d ∈

Rd, ∀z ∈ Rd, where 1z≥0d
∈ Rd is an indicative

vector and its i-th entry for i ∈ [d] equals 1 only
when zi ≥ 0, and 0 otherwise.
Initialization, Approximation and Training of
Z and k. In Section 4.2, we initialize the pre-
fix matrix P from a standard normal distribution
following the NTK framework. Since the pre-
trained weights WQ,WK ,WV ∈ Rd×d are known,
the initialization of Z and k, denotes Z(0) and
k(0), can then be computed by Eq. (3). How-
ever, consider that Z caches rd parameters for
r = poly(d), which is insufficiently parameter-
efficient. In response to it, we choose s ≤ ⌊d/2⌋
as an appropriately small integer, then Z(0) ≈
ZA(0) · ZB(0) is decomposed into two low-rank
matrices ZA(0) ∈ Rr×s, ZB(0) ∈ Rs×d. For
training, let gZA

(t) ∈ Rr×s, gZB
(t) ∈ Rs×d and

gk(t) ∈ Rr denote the gradients of ZA(t), ZB(t)
and k(t) at time t, and η denote the learning rate.
Then the update rule is:

ZA,B(t+ 1) :=ZA,B(t)− η · gZA,B
(t),

k(t+ 1) :=k(t)− η · gk(t).
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Method Num Params
Task

Average
BoolQ CB Copa MultiRC RTE

P-Tuning V2 m = 1 0.12M 65.69±0.32 67.06±0.37 52.00±1.00 53.59±0.28 65.97±0.22 60.86±0.44

P-Tuning V2 m = 10 1.15M 66.67±0.23 74.07±0.00 54.00±0.00 54.17±0.71 66.55±0.25 63.10±0.24

P-Tuning V2 m = 100 11.47M 69.42±0.02 74.54±0.47 64.50±0.50 61.62±2.28 76.77±0.83 69.37±0.82

LoRA r′ = 8 3.67M 76.52±0.10 90.23±0.39 86.50±0.50 65.09±0.41 87.76±0.37 81.24±0.35

NTK-Attention (ours), r = 128, s = 16 3.78M 75.06±0.12 96.04±0.84 88.00±2.00 65.85±0.33 86.59±0.52 82.31±0.76

Table 1: Performance of different fine-tuning methods on the SuperGLUE datasets. The base model is ChatGLM3-
6B. The methods include P-Tuning V2, LoRA, and our NTK-Attention method. The metric on these datasets is
accuracy (measured in %). The best score on each dataset is boldfaced.

Number of Trainable Parameters. Since given r
and s as two hyperparameters in NTK-Attention,
for each attention layer in the transformer-based
architecture, we denote β := r

d . The number
of trainable parameters could be computed by
(βs+β+ s)d where integer β ≥ 1 and s ≤ ⌊d/2⌋.
This is more flexible when adjusting the practi-
cal efficiency needs. For LoRA with its hyper-
parameter r′ ≤ ⌊d/2⌋, where r′ is the rank number
used for approximation, its number of trainable pa-
rameters is 4r′d and for prefix attention with its
hyper-parameter m ≥ 1, its number of trainable
parameters is md in each attention layer. By choos-
ing (βs + β + s) ≤ 4r′, the higher efficiency of
NTK-Attention compared to LoRA will be satis-
fied.

5.3 Error Bound and Complexity Reduction
Introducing an ultra-long prefix matrix P ∈ Rm×d

to satisfy the conditions in Theorem K.2 requires
md parameters for

m ≥ Ω(λ−2 poly(n, d, exp(B))),

while it also bring a O(m(m+L)d) time complex-
ity to compute Algorithm 1. Our NTK-Attention
relieve this by replacing P with Z and k, where we
state our theoretical guarantee as follows:

Theorem 5.1 (Error bound with reduced time com-
plexity, informal version of Theorem L.2). Let
m denote the prefix length. Given an input ma-
trix X ∈ RL×d and prefix matrix P ∈ Rm×d,
we denote Q = XWQ, KC = PWK and
VC = PWV . If the condition Eq. (3), ∥Q∥∞ ≤
o(
√
logm), ∥KC∥∞ ≤ o(

√
logm), ∥VC∥∞ ≤

o(
√
logm) and d = O(logm) holds, then Algo-

rithm 2 outputs a matrix T ∈ RL×d within time
complexity of O(L2d) that satisfies:

∥T − PrefixAttn(X,P )∥∞ ≤ 1/poly(m). (4)

Furthermore, if we replace the original attention
operation (attention computation on input X with

K = XWK and V = XWV ) with fast attention
algorithms like HyperAttention (Han et al., 2024),
then NTK-Attention can be even more efficient,
achieving Eq. (4) within complexity O(L1+o(1)d)
(see Corollary L.3 for proofs).

6 Empirical Evaluations

In this section, we evaluate our method, NTK-
Attention on natural language understanding, math
inference, and fine-grained image classification
tasks. All our experiments use the Huggingface
(Wolf et al., 2019) trainer with AdamW optimizer
(Kingma and Ba, 2014), and all optimizer hyper-
parameters are set to the defaults. “Num Params”
in our tables stands for the number of trainable pa-
rameters in fine-tuning. We provide more details
and hyperparameter choices in Appendix C.
Evaluation on Natural Language Understand-
ing Datasets. In this experiment, we utilize five
binary classification datasets in SuperGLUE (Wang
et al., 2019) for evaluation: the BoolQ, CB, Copa,
MultiRC, and RTE datasets. We use a pre-trained
LLM ChatGLM3-6B (Zeng et al., 2022; Du et al.,
2022) as the base model. For comparison, we
choose P-Tuning V2 (Liu et al., 2023, 2021b)
which is a standard prefix learning method, and
choose LoRA (Hu et al., 2021) which is a pop-
ular parameter-efficient fine-tuning method often
achieving state-of-the-art. P-Tuning V2 uses differ-
ent lengths of virtual prefix {1, 10, 100, 200}, and
LoRA uses rank r′ = 8. We choose r = 128 (the
dimension of each head of ChatGLM3-6B) and
s = 16 for our NTK-Attention.

The results are provided in Table 1. Our NTK-
Attention method achieves much higher perfor-
mance than P-Tuning V2. Interestingly, as m in-
creases, the performance of P-Tuning V2 also im-
proves, which is consistent with our analysis. Our
analysis also suggests that NTK-Attention approxi-
mates ultra-long prefix learning and thus can per-
form better than P-Tuning V2. The experimen-
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Method Num Params
Dataset

Average
CIFAR-100 Food-101 Tiny-Imagenet

FFT 86.39M 85.15±0.13 84.76±0.07 76.20±0.23 82.04±0.14

LoRA r′ = 16 7.08M 92.17±0.05 89.38±0.33 88.22±0.09 89.92±0.16

LoRA r′ = 32 14.16M 92.01±0.20 89.86±0.11 90.16±0.12 90.68±0.14

NTK-Attention (ours), r = 64, s = 32 7.09M 92.55±0.03 90.57±0.01 89.46±0.10 90.86±0.05

Table 2: Performance of different fine-tuning methods on the CIFAR-100, Food-101 and Tiny-Imagenet datasets.
The base model is ViT-Base. The methods include FFT, LoRA, and our method NTK-Attention. The metric is
accuracy (measured in %). The best score on each dataset is boldfaced.
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Figure 2: Compare our results with LoRA and Zero-
Shot (without using CoT/ICL) on Math inference data.
The y-axis is the accuracy.

tal results also show that NTK-Attention achieves
better performance than LoRA on CB, Copa, and
MultiRC datasets, and achieves better average per-
formance over all the datasets.

Evaluation on Math Inference Datasets. In or-
der to thoroughly verify the effectiveness of NTK-
Attention, we conduct experiments on the math
inference task, which includes GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021)
datasets. These are considered fair benchmarks
to test the complex capability of LLMs. We fol-
low Yu et al. (2023a) to supervised fine-tune two
pretrained models LLAMA-3.2-1B and LLAMA-
3.2-3B (Touvron et al., 2023a,b) with dataset Meta-
MathQA (Yu et al., 2023a). We state our results in
Figure 2, and we use accuracy scores for counting
the matched answers for evaluation. As we can
see, our NTK-attention (r = d, s = 16) is bet-
ter than the two baselines, LoRA and Zero-Shot,
where LoRA uses r′ = 16 for LLAMA-3.2-1B and
r′ = 32 for LLAMA-3.2-3B.

Evaluation on Vision Datasets. We evaluate
the method on three image classification datasets:
CIFAR-100 (Krizhevsky et al., 2009), Food-101
(Bossard et al., 2014), and Tiny-Imagenet (mn-
moustafa, 2017). The base model to be fine-tuned
on these datasets is ViT-Base (Dosovitskiy et al.,
2020) that is pretrained on the ImageNet-21k (Deng
et al., 2009). We compare our method to two base-
lines: (1) FFT (Full parameters Fine-Tuned) that

fine-tunes all parameters; (2) LoRA (Hu et al.,
2021) that fine-tunes only query and value weights
of the base model with rank r′ = {16, 32}. The
results are presented in Table 2. Our method per-
forms much better than FFT: 7.40%, 5.81% and
13.26% higher accuracy on the three datasets, re-
spectively. Note that FFT updates all parameters
and has much higher computational costs than
LoRA or our method. Our method has a simi-
lar performance to LoRA with r′ = 32, achieving
slightly better average accuracy. These results pro-
vide positive empirical support for our method.

7 Scalability, Efficiency and Ablation

This basic experimental setup of this section aligns
with the one in the previous section. Here, we espe-
cially focus on the scalability, efficiency, and how
the hyperparameters (r, s) affect the performance.
Evaluation on Language Modeling Tasks. In this
experiment, we focus on the scalability of NTK-
Attention on a family of language models of dif-
ferent sizes, the OPT family with the model sizes
125M, 350M, 1.3B, 2.7B and 6.7B (Zhang et al.,
2022). We introduce three text datasets, which
are WikiText-103 (Merity et al., 2016), Penn Tree-
Bank (Marcus et al., 1993), and LAMBADA (Pa-
perno et al., 2016), to compare the scalability of
NTK-Attention with LoRA (Hu et al., 2021) and P-
Tuning V2 (Liu et al., 2023, 2021b). As we choose
r′ = 8 for LoRA, m = 32 for P-Tuning V2, and
r = 2d and s = 10 for our NTK-Attention, the
numbers of trainable parameters are aligned to the
same as 32d for each attention layer. The results are
stated in Table 3, which shows the improvement of
NTK-Attention compared to baselines when scal-
ing the model size.

Remark 7.1. Our theory demonstrates that as
prefix length increases, model performance im-
proves until convergence, following the scaling
law we identified. While practical prefix lengths
(≤ 100), our theory shows that performance even-
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Model Method Num Params
Datasets

Average
WikiText-103 Penn TreeBank LAMBADA

LoRA, r′ = 8 30.50 35.97 46.02 37.50
OPT-125M P-Tuning V2, m = 32 0.29M 2264.22 963.09 1762.19 1663.17

NTK-Attention, r = 2d, s = 10 31.41 33.52 45.39 36.77

LoRA, r′ = 8 24.76 30.41 38.80 31.32
OPT-350M P-Tuning V2, m = 32 0.77M 7383.48 1339.43 14020.36 7581.09

NTK-Attention, r = 2d, s = 10 25.67 28.85 36.97 30.50

LoRA, r′ = 8 16.71 21.27 24.16 20.71
OPT-1.3B P-Tuning V2, m = 32 1.57M 2230.76 540.17 3480.77 2083.9

NTK-Attention, r = 2d, s = 10 17.04 20.09 24.04 20.39

LoRA, r′ = 8 15.06 19.61 22.13 18.93
OPT-2.7B P-Tuning V2, m = 32 2.62M 772.48 277.99 3378.18 1476.22

NTK-Attention, r = 2d, s = 10 14.83 18.52 21.85 18.40

LoRA, r′ = 8 12.81 17.36 19.38 16.52
OPT-6.7B P-Tuning V2, m = 32 4.19M 2051.10 409.37 4709.46 2389.98

NTK-Attention, r = 2d, s = 10 12.56 16.68 18.81 16.02

Table 3: Performance of different fine-tuning methods on OPT-{125M, 350M, 1.3B, 2.7B, 6.7B} pre-trained models
with WikiText-103, Penn TreeBank, and LAMBADA datasets. The metric is perplexity (PPL), with its smaller
value standing for better performance. The best score on each dataset and model is boldfaced.

tually plateaus as m→∞, which is precisely why
our NTK-Attention method approximates infinite-
length prefixes without requiring them explicitly.
On the other hand, as the prefix token becomes
longer, the trainable parameter will linearly in-
crease. Thus, training ultra-long prefix prompts in
a large model size is impractical empirically.

8 Conclusion

In this study, we illuminated the principles of prefix
learning for fine-tuning when the prefix length is
large. We conducted an in-depth theoretical anal-
ysis, demonstrating that when the prefix length is
sufficiently large, the attention network is over-
parameterized, and the NTK technique can be lever-
aged to provide a convergence guarantee of prefix
learning. Based on these insights, we proposed
a novel efficient fine-tuning method called NTK-
Attention, approximating prefix attention using two
trainable parameters to replace the large prefix ma-
trix, thus significantly mitigating memory usage
issues and reducing computational cost for long
prefixes. Our empirical results support our theoret-
ical findings, showing NTK-Attention’s superior
performance on downstream tasks over baselines
across natural language, math, and vision datasets.
Discussion. The insights from our analysis of
infinite-length prefixes have broader implications
for transformer optimization beyond prefix learn-
ing. Our theoretical framework using NTK could
be applied to:

• Attention mechanism optimization: The math-
ematical formulation we developed for ap-
proximating attention with ultra-long contexts
can inform more efficient attention variants be-
yond our specific implementation, potentially
addressing the quadratic complexity bottle-
neck in standard attention.

• Parameter-efficient adaptation methods: Our
findings could extend to other parameter-
efficient methods like adapters and LoRA by
providing a theoretical understanding of their
convergence properties and optimization dy-
namics.

• Scaling laws for transformers: Our framework
helps explain how overparameterization af-
fects optimization, which could contribute to
a better understanding of emergent abilities
in larger models and inform more efficient
scaling strategies.

• Prompt engineering: The relationship we es-
tablished between prefix length and model
capacity could guide automated prompt opti-
mization techniques with theoretical guaran-
tees.

• Model compression: Our approach to approx-
imating large parameter spaces with smaller
ones could inform new model compression
techniques with provable error bounds.
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Limitation

The work has limited experimental analysis and
results. While empirical evaluations have been pro-
vided for some datasets and LLM models, the pro-
posed method is widely applicable to different data
and models, so comprehensive evaluations on more
datasets and more practical methods can provide
stronger empirical support. Besides, the computa-
tional efficiency of NTK-Attention is insufficiently
better than prefix attention when m < d, since the
design of NTK-Attention is toward the ultra-big
value of m, such we only compare to the prefix
attention with prefix length m ≫ d to meet the
over-parameterization setting in our analysis.
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Appendix
A More Related Works

Efficient Transformers and KV Cache. The design of the transformer-based architecture is computa-
tionally costly in long context situations due to its quadratic complexity. This has long been an active area
of study (Xiong et al., 2024; Addanki et al., 2023; Deng et al., 2024a; Xiong et al., 2025; Xiao et al., 2024;
Liu et al., 2024; Han et al., 2024). BigBird (Zaheer et al., 2020) effectively reduces attention complexity
through a hybrid approach that integrates local, global, and random attention mechanisms. Subsequent
advancements, such as StreamingLLM (Xiao et al., 2023) and H2O (Zhang et al., 2023b), streamline
attention patterns by strategically discarding KV caches during context processing. However, a notable
limitation of these methods is their diminished capacity to preserve the long-context capabilities inherent
in the original models, primarily due to insufficient global context modeling. More recent innovations
include SeerAttention (Zhang et al., 2025), which employs a learnable gate to pinpoint block-level at-
tention sparsity. Concurrently, Quest (Tang et al., 2024) introduces dynamic, query-aware sparsity to
accelerate decoding, while MInference (Jiang et al., 2024) extends these principles to the prefilling phase.
Furthermore, FastGen (Ge et al., 2023; Holmes et al., 2024) enhances decoding efficiency by profiling
attention heads to selectively discard tokens.

