
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 11092–11109
November 4-9, 2025 ©2025 Association for Computational Linguistics

Circuit Complexity Bounds for RoPE-based Transformer Architecture

Bo Chen Xiaoyu Li Yingyu Liang* Jiangxuan Long

Zhenmei Shi Zhao Song† Jiahao Zhang

Abstract

Characterizing the expressive power of the
Transformer architecture is critical to under-
standing its capacity limits and scaling law.
Recent works provide the circuit complex-
ity bounds to Transformer-like architecture.
On the other hand, position embedding has
emerged as a crucial technique in modern
large language models, offering superior per-
formance in capturing positional information,
which shows great performance for the long
context scenario. In this work, we take a circuit
complexity perspective and rigorously analyze
Transformers augmented with widely adopted
positional embeddings. We prove that, under
standard complexity assumptions, such models
remain incapable of efficiently solving canoni-
cal tasks such as arithmetic formula evaluation
and Boolean formula value computation. Our
results expose a fundamental expressivity limi-
tation that persists despite the remarkable em-
pirical success of positionally-enhanced Trans-
formers. Beyond tightening known complexity
bounds, our findings offer new theoretical in-
sights for designing future architectures with
provably stronger reasoning and compositional
capabilities.

1 Introduction

Recently, Large Language Models (LLMs), such
as GPT-4 (Achiam et al., 2023), Claude (Anthropic,
2024), Llama (Llama Team, 2024), and more re-
cently, OpenAI’s o1 (OpenAI, 2024b), have exhib-
ited remarkable potential to revolutionize numer-
ous facets of daily life, including conversational
AI (Liu et al., 2024), AI agents (Xi et al., 2023;
Chen et al., 2024), search capabilities (OpenAI,
2024b), and AI assistants (Kuo et al., 2024; Feng
et al., 2024), among others. One of the most signif-

*Corresponding author: yingyul@hku.hk. HKU.
yliang@cs.wisc.edu. UW-Madison.

†Corresponding author: magic.linuxkde@gmail.com.
University of California, Berkeley.

icant emergent capabilities of LLMs is their profi-
ciency in handling long-context information, which
is essential for effectively processing complex doc-
uments such as academic papers, official reports,
and legal texts. LLMs also have demonstrated ex-
ceptional capabilities in tackling long-context tasks,
such as zero-shot summarization (Chhabra et al.,
2024; Zhao et al., 2024) and sustaining coherent,
extended conversations (Xu et al., 2022; Maharana
et al., 2024). The o1 model from OpenAI (Ope-
nAI, 2024b) represents a major advancement in
this field. By leveraging Chain-of-Thought (CoT)
reasoning (Wei et al., 2022; Kojima et al., 2022)
and incorporating Retrieval Augmented Genera-
tion (RAG) (Lewis et al., 2020; Gao et al., 2023), it
showcases a level of expertise comparable to PhD-
level problem solving, with both techniques heavily
relying on extensive contextual understanding.

LLMs are primarily built upon the Transformer
architecture (Vaswani et al., 2017), which uses
the self-attention mechanism as its core compo-
nent. Given this foundational structure, an im-
portant question arises: what computational prim-
itives can the components of the Transformer im-
plement, and what problems can the entire sys-
tem solve collectively? To address the aforemen-
tioned questions and to investigate the expressive-
ness of transformers, prior research has made sig-
nificant strides. For example, (Merrill and Sab-
harwal, 2023b) have established two key results
concerning both non-uniform and L-uniform set-
tings: first, any depth-d transformer with c log n-
precision can be simulated by a threshold cir-
cuit family with constant depth; second, such a
transformer can also be simulated by a L-uniform
threshold circuit family of constant depth. Fur-
ther advancing these findings, (Merrill and Sabhar-
wal, 2023a) demonstrate that DLOGTIME-uniform
TC0 circuits are capable of simulating softmax-
attention transformers. Building on this founda-
tion, (Chiang, 2024) refine these results by in-

11092

creasing the accuracy of approximation. They
enhance the precision for softmax-attention trans-
formers from O(log n) to O(poly(n)), confirming
that these transformers fall within the DLOGTIME-
uniform TC0 class. Additionally, they show that a
softmax-attention transformer with an absolute er-
ror bound of 2−O(poly(n)) is also contained within
DLOGTIME-uniform TC0.

Position embeddings (Vaswani et al., 2017) are
a critical component in determining the representa-
tional power of Transformers, as they provide the
model with information about token order. Recent
works such as (Biderman et al., 2023; Hua et al.,
2025) can lead to substantially powerful capabili-
ties in modeling long-range interactions and gener-
alizing to longer sequences. Despite the consider-
able empirical success of positional embeddings, it
is still unclear whether they increase a model’s fun-
damental expressive power; thus, a natural question
arises:

How do position embeddings affect the
expressiveness of Large Language Models?

To make this question concrete, we formalize a
widely adopted positional encoding, Rotary Posi-
tion Embedding (RoPE) (Su et al., 2024), as our
canonical case. By encoding positional informa-
tion via rotation matrices in the query-key space,
RoPE captures both absolute and relative positions,
thereby improving inductive bias for attention, en-
abling better length generalization, and enhancing
performance on long-context tasks. This work aims
to address the proposed question from the perspec-
tive of circuit complexity on RoPE, taking a step
toward a principled understanding of the computa-
tional power of position embeddings of Transform-
ers. We present a rigorous theoretical analysis that
establishes fundamental limits on their expressive-
ness and clarifies the role of positional encoding in
shaping the model’s capabilities.

Our core approach involved a systematic exam-
ination of the circuit complexity for each compo-
nent of the RoPE-based architecture, from the basic
trigonometric functions to the complete attention
mechanism. Ultimately, we prove that these models
can be simulated using uniform TC0 circuits. Fur-
thermore, we show that unless TC0 = NC1, RoPE-
based Transformers with poly(n)-precision, O(1)
layers, and a hidden dimension d ≤ O(n) are un-
able to solve either Arithmetic formula evaluation
or Boolean formula value problems. This finding
is significant because it uncovers fundamental ex-

pressivity limitations of RoPE-based architectures,
even though they have shown empirical success in
modern language models.

Beyond (Merrill and Sabharwal, 2023b,a) and
(Chiang, 2024), our contribution are summarized
as follows:

• We prove that under standard complexity
assumptions, RoPE-based Transformer with
poly(n)-precision, constant-depth, poly(n)-
size can be simulated by a DLOGTIME-
uniform TC0 circuit family (Theorem 4.8).

• We prove that under standard complexity as-
sumptions, a RoPE-based Transformer with
poly(n)-precision, O(1) layers, hidden di-
mension d ≤ O(n) cannot solve the Arith-
metic formula evaluation problems (Theo-
rem 5.1).

• We prove that under standard complexity as-
sumptions, a RoPE-based Transformer with
poly(n)-precision, O(1) layers, hidden di-
mension d ≤ O(n) cannot solve the Boolean
formula value problem (Theorem 5.2).

2 Related Work

2.1 Complexity and Neural Networks

Circuit complexity, a branch of computational com-
plexity theory, studies circuit families as models of
computation (Li et al., 2025; Ke et al., 2025; Chen
et al., 2025c). Several circuit complexity classes
are significant in machine learning. Specifically,
AC0 represents problems highly parallelizable
with standard logic gates, while TC0 extends
this to include threshold gates, and NC1 denotes
the language recognizable by O(log n)-depth
circuits with bounded gate arity (Merrill et al.,
2022). It is known that AC0 ⊂ TC0 ⊆ NC1, but
whether TC0 ̸= NC1 remains an open question.
Assuming this inequality, (Liu et al., 2022) shows
that Transformer depth must depend on input
sequence length when simulating non-solvable
semiautomata. (Li et al., 2024) explore rela-
tionships among constant-depth Transformers,
Transformers with Chain-of-Thought (CoT),
and circuit complexity. They demonstrate:
T[poly(n), 1, 1] ⊆ CoT[log n, poly(n), 1, 1] ⊆
AC0 and T[poly(n), log n, 0] ⊆
CoT[log n,poly(n), log n, 0] ⊆ TC0 where
T[d(n), s(n), e(n)] denotes a constant-depth
Transformers with embedding size d(n), precision

11093

s(n) bits, and exponent bits e(n) for input length
n and CoT[T (n), d(n), s(n), e(n)] denotes a
T (n)-step CoT of a constant-depth Transformer
T[d(n), s(n), e(n)]. Their results provide theo-
retical insights into the emergent CoT ability of
Transformers, showing that intermediate reasoning
steps enable tackling more complex problems.

The Strong Exponential Time Hypothesis
(SETH), introduced by (Impagliazzo and Paturi,
2001), strengthens the P ̸= NP conjecture by
asserting that current best SAT algorithms are
roughly optimal: for every ϵ > 0, there exists
k ≥ 3 such that k-SAT cannot be solved in
O(2(1−ϵ)n) time, even randomly. SETH is widely
used to prove fine-grained lower bounds for vari-
ous algorithmic problems (Williams, 2018) and has
been applied to derive lower bounds for other prob-
lems (Deng et al., 2025; Liang et al., 2025; Chen
et al., 2025a,b). Specifically, (Alman and Song,
2023) demonstrates that unless the SETH fails, no
algorithm exists that can compute the forward pass
of an attention network in truly-subquadratic time.

On the other hand, (Alman and Song, 2024) es-
tablishes that the same condition applies to the
backward computation of attention networks, i.e.,
unless the SETH fails, no truly-subquadratic time
algorithm can be devised for the backward com-
putation of attention networks. In essence, com-
plexity theory provides a powerful framework for
investigating neural networks’ computational capa-
bilities by rigorously analyzing the computational
problems they can efficiently solve.

2.2 Limitations of Transformers
Transformers have shown exceptional capabilities
in natural language processing tasks, yet their ef-
fectiveness in mathematical computations remains
limited (Charton, 2022). Consequently, research
efforts have increasingly focused on defining the
computational boundaries of Transformers. These
studies investigate two types of Transformers: (1)
the average-head attention Transformer, where the
largest entry in the probability vector is set to 1
and all other entries are set to 0; (2) the softmax-
attention Transformer, where the probability vector
is produced using a softmax function, formally de-
fined as Softmax(X) = diag(exp(X) · 1n)−1 ·
exp(X). For the average-head attention Trans-
former, Merrill, Sabharwal, and Smith (Merrill
et al., 2022) demonstrate that it can recognize lan-
guages beyond the circuit complexity class AC0 but
can be simulated by constant-depth threshold cir-

cuits, placing it within the non-uniform TC0 class.

Additionally, (Liu et al., 2022) prove that
softmax-attention Transformers can be simulated
by a non-uniform TC0 circuit. Extending this anal-
ysis, (Merrill and Sabharwal, 2023b) introduce
a generalized similarity function s : {0, 1}p ×
{0, 1}p → {0, 1}p, applicable to any simi-
larity function within this mapping, and show
that softmax-attention Transformers belong to L-
uniform TC0. Through the conversion of Trans-
former operations into sentences in FOM (first-
order logic extended to include MAJORITY quan-
tifiers (Immerman, 1998)), (Merrill and Sabhar-
wal, 2023a) demonstrate that DLOGTIME-uniform
TC0 can simulate softmax-attention Transform-
ers. (Chiang, 2024) further refine these findings
by enhancing approximation accuracy. Specifi-
cally, they eliminate error in average-head atten-
tion Transformers and improve the precision for
softmax-attention Transformers from O(log n) to
O(poly(n)), proving that Transformers belong to
the DLOGTIME-uniform TC0 class. Additionally,
they show that a softmax-attention Transformer
with an absolute error of at most 2−O(poly(n)) is
also within DLOGTIME-uniform TC0.

Regarding more practical tasks such as math-
ematical and decision-making problems, (Feng
et al., 2023) show that, unless TC0 = NC1,
no log-precision Transformer can solve arith-
metic and equation-solving problems, nor can any
log-precision autoregressive Transformer gener-
ate correct answers for the Context-Free Grammar
(CFG) Membership Testing problem (Sipser, 1996).
These theoretical constraints help explain some of
the practical limitations observed when applying
Transformers to mathematical tasks.

3 Preliminary

In this section, we present some preliminary con-
cepts and definitions of our paper. In Section 3.1,
we introduce some basic notations used in our pa-
per. In Section 3.2, we introduce the basics of the
circuit complexity classes. In Section 3.3, we state
the Boolean formula value problem and Arithmetic
formula evaluation problem and define some impor-
tant tools to set up our problem. In Section 3.4, we
introduce Rotary Position Embedding (RoPE) at-
tention and some basic settings in the Transformer.

11094

3.1 Notations

For any positive integer n, we use [n] to denote
set {1, 2, · · · , n}. We use N := {0, 1, 2, . . .} to
denote the set of natural numbers. For two vectors
x ∈ Rn and y ∈ Rn, we use ⟨x, y⟩ to denote the
inner product between x, y. We use 1n to denote a
length-n vector where all the entries are ones. We
use Xi,j to denote the i-th row, j-th column of X ∈
Rm×n. For xi ∈ {0, 1}∗, xi is a binary number of
arbitrary length, more generally speaking, xi is a
binary string of length p, where each bit is either 0
or 1.

3.2 Circuit Complexity

In this section, we formally define key concepts in
circuit complexity. For enhanced readability, Ap-
pendix A also provides an intuitive, self-contained
overview of this field.

The Boolean circuit is formally defined as:

Definition 3.1 (Boolean circuit, Definition 6.1
on page 102 of (Arora and Barak, 2009)). A
Boolean circuit with n variables is a function
Cn : {0, 1}n → {0, 1} defined on a directed
acyclic graph. The nodes in this graph represent
logic gates such as AND, OR, and NOT. Input
nodes, which have an in-degree of 0, are assigned
one of the n Boolean variables. The circuit evalu-
ates each non-input gate’s value by computing the
inputs it receives from other gates.

It is natural to examine the languages that can
be recognized by specific families of Boolean cir-
cuits since it offers insights into the computational
capabilities and efficiency of a certain family of
computational models.

Definition 3.2 (Languages recognized by a circuit
family, Definition 6.2 on page 103 of (Arora and
Barak, 2009)). We say that a language L ⊆ {0, 1}∗
is recognized by a family C of Boolean circuits if
for all x ∈ {0, 1}∗, there exists a Boolean circuit
C|x| ∈ C over |x| variables such that C|x|(x) = 1
if and only if x ∈ L.

We now define classes of languages by imposing
constraints on the types of logic gates that can be
utilized within the circuit families necessary for
their recognition. The weakest one we are going to
introduce is the NCi class.

Definition 3.3 (NCi, Definition 6.21 on page
109 of (Arora and Barak, 2009)). The class NCi

consists of languages that can be recognized by
Boolean circuits with O(poly(n)) size, O((log n)i)

depth, and bounded fan-in AND, OR gates, and
NOT gates.

When Boolean circuits permit AND and OR
gates with unbounded fan-in, they gain the capacity
to recognize a large class of languages. We define
ACi class as follows.

Definition 3.4 (ACi, Definition 6.22 on page
109 of (Arora and Barak, 2009)). The class ACi

consists of languages that can be recognized by
Boolean circuits with O(poly(n)) size, O((log n)i)
depth, and unbounded fan-in AND, OR gates, and
NOT gates.

In fact, AND, OR gates, and NOT gates can
all be implemented by MAJORITY gates, where
the MAJORITY gate outputs 0 when half or more
arguments are 0 and outputs 1 otherwise. Thus,
if we allow Boolean circuits to be equipped with
MAJORITY gates, we get a larger class TCi.

Definition 3.5 (TCi, Definition 4.34 on page 126
of (Vollmer, 1999)). The class TCi consists of lan-
guages that can be recognized by Boolean circuits
with O(poly(n)) size, O((log n)i) depth, and un-
bounded fan-in AND, OR gates, NOT gates, and
MAJORITY gates which can output 1 when more
than half of their inputs are 1.

Remark 3.6. Alternatively, in Definition 3.5,
MAJORITY gates can be replaced by
THRESHOLD or MOD gates with prime
values. When a Boolean circuit is equipped with
any of them, we call it a threshold circuit.

Finally, we recall the definition of P class.

Definition 3.7 (P, Definition 1.20 on page 9
of (Arora and Barak, 2009)). The class P consists
of languages that can be recognized by a determin-
istic Turing machine in polynomial time in input
size.

The following fact is a folklore that gives the
hierarchy of circuit families.

Fact 3.8 (Folklore, page 110 on (Arora and Barak,
2009), Corollary 4.35 on page 126 of (Vollmer,
1999)). For all i ∈ N,

NCi ⊆ ACi ⊆ TCi ⊆ NCi+1 ⊆ P.

Remark 3.9. For i = 0, it is known that NC0 ⊊
AC0 ⊊ TC0. However, whether TC0 ⊊ NC1 is
an open problem in circuit complexity. Whether
NC := ∪i∈NNCi ⊊ P is also an open problem.
See page 110 in (Arora and Barak, 2009), page
116 in (Vollmer, 1999) for discussion about these.

11095

We have defined non-uniform circuit families,
which do not need to share structure across varying
input sizes and can theoretically handle undecid-
able problems but are impractical due to their in-
finite description length. Uniform circuit families
offer a more feasible computational model, rele-
vant to complexity and language theory. We first
define L-uniformity as follows.

Definition 3.10 (L-uniformity, Definition 6.5 on
page 104 of (Arora and Barak, 2009)). Let C be a
language recognized by a circuit family C (e.g. C
can be NCi,ACi, or TCi). We say that a language
L ⊆ {0, 1}∗ is in L-uniform C if there exists a
Turing machine that, for every n ∈ N, maps 1n to a
circuit in C over n variables using O(log n) space
such that Cn recognizes L.

Next, we define DLOGTIME-uniformity and re-
mark on the relationship between these two differ-
ent uniformity definitions.