B Algorithm Details and Computational Complexity Analysis

Here, we give the detailed version of two algorithms of this paper, which are prefix attention and NTK-
Attention. Moreover, we comment on each computation step with its corresponding complexity to
demonstrate our memory and complexity reduction in detail.

From Algorithm 3 and Algorithm 4, we can see the comparison analysis of memory reduction (from
O(md) to O(rd+ r)) and complexity reduction (from O(mL+ L2) to O(Ld+ L2) since m≫ L and
m≫ d) between two fine-tuning methods, indicating the efficiency of our NTK-Attention.

Algorithm 3 Prefix Attention (Detailed version of Algorithm 1)

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value weights WQ,WK ,WV ∈ Rd×d, trainable prefix matrix
P ∈ Rm×d ▷ Additional memory usage O(md)
Output: Exact output Attn ∈ RL×d

1: procedure PREFIXATTENTION(X)

2: Concatenate input matrix with prefix matrix S ←
[
P
X

]
∈ R(m+L)×d

3: Compute query, key, and value matrices for attention Q ← XWQ ∈ RL×d, KP ← SWK ∈
R(m+L)×d, VP ← SWV ∈ R(m+L)×d ▷ Time complexity O(Ld2 + 2(m+ L)d2)

4: Compute exponential matrix A← exp(QK⊤
P /
√
d) ∈ RL×(m+L) ▷ Time complexity

O(L(m+ L)d)
5: Compute summation of exponential matrix D ← diag(A1m+L) ∈ RL×L ▷ Time complexity

O(L(m+ L))
6: Compute prefix attention output Attn← D−1AVP ∈ RL×d ▷ Here D−1A ∈ RL×(m+L)

is the attention matrix (a.k.a attention scores). This step implements A multiply VP first, then get
D−1 · (AVP ) with time complexity O(L(m+ L)d+ L2d)

7: return Attn
8: end procedure

C Experimental Details

C.1 Setup Details

Here, we give the details of the setup for the experiments in Section 6.
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Algorithm 4 NTK-Attention (Detailed version of Algorithm 2, w low-rank)

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value weights WQ,WK ,WV ∈ Rd×d, trainable weights ZA ∈
Rr×s, ZB ∈ Rs×d and k ∈ Rr ▷ Additional memory usage O(rs+ sd+ r)
Output: Approximating output T ∈ RL×d

1: procedure NTK-ATTENTION(X)
2: Compute query, key, and value matrices for attention Q← XWQ ∈ RL×d, K ← XWK ∈ RL×d,

V ← XWV ∈ RL×d ▷ Time complexity O(3Ld2)
3: Compute approximating exponential matrix Â← exp(QK⊤/

√
d) ∈ RL×L ▷ Time complexity

O(L2d)
4: Compute approximating summation of exponential matrix D̂ ← diag(Â1L +Φ(Q)k) ∈ RL×L ▷

Time complexity O(L2 + Lr)
5: Compute approximation of prefix attention output T ← D̂−1(ÂV + Φ(Q)ZA · ZB) ∈ RL×d

▷ This step implements Z := ZA · ZB first, compute ÂV + Φ(Q)Z secondly, then implements
D̂−1 · (ÂV +Φ(Q)ZA · ZB), time complexity O(2L2d+ Lr2 + rsd)

6: return T
7: end procedure

• Learning rate η = 0.001 (default).

• Learning rate scheduler: Cosine.

• Adam hyper-parameter β1 = 0.9 (default).

• Adam hyper-parameter β2 = 0.999 (default).

• Adam hyper-parameter ϵ = 1× 10−8 (default).

• Platform: PyTorch (Paszke et al., 2019) and Huggingface (Wolf et al., 2019).

• GPU device information: 8 V100 GPUs, 8 4090 GPUs and 4 H800 GPUs.

• Number of training epochs 30.

• Batch size for vision tasks: 256 (for best effort).

• Batch size for natural language task: 32 (for best effort).

• Max input length for natural language task: 128 for each feature, e.g. BoolQ has two dataset features:
question and passage, for each data, we select the first 128 tokens in question and passage of the data
respectively, and concatenate them to be the input. Note that this is different from (Liu et al., 2021b).

• Quantization: fp16 and bf16.

C.2 Additional Empirical Complexity Analysis

We state an additional empirical complexity analysis here to support our claim practically. We evaluate
the complexity reduction on one layer to show how much efficiency our NTK-Attention will demonstrate
per layer.

Setup. Firstly, we choose d = 32 and r = d, and randomly initialize attention weights WQ,WK ,WV ∈
Rd×d. For the trainable parameters in NTK-Attention and Prefix Attention, we initialize P ∈ Rm×d,
Z ∈ Rd×d and k ∈ Rd randomly, either. We then scale the prefix length, denotes m, within the range
{20, 21, · · · , 216} for comparison. The input length L is chosen from {32, 64, 128, 256}. For computation,
we initialize a new input matrix X ∈ RL×d and compute NTK-Attention and Prefix Attention respectively.
We repeat each computation with a different setup 10000 times and record the maximum, minimum, and
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Figure 3: Run time and the number of parameters of one-layer NTK-Attention and Prefix Attention (on random
input data). x-axis: the number of parameters; y-axis: run time. Input length L is chosen from {32, 64, 128, 256},
dimension d = 32 and prefix length m is chosen from {20, 21, · · · , 216}.
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mean values. The inference is run on an AMD CPU to compare FLOPS fairly between two algorithms
(this also works on GPU devices).

Results. We demonstrate our result in Figure 3. The x-axis is the number of parameters (representing
memory usage), and the y-axis shows the run time in seconds. Note that the number of parameters
is computed by the summation of every number in NTK-Attention or Prefix Attention. For example,
m = 1024, d = 32, the number of parameters of Prefix Attention is md+ 3d2 = 35840; the number of
parameters if NTK-Attention is 4d2 + d = 4128.

As expected, the number of parameters of Prefix Attention increases linearly with the prefix length m,
and its running time increases quadratically with m. While our method, NTK-Attention, has computational
costs unaffected by the prefix length. It maintains a small running time and low memory usage as shown
in the figure. Roughly speaking, the cost of NTK-Attention is close to Prefix Attention with a very small
prefix length m = 32.

C.3 Additional Ablation Study
Setup. We provide an additional ablation study for the sensitivity of the hyper-parameters of NTK-
Attention r and s here and the results are given in Table 4. In particular, this experiment is run on
pretrained LLAMA-3.1-8B-Instruct model (d = 128 for each head in attention) (Touvron et al., 2023a,b)
with dataset WikiText-103 (Merity et al., 2016). We utilize 4 H800 GPU devices to train the model with
different settings within 2 epochs on the training dataset and evaluate them on the test dataset. The metric
is cross-entropy loss and its smaller value stands for better performance.

Results. We show the NTK-Attention with the weakest setting r = 128, s = 4 is able to achieve
competitive performance with r = 256, r = 64. This further ensures the parameter efficiency of
NTK-Attention.

Moreover, Table 4 also demonstrates that choosing a big value for hyper-parameter r primarily will
lead to better evaluation loss since NTK-Attention with (r, s) = (256, 32) requires 12.85M parameters
but achieve superior performance compared to NTK-Attention with (r, s) = (128, 64) (requires 16.91M
parameters).

However, we discover that an increased value for r might cause huge complexity - when setting
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r = 512, the computational complexity 4Ld will lead the GPU out-of-memory (OOM) since it’s usually
unaffordable even for H800 (80GiB memory). Thus, we also suggest using r = d or r = 2d to make
LLMs to learn downstream tasks.

Table 4: The results of ablation study to the NTK-Attention hyper-parameters r and s with pretrained LLM
LLAMA-3.1-8B-Instruct and dataset WikiText-103 on H800 GPUs (80GiB).

Hyper-parameters Num Parameters Evaluation Loss Training Loss

(r, s)=(128, 4) 1.18M 2.48 2.38
(r, s)=(128, 8) 2.23M 2.57 2.50
(r, s)=(128, 16) 4.33M 2.74 2.72
(r, s)=(128, 32) 8.52M 2.47 2.38
(r, s)=(128, 64) 16.91M 2.41 2.31

(r, s)=(256, 4) 1.84M 2.47 2.39
(r, s)=(256, 8) 3.41M 2.43 2.36
(r, s)=(256, 16) 6.55M 2.51 2.53
(r, s)=(256, 32) 12.85M 2.28 2.33
(r, s)=(256, 64) 25.43M 2.21 2.15

(r, s)=(512, 4) 3.15M (OOM since 4Ld complexity) - -

D Naive NTK-Attention Implementation with Flash-Attention

Below, we provide a naive Python code to implement our NTK-Attention that is written in only 10
lines, which supports the simplicity of implementation. Our code utilizes the function of Flash Attention
function (Dao et al., 2022; Dao, 2023; Shah et al., 2024).

1 def ntk_attn_forward(self , query_states , key_states , value_states ,
attention_mask):

2 attn_outputs , lse = _flash_attention_forward(
3 query_states , key_states , value_states , attention_mask ,
4 is_causal=self.is_causal , return_attn_probs=True
5 ) # Call flash -attn function to get attn_output and logsumexp
6

7 Z = torch.matmul(self.Z_A , self.Z_B) # Low -rank approximate Z
8 k = self.k
9 phi_query_states = self.phi(query_states)

10

11 se = lse.exp() # Compute sumexp
12 scale_factor = (se + torch.matmul(phi_query_states , k)) / se
13

14 attn_output = scale_factor * (attn_output * se + torch.matmul(
phi_query_states , Z))

15

16 return attn_output

Additionally, we also provide the code for the function ϕ, which is implemented by simple Taylor
expansions (Alman and Song, 2023).

E Further Discussions

Prior works (Arora et al., 2019; Alemohammad et al., 2020; Hron et al., 2020) had already given exact
algorithms for computing the extension of NTK to neural nets and conducted experiments showing
enhanced performance from adding NTK into models, while in this paper, our contributions are not limited
to this. Our theory about NTK of attention with the infinite-long prefix provides more insights. We clarify
this further in the following.
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1 def phi(x, deg=2):
2 """x is the input tensor , and deg is the number of degree """
3 ret = [torch.ones_like(x[..., -1:]), ]
4

5 pre_shape , d = x.shape[:-1], x.shape[-1]
6 x = x.unsqueeze (-2) / math.pow(d, 0.25)
7 factor = 1
8 for idx in range(1, deg+1):
9 ret.append(

10 torch.matmul(ret[-1]. unsqueeze (-1), x).view(*pre_shape ,
-1) / math.sqrt(factor)

11 )
12 factor *= (idx + 1)
13 ret = torch.cat(ret , dim=-1)
14 return ret

Can LLMs master any advanced reasoning skill through self-planning and prompting? We
will answer that it may be possible. Since an attention network can converge on any dataset with the
infinite-long prefix, we can tell that for any advanced reasoning skill that is equivalent to training on a
well-constructed dataset, there exists an ultra-long prefix matrix satisfying the training objective smaller
than any positive value ϵ > 0. It’s noteworthy that this conclusion is not only suitable for LLMs
with outstanding performance but also can be worked on those small language models with common
performance.

What is NTK-Attention used for? What is the meaning of proposing this method? The attention
with an infinite-long prefix is superior due to its over-parameterization phenomenon, whereas it is nearly
impossible to implement practically, our NTK-Attention method gives us a chance to approximate the
infinite-long prefix and makes it possible for us to study its empirical properties in experiments. Besides,
any form of prefix learning can be formulated into the training of Z ∈ Rd×d and k ∈ Rd in NTK-Attention,
we can compress prompts into Z and k if ϕ(·) by utilizing Lemma L.7, hence, the approaches in Prefix
Learning would be much more efficient.

Comparison between NTK-Attention and LoRA. LoRA in (Hu et al., 2021; Zeng and Lee, 2023;
Hu et al., 2024) is a popular efficient fine-tuning method for large base models. Usually, LoRA makes
adaptation on Query and Value projections WQ,WV ∈ Rd×d; denote the adaptation as W∆Q,W∆V ∈
Rd×d. Given an input X ∈ RL×d, LoRA computes D̃−1ÃX(WV +W∆V ), where Ã := exp(X(WQ +

W∆Q)W
⊤
KX⊤), D̃ := diag(Ã1L), and WK ∈ Rd×d is the Key projection weights. So LoRA updates

query and value weights during training, while our NTK-Attention compresses the additional prefix P into
Z and k (Algorithm 2), which is a completely different mechanism. Our method also achieves comparable
performance to LoRA in our experiments in Section 6. Also, note that the two methods are orthogonal to
each other and can be used together.

Connection to the newest SOTA LLM on math inference tasks, GPT-o1 1. On September 12-th,
2024, OpenAI released the newest SOTA LLM on math inference tasks, GPT-o1, which is trained by
Reinforcement Learning (RL) methods to enhance the Chain-of-Thought (CoT) ability. Li et al. (2024c)
explained the necessity of CoT for LLM on complicated inference tasks, meanwhile, they also emphasized
how the embedding size and the CoT length affect the capability to solve high-order problems. Connecting
to our work, we believe that these empirical and theoretical results support the conclusion of our work
since we consider CoT as a specific application of Prefix Learning. Moreover, we think our scaling law in
prefix learning is more universal for explaining the LLMs’ context-based advanced skills. However, even
when we present our theory, we still have a limited understanding of prefix learning, for example, what is
the relationship between prefix length and complexity of problems that aim to solve; if we want to solve
an NP problem by LLM, how long is the prefix needed for inference? We don’t know the answers. Thus,
explaining prefix learning, or particularly, CoT, is still a fascinating and challenging problem for future
work.

1https://openai.com/o1/
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Societal impact. This paper presents work whose goal is to advance the understanding of context-
based fine-tuning methods (prefix learning) theoretically. There are many positive potential societal
consequences of our work, such as inspiring new algorithm design. Since our work is theoretical in nature,
we do not foresee any potential negative societal impacts which worth pointing out.

F Preliminary of Analysis

We provide our notations for this paper as follows:
Notations In this paper, we use integer d to denote the dimension of networks. We use integer m to

denote the prefix length in prefix learning, we think m is an ultra-big number. We use L to denote the input
length in language models. ∇xf(x) and df(x)

dx are both means to take the derivative of f(x) with x. Let a
vector z ∈ Rn. We denote the ℓ2 norm as ∥z∥2 := (

∑n
i=1 z

2
i )

1/2, the ℓ1 norm as ∥z∥1 :=
∑n

i=1 |zi|, ∥z∥0
as the number of non-zero entries in z, ∥z∥∞ as maxi∈[n] |zi|. We use z⊤ to denote the transpose of a z.
We use ⟨·, ·⟩ to denote the inner product. Let A ∈ Rn×d, we use vec(A) to denote a length nd vector. We
denote the Frobenius norm as ∥A∥F := (

∑
i∈[n],j∈[d]A

2
i,j)

1/2. For any positive integer n, we use [n] to
denote set {1, 2, · · · , n}. We use E[] to denote the expectation. We use Pr[] to denote the probability. We
use ϵ to denote the error. We define λmin(·) as a function that outputs the minimum eigenvalues of the input
matrix, e.g. matrix A ∈ Rn×n has eigenvalues {λ1, λ2, · · · , λn}, λmin(A) = min{λ1, λ2, · · · , λn}.

F.1 Facts
Fact F.1. For any x ∈ (−0.01, 0.01), we have

exp(x) = 1 + x+Θ(1)x2.

Fact F.2. For any x ∈ (0, 0.1), we have

n∑

i=1

xi ≤ 1

1− x
.

F.2 Probability
Here, we state a probability toolkit in the following, including several helpful lemmas we’d like to use.
Firstly, we provide the lemma about Chernoff bound in (Chernoff, 1952) below.

Lemma F.3 (Chernoff bound, (Chernoff, 1952)). Let X =
∑n

i=1Xi, where Xi = 1 with probability pi
and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E[X] =

∑n
i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/1), ∀0 < δ < 1.

Next, we offer the lemma about Hoeffding bound as in (Hoeffding, 1994).

Lemma F.4 (Hoeffding bound, (Hoeffding, 1994)). Let X1, · · · , Xn denote n independent bounded
variables in [ai, bi] for ai, bi ∈ R. Let X :=

∑n
i=1Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

)

We show the lemma of Bernstein inequality as (Bernstein, 1924).

Lemma F.5 (Bernstein inequality, (Bernstein, 1924)). Let X1, · · · , Xn denote n independent zero-mean
random variables. Suppose |Xi| ≤M almost surely for all i. Then, for all positive t,

Pr[
n∑

i=1

Xi ≥ t] ≤ exp(− t2/2∑n
j=1 E[X2

j ] +Mt/3
)

Then, we give the Khintchine’s inequality in (Khintchine, 1923; Haagerup, 1981) as follows:
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Lemma F.6 (Khintchine’s inequality, (Khintchine, 1923; Haagerup, 1981)). Let σ1, · · · , σn be i.i.d sign
random variables, and let z1 · · · , zn be real numbers. Then there are constants C > 0 so that for all
t > 0

Pr[|
n∑

i=1

ziσi| ≥ t∥z∥2] ≤ exp(−Ct2).

We give Hason-wright inequality from (Hanson and Wright, 1971; Rudelson and Vershynin, 2013)
below.
Lemma F.7 (Hason-wright inequality, (Hanson and Wright, 1971; Rudelson and Vershynin, 2013)). Let
x ∈ Rn denote a random vector with independent entries xi with E[xi] = 0 and |xi| ≤ K Let A be an
n× n matrix. Then, for every t ≥ 0

Pr[|x⊤Ax− E[x⊤Ax]| > t]

≤ 2 exp(−cmin{t2/(K4∥A∥2F ), t/(K2∥A∥)}).
We state Lemma 1 on page 1325 of Laurent and Massart (Laurent and Massart, 2000).

Lemma F.8 (Lemma 1 on page 1325 of Laurent and Massart, (Laurent and Massart, 2000)). Let X ∼ X 2
k

be a chi-squared distributed random variable with k degrees of freedom. Each one has zero mean and σ2

variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[X − kσ2 ≥ 2
√
ktσ2] ≤ exp(−t).

Here, we provide a tail bound for sub-exponential distribution (Foss et al., 2011).
Lemma F.9 (Tail bound for sub-exponential distribution, (Foss et al., 2011)). We say X ∈ SE(σ2, α)
with parameters σ > 0, α > 0, if

E[eλX ] ≤ exp(λ2σ2/2),∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5min{t2/σ2, t/α}).
In the following, we show the helpful lemma of matrix Chernoff bound as in (Tropp, 2011; Lu et al.,

2013).
Lemma F.10 (Matrix Chernoff bound, (Tropp, 2011; Lu et al., 2013)). Let X be a finite set of positive-
semidefinite matrices with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

Sample {X1, · · · , Xn} uniformly at random from X without replacement. We define µmin and µmax as
follows:

µmin := n · λmin( E
X∈X

(X))

µmax := n · λmax( E
X∈X

(X)).

Then

Pr[λmin(
n∑

i=1

Xi) ≤ (1− δ)µmin]

≤ d · exp(−δ2µmin/B) for δ ∈ (0, 1],

Pr[λmax(
n∑

i=1

Xi) ≥ (1 + δ)µmax]

≤ d · exp(−δ2µmax/(4B)) for δ ≥ 0.
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G Definitions of NTK Analysis

This section provides the fundamental definitions of our NTK analysis in this paper.
To begin with, we re-denote our weight of prefix in attention as W ∈ Rd×m and a ∈ {−1,+1}m as

follows2:

Definition G.1. We choose a ∈ {−1,+1}m to be weights that each entry ar is randomly sampled from
−1 with probability 1/2 and +1 with probability 1/2.

Let W ∈ Rd×m denote random Gaussian weights, i.e., each entry independently draws from N (0, σ2).
For each r ∈ [m], we use wr ∈ Rd to denote the r-th column of W .

Equivalence. The attention computation with prefix P . Since the attention parameters are fixed, it

can be rewritten as Softmax(X̃P⊤ + b) ·
[
PWV

b′

]
where X̃ = XWQW

⊤
K/
√
d, b = XWQW

⊤
KX⊤/

√
d,

and b′ = XWV . We view the input sequence as one token (i.e., assuming L = 1) such that the input
X and thus X̃ become vectors, simplifying our analysis from matrix-form calculations to vector-form.
Furthermore, ignoring the bias terms, and introducing notations x := X̃⊤ and W = P⊤, the attention

simplifies to Softmax(xW ) ·W⊤WV =
∑

r∈[m] exp(w
⊤
r x)wrWV∑

r∈[m] exp(w
⊤
r x)

where wr is the r-th column of W . We

therefore consider the following two-layer attention model:

F(W,x, a) := m

∑
r∈[m] exp(w

⊤
r x)wrar∑

r∈[m] exp(w
⊤
r x)

(5)

with the hidden-layer weights W = [w1, w2, . . . , wm] ∈ Rd×m and output-layer weights a = [a1, a2,
. . . , am]⊤ ∈ Rm. Such a stylized setting has been widely used for studying the learning behavior of
transformer-based models (Deng et al., 2023; Chu et al., 2023, 2024; Li et al., 2024a), and they gave
detailed derivations and guarantees for its connection to attention. Furthermore, our analysis can be
extended to models with bias terms and matrix inputs rigorously.

Since we have established the equivalence between the ultra-long prefix matrix in attention and our
theory above, it’s reasonable we utilize the following definition of F to decompose the model function and
facilitate our analysis. As we give the formal definitions as follows:

Definition G.2. We define function F : Rd×m × Rd × Rm → Rd

F(W,x, a) = m

∑
r∈[m] ar exp(w

⊤
r x)wr∑

r∈[m] exp(w
⊤
r x)

Here we use wr ∈ Rd to denote the r-th column of W ∈ Rd×m.

To further break down the complicated F for more convenience analysis. We give an operator function
α as follows:

Definition G.3. We define α(x) as follows

α(x) := ⟨exp(W⊤
︸︷︷︸
m×d

x︸︷︷︸
d×1

),1m⟩

Thus, we can rewrite F in the following claim.

Claim G.4. We can rewrite F(W,x, a) ∈ Rd as follows

F(W,x, a) = mα(x)−1

︸ ︷︷ ︸
scalar

W︸︷︷︸
d×m

( a︸︷︷︸
m×1

◦ exp(W⊤x)︸ ︷︷ ︸
m×1

)

2Note that the proof of the case with a and without a are similar. We mainly focus on the proofs under the setting that
includes a.
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Proof. We can show

F(W,x, a) =m

∑
r∈[m] ar exp(w

⊤
r x)wr∑

r∈[m] exp(w
⊤
r x)

= mα(x)−1
∑

r∈[m]

ar exp(w
⊤
r x)wr

= mα(x)−1W (a ◦ exp(W⊤x))

where the first step follows from Definition G.2, the second step follows from Definition G.3 and simple
algebras, the third step follows from wr ∈ Rd is denoting the r-th column of W ∈ Rd×m and simple
algebras.

In the following Definition G.6 and Definition G.5, we further derive and define two operator functions
to convenient our analysis.

Definition G.5. We define β as follows

βk := Wk,∗ ◦ a,∀k ∈ [d]

Let β ∈ Rd×m be defined as β︸︷︷︸
d×m

= W︸︷︷︸
d×m

diag(a)︸ ︷︷ ︸
m×m

Here, we define softmax.

Definition G.6. We define S ∈ Rm as follows

S := α(x)−1

︸ ︷︷ ︸
scalar

· exp(W⊤x)︸ ︷︷ ︸
m×1

.

Here, we use β and S to re-denote the model function F.

Definition G.7. For each k ∈ [d], let W⊤
k,∗ denote the k-th row of W , we define

Fk(W,x, a) := mα(x)−1

︸ ︷︷ ︸
scalar

⟨Wk,∗︸︷︷︸
m×1

◦ a︸︷︷︸
m×1

, exp(W⊤x)︸ ︷︷ ︸
m×1

⟩

Then, we can rewrite it as

Fk(W,x, a) := m⟨βk,S⟩.

G.1 Loss function

Here, we state the training objective that we aim to solve in the analysis.

Definition G.8. Given a datasetD = {(xi, yi)}ni=1 ⊂ Rd×Rd. Let function F : Rd×m×Rd×Rm → Rd

be defined as Definition G.2, we define the training objective L : Rm×d → R as follows:

L(W ) := 0.5

n∑

i=1

∥F(W,xi, a)− yi∥22

H Gradient Computation

In this section, we first compute the gradients that we need for the analysis of NTK. Then we define the
training dynamic of our model in the process of gradient descent.
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H.1 Computing Gradient

We give our computation of the gradients as the following lemma.

Lemma H.1. If the following conditions hold

• Let W ∈ Rd×m and a ∈ Rm be defined as Definition G.1.

• Let α(x) ∈ R be defined as Definition G.3

• Let S ∈ Rm be defined as Definition G.6

• Let F ∈ Rd be defined as Definition G.7

Then, we can show that for each r ∈ [m]

• Part 1. For k1 ∈ [d], we have

dW⊤x
dwr,k1

= xk1er

• Part 2. For k1 ∈ [d], we have

d exp(W⊤x)
dwr,k1

= (xk1er) ◦ exp(W⊤x)

• Part 3. For k1 ∈ [d], we have

dα(x)

dwr,k1

= ⟨xk1er, exp(W⊤x)⟩

• Part 4. For k1 ∈ [d], we have

dα(x)−1

dwr,k1

= −α(x)−1⟨xk1er,S⟩

• Part 5. For k1 ∈ [d], we have

dS

dwr,k1

= − ⟨xk1er, S⟩ · S+ (xk1er) ◦ S

• Part 6. For k1, k ∈ [d] and k1 ̸= k, we have

dF(W,x, a)k
dwr,k1

= + 0−mxk1 · Sr · ⟨βk,S⟩

+mxk1Srβk,r

• Part 7. For k1, k ∈ [d] and k1 = k, we have

dF(W,x, a)k
dwr,k

= +m⟨a ◦ er, S⟩ −mxk · Sr · ⟨βk,S⟩
+mxkSrβk,r
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• Part 8. For k ∈ [d], we have

dF(W,x, a)k
dwr

=marSr · ek −m⟨βk, S⟩Sr · x
+mβk,rSr · x

Proof. Proof of Part 1.

dW⊤x
dwr,k1

= xk1er

where this step follows from simple differential rules.
Proof of Part 2.

d exp(W⊤x)
dwr,k1

= exp(W⊤x) ◦ dW
⊤x

dwr,k1

= (xk1er) ◦ exp(W⊤x)

where the first step follows from chain rules, the second step follows from Part 1 of this Lemma.
Proof of Part 3.

dα(x)

dwr,k1

= ⟨d exp(W
⊤x)

dwr,k1

,1m⟩

= ⟨xk1er, exp(W⊤x)⟩

where the first step follows from Definition G.3 and simple algebras, the second step follows from Part 2
of this Lemma.

Proof of Part 4.

dα(x)−1

dwr,k1

= − α(x)−2 dα(x)

dwr,k1

= − α(x)−1⟨xk1er, S⟩

where this step follows from chain rules, the second step follows from Part 3 of this Lemma.
Proof of Part 5.

dS

dwr,k1

=
dα(x)−1

dwr,k1

· exp(W⊤x) + α(x)−1 · d exp(W
⊤x)

dwr,k1

= − α(x)−1⟨xk1er,S⟩ · exp(W⊤x)

+ α(x)−1 · (xk1er) ◦ exp(W⊤x)

= − ⟨xk1er, S⟩ · S+ (xk1er) ◦ S

where the first step follows from Definition G.6 and differential rules, the second step follows from Part 2
and Part 4 of this Lemma, the last step follows from simple algebras.

Proof of Part 6. For k1 ̸= k

dF(W,x, a)k
dwr,k1
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= +m⟨ dβk
dwr,k1

,S⟩+m⟨βk,
dS

dwr,k1

⟩

= −m⟨xk1er,S⟩ · ⟨βk,S⟩+m⟨βk, (xk1er) ◦ S⟩
= + 0−mxk1 · Sr · ⟨βk, S⟩+mxk1Srβk,r

where the first step follows from Definition G.7 and simple algebras, the second step follows from
Definition G.5, simple algebras and Part 5 of this Lemma, the last step follows from simple algebras.

Proof of Part 7. For k1 = k

dF(W,x, a)k
dwr,k

= +m⟨ dβk
dwr,k

,S⟩+m⟨βk,
dS

dwr,k
⟩

= +m⟨a ◦ er, S⟩ −m⟨xker,S⟩ · ⟨βk,S⟩
+m⟨βk, (xker) ◦ S⟩

= +m⟨a ◦ er, S⟩ −mxk · Sr · ⟨βk, S⟩
+mxkSrβk,r

where the first step follows from Definition G.7 and simple algebras, the second step follows from
Definition G.5, simple algebras and Part 5 of this Lemma, the last step follows from simple algebras.

Proof of Part 8.
This part of proof follows from the combination of Part 6 and Part 7 of this Lemma.

H.2 Gradient Descent

After we computed the gradient of the model function above, we are now able to define the training
dynamic of F by updating weight using gradient descent.

We use er to denote a vector where the r-th coordinate is 1 and everywhere else is 0. ∀r ∈ [m],∀k ∈ [d],
we have dF(W,x,a)k

dwr
∈ Rd can be written as

dFk(W,x, a)

dwr︸ ︷︷ ︸
d×1

(6)

=marSr · ek −m⟨βk, S⟩Sr · x+mβk,rSr · x. (7)

Hence, by defining several following dynamical operator functions, we can further convenient our
proofs.

We first define ui(τ) ∈ Rm for simplification as follows:

Definition H.2. For each i ∈ [n], we define ui(τ) ∈ Rm as

ui(τ)︸ ︷︷ ︸
m×1

:= exp(W (τ)⊤︸ ︷︷ ︸
m×d

xi︸︷︷︸
d×1

)

Secondly, we re-denote αi(τ) ∈ R below, which holds due to the definition of α(x) and the updating
of W ∈ Rd×m.

Definition H.3. For each i ∈ [n], we define αi(τ) ∈ R as

αi(τ)︸ ︷︷ ︸
scalar

:= ⟨ui(τ)︸ ︷︷ ︸
m×1

, 1m︸︷︷︸
m×1

⟩.