Definition 3.11 (DLOGTIME-uniformity, Defini-
tion 4.28 on page 123 of (Barrington and Immer-
man, 1994)). Let C be a language recognized by
a circuit family C (e.g. C can be NCi,ACi, or
TCi). We say that a language L ⊆ {0, 1}∗ is in
DLOGTIME-uniform C if there exists a random
access Turing machine that, for every n ∈ N, maps
1n to a circuit Cn over n variables in C in O(log n)
time such that Cn recognizes L.

Remark 3.12. DLOGTIME-uniformity is equiva-
lent to L-uniformity, with the exception of small cir-
cuit complexity classes where the circuits lack the
capacity to simulate the machines that create them.
See (Barrington and Immerman, 1994; Hesse et al.,
2002) for more discussion on different notions of
uniformity. In this paper, whenever we refer to
uniform TC0, we specifically mean DLOGTIME-
uniform TC0.

3.3 Float Point Numbers
In this section, we introduce some important defi-
nitions. To establish a foundation for our computa-
tional framework, we first introduce the essential
definitions of floating-point numbers and their op-
erations, which are crucial for implementing Trans-
former calculations efficiently.

Definition 3.13 (Floating-point number, Definition
9 on Page 5 of (Chiang, 2024)). A p-bit floating-
point number is a pair ⟨m, e⟩ of two integers
where the significance m ∈ (−2p,−2p−1]∪ {0} ∪
[2p−1, 2p) and the exponent e ∈ [−2p, 2p). The
value of the floating point ⟨m, e⟩ is the real number

m · 2e. We denote the set of all p-bits floating-point
numbers as Fp.

These floating-point numbers are not just theo-
retical constructs, and they can be efficiently imple-
mented in hardware. For more details on their basic
operations (e.g., rounding, arithmetic operations),
please refer to Appendix B.

3.4 Transformer Blocks
With our mathematical foundation established, In
this section, we can now describe the key compo-
nents of Transformer architecture, beginning with
the softmax operation that is fundamental to atten-
tion mechanisms.
Definition 3.14 (Softmax). Let z ∈ Fn

p . We define
Softmax : Fn

p → Fn
p satisfying

Softmax(z) := exp(z)/⟨exp(z),1n⟩.
A key innovation in modern Transformers is the

RoPE, which begins with a basic rotation matrix:
Definition 3.15 (Rotation matrix block). Let θ ∈
Fp. For a length-n input sequence with embedding
dimension d, we define the rotation matrix as

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
.

This basic rotation matrix is then extended to
handle relative positions in the sequence.
Definition 3.16 (Rotation matrix). Let j be the in-
dex of position in the sequence, i the index of tokens,
we define the overall relative rotation matrix

Rj−i =



R((j − i)θ1) · · · 0

...
. . .

...
0 · · · R((j − i)θd/2)


 .

where the angle frequencies θ1, · · · , θd/2 are a set
of given parameters, for details on specifying θ, see
Equation (15) on page 5 of (Su et al., 2024).

Using these rotation matrices, we can define the
RoPE attention mechanism, which incorporates
positional information directly into the attention
computation.
Definition 3.17 (RoPE attention matrix). Let Ro-
tation matrix Rj−i be defined in Definition 3.16.
Let WQ,WK ∈ Fd×d

p denote the model weights.
Let X ∈ Fn×d

p denote the representation of the
length-n sentence. Then, we define the new atten-
tion matrix A ∈ Fn×n

p by, For i, j ∈ [n],

Ai,j := exp(Xi,∗︸︷︷︸
1×d

WQ︸︷︷︸
d×d

Rj−i︸︷︷︸
d×d

W⊤
K︸︷︷︸

d×d

X⊤
j,∗︸︷︷︸

d×1

).

11096

The attention matrix is then used to compute a
single attention layer.

Definition 3.18 (Single attention layer). Let X ∈
Fn×d
p denote the representation of the length-n

sentence. Let WV ∈ Fd×d
p denote the model

weights. As in the usual attention mechanism, the
final goal is to output an n× d size matrix where
D := diag(A1n) ∈ Fn×n

p . Then, we define the
i-th attention layer Attn as

Attni(X) := D−1AXWV .

We combine multiple attention layers with other
components to create a complete Transformer ar-
chitecture.

Definition 3.19 (Multi-layer RoPE-based Trans-
former). Let m denote the number of Trans-
former layers in the model. Let gi denote com-
ponents other than self-attention in the i-th Trans-
former layer, where gi : Fn×d

p → Fn×d
p for any

i ∈ {0, 1, 2, . . . ,m}. Let Attni denote the self-
attention module in the i-th Transformer layer (see
also Definition 3.18). Let X ∈ Fn×d

p denote the in-
put data matrix. We define a m-layer Transformer
TF : Fn×d

p → Fn×d
p as

TF(X)

:= gm ◦ Attnm ◦ · · · ◦ g1 ◦ Attn1 ◦ g0(X) ∈ Fn×d
p ,

where ◦ denotes function composition.

Here we introduce two different kinds of gi func-
tion. First, we introduce the MLP (Multilayer Per-
ceptron) layer.

Definition 3.20 (Multilayer Perceptron layer). Let
X ∈ Fn×d

p denote the input data matrix. Let i ∈
[n]. Then, we define the MLP layer as follows:

gMLP(X)i,∗ := W︸︷︷︸
d×d

·Xi,∗︸︷︷︸
d×1

+ b︸︷︷︸
d×1

.

Then, we introduce the LN (Layer-wise Normal-
ization) layer:

Definition 3.21 (Layer-wise normalization layer).
Let X ∈ Fn×d

p denote the input data matrix. Let
i ∈ [n]. Then, we define the LN layer as follows:

gLN(X)i,∗ :=
Xi,∗ − µi√

σ2
i

,

where µi :=
∑d

j=1Xi,j/d, and σ2
i :=∑d

j=1(Xi,j − µi)
2/d.

This multi-layer architecture forms the backbone
of modern Transformer models, combining the
floating-point operations, attention mechanisms,
and positional embeddings defined above into a
powerful sequence processing system.

4 Complexity of RoPE-based
Transformers

In this section, we establish several fundamental
results regarding the circuit complexity of basic op-
erations required in Transformer computations. In
Section 4.1, we begin by analyzing trigonometric
functions, which are essential for rotary position
embeddings. In Section 4.2, we then proceed to
study matrix operations. In Section 4.3, we ex-
amine the RoPE-based attention matrix. In Sec-
tion 4.4, we analyze the single RoPE-Attention
layer. In Section 4.5, we compute some common
components other than the self-attention layer. In
Section 4.6, we show more details about the com-
plete RoPE-based Transformer mechanism. In Sec-
tion 4.7, we show our main results that the circuit
complexity bound of RoPE-based Transformer.

4.1 Approximating Trigonometric Functions

In this section, we first demonstrate that basic
trigonometric functions, i.e., sine and cosine func-
tion, which are fundamental to RoPE embeddings,
can be computed by threshold circuits.

Lemma 4.1 (Trigonometric function approxima-
tion in TC0, informal version of Lemma E.1 in
Appendix E). If p ≤ poly(n), then for every p-
bit floating point number x, there is a constant-
depth uniform threshold circuit of size poly(n) and
depth 8dstd + d⊕ + d⊗ which can compute sin(x)
and cos(x) with a relative error at most 2−p. To
simplify, we use d△ denote the depth needed for
computing sin(x) and cos(x).

4.2 Computing Matrix Products

In this section, we show that basic matrix multipli-
cation can be computed in TC0.

Lemma 4.2 (Matrix multiplication in TC0, infor-
mal version of Lemma E.2 in Appendix E). Let
A ∈ Fn1×d

p , B ∈ Fd×n2
p be two matrices. If

p ≤ poly(n), n1, n2 ≤ poly(n), d ≤ n, then AB
can be computable by a uniform threshold circuit
with size poly(n) and depth (dstd + d⊕).

11097

4.3 Computing RoPE-based Attention Matrix

In this section, we extend this to the computation
of the attention matrix with positional embeddings,
i.e., RoPE-based attention matrix computation.

Lemma 4.3 (RoPE-based attention matrix compu-
tation in TC0, informal version of Lemma E.3 in
Appendix E). If p ≤ poly(n), then the attention
matrix A in Definition 3.17 can be computable by
a uniform threshold circuit with size poly(n) and
depth 4(dstd + d⊕) + d△ + dexp.

4.4 Computing Single RoPE-based Attention
Layer

In this section, we analyze the complete attention
layer, the approach allows us to carefully track the
circuit depth requirements at each stage.

Lemma 4.4 (Single RoPE-based attention
layer computation in TC0, informal version of
Lemma E.4 in Appendix E). If p ≤ poly(n), then
the attention layer Attn in Definition 3.18 can be
computable by a uniform threshold circuit with
size poly(n) and depth 7(dstd + d⊕) + d△ + dexp.

4.5 Computing Common Buliding Blocks
other than Self-attention layer

In Definition 3.19, we define Multi-layer RoPE-
based Transformer with self-attention layer and
other components, for example layer-norm and
MLP. In this section, we show how to compute
these components. We first give the circuit com-
plexity for the MLP layer.

Lemma 4.5 (MLP computation in TC0, informal
version of Lemma E.5 in Appendix E). If p ≤
poly(n), then the MLP layer in Definition 3.20 can
be computable by a uniform threshold circuit with
size poly(n) and depth 2dstd + d⊕.