We define βk(τ) ∈ Rm for convenience.
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Definition H.4. For each k ∈ [d], we define βk(τ) ∈ Rm as

βk(τ)︸ ︷︷ ︸
m×1

= (Wk,∗(τ))︸ ︷︷ ︸
m×1

◦ a︸︷︷︸
m×1

Remark H.5. The purpose of defining notation β is to make our proofs more aligned with softmax NTK
proofs in previous work (Li et al., 2024a).

We define θk,i(τ) ∈ Rm for convenience as follows :

Definition H.6. For each i ∈ [n], for each k ∈ [d], we define θk,i(τ) ∈ Rm as follows

θk,i(τ)︸ ︷︷ ︸
m×1

:= βk(τ)︸ ︷︷ ︸
m×1

·αi(τ)
−1

︸ ︷︷ ︸
scalar

We denote Sr(τ).

Definition H.7. For each i ∈ [n]. Let Si(τ) ∈ Rm be defined as

Si(τ)︸ ︷︷ ︸
m×1

:= αi(τ)
−1

︸ ︷︷ ︸
scalar

· ui(τ)︸ ︷︷ ︸
m×1

for integer τ ≥ 0. For r ∈ [m], we denote Si,r(τ) ∈ R as the r-th entry of vector Si(τ).

Now, we can define F at different timestamps.

Definition H.8 (F(τ), dynamic prediction). For each k ∈ [d], for each i ∈ [n], we define Fi(τ) ∈ Rd, for
any timestamp τ , as

Fk,i(τ) := m⟨u(τ),1m⟩−1⟨W (τ)k,∗ ◦ a, u(τ)⟩.

Here xi ∈ Rd. It can be rewritten as

Fk,i(τ) = m · ⟨βk(τ)︸ ︷︷ ︸
m×1

,Si(τ)︸ ︷︷ ︸
m×1

⟩.

and also

Fk,i(τ) = m · ⟨θk,i(τ)︸ ︷︷ ︸
m×1

, ui(τ)︸ ︷︷ ︸
m×1

⟩

We consider d-dimensional MSE loss.

Definition H.9 (Loss function over time). We define the objective function L as below:

L(W (τ)) :=
1

2

∑

i∈[n]

∑

k∈[d]
(Fk,i(τ)− yk,i)

2.

Thus, we define the gradient of w.

Definition H.10 (∆wr(τ)). For any r ∈ [m], we define ∆wr(τ) ∈ Rd as below:

∆wr(τ)

:=m

n∑

i=1

d∑

k=1

(Fk,i(τ)− yk,i)

·
(
arSi,r(τ) · ek − ⟨βk(τ), Si(τ)⟩Si,r(τ) · x

+ βk,rSi,r(τ) · x
)
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Here, we utilize v to simplify ∆wr(τ), we have the following:

Definition H.11. For each k ∈ [d], for each r ∈ [m], we define vk,r(τ) ∈ Rm as follows

vk,r(τ) := βk,r(τ) · 1m − βk(τ).

Note that we can simplify the gradient calculation by the fact 1 = ⟨1m, Si(τ)⟩ for i ∈ [n]. Thus, we
have the following claim.

Claim H.12. We can rewrite ∆wr(τ) as follows

∆wr(τ) = m
n∑

i=1

d∑

k=1

(Fk,i(τ)− yk,i)

·
(
⟨vk,r(τ),Si(τ)⟩ · Si,r(τ) · xi

+ arSi,r(τ)ek

)

Proof. We have

∆wr(τ)

=m
n∑

i=1

d∑

k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek

− ⟨βk(τ),Si(τ)⟩Si,r(τ) · x+ βk,rSi,r(τ) · x
)

=m

n∑

i=1

d∑

k=1

(Fk,i(τ)− yk,i)

·
(
arSi,r(τ) · ek − ⟨βk(τ), Si(τ)⟩Si,r(τ) · x

+ βk,r⟨1m, Si(τ)⟩Si,r(τ) · x
)

=m
n∑

i=1

d∑

k=1

(Fk,i(τ)− yk,i)

·
(
arSi,r(τ) · ek − ⟨βk(τ), Si(τ)⟩Si,r(τ) · x

+ ⟨βk,r · 1m,Si(τ)⟩Si,r(τ) · x
)

=m
n∑

i=1

d∑

k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek

+ ⟨βk,r · 1m − βk(τ),Si(τ)⟩Si,r(τ) · x
)

=m
n∑

i=1

d∑

k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek

+ ⟨vk,r(τ),Si(τ)⟩Si,r(τ) · x
)

where the first step follows from Definition H.10, the second step follows from the fact 1 = ⟨1m, Si(τ)⟩ for
i ∈ [n], the third and fourth steps follow from simple algebras, the last step follows from Definition H.11.

We use the gradient descent (GD) algorithm with the learning rate η to train the network. As we only
train the hidden layer W and fix a, we have the following gradient update rule.
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Definition H.13 (Gradient descent). The gradient descent algorithm for optimizing the weight matrix W
is defined as:

W (τ + 1) = W (τ)− η∆W (τ).

where ∆W (τ) ∈ Rd×m and ∆wr(τ) ∈ Rd is the r-th column of ∆W (τ) defined in Definition H.10.

I Neural Tangent Kernel

Now in this section, we give the exact computation of NTK in our analysis below.

Definition I.1 (Kernel function, Definition 3.6 in (Li et al., 2024a) ). For simplicity, we denote S(W⊤xi)
as Si ∈ Rm

≥0 and vk,r = βk,r ·1m−βk ∈ Rm. We define the function (Gram matrix) H : Rd×m → Rnd×nd

as following

H(W ) :=




H1,1 H1,2 · · · H1,d

H2,1 H2,2 · · · H2,d
...

...
. . .

...
Hd,1 Hd,2 · · · Hd,d


 ,

and for each k1, k2 ∈ [d], we have Hk1,k2 ∈ Rn×n is defined as

[Hk1,k2 ]i,j(W )

:=
1

m
x⊤i xj

m∑

r=1

⟨vk1,r, Si⟩ ·mSi,r·

⟨vk2,r,Sj⟩ ·mSj,r.

For any timestamp τ , for simplicity, we denote H(τ) := H(W (τ)) and denote H(0) as H∗.

I.1 Kernel Perturbation
The purpose of this section is to prove Lemma I.3. In the proof, we do not use concentration inequality.
Please see Remark I.2 for more details.

Remark I.2. In the proof of Lemma I.3, we do not use concentration bound as previous work (Song and
Yang, 2019; Munteanu et al., 2022; Gao et al., 2023a). The reason is that we consider the worst case. In
general, E[H(W )−H(W̃ )] ̸= 0nd×nd. Thus, using the concentration bound may not gain any benefits.

Lemma I.3. If the following conditions hold

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let R ∈ (0, 0.01).

• Let xi ∈ Rd and ∥xi∥2 ≤ 1 for all i ∈ [n].

• Let W̃ = [w̃1, · · · , w̃m] ∈ Rd×m, where w̃1, · · · , w̃m are are i.i.d. draw from N (0, σ2Id).

• Let W = [w1, · · · , wm] ∈ Rd×m and satisfy ∥w̃r − wr∥2 ≤ R for any r ∈ [m].

• Let vk,r = βk,r · 1m − βk ∈ Rm, for any k ∈ [d] and for any r ∈ [m]. Note that βk,r is the r-th in
βk.

• Let αi = ⟨1m, exp(W⊤xi)⟩ and α̃i = ⟨1m, exp(W̃⊤xi)⟩, ∀i ∈ [n].

• Let H be defined as Definition I.1.
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Then, we have

• Part 1. Then with probability at least 1− δ/poly(nd),

|[Hk1,k2 ]i,j(W )− [Hk1,k2 ]i,j(W̃ )|
≤ 8R · exp(22B).

• Part 2. Then with probability at least 1− δ, we have

∥H(W )−H(W̃ )∥F ≤ 8R
√
nd · exp(22B).

Proof. For simplicity, we give the following notations:

• Note that S̃i := exp(W̃ (τ)⊤xi) · α̃−1
i .

• Note that β̃k := W̃k,∗ ◦ a.

• Note that ṽk,r := β̃k,r · 1m − β̃k.

Proof of Part 1. We have

|[Hk1,k2 ]i,j(W )− [Hk1,k2 ]i,j(W̃ )|

=mx⊤i xj
m∑

r=1

(B1,r +B2,r +B3,r

+B4,r +B5,r +B6,r)

here, we define:

B1,r := ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · Sj,r
− ⟨vk1,r, Si⟩ · Si,r · ⟨vk2,r, Sj⟩ · S̃j,r

B2,r := ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r
− ⟨vk1,r, Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r

B3,r := ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r
− ⟨vk1,r, Si⟩ · Si,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r

B4,r := ⟨vk1,r,Si⟩ · Si,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r
− ⟨vk1,r, Si⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r

B5,r := ⟨vk1,r,Si⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r
− ⟨vk1,r, S̃i⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r

B6,r := ⟨vk1,r, S̃i⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r
− ⟨ṽk1,r, S̃i⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r

Before we bound all terms, we provide a tool as follows:

∥vk,r − ṽk,r∥22

=

m∑

r1=1

(vk,r,r1 − ṽk,r,r1)
2

=
m∑

r1=1

(βk,r − βk,r1 − β̃k,r + β̃k,r1)
2
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=
m∑

r1=1

(arWk,r − ar1Wk,r − arW̃k,r

+ ar1W̃k,r)
2

=

m∑

r1=1

(ar(Wk,r − W̃k,r)

+ ar1(W̃k,r1 −Wk,r1))
2

≤
m∑

r1=1

(|Wk,r − W̃k,r| + |W̃k,r1 −Wk,r1 |)2

≤
m∑

r1=1

4R2

≤m4R2 (8)

where the first step follows from the definition of ℓ2 norm, the second step follows from the definition of
vk,r, the third step follows from Definition G.5, the fourth and fifth steps follow from simple algebras, the
sixth step follows from ∥wr − vr∥∞ ≤ ∥wr − vr∥2 ≤ R, the last step follows from simple algebras.

To bound B1,r, we have

|B1,r|
:= |⟨vk1,r, Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · Sj,r
− ⟨vk1,r, Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r|

= |⟨vk1,r, Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · (Sj,r − S̃j,r)|

≤ exp(15B)

m
· |Sj,r − S̃j,r|

≤ R exp(19B + 3R)

m2

where the first step follows from the definition of B1,r, the second step follows from simple algebras, the
third step follows from Part 6 of Lemma M.2 and 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma M.1, the last
step follows from Part 12 of Lemma M.1.

To bound B2,r, we have

|B2,r|
:= |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r
− ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r|

= |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj − S̃j⟩ · S̃j,r|

≤ 2B exp(12B)

m2
· |⟨ 1

2B
vk2,r, Sj − S̃j⟩|

≤ 2BR exp(16B + 3R)

m2

where the first step follows from the definition of B2,r, the second step follows from simple algebras, the
third step follows from Part 6 of Lemma M.2 and 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma M.1, the last
step follows from Part 13 of Lemma M.1 and ∥vk,r∥∞ ≤ 2B by simple algebras.

To bound B3,r, we have

|B3,r|
:= |⟨vk1,r, Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r
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− ⟨vk1,r, Si⟩ · Si,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r|
= |⟨vk1,r, Si⟩ · Si,r · ⟨vk2,r − ṽk2,r, S̃j⟩ · S̃j,r|

≤ exp(12B)

m2
· |⟨vk2,r − ṽk2,r, S̃j⟩|

≤ 2R exp(15B)

m2

where the first step follows from the definition of B3,r, the second step follows from simple algebras, the
third step follows from Part 6 of Lemma M.2 and 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma M.1, the last
step follows from Cauchy-Schwarz inequality, Eq. (8) and ∥Si∥2 ≤ exp(3B)√

m
.

The proof of bounding B4,r is similar to the proof of bounding B1,r, we have |B4,r| ≤ R exp(19B+3R)
m2 .

The proof of bounding B5,r is similar to the proof of bounding B2,r, we have |B5,r| ≤ 2BR exp(16B+3R)
m2 .

The proof of bounding B6,r is similar to the proof of bounding B3,r, we have |B6,r| ≤ 2R exp(15B)
m2 .

Now we combine all terms, we have

|[Hk1,k2 ]i,j(W )− [Hk1,k2 ]i,j(W̃ )|

= mx⊤i xj
m∑

r=1

(B1,r +B2,r +B3,r

+B4,r +B5,r +B6,r)

≤m
m∑

r=1

(B1,r +B2,r +B3,r +B4,r +B5,r +B6,r)

≤m

m∑

r=1

(|B1,r|+ |B2,r|+ |B3,r|

+ |B4,r|+ |B5,r|+ |B6,r|)

≤m
m∑

r=1

8R exp(22B)

m2

≤ 8R · exp(22B)

where the second step follows from ∥xi∥2 ≤ 1, the third step follows from simple algebras, the fourth step
follows from R ≤ B, B ≤ exp(B) and the combination of all terms, the last step follows from simple
algebras.

Proof of Part 2. This proof follows from Part 1 of this Lemma and the definition of Frobenius
norm.

I.2 Kernel PSD during Training Process
Claim I.4. If the following conditions hold:

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let timestamp τ ≥ 0 denotes as a integer.

• Denote H∗ as H(W ) in Definition I.1.

• Denote H(τ) as H(W̃ ) in Definition I.1.
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• Let D := 2λ−1 · exp(20B)
√
nd
m ∥Y − F(0)∥F

• Let ∥wr(t)− wr(0)∥2 ≤ D < R = λ/poly(n, d, exp(B)), ∀r ∈ [m], ∀t ≥ 0

Then, with a probability at least 1− δ, we have

λmin(H(τ)) ≥ λ/2

Proof. By Lemma I.3, with a probability at least 1− δ, we have

∥H∗ −H(τ)∥F ≤ 8R
√
nd exp(22B)

≤ λ/2 (9)

where the first step follows from Part 2 of Lemma I.3, the second step follows by choice of R.
By eigenvalue perturbation theory, we have

λmin(H(τ)) ≥ λmin(H
∗)− ∥H(τ)−H∗∥

≥ λmin(H
∗)− ∥H(τ)−H∗∥F

≥ λmin(H
∗)− λ/2

≥ λ/2

where the first step comes from triangle inequality, the second step is due to Frobenius norm, the third
step is due to Eq. (9), the last step follows from λmin(H

∗) = λ.

J Loss Decomposition

In this section, we provide the lemma below to decompose it into five terms, and then we will give bounds
to four terms.
Lemma J.1. Assuming the following condition is met:

• Let W ∈ Rd×m and a ∈ Rm as Definition G.1.

• Let λ = λmin(H
∗)

• For i, j ∈ [n] and k1, k2 ∈ [d].

• Let θk,i(τ) ∈ Rm be defined as Definition H.6.

• Let ui(τ) ∈ Rm be defined as Definition H.2.

• Denote F(τ) ∈ Rn×d as Definition H.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v0,k,i ∈ R be defined as follows

v0,k,i

:=m
∑

r∈[m]

(θk,i,r(τ + 1)

− θk,i,r(τ)) · ui,r(τ + 1)

• Let scalar v1,k,i ∈ R be defined as follows

v1,k,i

:=m
m∑

r=1

θk,i,r(τ)

· ui,r(τ) · (−η⟨∆wr(τ), xi⟩)
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• Let scalar v2,k,i ∈ R be defined as follows

v2,k,i

:=m
m∑

r=1

θk,i,r(τ) · ui,r(τ) · η2

·Θ(1) · ⟨∆wr(τ), xi⟩2

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ ]

• C0 = 2⟨vec(F(τ)− Y ), vec(v0)⟩

• C1 = 2⟨vec(F(τ)− Y ), vec(v1)⟩

• C2 = 2⟨vec(F(τ)− Y ), vec(v2)⟩

• C3 = ∥F(τ + 1)− F(τ)∥2F
Then, we can show

∥F(τ + 1)− Y ∥2F
= ∥F(τ)− Y ∥2F + C0 + C1 + C2 + C3.