Then, we give the circuit complexity for the
layer-normalization layer.

Lemma 4.6 (Layer-norm computation in TC0, in-
formal version of Lemma E.6 in Appendix E). If
p ≤ poly(n), then the Layer-wise Normalization
layer in Definition 3.21 can be computable by a
uniform threshold circuit with size poly(n) and
depth 5dstd + 2d⊕ + dsqrt.

4.6 Computing Multi-layer RoPE-based
Transformer

In this section, we show how to compute the multi-
layer RoPE-Transformer.

Lemma 4.7 (Multi-layer RoPE-based Trans-
former computation in TC0, informal version of
Lemma E.7 in Appendix E). Suppose that for each
i ∈ [m], gi in TF is computable by a constant depth
dg uniform threshold circuit with size poly(n). If
p ≤ poly(n), then the RoPE-based Transformer
TF in Definition 3.19 can be computable by a uni-
form threshold circuit with size poly(n) and depth
(m+ 1)dg + 7m(dstd + d⊕) +m(d△ + dexp).

4.7 Main Result: Circuit Complexity Bound
of RoPE-based Transformers

In this section, we are ready to represent our main
result. We show the circuit complexity bound of
RoPE-based Transformer.

Theorem 4.8 (Main result, Circuit complexity
bound of RoPE-based Transformers, informal ver-
sion of Theorem E.8 in Appendix E). Suppose that
for each i ∈ [m], gi in TF is computable by a con-
stant depth dg uniform threshold circuit with size
poly(n). If p ≤ poly(n), d ≤ O(n),m ≤ O(1),
then the RoPE-based Transformer TF in Defini-
tion 3.19 can be simulated by a uniform TC0 circuit
family.

In Theorem 4.8, we prove that unless TC0 =
NC1, RoPE-based Transformer with poly(n)-
precision, constant-depth, poly(n)-size can be sim-
ulated by a DLOGTIME-uniform TC0 circuit fam-
ily. It means that although the RoPE-based Trans-
formers gain success empirically, it still suffers
fundamental expressivity limitations under circuit
complexity. We introduce these limitations in the
following section.

5 Hardness

In this section, we present our two main hardness
results, focusing on two key problems: the Arith-
metic Formula Evaluation problem and the Boolean
Formula Evaluation problem. For detailed defini-
tions, refer to Appendix C and Appendix D.

Theorem 5.1. Unless TC0 = NC1, a RoPE-based
Transformer with poly(n)-precision, O(1) layers,
hidden dimension d ≤ O(n) cannot solve the Arith-
metic formula evaluation problems.

Proof. This follows from combining Theorem 4.8
(circuit complexity bound of RoPE-base Trans-
former) and Lemma C.3 (the arithmetic formula
evaluation problem is in NC1) which we proved
above, and Fact 3.8 (hierarchy of circuit families).
Thus, we complete the proof.

11098

Theorem 5.2. Unless TC0 = NC1, a RoPE-based
Transformer with poly(n)-precision, O(1) layers,
hidden dimension d ≤ O(n) cannot solve the
Boolean formula value problem.

Proof. This follows from combining Theorem 4.8
(circuit complexity bound of RoPE-base Trans-
former) and Lemma D.4 (the problem of determin-
ing the truth value of a Boolean formula is in NC1)
which we proved above, and Fact 3.8 (hierarchy of
circuit families). Thus, we complete the proof.

The above two theorems show the computa-
tion limitation of RoPE-based Transformer unless
TC0 = NC1. Beyond RoPE, the analysis applies
to constant-time, parallelizable positional embed-
dings; we outline the adaptation and illustrate it for
ALiBi in Appendix F (Press et al., 2022).

6 Discussion

In this section, we discuss the relevance and practi-
cal implications of our work.

Relevance to the NLP Community. Circuit
complexity has recently gained attention in theoret-
ical NLP research, with several works published at
major NLP venues (Merrill et al., 2021; Merrill and
Sabharwal, 2023b; Hao et al., 2022). These stud-
ies demonstrate how circuit complexity provides
insights into both the capabilities and limitations
of modern LLMs. Our work extends this line of
research to positional encoding mechanisms, an
essential but relatively under-theorized component
of contemporary language models.

Practical Implications of Hardness Results.
We want to first establish that NC1 is tightly as-
sociated with the reasoning problem. Notably,
many tasks in widely-used mathematical reason-
ing benchmarks such as MathQA (Amini et al.,
2019) and NumGLUE (Mishra et al., 2022) fun-
damentally involve arithmetic formula evaluation
problems–tasks which inherently belong to NC1.

Our work aims to bridge theoretical insights
from circuit complexity with practical limitations
in LLMs, especially those using RoPE. While
RoPE is widely adopted in cutting-edge models
such as Qwen (Bai et al., 2023), Llama (Meta,
2024), and ChatGPT (OpenAI, 2024a), its theoreti-
cal limitations remain largely unexplored. By prov-
ing that RoPE-based Transformers are unlikely to
solve NC1-complete problems with constant depth,

we reveal an inherent computational bottleneck that
is independent of parameter count or training data.

Insights for Model Design. Our main results
(Theorem 5.1 and Theorem 5.2) and additional re-
sults in Appendix F establish that Transformers
with advanced positional embeddings remain in
TC0 and therefore cannot solve a broad class of
reasoning problems, including fundamental arith-
metic computations. This contradicts prior claims
that richer positional encodings improve reasoning
ability (Ke et al., 2021; Zhu et al., 2025), and sug-
gests that explicit positional embeddings may not
be necessary for core reasoning functions.

Our findings are consistent with recent work
demonstrating that Transformers without any posi-
tional embeddings can still capture positional infor-
mation implicitly (Haviv et al., 2022) and can even
exhibit superior extrapolation on algorithmic and
mathematical reasoning benchmarks (Kazemnejad
et al., 2023). Moving forward, we recommend
that empirical research prioritize chain-of-thought
methods for enhancing reasoning performance (Li
et al., 2024) rather than exploring a wide variety of
positional encoding schemes.

7 Conclusion

In this work, we provide a rigorous theoretical
analysis of RoPE-based Transformers, establish-
ing fundamental bounds on their computational
capabilities. Our main idea was to systematically
analyze the circuit complexity of each component
in the RoPE-based architecture, from basic trigono-
metric functions to the complete attention mech-
anism, ultimately proving that these models can
be simulated by uniform TC0 circuits. More im-
portantly, we demonstrate that unless TC0 = NC1,
RoPE-based Transformers with poly(n)-precision,
O(1) layers, and hidden dimension d ≤ O(n) can-
not solve either arithmetic formula evaluation or
Boolean formula value problems. This important
theoretical result goes beyond the empirical success
of RoPE-based architectures, revealing fundamen-
tal limitations in their expressivity and providing
insights for future model design.

Limitation

One limitation is that our analysis focuses primar-
ily on the forward computation of constant-depth
standard Transformers, leaving interesting open
questions about extending our framework to other
variants of Transformer architectures.

11099

Potential Risks

In this paper, we discuss the circuit complexity of
RoPE-based Transformer architectures and present
several theoretical hardness results showing that
they cannot solve certain practical reasoning prob-
lems. Since this paper is entirely theoretical, we do
not foresee any negative societal impacts.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Josh Alman and Zhao Song. 2023. Fast attention re-
quires bounded entries. In NeurIPS.

Josh Alman and Zhao Song. 2024. The fine-grained
complexity of gradient computation for training large
language models. In NeurIPS.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.

Sanjeev Arora and Boaz Barak. 2009. Computational
complexity: a modern approach. Cambridge Univer-
sity Press.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, and 1 others. 2023. Qwen technical report.
arXiv preprint arXiv:2309.16609.

D Mix Barrington and Neil Immerman. 1994. Time,
hardware, and uniformity. In Proceedings of IEEE
9th Annual Conference on Structure in Complexity
Theory, pages 176–185. IEEE.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, and 1 others.
2023. Pythia: A suite for analyzing large language
models across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

S Buss, S Cook, Arvind Gupta, and Vijaya Ramachan-
dran. 1992. An optimal parallel algorithm for for-
mula evaluation. SIAM Journal on Computing,
21(4):755–780.

Samuel R Buss. 1987. The boolean formula value prob-
lem is in alogtime. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing,
pages 123–131.

François Charton. 2022. What is my math transformer
doing?–three results on interpretability and general-
ization. arXiv preprint arXiv:2211.00170.

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and
Zhao Song. 2025a. Bypassing the exponential de-
pendency: Looped transformers efficiently learn in-
context by multi-step gradient descent. In The 28th
International Conference on Artificial Intelligence
and Statistics.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi,
and Zhao Song. 2025b. HSR-enhanced sparse at-
tention acceleration. In The Second Conference on
Parsimony and Learning (Proceedings Track).

Weize Chen, Ziming You, Ran Li, Yitong Guan,
Chen Qian, Chenyang Zhao, Cheng Yang, Ruob-
ing Xie, Zhiyuan Liu, and Maosong Sun. 2024. In-
ternet of agents: Weaving a web of heterogeneous
agents for collaborative intelligence. arXiv preprint
arXiv:2407.07061.

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi,
and Zhao Song. 2025c. The computational limits
of state-space models and mamba via the lens of
circuit complexity. In Conference on Parsimony and
Learning. PMLR.

Anshuman Chhabra, Hadi Askari, and Prasant Mohap-
atra. 2024. Revisiting zero-shot abstractive summa-
rization in the era of large language models from
the perspective of position bias. arXiv preprint
arXiv:2401.01989.

David Chiang. 2024. Transformers in dlogtime-uniform
tc0. arXiv preprint arXiv:2409.13629.

Yichuan Deng, Jiangxuan Long, Zhao Song, Zifan
Wang, and Han Zhang. 2025. Streaming kernel PCA
algorithm with small space. In The Second Con-
ference on Parsimony and Learning (Proceedings
Track).

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye,
Di He, and Liwei Wang. 2023. Towards revealing the
mystery behind chain of thought: a theoretical per-
spective. Advances in Neural Information Processing
Systems, 36.

Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu,
Haoqin Tu, Zirui Cheng, Guanyu Lin, and Jiaxuan
You. 2024. How far are we from agi. arXiv preprint
arXiv:2405.10313.

11100

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=4C1aRz2gRq
https://openreview.net/forum?id=4C1aRz2gRq
https://openreview.net/forum?id=4C1aRz2gRq
https://openreview.net/forum?id=wso1gABiPZ
https://openreview.net/forum?id=wso1gABiPZ
https://openreview.net/forum?id=Gfl6APFUri
https://openreview.net/forum?id=Gfl6APFUri

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Yiding Hao, Dana Angluin, and Robert Frank. 2022.
Formal language recognition by hard attention
transformers: Perspectives from circuit complexity.
Transactions of the Association for Computational
Linguistics, 10:800–810.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer
Levy. 2022. Transformer language models without
positional encodings still learn positional information.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 1382–1390.

William Hesse, Eric Allender, and David A Mix Barring-
ton. 2002. Uniform constant-depth threshold circuits
for division and iterated multiplication. Journal of
Computer and System Sciences, 65(4):695–716.

Ermo Hua, Che Jiang, Xingtai Lv, Kaiyan Zhang,
Youbang Sun, Yuchen Fan, Xuekai Zhu, Biqing Qi,
Ning Ding, and Bowen Zhou. 2025. Fourier position
embedding: Enhancing attention’s periodic extension
for length generalization. In Forty-second Interna-
tional Conference on Machine Learning.

Neil Immerman. 1998. Descriptive complexity.
Springer Science & Business Media.

Russell Impagliazzo and Ramamohan Paturi. 2001. On
the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan
Natesan Ramamurthy, Payel Das, and Siva Reddy.
2023. The impact of positional encoding on length
generalization in transformers. Advances in Neural
Information Processing Systems, 36:24892–24928.

Guolin Ke, Di He, and Tie-Yan Liu. 2021. Rethinking
positional encoding in language pre-training. In In-
ternational Conference on Learning Representations.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi,
and Zhao Song. 2025. Circuit complexity bounds
for visual autoregressive model. arXiv preprint
arXiv:2501.04299.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Tzu-Sheng Kuo, Aaron Lee Halfaker, Zirui Cheng, Ji-
woo Kim, Meng-Hsin Wu, Tongshuang Wu, Ken-
neth Holstein, and Haiyi Zhu. 2024. Wikibench:
Community-driven data curation for ai evaluation on
wikipedia. In Proceedings of the CHI Conference on
Human Factors in Computing Systems, pages 1–24.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, and 1 others. 2020. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Ad-
vances in Neural Information Processing Systems,
33:9459–9474.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song,
Wei Wang, and Jiahao Zhang. 2025. On the com-
putational capability of graph neural networks: A
circuit complexity bound perspective. arXiv preprint
arXiv:2501.06444.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma.
2024. Chain of thought empowers transformers to
solve inherently serial problems. In The Twelfth In-
ternational Conference on Learning Representations.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao
Song, and Yufa Zhou. 2025. Beyond linear approx-
imations: A novel pruning approach for attention
matrix. In The Thirteenth International Conference
on Learning Representations.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Kr-
ishnamurthy, and Cyril Zhang. 2022. Transform-
ers learn shortcuts to automata. arXiv preprint
arXiv:2210.10749.

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kaijiang
Chen, and Ming Cui. 2024. From llm to conversa-
tional agent: A memory enhanced architecture with
fine-tuning of large language models. arXiv preprint
arXiv:2401.02777.

AI @ Meta Llama Team. 2024. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov,
Mohit Bansal, Francesco Barbieri, and Yuwei
Fang. 2024. Evaluating very long-term conver-
sational memory of llm agents. arXiv preprint
arXiv:2402.17753.

William Merrill, Yoav Goldberg, Roy Schwartz, and
Noah A Smith. 2021. On the power of saturated
transformers: A view from circuit complexity. arXiv
preprint arXiv:2106.16213.

William Merrill and Ashish Sabharwal. 2023a. A logic
for expressing log-precision transformers. Advances
in Neural Information Processing Systems, 36.

William Merrill and Ashish Sabharwal. 2023b. The
parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for
Computational Linguistics, 11:531–545.

William Merrill, Ashish Sabharwal, and Noah A Smith.
2022. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association
for Computational Linguistics, 10:843–856.

Meta. 2024. Llama 3.

11101

https://doi.org/10.1162/tacl_a_00490
https://doi.org/10.1162/tacl_a_00490
https://openreview.net/forum?id=ZfDNDkg7Dh
https://openreview.net/forum?id=ZfDNDkg7Dh
https://openreview.net/forum?id=ZfDNDkg7Dh
https://openreview.net/forum?id=sgbI8Pxwie
https://openreview.net/forum?id=sgbI8Pxwie
https://openreview.net/forum?id=sgbI8Pxwie
https://ai.meta.com/blog/meta-llama-3/

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Sachdeva, Peter Clark, Chitta Baral, and
Ashwin Kalyan. 2022. Numglue: A suite of funda-
mental yet challenging mathematical reasoning tasks.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3505–3523.

OpenAI. 2024a. Hello gpt-4o. https://openai.com/
index/hello-gpt-4o/. Accessed: May 14.

OpenAI. 2024b. Introducing openai o1-
preview. https://openai.com/index/
introducing-openai-o1-preview/. Accessed:
September 12.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Michael Sipser. 1996. Introduction to the theory of
computation. ACM Sigact News, 27(1):27–29.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, volume 30.

Heribert Vollmer. 1999. Introduction to circuit com-
plexity: a uniform approach. Springer Science &
Business Media.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, and Denny
Zhou. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Virginia Vassilevska Williams. 2018. On some fine-
grained questions in algorithms and complexity. In
Proceedings of the international congress of mathe-
maticians: Rio de janeiro 2018, pages 3447–3487.
World Scientific.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, and 1 others. 2023. The rise
and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864.

Xinchao Xu, Zhibin Gou, Wenquan Wu, Zheng-Yu
Niu, Hua Wu, Haifeng Wang, and Shihang Wang.
2022. Long time no see! open-domain conversa-
tion with long-term persona memory. arXiv preprint
arXiv:2203.05797.

Chenyang Zhao, Xueying Jia, Vijay Viswanathan, Tong-
shuang Wu, and Graham Neubig. 2024. Self-
guide: Better task-specific instruction follow-
ing via self-synthetic finetuning. arXiv preprint
arXiv:2407.12874.

Jiajun Zhu, Peihao Wang, Ruisi Cai, Jason D Lee,
Pan Li, and Zhangyang Wang. 2025. Rethink-
ing addressing in language models via contexual-
ized equivariant positional encoding. arXiv preprint
arXiv:2501.00712.

11102

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
 https://openai.com/index/introducing-openai-o1-preview/
 https://openai.com/index/introducing-openai-o1-preview/

Appendix
Roadmap. In Section A, we provide some back-
ground knowledge about circuit complexity. In
Section B, we present some lemmas about floating
point number computation. In Section C, we intro-
duce the Arithmetic formula evaluation problem.
In Section D, we introduce the Boolean formula
value problem. In Section E, we present the miss-
ing proofs in Section 4. In Section F, we present
additional results for other positional embedding
methods.

A Backgrounds about Circuit Complexity

Circuit. In theoretical computer science, a circuit
is a collection of interconnected gates that process
input data and produce an output (Vollmer, 1999).
Each gate in the circuit performs a simple logical
operation, such as AND, OR, or NOT. These gates
take binary inputs (usually 0 or 1) and produce bi-
nary outputs. A circuit can have fanin, which refers
to the number of input wires each gate can have,
and fanout, which refers to the number of output
wires a gate can have. To better understand the
construction of the circuit, we introduce uniform
and nonuniform. Nonuniform circuit allows for
the design of different circuits for inputs of vary-
ing sizes. For instance, a circuit built to handle
inputs of size n may differ significantly from one
designed for inputs of size n + 1. This approach
is flexible, much like how humans only need to
provide the existence result of the circuit without
worrying about construction algorithms. In con-
trast, a uniform model requires the construction of
these circuits through an algorithm or by solving a
different problem within another complexity class,
such as DLOGTIME-uniform and L-uniform (as
defined in Definition 3.11 and Definition 3.10 of
our paper).