Proof. The expression ∥Y − F(τ + 1)∥2F = ∥ vec(Y − F(τ + 1))∥22 can be rewritten in the following:

∥ vec(Y − F(τ + 1))∥22
= ∥ vec(Y − F(τ)− (F(τ + 1)− F(τ)))∥22
= ∥ vec(Y − F(τ))∥22
− 2 vec(Y − F(τ))⊤ vec(F(τ + 1)− F(τ))

+ ∥ vec(F(τ + 1)− F(τ))∥22.
(10)

where the first step follows from simple algebra, the last step follows from simple algebra.
Recall the update rule (Definition H.13),

wr(τ + 1) = wr(τ)− η ·∆wr(τ)

In the following manner, ∀k ∈ [d], we can express Fk(τ + 1)− Fk(τ) ∈ Rn:

Fk,i(τ + 1)− Fk,i(τ)

=m
∑

r∈[m]

(θk,i,r(τ + 1)ui,r(τ + 1)

− θk,i,r(τ)ui,r(τ))

= +
∑

r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

+m
∑

r∈[m]

θk,i,r · (ui,r(τ + 1)− ui,r(τ))

= +
∑

r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

+m
∑

r∈[m]

θk,i,r(τ) · ui,r(τ)
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· (exp(−η⟨∆wr(τ), xi⟩)− 1)

= +
∑

r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

+m
∑

r∈[m]

θk,i,r(τ)ui,r(τ)

· (−η⟨∆wr(τ), xi⟩+Θ(1)η2⟨∆wr(τ), xi⟩2)
= v0,k,i + v1,k,i + v2,k,i (11)

where the first step is due to the definition of Fk,i(τ), the second step is from the simple algebra, the third
step is due to |η∆wr(τ)

⊤xi| ≤ 0.01 (due to Gradient Property and ∥xi∥2 ≤ 1), the fourth step follows
from the Taylor series approximation, the last step follows from

v0,k,i :=m
∑

r∈[m]

(θk,i,r(τ + 1)

− θk,i,r(τ)) · ui,r(τ + 1)

v1,k,i :=m
m∑

r=1

θk,i,r(τ) · ui,r(τ)·

(−η⟨∆wr(τ), xi⟩)

v2,k,i :=m
m∑

r=1

θk,i,r(τ) · ui,r(τ)

· η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

Here v0,k,i and v1,k,i are linear in η and v2,k,i is quadratic in η. Thus, v0,k,i and v1,k,i are the first order
term, and v2,k,i is the second order term.

We can rewrite the second term in the Eq. (10) above as below:

⟨vec(Y − F(τ)), vec(F(τ + 1)− F(τ))⟩
= ⟨vec(Y − F(τ)), vec(v0 + v1 + v2)⟩
= ⟨vec(Y − F(τ)), vec(v0)⟩+ ⟨vec(Y
− F(τ)), vec(v1)⟩+ ⟨vec(Y − F(τ)), vec(v2)⟩

where the first step follows from Eq.(11), the second step follows from simple algebras.
Therefore, we can conclude that

∥F(τ + 1)− Y ∥2F
= ∥F(τ)− Y ∥2F + C0 + C1 + C2 + C3.

The below lemma analyzes the first-order term that is making progress.

Lemma J.2 (Progress terms). If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ))

11175



• Let r ∈ [m], let i, j ∈ [n], let k, k2 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition G.5.

• Let θk,i(τ) ∈ Rm be defined as Definition H.6.

• Let ui(τ) ∈ Rm be defined as Definition H.2.

• Let Si(τ) ∈ Rm be defined as Definition H.7.

• Let vk,r := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition H.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v1,1,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v1,1,k,i = m2
∑

r∈[m]

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤j )xi

• Let C1,1 := 2⟨vec(F(τ)− Y ), vec(v1,1)⟩

Then, we have

• C1,1 ≤ −1.6mη vec(F(τ)− Y )⊤H(τ) vec(F(τ)− Y )

Proof. We have

v1,1,k,i =m2
∑

r∈[m]

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

·
(
(⟨vk2,r, Sj(τ)⟩) · Sj,r(τ)

)
· x⊤j )xi

=m2
∑

r∈[m]

βk,r(τ) · αi(τ)
−1 · ui,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

·
(
(⟨vk2,r, Sj(τ)⟩) · Sj,r(τ)

)
· x⊤j )xi

=m2
∑

r∈[m]

βk,r(τ) · Si,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

·
(
(⟨vk2,r, Sj(τ)⟩) · Sj,r(τ)

)
· x⊤j )xi
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=m2
∑

r∈[m]

⟨βk,r(τ) · 1m, Si(τ)⟩ · Si,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j − yk2,j)

·
(
(⟨vk2,r, Sj(τ)⟩) · Sj,r(τ)

)
· x⊤j )xi

=m2
∑

r∈[m]

(⟨vk,r,Si(τ)⟩

+ ⟨βk(τ),Si(τ)⟩) · Si,r

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

·
(
(⟨vk2,r, Sj(τ)⟩) · Sj,r(τ)

)
· x⊤j )xi

=m2(Q1,1,k,i +Q1,2,k,i)

where the first step follows from the definition of v1,1,k,i, the second step follows from Definition H.6, the
third step follows from Definition H.7, the fourth step follows from ⟨βk,r(τ) · 1m, Si⟩ = βk,r(τ), the fifth
step follows from the definition of vk for k ∈ [d] and simple algebras, the last step holds since we define

Q1,1,k,i :=
∑

r∈[m]

⟨vk,r,Si(τ)⟩ · Si,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤j )xi,

Q1,2,k,i :=
∑

r∈[m]

⟨βk(τ), Si(τ)⟩ · Si,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤j )xi.

Bounding first term. Then for the first term Q1,1,k,i, we have its quantity

n∑

i=1

d∑

k=1

Q1,1,k,i(Fk,i(τ)− yk,i)

= − 1

m
η vec(F(τ)− Y )⊤H(τ) vec(F(τ)− Y )

where this step follows from Definition I.1.
Bounding second term. On the other hand, for the second term Q1,2,k,i, we have its quantity,

|
n∑

i=1

d∑

k=1

Q1,2,k,i(Fk,i(τ)− yk,i)|

≤ η|exp(9B)

m3

n∑

i=1

n∑

j=1

m∑

r=1

d∑

k=1

d∑

k2=1

σrCk,k2,r(Fk,i(τ)− yk,i)(Fk2,j(τ)− yk2,j)|
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≤ η
exp(9B)

m3
· |

m∑

r=1

σr max
k,k2∈[d]

Ck,k2,r|

· ∥(F(τ)− Y )⊗ (F(τ)− Y )∥1

≤ η
exp(9B)

m3
· |

m∑

r=1

σr max
k,k2∈[d]

Ck,k2,r|

· ∥F(τ)− Y ∥21

≤ η
nd exp(9B)

m3
· |

m∑

r=1

σr max
k,k2∈[d]

Ck,k2,r|

· ∥F(τ)− Y ∥2F

≤ η
exp(9B)

m3λ
|

m∑

r=1

σr max
k,k2∈[d]

Ck,k2,r|

· vec(F(τ)− Y )⊤H(τ) vec(F(τ)− Y )

where the first step follows from 0 ≤ Si,r ≤ exp(3B)
m by Part 11 of Lemma M.1, ∥Si∥2 ≤ exp(3B)√

m
,

∥xi∥ ≤ 1 and

Ck,k2,r := ∥βk(τ)∥2 · ∥vk2,r∥2, σr ∈ {+1,−1}

the second and third steps follow from the definition of Kronecker product, the fourth step follows from
∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d, the last step follows from vec(F(τ) − Y )⊤H(τ) vec(F(τ) − Y ) ≥

λ∥F− Y ∥2F .
Thus, by following Part 2 and Part 3 of Lemma M.2, we have

Ck,k2,r = ∥βk(τ)∥2 · ∥vk2,r∥2 ≤ 2mB2.

Besides, we apply Hoeffding inequality (Lemma F.4) to all random variables σr maxk,k2∈[d]Ck,k2,r for
r ∈ [m], especially E[

∑m
r=1 σr maxk,k2∈[d]Ck,k2,r] = 0 due to the symmetry of ar, we have

|
n∑

i=1

d∑

k=1

Q1,2,k,i(Fk,i(τ)− yk,i)|

≤ Cη
nd exp(9B)

m3λ

· vec(F(τ)− Y )⊤H(τ) vec(F(τ)− Y )

·mB2
√
m log(nd/δ)

with probability at least 1− δ/poly(nd).
Note that by Lemma condition, we have

C
nd exp(9B)

m3λ
·mB2

√
m log(nd/δ) ≤ 0.2

1

m
.

Finally, we complete the proof with the result

C1,1

≤ − 1.6mη vec(F(τ)− Y )⊤H(τ) vec(F(τ)− Y )

Below, we prove all other terms are small when m is large enough compared to the progressive term.

Lemma J.3 (Minor effects on non-progress term). If the following
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• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k2 ∈ [d]

• Let scalar v0,k,i ∈ R be defined as follows

v0,k,i

:=m
∑

r∈[m]

(θk,i,r(τ + 1)

− θk,i,r(τ)) · ui,r(τ + 1)

• Let scalar v1,2,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v1,2,k,i

=m2
∑

r∈[m]

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

· arSj,r(τ)e⊤k2)xi

• Let scalar v2,k,i ∈ R be defined as follows

v2,k,i :=m
m∑

r=1

θk,i,r(τ) · ui,r(τ) · η2

·Θ(1) · ⟨∆wr(τ), xi⟩2

• Let C0 := 2⟨vec(F(τ)− Y ), vec(v0)⟩

• Let C1,2 := 2⟨vec(F(τ)− Y ), vec(v1,2)⟩

• Let C2 := 2⟨vec(F(τ)− Y ), vec(v2)⟩

• Let C3 := ∥F(τ + 1)− F(τ)∥2F
Then, we have

• |C0| ≤ 0.1mηλ · ∥F(τ)− Y ∥2F
• |C1,2| ≤ 0.1mηλ · ∥F(τ)− Y ∥2F
• |C2| ≤ η2m · n2d2 exp(16B) · ∥F(τ)− Y ∥2F
• |C3| ≤ η2m2 · ∥F(τ)− Y ∥2F

Proof. This proof follows from Lemma J.4, Lemma J.5, Lemma J.6 and Lemma J.7.

J.1 Bounding C0

Lemma J.4. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.
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• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition G.5.

• Let αi(τ) ∈ R be defined as Definition G.3.

• Let θk,i(τ) ∈ Rm be defined as Definition H.6.

• Let ui(τ) ∈ Rm be defined as Definition H.2.

• Let Si(τ) ∈ Rm be defined as Definition H.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition H.8.

• Let Y ∈ Rn×d denote the labels.

• Let η ∈ (0, 1/m) denote the learning rate.

• Let scalar v0,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v0,k,i =m
∑

r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ))

· ui,r(τ + 1)

• Let C0 := 2⟨vec(F(τ)− Y ), vec(v0)⟩

Then, with a probability at least 1− δ/poly(nd), we have

|C0| ≤ 0.1ηmλ∥F(τ)− Y ∥2F .

Proof. By Claim H.12, we have

∆wr(τ)

= m

n∑

i=1

d∑

k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Si(τ)⟩

· Si,r(τ) · xi + arSi,r(τ)ek

)

Then the k1-th entry ∆wr,k(τ) for k1 ∈ [d] should be

∆wr,k1(τ)

=m
n∑

i=1

d∑

k=1

(Fk,i(τ)− yk,i)

·
(
⟨vk,r(τ),Si(τ)⟩ · Si,r(τ) · xi,k1

+ arSi,r(τ)ek,k1

)
(12)

We have

v0,k,i
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=m
∑

r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ))

· ui,r(τ + 1)

=m
∑

r∈[m]

(βk,r(τ + 1)αi(τ + 1)−1

− βk,r(τ)αi(τ)
−1) · ui,r(τ + 1)

=m
∑

r∈[m]

(βk,r(τ + 1)αi(τ + 1)−1

− βk,r(τ + 1)αi(τ)
−1

+ βk,r(τ + 1)αi(τ)
−1 − βk,r(τ)αi(τ)

−1)

· ui,r(τ + 1)

=m
∑

r∈[m]

(βk,r(τ + 1) · (αi(τ + 1)−1 − αi(τ)
−1)

+ (βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1)

· ui,r(τ + 1)

=m(Q0,1,k,i +Q0,2,k,i)

where the first step follows from the definition of v0,k,i, the second step follows from Definition H.6, the
third and fourth steps follow from simple algebras, the last step hold since we define

Q0,1,k,i

:=
∑

r∈[m]

βk,r(τ + 1) · (αi(τ + 1)−1 − αi(τ)
−1)

· ui,r(τ + 1),

Q0,2,k,i

:=
∑

r∈[m]

(βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1)

· ui,r(τ + 1).

Bounding first term. For the first term Q0,1,k,i, we have its quantity

|
n∑

i=1

d∑

k=1

Q0,1,k,i(Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑

k=1

m∑

r=1

βk,r(τ + 1) · (αi(τ + 1)−1

− αi(τ)
−1) · ui,r(τ + 1)(Fk,i(τ)− yk,i)|

≤ exp(B) · |
n∑

i=1

d∑

k=1

m∑

r=1

βk,r(τ + 1) · (αi(τ + 1)−1

− αi(τ)
−1)(Fk,i(τ)− yk,i)|

≤ B exp(B) · |
n∑

i=1

d∑

k=1

m∑

r=1

ar(αi(τ + 1)−1

− αi(τ)
−1) · (Fk,i(τ)− yk,i)|

≤ B exp(B) · |
m∑

r=1

ar(αi(τ + 1)−1
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− αi(τ)
−1)| ·

√
nd∥F(τ)− Y ∥F (13)

where the first step follows from the definition of Q0,1,k,i, the second step follows from Part 4 of
Lemma M.1 and Definition H.2, the third step follows from Part 1 of Lemma M.1 and ∥U∥1 ≤

√
nd∥U∥F

for U ∈ Rn×d.
By Part 2 of Lemma J.9, we have

αi(τ + 1)−1 − αi(τ)
−1

≤ η

√
nd exp(15B)

m3

· ∥F(τ)− Y ∥F

+ η2
nd exp(27B)√

m
· ∥F(τ)− Y ∥F .

Then we apply Hoeffding inequality (Lemma F.4) to random variables ar(αi(τ + 1)−1 − αi(τ)
−1) for

r ∈ [m], and by E[
∑m

r=1 ar(αi(τ + 1)−1 − αi(τ)
−1)] = 0, we have

|
m∑

r=1

ar(αi(τ + 1)−1 − αi(τ)
−1)|

≤ (η

√
nd exp(15B)

m3
+ η2

nd exp(27B)√
m

)

· ∥F(τ)− Y ∥F ·
√
m log(nd/δ). (14)

with probability at least 1− δ/poly(nd).
Through combining Eq. (14) and Eq.(13), we can show that

|
n∑

i=1

d∑

k=1

Q0,1,k,i(Fk,i(τ)− yk,i)|

≤ (η
nd exp(17B)

m3
· ∥F(τ)− Y ∥2F

+ η2
nd
√
nd exp(29B)√

m
· ∥F(τ)− Y ∥2F )

·
√
m log(nd/δ)

with a probability at least 1− δ/poly(nd).
Thus, by Lemma condition, we can show

η
nd exp(17B)

m3
·
√
m log(nd/δ) ≤ 0.01ηλ,

η2
nd
√
nd exp(29B)√

m
·
√
m log(nd/δ)

≤ η
nd
√
nd exp(29B)

m
·
√
log(nd/δ) ≤ 0.01ηλ.