Gate. We present details of some common gates
here. Constant fan-in Boolean circuit gates repre-
sent the most basic building blocks, such as AND,
OR, and NOT, strictly limited to a small, fixed num-
ber of inputs (typically 2). In contrast, unbounded
fan-in Boolean circuit gates relax this restriction,
allowing AND and OR gates (though NOT usually
remains fan-in 1) to accept an arbitrary number
of inputs simultaneously. Distinctly, the MAJOR-
ITY gate represents a more powerful computational
primitive; it takes multiple inputs and outputs true
if and only if a strict majority (more than half) of

its inputs are true, thereby performing a threshold
computation fundamentally different from simple
AND/OR logic and enabling the efficient compu-
tation of functions like Parity, which are difficult
for standard unbounded fan-in circuits of constant
depth.

Circuit Complexity. Circuit is an essential way
to model computation because they represent how
problems can be solved by performing a series of
simple operations, i.e., gates. In the context of cir-
cuit complexity, we often care about whether we
can solve a problem using a family of circuits. We
often use three different things to distinguish differ-
ent circuit complexity families: the size, the depth,
and the types of gate. The size of a circuit refers
to the number of gates it contains. The depth of
a circuit is the longest path from any input to the
output, measured in terms of the number of gates
encountered along that path. We will present in
detail what is the kind of gate in Different types
of gate. If a problem requires circuits with a huge
number of gates, depth, or more complex types of
gates, we consider it hard. If it can be solved by
circuits that are both small in size and shallow in
depth, we consider it relatively easy or efficiently
parallelize. Previous work (Merrill and Sabhar-
wal, 2023a; Merrill et al., 2022) group problems
into different "complexity classes" based on how
their circuit size and depth grow as the input size
increases.

The Difference between TC0 and NC1. Build-
ing on circuit concepts like size and depth, we
provide the definition of two complexity classes,
TC0 and NC1, distinguished by their depth limits
and gate types (See formal definition in Defini-
tion 3.3 and Definition 3.5). NC1 problems are
solvable by polynomial-size circuits with logarith-
mic depth (O(log n)) using only simple, bounded
fan-in Boolean gates (like AND, OR, NOT). In
contrast, TC0 problems use polynomial-size cir-
cuits limited to constant depth (O(1)) but employ
powerful unbounded fan-in threshold gates (like
MAJORITY) and potentially unbounded AND/OR
gates. Although TC0 circuits are shallower, their
gates are stronger. However, this gate power isn’t
enough to overcome the depth restriction; TC0 is
contained within NC1 (TC0 ⊆ NC1, see Fact 3.8).
This is because constant-depth threshold gates can
be simulated by logarithmic-depth circuits using
only bounded fan-in gates, fitting the NC1 defini-
tion. Thus, NC1 allows greater depth with simple

11103

gates, while TC0 uses powerful gates restricted to
constant depth.

B Floating Point Number Computation

In this section, we first show the definition of some
important operations for floating point numbers in
Section B.1, and then present the circuit complexity
results for floating point operations n Section B.2.

B.1 Basic Operations of Floating Point
Numbers

To handle floating-point numbers in practice, we
need precise rules for rounding and basic arithmetic
operations:

Definition B.1 (Rounding, Definition 9 on page 5
of (Chiang, 2024)). Let x be a real number or a
floating point. We define roundp(x) as the p-bit
floating-point number nearest to x. When there are
two such numbers, we define roundp(x) as the one
with even significance.

Building on fundamental concepts in Defini-
tion 3.13 and Definition B.1, we can now define the
core arithmetic operations needed for Transformer
computations:

Definition B.2 (Floating-point number operations,
page 5 on (Chiang, 2024)). Let a, b be two integers,
we define

a // b :=

{
a/b if a/b is a mutiple of 1/4,

a/b+ 1/8 otherwise.

Given two p-bits floating points ⟨m1, e1⟩, ⟨m2, e2⟩,
we define the following operations:

• addition:

⟨m1, e1⟩+ ⟨m2, e2⟩ :=
{
r1 if e1 ≥ e2

r2 if e1 ≤ e2,

where

r1 := roundp(⟨m1 +m2 // 2
e1−e2 , e1⟩)

r2 := roundp(⟨m1 // 2
e2−e1 +m2, e2⟩).

• multiplication:

⟨m1, e1⟩ × ⟨m2, e2⟩
:= roundp(⟨m1m2, e1 + e2⟩).

• division:

⟨m1, e1⟩ ÷ ⟨m2, e2⟩
:= roundp(⟨m12

p−1 //m2, e1 − e2 − p+ 1⟩)

• comparison:

⟨m1, e1⟩ ≤ ⟨m2, e2⟩

⇔
{
m1 ≤ m2 // 2

e1−e2 if e1 ≥ e2,

m1 // 2
e2−e1 ≤ m2 if e1 ≤ e2.

• floor:

⌊⟨m, e⟩⌋ :=
{
⟨m2e, 0⟩ if e ≥ 0,

round(⟨m/2−e, 0⟩) if e < 0.

B.2 Floating Point Number Operations in TC0

Lemma B.3 (Standard float point number opera-
tions in TC0, Lemma 10 on page 5 and Lemma
11 on page 6 of (Chiang, 2024)). Let p be a pos-
itive integer. If p ≤ poly(n), then the following
statements hold:

• Part 1. The addition, multiplication, divi-
sion, and comparison defined in Definition B.2
of two p-bit floating point numbers is com-
putable by a constant-depth uniform thresh-
old circuit of size poly(n). We use dstd to
denote the maximum depth needed for these
operations.

• Part 2. The iterated multiplication of n p-
bit floating point numbers is computable by
a constant-depth uniform threshold circuit of
size poly(n). We use d⊗ denote the depth
needed for the iterated multiplication.

• Part 3. The iterated addition of n p-bit float-
ing point numbers (rounding after the sum-
mation is completed) is computable by a
constant-depth uniform threshold circuit of
size poly(n). We use d⊕ denote the depth
needed for the iterated addition.

Corollary B.4 (Floor operation in TC0). Let p be
a positive integer. If p ≤ poly(n), then floor oper-
ation defined in Definition B.2 of a p-bit floating
point number is computable by a constant-depth
uniform threshold circuit of size poly(n). The max-
imum depth needed for floor operations is bounded
by dstd in Lemma B.3.

Proof. This directly follows from the definition of
the floor function in Definition B.2.

Lemma B.5 (Approximating exp in TC0, Lemma
12 on page 7 of (Chiang, 2024)). If a positive in-
teger p ≤ poly(n), then for every p-bit floating

11104

point number x, there is a constant-depth uniform
threshold circuit of size poly(n) which can com-
pute exp(x) with a relative error at most 2−p. We
use dexp to denote the depth needed for computing
exp(x).

Lemma B.6 (Approximating square root in TC0,
Lemma 12 on page 7 of (Chiang, 2024)). If a pos-
itive integer p ≤ poly(n), then for every p-bit
floating point number x, there is a constant-depth
uniform threshold circuit of size poly(n) which can
compute

√
x with a relative error at most 2−p. We

use dsqrt to denote the depth needed for computing√
x.

C Arithmetic Formula Evaluation
Problem

In this section, we first provide a foundational defi-
nition as established in (Buss et al., 1992).

Definition C.1 (Arithmetic formula, Definition
on page 13 of (Buss et al., 1992)). Let S be a
semi-ring (which may also be a ring or field).
An arithmetic formula over S with indeterminates
X1, X2, · · · , Xn is defined by:

• For i ∈ [n], Xi is an arithmetic formula.

• For every c ∈ S, c is an arithmetic formula.

• If α is an arithmetic formula and θ is a unary
operator of S then (θα) is arithmetic formula.

• If α and β are arithmetic formulas and θ is a
binary operator of S then (αθβ) is an arith-
metic formula.

An arithmetic formula A with indeterminates
X1, · · · , Xn is denoted by A(X1, · · · , Xn).

Following the definition, we explore its compu-
tational implications.

Definition C.2 (Arithmetic formula evaluation
problem, Definition on page 14 of (Buss et al.,
1992)). Let S be a ring, field, or semi-ring. The
arithmetic formula evaluation problem is: Given
an arithmetic formula A(X1, X2, · · · , Xn) over
S and constants c1, c2, · · · , cn ∈ S, what is
A(c1, c2, · · · , cn)?

Building upon the previously established defi-
nitions, we then establish the computational com-
plexity of the problem.

Lemma C.3 (Theorem 6.1 on page 31 of (Buss
et al., 1992)). The arithmetic formula evaluation
problem is in NC1-complete.

D Boolean Formula Value Problem

In this section, we now shift our focus to the do-
main of Boolean formulas and their evaluation.

Definition D.1 (Definition on Page 1 of (Buss,
1987)). Let Σ = {0, 1,∧,∨,¬, (,)}, the Boolean
formula are given by the following inductive defini-
tion:

• 0 and 1 are Boolean formulas.