Bounding second term. On the other hand, for the second term Q0,2,k,i, we have its quantity

|
n∑

i=1

d∑

k=1

Q0,2,k,i(Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑

k=1

m∑

r=1

(βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1)
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· ui,r(τ + 1) · (Fk,i(τ)− yk,i)|

≤ exp(B) · |
n∑

i=1

d∑

k=1

m∑

r=1

(βk,r(τ + 1)− βk,r(τ))

· αi(τ)
−1) · (Fk,i(τ)− yk,i)|

≤ exp(2B)

m
· |

n∑

i=1

d∑

k=1

m∑

r=1

(βk,r(τ + 1)− βk,r(τ))

· (Fk,i(τ)− yk,i)|

≤ exp(2B)

m
· |

n∑

i=1

d∑

k=1

m∑

r=1

(Wk,r(τ + 1) · ar

−Wk,r(τ) · ar) · (Fk,i(τ)− yk,i)|

≤ η
exp(2B)

m
· |

n∑

i=1

d∑

k=1

m∑

r=1

ar ·m

·
n∑

j=1

d∑

k1=1

(Fk1,j(τ)− yk1,j)

·
(
⟨vk1,r(τ),Sj(τ)⟩ · Sj,r(τ) · xj,k

+ arSj,r(τ)ek1,k

)
· (Fk,i(τ)− yk,i)|

≤ η
exp(5B)

m
· |

m∑

r=1

σr max
j,k,k1∈[d]

Cj,k,k1,r|

· ∥(F(τ)− Y )⊗ (F(τ)− Y )∥1

≤ η
exp(5B)

m
· |

m∑

r=1

σr max
j,k,k1∈[d]

Cj,k,k1,r|

· ∥F(τ)− Y ∥21

≤ η
nd exp(5B)

m
· |

m∑

r=1

σr max
j,k,k1∈[d]

Cj,k,k1,r|

· ∥F(τ)− Y ∥2F
where the first step follows from the definition of Q0,2,k,i, the second and third steps follow from Part 4 of
Lemma M.1, the fourth step follows from Definition G.5, the fifth step follows from Eq.(12), the sixth
step follows from the definition of Kronecker product, 1 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma M.1,
∥xi∥2 ≤ 1 and defining

Cj,k,k1,r := ⟨Sj , vk1,r⟩+ ek1,k, σr ∈ {+1,−1},

the seventh step follows from the definition of ℓ1 norm, the last step follows from ∥U∥1 ≤
√
nd∥U∥F for

U ∈ Rn×d.
Thus, by following Part 6 of Lemma M.2, we have

Cj,k,k1,r = ⟨Sj , vk1,r⟩+ ek1,k

≤ exp(6B) + 1

≤ exp(7B)

where the last step follows from simple algebras.
We apply Hoeffding inequality (Lemma F.4) to σr maxj,k,k1∈[d]Cj,k,k1,r for r ∈ [m].
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By E[
∑m

r=1 σr maxj,k,k1∈[d]Cj,k,k1,r] = 0, we have

|
n∑

i=1

d∑

k=1

Q0,2,k,i(Fk,i(τ)− yk,i)|

≤ η
nd exp(5B)

m

· ∥F(τ)− Y ∥2F · exp(6B)
√
m log(nd/δ).

with probability at least 1− δ/poly(nd).
Then, by Lemma condition, we have

η
nd exp(5B)

m
· exp(7B)

√
m log(nd/δ) ≤ 0.01ηλ.

Now we can complete the proof by combining all terms, we have

|C0| ≤ 0.1ηmλ∥F(τ)− Y ∥2F .

J.2 Bounding C1,2

Lemma J.5. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition G.5.

• Let αi(τ) ∈ R be defined as Definition G.3.

• Let θk,i(τ) ∈ Rm be defined as Definition H.6.

• Let ui(τ) ∈ Rm be defined as Definition H.2.

• Let Si(τ) ∈ Rm be defined as Definition H.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition H.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v1,2,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v1,2,k,i

=m2
∑

r∈[m]

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

· arSj,r(τ)e⊤k2)xi
11184



• Let C1,2 := 2⟨vec(F(τ)− Y ), vec(v1,2)⟩
Then, with a probability at least 1− δ/poly(nd), we have

|C1,2| ≤ 0.1ηmλ∥F(τ)− Y ∥2F
Proof. We have the quantity of v1,2,k,i

|
n∑

i=1

d∑

k=1

v1,2,k,i(Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑

k=1

m2
m∑

r=1

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

· arSj,r(τ)e⊤k2)xi · (Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑

k=1

m2
m∑

r=1

βk,r(τ)αi(τ)
−1 · ui,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

· arSj,r(τ)e⊤k2)xi · (Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑

k=1

m2
m∑

r=1

βk,r(τ)Si,r(τ)

· (−η
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

· arSj,r(τ)e⊤k2)xi · (Fk,i(τ)− yk,i)|

≤ ηm2|
n∑

i=1

d∑

k=1

m∑

r=1

βk,r(τ)Si,r(τ)

· (−
n∑

j=1

d∑

k2=1

(Fk2,j(τ)− yk2,j)

· arSj,r(τ)e⊤k2)xi · (Fk,i(τ)− yk,i)|

≤ η exp(6B)

m∑

r=1

|ar ·max
k∈[d]

βk,r(τ)|

· ∥(F(τ)− Y )⊗ (F(τ)− Y )∥1

≤ η exp(6B)
m∑

r=1

|ar ·max
k∈[d]

βk,r(τ)|

· ∥F(τ)− Y ∥21

≤ ηnd exp(6B)
m∑

r=1

|ar ·max
k∈[d]

βk,r(τ)|

· ∥F(τ)− Y ∥2F
where the first step follows from the definition of v1,2,k,i, the second step follows from Definition H.6, the
third step follows from Definition G.5, the fourth step follows from Definition H.7, the fifth step follows
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from simple algebras, the sixth step follows from 0 ≤ Sj,r ≤ exp(3B)
m , ∥xi∥2 ≤ 1 and the definition of

Kronecker product, the seventh step follows from the definition of ℓ1 norm, the last step follows from
∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d.

Then by Part 1 of Lemma M.1, we have

|max
k∈[d]

βk,r(τ)| ≤ B

We apply Hoeffding inequality (Lemma F.4) to random variables ar ·maxk∈[d] βk,r(τ) for r ∈ [m]. By
E[
∑m

r=1 ar ·maxk∈[d] βk,r(τ)] = 0, we have

|
n∑

i=1

d∑

k=1

v1,2,k,i(Fk,i(τ)− yk,i)|

≤ ηnd exp(6B)B∥F(τ)− Y ∥2F
with a probability at least 1− δ/poly(nd).

By the Lemma condition, we have

nd exp(6B)B ≤ 0.1mλ

J.3 Bounding C2

Lemma J.6. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition G.5.

• Let αi(τ) ∈ R be defined as Definition G.3.

• Let θk,i(τ) ∈ Rm be defined as Definition H.6.

• Let ui(τ) ∈ Rm be defined as Definition H.2.

• Let Si(τ) ∈ Rm be defined as Definition H.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition H.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v2,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v2,k,i :=m
m∑

r=1

θk,i,r(τ) · ui,r(τ) · η2

·Θ(1) · ⟨∆wr(τ), xi⟩2
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• Let C2 := 2⟨vec(F(τ)− Y ), vec(v2)⟩
Then, with a probability at least 1− δ/poly(nd), we have

|C2| ≤ η2m · n2d2 exp(16B)∥F(τ)− Y ∥2F
Proof. We have

⟨∆wr(τ), xi⟩2

≤
(
m

n∑

j=1

d∑

k=1

(Fk,i(τ)− yk,i)

·
(
⟨vk,r(τ), Sj(τ)⟩ · Sj,r(τ) · x⊤j

+ arSj,r(τ)e
⊤
k

)
xi

)2

≤ exp(12B) · ∥F(τ)− Y ∥21
≤ nd exp(12B) · ∥F(τ)− Y ∥2F (15)

where the first step follows from Claim H.12, the second step follows from the definition of ℓ1 norm,
0 ≤ Sj,r ≤ exp(3B)

m by Part 11 of Lemma M.1 and Part 6 of Lemma M.2, last step follows from
∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d.

Then, we can show that

|
n∑

i=1

d∑

k=1

v2,k,i(Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑

k=1

m
m∑

r=1

θk,i,r(τ) · ui,r(τ) · η2

·Θ(1) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2|
n∑

i=1

d∑

k=1

m
m∑

r=1

θk,i,r(τ)

· ui,r(τ) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2|
n∑

i=1

d∑

k=1

m

m∑

r=1

βk,r(τ) · αi(τ)
−1

· ui,r(τ) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2|
n∑

i=1

d∑

k=1

m
m∑

r=1

βk,r(τ) · Si,r(τ)

· ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2 exp(3B)|
n∑

i=1

d∑

k=1

m∑

r=1

βk,r(τ)

· ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2 exp(4B)|
n∑

i=1

d∑

k=1

m∑

r=1

ar⟨∆wr(τ), xi⟩2

· (Fk,i(τ)− yk,i)|

≤ η2 exp(4B)|
m∑

r=1

ar max
i∈[n]
⟨∆wr(τ), xi⟩2|
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·
√
nd∥F(τ)− Y ∥F

≤ η2
√
mnd exp(4B)|

m∑

r=1

ar max
i∈[n]
⟨∆wr(τ), xi⟩2|

where the first step follows from the definition of v2,k,i, the second step follows from simple algebras, the
third step follows from Definition H.6, the fourth step follows from Definition H.7, the fifth step follows
from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma M.1, the sixth step follows from Part 1 of Lemma M.1
and Definition G.5, the seventh step follows from definition of ℓ1 norm and ∥U∥1 ≤

√
nd∥U∥F for

U ∈ Rn×d, the last step follows from Lemma J.8.
Next, by Eq.(15), applying Hoeffding inequality (Lemma F.4) to ar maxi∈[n]⟨∆wr(τ), xi⟩2 for r ∈ [m]

and E[
∑m

r=1 ar maxi∈[n]⟨∆wr(τ), xi⟩2] = 0, we have

|
n∑

i=1

d∑

k=1

v2,k,i(Fk,i(τ)− yk,i)|

≤ η2
√
mn2d2 exp(16B) · ∥F(τ)− Y ∥2F

·
√
m log(nd/δ)

with a probability at least 1− δ/poly(nd).
By the Lemma condition, we have

η2
√
mn2d2 exp(16B) ·

√
m log(nd/δ)

≤ η2m · n2d2 exp(16B)

Then we complete the proof.

J.4 Bounding C3

Lemma J.7. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition G.5.

• Let αi(τ) ∈ R be defined as Definition G.3.

• Let θk,i(τ) ∈ Rm be defined as Definition H.6.

• Let ui(τ) ∈ Rm be defined as Definition H.2.

• Let Si(τ) ∈ Rm be defined as Definition H.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition H.8.

• Let Y ∈ Rn×d denote the labels.
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• Let η > 0 denote the learning rate.

• Let C3 := ∥F(τ + 1)− F(τ)∥2F
Then, with a probability at least 1− δ/poly(nd), we have

|C3| ≤ η2m2∥F(τ)− Y ∥2F

Proof. We have

|C3|
= ∥F(τ + 1)− F(τ)∥2F

=
n∑

i=1

d∑

k=1

(Fk,i(τ + 1)− Fk,i(τ))
2

=

n∑

i=1

d∑

k=1

m2(⟨βk(τ + 1),Si(τ + 1)⟩

− ⟨βk(τ), Si(τ)⟩)2

=
n∑

i=1

d∑

k=1

m2
( m∑

r=1

(βk,r(τ + 1) · Si,r(τ + 1)

− βk,r(τ) · Si,r(τ))
)2

=
n∑

i=1

d∑

k=1

m2
( m∑

r=1

(βk,r(τ + 1) · Si,r(τ + 1)

− βk,r(τ + 1) · Si,r(τ)

+ βk,r(τ + 1) · Si,r(τ)− βk,r(τ) · Si,r(τ))
)2

=

n∑

i=1

d∑

k=1

m2
( m∑

r=1

(βk,r(τ + 1) · (Si,r(τ + 1)

− Si,r(τ)) + (βk,r(τ + 1)− βk,r(τ)) · Si,r(τ))
)2

=
n∑

i=1

d∑

k=1

m2(Q3,1,i,k +Q3,2,i,k)
2

where the first step follows from the definition C2, the second step follows from the definition of Frobenius
norm, the third step follows from Definition H.8, the fourth, fifth and sixth steps follow from simple
algebras, the last step follows from defining

Q3,1,i,k =

m∑

r=1

βk,r(τ + 1) · (Si,r(τ + 1)− Si,r(τ)),

Q3,2,i,k =
m∑

r=1

(βk,r(τ + 1)− βk,r(τ)) · Si,r(τ).

Bounding first term. For the first term, we have

|Q3,1,i,k|

= |
m∑

r=1

βk,r(τ + 1) · (Si,r(τ + 1)− Si,r(τ))|
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= |
m∑

r=1

ar · wr,k(τ + 1) · (Si,r(τ + 1)− Si,r(τ))|

≤ |B ·
m∑

r=1

ar · (Si,r(τ + 1)− Si,r(τ))|

≤ | exp(3B) ·
m∑

r=1

ar ·max
i∈[n]

(αi(τ + 1)−1

− αi(τ)
−1)|

where the first step follows from the definition of Q3,1,i,k, the second step follows from Definition G.5, the
third step follows from Part 1 of Lemma M.1, last step follows from Part 4 of Lemma M.1, Definition H.7
and B ≤ exp(B).

Then by Part 2 of Lemma J.9, applying Hoeffding inequality (Lemma F.4) to the random variables
ar ·maxi∈[n](αi(τ+1)−1−αi(τ)

−1 for r ∈ [m] and E[
∑m

r=1 ar ·maxi∈[n](αi(τ+1)−1−αi(τ)
−1] = 0,

we have

|Q3,1,i,k|

≤ (η

√
nd exp(18B)

m3
· ∥F(τ)− Y ∥F

+ η2
nd exp(30B)√

m
· ∥F(τ)− Y ∥F )

·
√
m log(nd/δ)

with a probability of at least 1− δ/poly(nd).
By the Lemma condition, we have

(η

√
nd exp(18B)

m3
+ η2

nd exp(30B)√
m

)

·
√

m log(nd/δ) ≤ 1

2
√
nd

η

Bounding second term. On the other hand, for the second term Q3,2,k,i, we have

|Q3,2,k,i|

= |
m∑

r=1

(βk,r(τ + 1)− βk,r(τ)) · Si,r(τ)|

= η|
m∑

r=1

ar∆wr,k(τ) · Si,r(τ)|

≤ η
exp(3B)

m
|

m∑

r=1

ar∆wr,k(τ)|

≤ η exp(3B)
∣∣∣

m∑

r=1

ar

n∑

j=1

d∑

k1=1

(Fk1,j(τ)

− yk1,j) ·
(
⟨vk1,r(τ),Sj(τ)⟩ · Sj,r(τ) · xi,k

+ arSj,r(τ)ek,k1

)∣∣∣

≤ η
exp(6B)

m
|

m∑

r=1

ar max
j∈[n],k,k1∈[d]

Cj,k,k1,r|
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· ∥F(τ)− Y ∥1

≤ η

√
nd exp(6B)

m
|

m∑

r=1

ar max
j∈[n],k,k1∈[d]

Cj,k,k1,r|

· ∥F(τ)− Y ∥F

where the first step follows from the definition of Q3,2,k,i, the second step follows from Definition H.13,
the third step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma M.1, the fourth step follows from
Claim H.12, the fifth step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma M.1, ∥xi∥2 ≤ 1 and
defining

Cj,k,k1,r := ⟨vk1,r(τ),Sj(τ)⟩+ ek,k1 ,

the last step follows from ∥U∥1 ≤
√
nd∥U∥F for U ∈ Rn×d.

Now we follow from Part 6 of Lemma M.2, applying Hoeffding inequality (Lemma F.4) to random
variables ar maxj∈[n],k,k1∈[d]Cj,k,k1,r for r ∈ [m] and E[

∑m
r=1 ar maxj∈[n],k,k1∈[d]Cj,k,k1,r] = 0, we

have

|Q3,2,k,i|

≤ η

√
nd exp(13B)

m
· ∥F(τ)− Y ∥F

·
√
m log(nd/δ)

≤ 1

2
√
nd

η

Finally, we combine all terms, we have

|C3|

=
n∑

i=1

d∑

k=1

m2((
1

2
√
nd

η +
1

2
√
nd

η)

· ∥F(τ)− Y ∥F )2

≤ η2m2∥F(τ)− Y ∥2F

J.5 Bounding Loss during Training Process
Lemma J.8. If the following conditions hold

• Denote F(τ) ∈ Rn×d as Definition H.8.

• Let Y ∈ Rn×d denote the labels.

Then we have

∥F(τ)− Y ∥F ≤ O(
√
nmd)

Proof. This proof follows from ∥yi∥ ≤ 1 for i ∈ [n] and Definition H.8.

J.6 Helpful Lemma
Lemma J.9. If the following conditions hold

• Let λ = λmin(H
∗).

• Let C > 10 denote a sufficiently large constant.
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• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let αi(τ) ∈ R be defined as Definition G.3.

• Let βk(τ) ∈ Rm be defined as Definition G.5.

• Let θk,i(τ) ∈ Rm be defined as Definition H.6.

• Let ui(τ) ∈ Rm be defined as Definition H.2.

• Let Si(τ) ∈ Rm be defined as Definition H.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm.

• Denote F(τ) ∈ Rn×d as Definition H.8.

• Let Y ∈ Rn×d denote the labels.

Then with a probability at least 1− δ/poly(nd), we have

• Part 1.

αi(τ + 1)− αi(τ)

≤ η

√
nd exp(9B)

m
· ∥F(τ)− Y ∥F

+ η2m1.5 · nd exp(21B) · ∥F(τ)− Y ∥F

• Part 2.

αi(τ + 1)−1 − αi(τ)
−1

≤ η

√
nd exp(15B)

m3
· ∥F(τ)− Y ∥F

+ η2
nd exp(27B)√

m
· ∥F(τ)− Y ∥F

Proof. Proof of Part 1.
We have

αi(τ + 1)− αi(τ)

= ⟨ui(τ + 1),1m⟩ − ⟨ui(τ),1m⟩
= ⟨ui(τ + 1)− ui(τ),1m⟩
= ⟨exp(W (τ + 1)⊤xi)− exp(W (τ)⊤xi),1m⟩
= ⟨exp(W (τ)⊤xi)

◦ (exp(−η∆W (τ)⊤xi)− 1m),1m⟩
= ⟨exp(W (τ)⊤xi) ◦ (−η∆W (τ)⊤xi +Θ(1)η2

· (∆W (τ)⊤xi)2),1m⟩
= ⟨−η∆W (τ)⊤xi +Θ(1)η2 · (∆W (τ)⊤xi)2,

exp(W (τ)⊤xi)⟩
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≤ exp(B) · ⟨−η∆W (τ)⊤xi +Θ(1)η2

· (∆W (τ)⊤xi)2,1m)⟩

≤ η

√
nd exp(9B)

m
· ∥F(τ)− Y ∥F + η2m1.5

· nd exp(21B) · ∥F(τ)− Y ∥F

where the first step follows from Definition G.3, the second step follows from simple algebras, the third
step follows from Definition H.2, the fourth step follows from simple algebra, the fifth step follows from
Fact F.1, the sixth step follows from simple algebras, the seventh step follows from Part 4 of Lemma M.1,
last step follows from Part 1 and Part 2 of Lemma J.10.

Proof of Part 2. We have

αi(τ + 1)−1 − αi(τ)
−1

= αi(τ + 1)−1αi(τ)
−1 · (αi(τ + 1)− αi(τ))

≤ exp(6B)

m2
· (αi(τ + 1)− αi(τ))

≤ η

√
nd exp(15B)

m3
· ∥F(τ)− Y ∥F

+ η2
nd exp(27B)√

m
· ∥F(τ)− Y ∥F

where the first step follows from simple algebras, the second step follows from Part 4 of Lemma M.2, the
last step follows from Part 1 of this Lemma.

Lemma J.10. If the following conditions hold

• Let λ = λmin(H
∗).

• Let W (τ) ∈ Rm×d be defined as Definition H.13, let a ∈ Rm be defined as Definition G.1.

• Let C > 10 denote a sufficiently large constant.

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k2 ∈ [d].

• Let Si(τ) ∈ Rm be defined as Definition H.7.

• Let vk,r := βk,r(τ) · 1m − βk(τ) ∈ Rm.

• Denote F(τ) ∈ Rn×d as Definition H.8.

• Let Y ∈ Rn×d denote the labels.

• Let η = λ/(m · poly(n, d, exp(B))) denote the learning rate.

Then with a probability at least 1− δ/poly(nd), we have

• Part 1.

|⟨η∆W (τ)⊤xi,1m⟩|

≤ η

√
nd exp(8B)

m
· ∥F(τ)− Y ∥F
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• Part 2.

|⟨η2(∆W (τ)⊤xi)2,1m⟩|
≤ η2m1.5 · nd exp(20B) · ∥F(τ)− Y ∥F

Proof. Proof of Part 1. We have

|⟨η∆W (τ)⊤xi,1m⟩|

= η|
m∑

r=1

⟨∆wr(τ), xi⟩|

≤ η
∣∣∣

m∑

r=1

m
n∑

j=1

d∑

k=1

(Fk,i(τ)− yk,i)

·
(
⟨vk,r(τ), Sj(τ)⟩ · Sj,r(τ) · x⊤j

+ arSj,r(τ)e
⊤
k

)
xi

∣∣∣

≤ η
∣∣∣

m∑

r=1

m

n∑

j=1

d∑

k=1

(Fk,i(τ)− yk,i) ·
(
⟨βk,r(τ) · 1m

− βk(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤j
+ arSj,r(τ)e

⊤
k

)
xi

∣∣∣

≤ η
∣∣∣

m∑

r=1

m
n∑

j=1

d∑

k=1

(Fk,i(τ)− yk,i) ·
(
arwr,k

+ ⟨−a ◦Wk,∗(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤j
+ arSj,r(τ)e

⊤
k

)
xi

∣∣∣

≤ η
exp(3B)

m

m∑

r=1

σr max
j∈[n],k∈[d]

Cj,k,r

· ∥F(τ)− Y ∥1

≤ η

√
nd exp(3B)

m

m∑

r=1

σr max
j∈[n],k∈[d]

Cj,k,r

· ∥F(τ)− Y ∥F
where the first step follows from simple algebras, the second step follows from Claim H.12, the third step
follows from the definition of vk,r, the fourth step follows from Definition G.5 and simple algebras, the
fifth step follows from ∥xi∥2 ≤ 1, 1 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma M.1, definition of ℓ1 norm
and defining

Cj,k,r

:= |wr,k|+ |⟨−Wk,∗(τ),Sj(τ)⟩|
+ ∥ek∥, σr ∈ {+1,−1},

the last step follows from ∥U∥1 ≤
√
nd∥U∥F for U ∈ Rn×d.

Thus, by following Part 1 and Part 11 of Lemma M.2 and Hoeffding inequality (Lemma F.4), we have

|⟨η∆W (τ)⊤xi,1m⟩|

≤ η

√
nd exp(8B)

m
· ∥F(τ)− Y ∥F
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with a probability at least 1− δ/poly(nd).
Proof of Part 2. We have

|⟨η2(∆W (τ)⊤xi)2,1m⟩|

≤ η2
m∑

r=1

(⟨∆wr(τ), xi⟩)2

≤ η2
m∑

r=1

(
m

n∑

j=1

d∑

k=1

(Fk,i(τ)− yk,i)

·
(
⟨vk,r(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤j

+ arSj,r(τ)e
⊤
k

)
xi

)2

≤ η2 exp(6B)

m∑

r=1

( n∑

j=1

d∑

k=1

(Fk,i(τ)

− yk,i) ·
(
⟨vk,r(τ), Sj(τ)⟩ · x⊤j + are

⊤
k

)
xi

)2

≤ η2m exp(20B) · ∥F(τ)− Y ∥21
≤ η2m

√
nmd exp(20B) · ∥F(τ)− Y ∥1

≤ η2m1.5 · nd exp(20B) · ∥F(τ)− Y ∥F

where the first step follows from simple algebras, the second step follows from Claim H.12, the third
step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma M.1, the fourth step follows from
⟨vk,r(τ),Sj(τ)⟩ ≤ exp(6B) by Part 6 of Lemma M.2, ∥xi∥2 ≤ 1, exp(6B) + 1 ≤ exp(7B) and
the definition of ℓ1 norm, the fifth step follows from Lemma J.8, the last step follows from ∥U∥1 ≤ ∥U∥F
for U ∈ Rn×d.

K Convergence of Prefix Learning

Here, we provide all the properties we need for math induction for NTK happening.

Definition K.1 (Properties). We state the following properties

• General Condition 1. Let λ = λmin(H
∗) > 0

• General Condition 2. Let B := max{Cσ
√
log(nd/δ), 1}.

• General Condition 3. Let η be defined as

η := λ/(mpoly(n, d, exp(B))).

• General Condition 4. Let D := 2λ−1 · exp(20B)
√
nd
m ∥Y − F(0)∥F

• General Condition 5. Let wr and ar be defined as Definition G.1.

• General Condition 6. D < R = λ/poly(n, d, exp(B))

• General Condition 7. m = λ−2 poly(n, d, exp(B))

• Weight Condition. ∥wr(t)− wr(0)∥2 ≤ D < R, ∀r ∈ [m]

• Loss Condition. ∥ vec(F(i)− Y )∥22 ≤ ∥ vec(F(0)− Y )∥22 · (1−mηλ/2)i, ∀i ∈ [t]

• Gradient Condition. η∥∆wr(i)∥2 ≤ 0.01 ∀r ∈ [m], ∀i ∈ [t]
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K.1 Main Result
Our main result is presented as follows.
Theorem K.2 (Main result, formal version of Theorem 4.2). For any ϵ, δ ∈ (0, 0.1), if the following
conditions hold

• Let λ = λmin(H
∗) > 0

• Let B = max{Cσ
√
log(nd/δ), 1}

• Let m = λ−2 poly(n, d, exp(B))

• Let η = λ/(mpoly(n, d, exp(B)))

• Let T̂ = Ω((mηλ)−1 log(nd/ϵ))

Then, after T̂ iterations, with probability at least 1− δ, we have

∥F(T̂ )− Y ∥2F ≤ ϵ.

Proof. We have ∥F(0)− Y ∥2F ≤ nd as Lemma K.6. Using the choice of T̂ , it follows directly from the
alternative application of Lemma K.3 and Lemma K.4.

K.2 Induction Part 1. For Weights
In this section, we introduce the induction lemma for weights.
Lemma K.3 (Induction Part 1 for weights). If the following conditions hold

• Suppose properties in Definition K.1 are true

For t+ 1 and ∀r ∈ [m], it holds that:

∥wr(t+ 1)− wr(0)∥2 ≤ D.

Proof. We have

η
∞∑

i=0

(1−mηλ/2)i ≤ η
4

mλ
(16)

where this step follows from Fact F.2.

∥wr(t+ 1)− wr(0)∥2

≤ η

t∑

τ=0

∥∆wr(τ)∥2

≤ η

t∑

τ=0

√
nd exp(11B) · ∥F(t)− Y ∥F

≤ η
√
nd exp(11B) ·

t∑

τ=0

(1−mηλ/2)i

· ∥F(0)− Y ∥F
≤ 2η

1

mλ

√
nd exp(11B) · ∥F(0)− Y ∥F

≤ D

where the third step follows from the triangle inequality, the second step follows from Eq. (20), the third
step follows from Lemma K.4, the fourth step follows from Eq. (16), the last step follows from General
Condition 4. in Definition K.1.

11196



K.3 Induction Part 2. For Loss

Now, we present our next induction lemma.

Lemma K.4 (Induction Part 2 for loss). Let t be a fixed integer.
If the following conditions hold

• Suppose properties in Definition K.1 are true

Then we have

∥F(t+ 1)− y∥2F ≤ (1−mηλ/2)t+1 · ∥F(0)− y∥2F .

Proof. We have

∥F(t+ 1)− y∥2F
≤ ∥F(t)− y∥2F + C0 + C1 + C2 + C3

= ∥F(t)− y∥2F + C0 + C1,1 + C1,2 + C2 + C3

≤ ∥F(t)− y∥2F · (1 + 0.1ηmλ− 1.6ηmλ

+ 0.1ηmλ+ η2m · n2d2 exp(16B) + η2m2)

≤ ∥F(t)− y∥2F · (1− 1.4ηmλ+ η2m · n2

· d2 exp(16B) + η2m2) (17)

where the first step follows from Lemma J.1, the second step follows from the definitions of C1, C1,1 and
C1,2, the third step follows from Lemma J.2 and Lemma J.3.

Choice of parameter. Here, we explain the condition setting in Definition K.1:

• To get our results in Lemma J.2 and Lemma J.3, we have to let m ≥ Ω(λ−2n2d2 · exp(30B) ·√
log(nd/δ)).

• If we let η ≤ O(λ/(mn2d2 exp(16B))), we can have

η2m · n2d2 exp(16B) + η2m2 ≤ 0.9ηmλ. (18)

Thus, combining Eq. (17) and Eq. (18), we have

∥F(t+ 1)− y∥2F ≤ (1−mηλ/2) · ∥F(t)− y∥2F (19)

Then by Eq. (19), we conclude all ∥F(τ)− y∥2F for τ ∈ [t], we have

∥F(t+ 1)− y∥2F ≤ (1−mηλ/2)t+1 · ∥F(0)− y∥2F

K.4 Induction Part 3. For Gradient

In this section, we present the induction lemma for gradients.

Lemma K.5 (Induction Part 3 for gradient). Let t be a fixed integer.
If the following conditions hold

• Suppose properties in Definition K.1 are true

Then we have

η∥∆wr(t)∥2 ≤ 0.01, ∀r ∈ [m]
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Proof. Firstly, we have

∥∆wr(t)∥2
≤ ∥∆wr(t)∥1

≤
d∑

k1=1

∣∣∣m
n∑

i=1

d∑

k=1

(Fk,i(t)− yk,i)

·
(
⟨vk,r(t), Si(t)⟩ · Si,r(t) · xi,k1

+ arSi,r(t)ek,k1

)∣∣∣
≤ √nd exp(11B)∥F(t)− Y ∥F (20)

where the first step follows from ∥U∥F ≤ ∥U∥1 for U ∈ Rn×d, the second step follows from Claim H.12,
the last step follows from the definition of 4 ℓ1 norm, 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma M.1,
∥xi∥2 ≤ 1 and Part 6 of Lemma M.2.