• If α and β are Boolean formulas, then so are
(¬α), (α ∧ β) and (α ∨ β).

To detail further attributes of these formulas:

Definition D.2 (Definition on page 1 of (Buss,
1987)). |α| is the length of α, i.e. the number of
symbols in the string α.

Definition D.3 (Definition on page 1 of (Buss,
1987)). The Boolean formula is defined by the fol-
lowing inductive definition:

• 0 and 1 are Boolean formulas.

• If α is a Boolean formula then so is α¬.

• If α and β are Boolean formulas and if |α| ≥
|β| then αβ∨ and αβ∧ are Boolean formulas.

The Boolean formula is defined in the usual way,
where 0 and 1 represent False and True, respec-
tively.

Lemma D.4 (Page 1 on (Buss, 1987)). The prob-
lem of determining the truth value of a Boolean
formula is in NC1-complete.

E Missing Proofs in Section 4

Here we present some missing proofs in Section 4.
We restate Lemma 4.1 below

Lemma E.1 (Trigonometric function approxima-
tion in TC0, formal version of Lemma 4.1). If
p ≤ poly(n), then for every p-bit floating point
number x, there is a constant-depth uniform thresh-
old circuit of size poly(n) which can compute
sin(x) and cos(x) with a relative error at most
2−p. We use d△ denote the maximum depth needed
for computing sin(x) and cos(x).

Proof. For sin(x) where x ∈ Fp, we can define:

k :=
⌊

x
2/π

⌋
and

r :=

{
x− kπ/2 if x− kπ/2 ≤ π/4,

(k + 1)π/2− x else.

11105

Using truncated Taylor series of sin(r), we have:

sin(r) =

N−1∑

i=0

(−1)i
r2i+1

(2i+ 1)!
+Rsin

N (r)

For Rsin
N (r), we can show:

Rsin
N (r) ≤ (π/4)2N+1 1

(2N + 1)!

≤ 1

(2N + 1)!

= O(1/N !)

≤ O(2−N)

where the first step follows from the definition of
the Lagrange remainder term, the second step fol-
lows from (π/4)2N+1 ≤ 1, the fourth step follows
from O(2x) < O(x!) holds for any positive x.

Similarly, using truncated Taylor series of
cos(r), we have:

cos(r) =
N−1∑

i=0

(−1)i
r2i

(2i)!
+Rcos

N (r)

For Rcos
N (r), we can show:

Rcos
N (r) ≤ (π/4)2N

1

(2N)!

≤ 1

(2N)!

= O(1/N !)

≤ O(2−N)

where the first step follows from the definition of
the Lagrange remainder term, the second step fol-
lows from (π/4)2N+1 ≤ 1, the fourth step fol-
lows from O(2x) < O(x!) holds for any positive
x. Then, we have

sin(x) =

{
sin(r) if x− kπ/2 ≤ π/4,

cos(r) else.

and

cos(x) =

{
cos(r) if x− kπ/2 ≤ π/4,

sin(r) else.

Because of similar calculation step between
sin(x) or cos(x), we can show the depth of cir-
cuit to compute them following from Lemma B.3
and Corollary B.4:

1. To get the value of k, we need to calculate
floor and division, which use depth-2dstd cir-
cuit.

2. To get the value of r, we need to calculate
addition, comparison, multiplication and divi-
sion, which use depth-4dstd circuit.

3. To get the value of sin(r) or cos(r), we need
to calculate addition and iterated addition. For
each entry in iterated addition, we need to
calculate multiplication, division and iterated
multiplication in parallel, which use depth-
(3dstd + d⊗ + d⊕) circuit.

4. To get the value of sin(x) or cos(x), we need
to calculate comparison, which use depth-dstd
circuit.

Finally, we can show

d△ = 8dstd + d⊕ + d⊗.

Thus we complete the proof.

We show the proof of Lemma 4.2 below.

Lemma E.2 (Matrix multiplication in TC0, formal
version of Lemma 4.2). Let A ∈ Fn1×d

p , B ∈
Fd×n2
p be two matrices. If p ≤ poly(n), n1, n2 ≤

poly(n), d ≤ n, then AB can be computable by
a uniform threshold circuit with size poly(n) and
depth (dstd + d⊕).

Proof. For each i ∈ [n1] and j ∈ [n2], the entry
(AB)i,j is given by (AB)i,j =

∑d
k=1Ai,kBk,j .

By Part 1 of Lemma B.3, each product Ai,kBk,j

can be computed by a uniform threshold circuit of
depth dstd. Since these products for different k can
be computed in parallel, all products Ai,kBk,j for
k ∈ [d] can be computed simultaneously in depth
dstd.

Next, by Part 3 of Lemma B.3, the sum∑d
k=1Ai,kBk,j can be computed by a uniform

threshold circuit of depth d⊕. Therefore, the to-
tal depth required to compute (AB)i,j is dstd+ d⊕.
Since we can compute (AB)i,j for all i ∈ [n1] and
j ∈ [n2] in parallel, the overall depth of the cir-
cuit remains dstd + d⊕. The size of the circuit is
polynomial in n because n1, n2, d ≤ poly(n), and
each operation is computed by a circuit of poly-
nomial size. Therefore, AB can be computed by
a uniform threshold circuit with size poly(n) and
depth dstd + d⊕. Thus we complete the proof.

Here we state the proof of Lemma 4.3.

11106

Lemma E.3 (RoPE-based attention matrix com-
putation in TC0, formal version of Lemma 4.3).
If p ≤ poly(n), then the attention matrix A
in Definition 3.17 can be computable by a uni-
form threshold circuit with size poly(n) and depth
4(dstd + d⊕) + d△ + dexp.

Proof. For each i, j ∈ [n], we need to compute the
entry Ai,j of the attention matrix A as defined in
Definition 3.17.

By Lemma 4.1, each entry of Rj−i can be com-
puted using a uniform threshold circuit of size
poly(n) and depth d△. Since n ≤ poly(n), all
entries of Rj−i can be computed in parallel with
the same circuit size and depth.

Using Lemma 4.2, the matrix product WQRj−i

can be computed by a uniform threshold circuit of
size poly(n) and depth dstd + d⊕.

Applying Lemma 4.2 again, the product
(WQRj−i)W

⊤
K can be computed with the same cir-

cuit size and depth dstd + d⊕.
Next, the scalar product

si,j = Xi,∗(WQRj−iW
⊤
K)X⊤

j,∗

can be computed using a uniform threshold circuit
of size poly(n) and depth 2(dstd + d⊕), again by
Lemma 4.2.

Using Lemma B.5, the exponential function
Ai,j = exp(si,j) can be computed by a uniform
threshold circuit of size poly(n) and depth dexp.

Combining the depths from each step, the total
depth required to compute Ai,j is

dtotal = 4(dstd + d⊕) + d△ + dexp.

Since all entries Ai,j for i, j ∈ [n] can be computed
in parallel, the overall circuit has size poly(n)
and depth 4(dstd + d⊕) + d△ + dexp. Therefore,
the attention matrix A can be computed by a uni-
form threshold circuit with size poly(n) and depth
4(dstd + d⊕) + d△ + dexp.

Thus we complete the proof.

Here we present the proof of Lemma 4.4.

Lemma E.4 (Single RoPE-based attention layer
computation in TC0, formal version of Lemma 4.4).
If p ≤ poly(n), then the attention layer Attn
in Definition 3.18 can be computable by a uni-
form threshold circuit with size poly(n) and depth
7(dstd + d⊕) + d△ + dexp.

Proof. To compute Attn, we need to multiply 4
matrix, namely D−1, A,X and WV . To get these

matrices, we need to compute D and A. following
from D := diag(A1n), D can be computed by a
depth d⊕, size poly(n) uniform threshold circuit
following from Part 3. of Lemma B.3. Following
from Lemma 4.3, computing A needs a circuit of
depth 4(dstd + d⊕) + d△ + dexp. Then, we can
multiply A,X and WV , which can be computed by
a depth 2(dstd + d⊕), size poly(n) uniform thresh-
old circuit following from Lemma 4.2. Finally, we
can compute D−1 · AXWV by apply division in
parallel, which can be computed by a depth dstd,
size poly(n) uniform threshold circuit following
from Part 1. of Lemma B.3. Combining above
circuit, we have

dtotal = 7(dstd + d⊕) + d△ + dexp.

Because the number of parallel operation are
O(poly(n)), we can show that Attn(X) can be
computed by a depth 7(dstd + d⊕) + d△ + dexp,
size poly(n) uniform threshold circuit.

Thus we complete the proof.

Here we state the proof of Lemma 4.5.

Lemma E.5 (MLP computation in TC0, formal
version of Lemma 4.5). If p ≤ poly(n), then the
MLP layer in Definition 3.20 can be computable by
a uniform threshold circuit with size poly(n) and
depth 2dstd + d⊕.

Proof. For each i ∈ [m], by Lemma 4.2, we need
a circuit with depth dstd + d⊕ and size poly(n) to
compute WXi,∗, and by Part 1 of Lemma B.3, w
need a circuit with depth dstd and size poly(n) to
compute WXi,∗ + b. Hence the total depth need is
2dstd+d⊕ and total size is still poly(n). Since this
procedure can be done in parallel for all i ∈ [n],
the proof is complete.