Then by the property of η in Definition K.1, we have

η∥∆wr(t)∥2 ≤ 0.01, ∀r ∈ [m]

K.5 Bounding Loss at Initialization
Lemma K.6. If the following conditions hold

• Denote F(τ) ∈ Rn×d as Definition H.8.

• Let Y ∈ Rn×d denote the labels.

Then we have

∥F(0)− Y ∥F ≤ O(
√
nd)

Proof. This proof follows from ∥yi∥ ≤ 1 for i ∈ [n] and Definition H.8.

L NTK-Attention

In this section, we compute the error bound of our NTK-Attention in approximating prefix matrix
P ∈ Rm×d. In Appendix L.1, we provide the formal definition of our NTK-Attention. In Appendix L.2,
we give our main theorem of error bound. In Appendix L.3, we state tools from (Alman and Song, 2023).

L.1 Definitions
Definition L.1. If the following conditions hold:

• Given input X ∈ RL×d, prefix matrix P ∈ Rm×d.

• Let S :=

[
P
X

]
∈ R(m+L)×d.

• Given projections WQ,WK ,WV ∈ Rd×d

• Let Q := XWQ ∈ RL×d.

• Let KP := SWQ ∈ R(m+L)×d

• Let VP := SWV ∈ R(m+L)×d

• Let A := exp(QK⊤
P ) ∈ RL×(m+L).
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• Let D := diag(A1(m+L)) ∈ RL×L.

We define:

Attn(Q,K, V ) := D−1AVP .

L.2 Error Bound
Here, we provide our two statements about error bound.

Theorem L.2 (Formal version of Theorem 5.1). Given an input matrix X ∈ RL×d and prefix matrix
P ∈ Rm×d, we denote Q = XWQ, KC = PWK and VC = PWV . If the condition Eq. (3), ∥Q∥∞ ≤
o(
√
logm), ∥KC∥∞ ≤ o(

√
logm), ∥VC∥∞ ≤ o(

√
logm) and d = O(logm) holds, then Algorithm 2

outputs a matrix T ∈ RL×d within time complexity of O(L2d) that satisfies:

∥T − PrefixAttn(X,P )∥∞ ≤ 1/ poly(m).

Proof. Following Definition L.1, we can have matrix A ∈ RL×(m+L) as follows:

A = QK⊤

=
[
exp(XWQW

⊤
KX⊤) exp(XWQW

⊤
KP⊤)

]

where the second step follows from K = SWK and S =

[
P
X

]
.

Our Algorithm 2 actually implement on using Q = XWQ and PWK to approximate
exp(XWQW

⊤
KP⊤) by Lemma L.7.

Trivially, this proof follows from Theorem L.5 and Lemma L.7.

Corollary L.3. Given an input matrix X ∈ RL×d and prefix matrix P ∈ Rm×d, we denote Q =
XWQ, KC = PWK and VC = PWV . If the condition Eq. (3), ∥Q∥∞ ≤ o(

√
logm), ∥KC∥∞ ≤

o(
√
logm), ∥VC∥∞ ≤ o(

√
logm) and d = O(logm) holds, then there exists an algorithm that outputs a

matrix T ∈ RL×d within time complexity of O(L1+o(1)d) that satisfies:

∥T − PrefixAttn(X,P )∥∞ ≤ 1/ poly(m).

Proof. The algorithm and proof can trivially follow from Algorithm 1, 2, 3 and Theorem 1 in HyperAtten-
tion (Han et al., 2024).

L.3 Tools from Fast Attention
In this section, we introduce some tools from previous work which we have used.

Definition L.4 (Approximate Attention Computation AAttC(n, d,B, ϵa), Definition 1.2 in (Alman and
Song, 2023)). Let ϵa > 0 and B > 0 be parameters. Given three matrices Q,K, V ∈ Rn×d, with
the guarantees that ∥Q∥∞ ≤ B, ∥K∥∞ ≤ B, and ∥V ∥∞ ≤ B, output a matrix T ∈ Rn×d which is
approximately equal to D−1AV , meaning,

∥T −D−1AV ∥∞ ≤ ϵa.

Here, for a matrix M ∈ Rn×n, we write ∥M∥∞ := maxi,j |Mi,j |.
Theorem L.5 (Upper bound, Theorem 1.4 in (Alman and Song, 2023)). There is an algorithm that solves
AAttC(n, d = O(log n), B = o(

√
log n), ϵa = 1/poly(n)) in time n1+o(1).

Definition L.6 (Definition 3.1 in (Alman and Song, 2023)). Let r ≥ 1 denote a positive integer. Let
ϵ ∈ (0, 0.1) denote an accuracy parameter. Given a matrix A ∈ Rn×n

≥0 , we say Ã ∈ Rn×n
≥0 is an

(ϵ, r)-approximation of A if

• Ã = U1 · U⊤
2 for some matrices U1, U2 ∈ Rn×r (i.e., Ã has rank at most r), and
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• |Ãi,j −Ai,j | ≤ ϵ ·Ai,j for all (i, j) ∈ [n]2.

Lemma L.7 (Lemma 3.4 in (Alman and Song, 2023)). Suppose Q,K ∈ Rn×d, with ∥Q∥∞ ≤ B, and
∥K∥∞ ≤ B. Let A := exp(QK⊤/d) ∈ Rn×n. For accuracy parameter ϵ ∈ (0, 1), there is a positive
integer g bounded above by

g = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/B2)
, B2

})
,

and a positive integer r bounded above by

r ≤
(
2(g + d)

2g

)

such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation (Definition L.6) of A ∈ Rn×n.
Furthermore, we can construct the matrices U1 := ϕ(Q) and U2 := ϕ(K) through a function ϕ(·)
defining Ã = U1U

⊤
2 can be computed in O(n · r) time.

L.4 Derivation of Low-Rank Approximation on Z

Re-state Conditions. Given an input matrix X ∈ RL×d and prefix matrix P ∈ Rm×d, we denote Q =
XWQ,K = XWKV = XWV ∈ RL×d. Besides, we also denote KC = PWK , VC = PWV ∈ Rm×d.

We relax the infinite norm ℓ∞ on these state matrices to o(
√
log(m+ L)). Formally, we assume the

following setting to align with (Alman and Song, 2023):

• ∥Q∥∞ ≤ o(
√
log(m+ L)).

• ∥K∥∞ ≤ o(
√
log(m+ L)).

• ∥V ∥∞ ≤ o(
√
log(m+ L)).

• ∥KC∥∞ ≤ o(
√
log(m+ L)).

• ∥VC∥∞ ≤ o(
√
log(m+ L)).

Note that our kernel mapping function ϕ doesn’t enlarge the values of input entries, we have:

• ∥ϕ(Qi)∥∞ ≤ o(
√
log(m+ L)), for any i ∈ [L].

• ∥ϕ(KC,r)∥∞ ≤ o(
√
log(m+ L)), for any r ∈ [m].

• ∥Φ(Q)∥∞ ≤ o(
√

log(m+ L)).

• ∥Φ(KC)∥∞ ≤ o(
√
log(m+ L)).

Note that Z = Φ(KC)
⊤ · VC , where KC , VC ∈ Rm×d and Φ(KC) ∈ Rm×r. The minimum error of

low-rank approximation is given by:

min
ZA∈Rr×s,ZB∈Rs×d

∥ZA · ZB − Z∥∞

≤ min
ZA∈Rr×s,ZB∈Rs×d

∥ZA · ZB − Z∥F

≤
√
d− s∥Φ(KP )∥∞ · ∥VP ∥∞

≤ o(log(m+ L)) ·
√
d− s

Recall that we follow from Lemma L.7, for i ∈ [L], we have:

exp(Q⊤
i K

⊤/
√
d)1L + ϕ(Qi)

⊤k

≥ exp(Q⊤
i K

⊤/
√
d)1L + exp(Q⊤

i K
⊤
C /
√
d)1m
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− ϵ ·m

where we choose this ϵ = 1/ poly(m).
So we obtain the error of low-rank approximation on prefix attention computation:

∥ exp(Q
⊤
i K

⊤/
√
d)V + ϕ(Qi)

⊤Z

exp(Q⊤
i K

⊤/
√
d)1L + ϕ(Qi)⊤k

− exp(Q⊤
i K

⊤/
√
d)V + ϕ(Qi)

⊤ZA · ZB

exp(Q⊤
i K

⊤/
√
d)1L + ϕ(Qi)⊤k

∥∞

= ∥ϕ(Qi)
⊤(Z − ZA · ZB)

/(exp(Q⊤
i K

⊤/
√
d)1L + ϕ(Qi)

⊤k)∥∞
≤ ∥ϕ(Qi)

⊤(Z − ZA · ZB)

/(exp(Q⊤
i K

⊤/
√
d)1L

+ exp(Q⊤
i K

⊤
C /
√
d)1m − 1/poly(m))∥∞

= ∥ϕ(Qi)
⊤(Z − ZA · ZB)∥∞

/(exp(Q⊤
i K

⊤/
√
d)1L

+ exp(Q⊤
i K

⊤
C /
√
d)1m − 1/poly(m))

≤ ∥ϕ(Qi)
⊤(Z − ZA · ZB)∥∞

1
2(m+ L) exp(−o(log(m+ L))/

√
d)

≤ ∥ϕ(Qi)∥∞∥Z − ZA · ZB∥∞
1
2(m+ L) exp(−o(log(m+ L))/

√
d)

≤ o(
√
log(m+ L))∥Z − ZA · ZB∥∞

1
2(m+ L) exp(−o(log(m+ L))/

√
d)

≤ o(log1.5(m+ L)) ·
√
d− s · o(m+ L)1/

√
d

1
2(m+ L)

≤ 1

mC

where the last step follows from choosing m ≥ Ω(exp(d)) and C ∈ (0, (
√
d− 1)/

√
d) is some constant.

M Taylor Series

In this section, we provide some perturbation analysis for NTK analysis.

Lemma M.1 (Lemma B.1 in (Li et al., 2024a)). If the following conditions hold

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let W = [w1, · · · , wm] and wr be random Gaussian vectors from N (0, σ2Id).

• Let V = [v1, · · · , vm] and vr denote the vector where ∥vr − wr∥2 ≤ R, ∀r ∈ [m].

• Let xi ∈ Rd and ∥xi∥2 ≤ 1, ∀i ∈ [n].

• Let R ∈ (0, 0.01).

• Let Si and S̃i be the softmax function corresponding to W and V respectively.

• Let αi = ⟨1m, exp(W⊤xi)⟩ and α̃i = ⟨1m, exp(V ⊤xi)⟩, ∀i ∈ [n].
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Then, with probability at least 1− δ/poly(nd), we have

• Standard inner product

– Part 1. |⟨wr, xi⟩| ≤ B, ∀i ∈ [n], ∀r ∈ [m]

– Part 2. |⟨vr, xi⟩| ≤ B +R, ∀i ∈ [n], ∀r ∈ [m]

– Part 3. |⟨wr − vr, xi + xj⟩| ≤ 2R, ∀i, j ∈ [n], ∀r ∈ [m]

• exp function

– Part 4. exp(−B) ≤ exp(⟨wr, xi⟩) ≤ exp(B), ∀i ∈ [n], ∀r ∈ [m]

– Part 5. exp(−B −R) ≤ exp(⟨vr, xi⟩) ≤ exp(B +R), ∀i ∈ [n], ∀r ∈ [m]

– Part 6. | exp(⟨wr − vr, xi + xj⟩)− 1| ≤ 4R, ∀i, j ∈ [n], ∀r ∈ [m]

– Part 7. | exp(⟨wr, xi⟩)− exp(⟨vr, xi⟩)| ≤ R exp(B +R), ∀i ∈ [n], ∀r ∈ [m]

• softmax S function

– Part 8. |αi − α̃i| ≤ mR exp(B +R),∀i ∈ [n]

– Part 9. |α−1
i − α̃−1

i | ≤ R
m exp(3B + 2R),∀i ∈ [n]

– Part 10. |Si,r| ≤ exp(2B)/m,∀i ∈ [n], ∀r ∈ [m]

– Part 11. |S̃i,r| ≤ exp(2B + 2R)/m, ∀i ∈ [n],∀r ∈ [m]

– Part 12. |Si,r − S̃i,r| ≤ R
m exp(4B + 3R),∀i ∈ [n], ∀r ∈ [m]

– Part 13. for any z ∈ Rm and ∥z∥∞ ≤ 1, we have |⟨z, Si⟩−⟨z, S̃i⟩| ≤ R exp(4B+3R), ∀i ∈ [n]

Lemma M.2. If the following conditions hold

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let W = [w1, · · · , wm] and wr be random Gaussian vectors from N (0, σ2Id).

• wr for r ∈ [m] satisfies ∥wr∥2 ≤ B with probability at least 1− δ/poly(nd) as in Lemma M.1.

• Let a ∈ Rm be defined as Definition G.1.

• Define βk := Wk,∗ ◦ a ∈ Rm for k ∈ [d] as Definition G.5.

• Define vk,r := βk,r · 1m − βk ∈ Rm for k ∈ [d] and r ∈ [m] as Definition I.1.

• Define αi for i ∈ [n] as Definition G.3.

Then, with probability at least 1− δ/poly(nd), we have

• Part 1. |βk,r| ≤ B

• Part 2. ∥βk∥2 ≤ B
√
m

• Part 3. ∥vk,r∥2 ≤ 2
√
mB

• Part 4. |α−1| ≤ exp(B)/m

• Part 5. ⟨βk, Si⟩ ≤ exp(4B)

• Part 6. ⟨vk,r, Si⟩ ≤ exp(6B)
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Proof. Proof of Part 1. We can get the proof by Gaussian tail bound.
Proof of Part 2. We have

∥βk∥2 =

√√√√
m∑

r=1

β2
k,r

≤

√√√√
m∑

r=1

B2

≤ √m ·B

where the first step follows from the definition of ℓ2 norm, the second step follows from Part 1 of this
Lemma, the last step follows from simple algebras.

Proof of Part 3. We have

∥vk,r∥2 =

√√√√
m∑

r1=1

(βk,r − βk,r1)
2

≤

√√√√
m∑

r1=1

β2
k,r + β2

k,r1
+ |2βk,rβk,r1 |

≤

√√√√
m∑

r1=1

4B2

≤ 2
√
m ·B

where the first step follows from the definition of ℓ2 norm, the second step follows from simple algebras,
the third step follows from Part 1 of this Lemma, the last step follows from simple algebras.

Proof of Part 4. This proof follows from Part 4 of Lemma M.1 and Definition G.3.
Proof of Part 5. We have

⟨βk,Si⟩ ≤ ∥βk∥2 · ∥Si∥2
≤ √mB · ∥Si∥2

≤ √mB ·

√√√√
m∑

r=1

S2i,r

≤ √mB ·

√√√√
m∑

r=1

exp(6B)

m2

≤ √mB ·
√

exp(6B)

m

≤ B exp(3B)

≤ exp(4B)

where the first step follows from Cauchy-Schwarz inequality, the second step follows from Part 2 of this
Lemma, the third step follows from the definition of ℓ2 norm, the fourth step follows from Part 11 of
Lemma M.1, the fifth step follows from triangle inequality, the sixth step follows from B ≤ exp(B), last
step follows from simple algebras.

Proof of Part 6. This proof follows from Part 3 of this Lemma, B ≤ exp(B) and Part 11 of
Lemma M.1.
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