Here we state the proof of Lemma 4.6.

Lemma E.6 (Layer-norm computation in TC0,
formal version of Lemma 4.6). If p ≤ poly(n),
then the Layer-wise Normalization layer in Defini-
tion 3.21 can be computable by a uniform threshold
circuit with size poly(n) and depth 5dstd + 2d⊕ +
dsqrt.

Proof. For each i ∈ [n], by Lemma B.3, we can
compute µi using a circuit with depth dstd + d⊕
and size poly(n) and then compute σ2

i with depth
2dstd + d⊕ and size poly(n). By Lemma B.3 and
Lemma B.6, we can compute gLN(x)i,∗ using a
circuit with depth 2dstd + dsqrt and size poly(n).
Hence the total needed depth is 5dstd + 2d⊕ +

11107

dsqrt and size is poly(n). Since this procedure can
be done in parallel for all i ∈ [n], the proof is
complete.

Here we state the proof of Lemma 4.7.

Lemma E.7 (Multi-layer RoPE-based Transformer
computation in TC0, formal version of Lemma 4.7).
Suppose that for each i ∈ [m], gi in TF is com-
putable by a constant depth dg uniform threshold
circuit with size poly(n). If p ≤ poly(n), then the
RoPE-based Transformer TF in Definition 3.19
can be computable by a uniform threshold circuit
with size poly(n) and depth (m+1)dg+7m(dstd+
d⊕) +m(d△ + dexp).

Proof. For each i ∈ [m], by condition, gi is com-
putable by a constant depth dg uniform threshold
circuit with size poly(n).

For each i ∈ [m], by Lemma E.4, Attni is com-
putable by a uniform threshold circuit with depth
7(dstd + d⊕) + d△ + dexp and size poly(n).

Hence, to compute TF(X), we need to compute
g0, g1, . . . , gm and Attn1, . . . ,Attnm, thus the to-
tal depth of the circuit is (m+ 1)dg + 7m(dstd +
d⊕) + m(d△ + dexp) and the size of circuit is
poly(n).

Thus we complete the proof.

Next, we state the proof for our main results.

Theorem E.8 (Main result, circuit complexity
bound of RoPE-based Transformers, formal ver-
sion of Theorem 4.8). Suppose that for each i ∈
[m], gi in TF is computable by a constant depth
dg uniform threshold circuit with size poly(n). If
p ≤ poly(n), d ≤ O(n),m ≤ O(1), then the
RoPE-based Transformer TF in Definition 3.19
can be simulated by a uniform TC0 circuit family.

Proof. Since m = O(1), by Lemma 4.7, the circuit
that computes TF(X) has depth

(m+ 1)dg + 7m(dstd + d⊕) +m(d△ + dexp)

= O(1)

and size poly(n). Therefore it can be simulated by
a uniform TC0 circuit family.

Thus we complete the proof.

F Results for Additional Positional
Embedding Methods

In this section, we present the result that a widely
used positional embedding method, Attention with

Linear Biases (ALiBi), can be simulated by a uni-
form TC0 circuit family. In Section F.1, we present
the definition of the ALiBi positional embeddings.
In Section F.2, we show the circuit complexity
bound of ALiBi Transformers. In Section F.3, we
outline the hardness results for ALiBi Transform-
ers.

F.1 The ALiBi Positional Embedding

Following from the positional embedding formula-
tion in (Press et al., 2022), we first define the linear
bias matrix, which is the foundation of the ALiBi
positional embeddings.

Definition F.1 (Linear bias matrix, implicit in page
5 of (Press et al., 2022)). Let m ∈ Fp be a constant.
We define the linear bias matrix B ∈ Fn×n

p as:

Bi,j = −m|i− j|.

Differing from previous positional embedding
methods (Vaswani et al., 2017; Su et al., 2024),
ALiBi injects the positional embeddings into the
attention matrices, instead of the representation of
the input tokens. Specifically, its attention matrix
can be defined as follows:

Definition F.2 (ALiBi attention matrix). Let the lin-
ear bias matrix B be defined as Definition F.1. Let
WQ,WK ∈ Fd×d

p denote the model weights. Let
X ∈ Fn×d

p denote the representation of the length-
n sentence. Then, we define the ALiBi attention
matrix AALiBi ∈ Fn×n

p as

AALiBi := exp(X︸︷︷︸
n×d

WQ︸︷︷︸
d×d

W⊤
K︸︷︷︸

d×d

X⊤
︸︷︷︸
d×n

+ B︸︷︷︸
n×n

).

Remark F.3. By plugging the ALiBi attention ma-
trix (Definition F.2) into Definition 3.18 and Defini-
tion 3.19, we obtain the definition for multi-layer
ALiBi Transformers.

F.2 Circuit Complexity of ALiBi Transformers

Lemma F.4 (ALiBi-based attention matrix compu-
tation in TC0). If p ≤ poly(n), then the attention
matrix AALiBi in Definition F.2 can be computable
by a uniform threshold circuit with size poly(n)
and depth 4dstd + 3d⊕ + dexp.

Proof. To compute the first term XWQW
⊤
KX⊤,

we need to perform matrix multiplication three
times, where all dimensions are no greater than
n. Thus, by applying Lemma 4.2 three times, we

11108

can compute these matrix multiplications in a uni-
form threshold circuit with depth 3(dstd + d⊕) and
size poly(n).

Next, we compute all the element-wise summa-
tions between (XWQW

⊤
KX⊤)i,j and Bi,j in par-

allel for all i, j ∈ [n]. This requires a circuit with
depth dstd and size O(n2) ≤ poly(n), following
Lemma B.3. Then, we compute the exponential
function in depth dexp and size poly(n), as stated
in Lemma B.5.

Combining all the steps above, the total depth of
the circuit is:

dtotal = dstd + 3(dstd + d⊕) + dexp

= 4dstd + 3d⊕ + dexp.

Since each step requires a circuit of size poly(n),
the combined circuit remains within poly(n) size.

Thus, we complete the proof.

Theorem F.5 (Circuit complexity bound of
ALiBi-based Transformers). Suppose that for each
i ∈ [m], gi in TF is computable by a constant depth
dg uniform threshold circuit with size poly(n). If
p ≤ poly(n), d ≤ O(n),m ≤ O(1), then the
ALiBi-based Transformer can be simulated by a
uniform TC0 circuit family.

Proof. Following Lemma F.4 and similar steps in
Lemma E.4, we conclude that the single attention
layer Attni(X) in Definition 3.18 with ALiBi po-
sitional embedding can be computed using a uni-
form threshold circuit of poly(n) size with depth
7dstd + 6d⊕ + dexp.

Next, we combine the previous result with sim-
ilar steps in Lemma E.7 to obtain that the multi-
layer ALiBi-based Transformer TF(X) can be com-
puted using a uniform threshold circuit of poly(n)
size with depth (m+1)dg+m(7dstd+6d⊕+dexp).

Since m = O(1), the circuit depth to compute
TF(X) follows:

(m+ 1)dg +m(7dstd + 6d⊕ + dexp) = O(1).

Since we also have that the circuit computing
TF(X) has poly(n) size, we can conclude that
the ALiBi-based Transformer can be simulated by
a uniform TC0 circuit family.

The proof can be derived directly from
Lemma F.4 and similar steps in Theorem 4.8.

Thus, we complete the proof.

F.3 Hardness Results of ALiBi Transformers
Since ALiBi-based Transformers has the same cir-
cuit complexity bounds as RoPE-based Transform-
ers, the similar hardness results for RoPE-based
Transformers also holds for ALiBi-based Trans-
formers. Specifically, we have the following re-
sults:

Theorem F.6. Unless TC0 = NC1, an ALiBi-
based Transformer with poly(n)-precision, O(1)
layers, hidden dimension d ≤ O(n) cannot solve
the Arithmetic formula evaluation problems.

Proof. By the hierarchy of circuit families in
Fact 3.8, we can obtain that TC0 ⊆ NC1.
Since ALiBi-based Transformers are in TC0 (Theo-
rem F.5) and the This follows from combining The-
orem 4.8 (circuit complexity bound of RoPE-base
Transformer) and the arithmetic formula evalua-
tion problem is in NC1 (Lemma C.3), we can con-
clude that ALiBi-based Transformers cannot solve
the arithmetic formula evaluation problem unless
TC0 = NC1.

Thus, we complete the proof.

Theorem F.7. Unless TC0 = NC1, an ALiBi-
based Transformer with poly(n)-precision, O(1)
layers, hidden dimension d ≤ O(n) cannot solve
the Boolean formula value problem.

Proof. By the hierarchy of circuit families in
Fact 3.8, we can obtain that TC0 ⊆ NC1.
Since ALiBi-based Transformers are in TC0 (The-
orem F.5) and the This follows from combining
Theorem 4.8 (circuit complexity bound of RoPE-
base Transformer) and the arithmetic formula eval-
uation problem is in NC1 (Lemma D.4), we can
conclude that ALiBi-based Transformers cannot
solve the Boolean formula value problem unless
TC0 = NC1.

Thus, we complete the proof.

11109

