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Abstract

Existing parameter-efficient fine-tuning (PEFT)
methods primarily fall into two categories:
addition-based and selective in-situ adaptation.
The former, such as LoRA, introduce additional
modules to adapt the model to downstream
tasks, offering strong memory efficiency. How-
ever, their representational capacity is often lim-
ited, making them less suitable for fine-grained
adaptation. In contrast, the latter directly fine-
tunes a carefully chosen subset of the origi-
nal model parameters, allowing for more pre-
cise and effective adaptation, but at the cost
of significantly increased memory consump-
tion. To reconcile this trade-off, we propose
NeuroAda, a novel PEFT method that enables
fine-grained model finetuning while maintain-
ing high memory efficiency. Our approach
first identifies important parameters (i.e., con-
nections within the network) as in selective
adaptation, and then introduces bypass connec-
tions for these selected parameters. During
finetuning, only the bypass connections are up-
dated, leaving the original model parameters
frozen. Empirical results on 23+ tasks spanning
both natural language generation and under-
standing demonstrate that NeuroAda achieves
state-of-the-art performance with as little as
≤ 0.02% trainable parameters, while reducing
CUDA memory usage by up to 60%. We re-
lease our code here: https://github.com/
FightingFighting/NeuroAda.git.

1 Introduction

Large language models (LLMs) demonstrate re-
markable generalization capabilities on various
NLP tasks (Dong et al., 2023; Li et al., 2025),
yet achieving optimal performance on downstream
tasks often still requires fine-tuning. As model
sizes grow, full-parameter fine-tuning becomes in-
creasingly impractical due to substantial computa-
tional and memory demands. For example, fine-

*Equal contribution.

Layer 0 Layer 1 Layer N-1

Top-   Adaptation Frozen Weights

Figure 1: Overview of NeuroAda. For each neuron,
top-1 weights are adapted, while the rest remain frozen.
Bold dark indicates selected pretrained weights; red
dashed edges represent newly introduced trainable pa-
rameters.

tuning LLaMA 2-13B without CPU offloading re-
quires 26 GB for trainable parameters in FP16,
52 GB for Adam optimizer states (two FP32 mo-
ments per parameter), 26 GB for gradients, and
an additional 2–4 GB for activations depending on
batch size and sequence length. This results in a
memory footprint of approximately 106–108 GB
in total, far exceeding the capacity of commodity
GPUs and necessitating premium hardware (e.g.,
A100 80G). This highlights the pressing need for
more efficient and scalable adaptation strategies.

A growing body of work on parameter-efficient
fine-tuning (PEFT) addresses the computational
and memory overhead of full-model adaptation
by introducing a set of trainable parameters while
keeping the backbone frozen. One major class of
these methods is known as addition-based adap-
tation, which augments the pretrained model with
additional modules designed to inject task-specific
flexibility. These additions vary in form and loca-
tion, including adapter layers inserted into projec-
tion blocks (Pfeiffer et al., 2020; Sung et al., 2022),
nonlinear activation reparameterizations (Zhang
et al., 2021), prompt tuning applied to input embed-
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Figure 2: Mask-based sparse tuning employs a binary
mask matrix to suppress gradient updates for unselected
parameters. However, this approach incurs significant
memory overhead, as gradients for the entire original
parameter matrix must still be computed and retained
by the optimizer.

dings (Lin et al., 2020; Liao et al., 2023b,a), latent
representation perturbations (Wu et al., 2024a), and
low-rank matrix decompositions applied directly to
weight spaces, such as in LoRA (Hu et al., 2022a)
and its variants (Zhang et al., 2023; Kopiczko et al.,
2023). These methods typically offer improved
memory efficiency by restricting gradient compu-
tation and optimizer state updates to the newly in-
troduced modules, as opposed to the entire model
in full fine-tuning. However, their scalability is
constrained: as model size increases, the limited
representational capacity of the added modules of-
ten leads to diminishing returns (He et al., 2024).

Another prominent line of research is selective
in-situ adaptation, which fine-tunes a carefully se-
lected subset of a pretrained model’s original pa-
rameters, without introducing any additional pa-
rameters, modules, or layers. Structure-based ap-
proaches, such as BitFit (Ben Zaken et al., 2022a)
and Partial-k (Jia et al., 2022) updating only the
bias terms and the last k layers, respectively, exem-
plify early efforts in this direction. More recently,
fine-grained and unstructured parameter selection
methods have attracted increasing attention. These
approaches aim to identify task-relevant parame-
ters at a more granular level, such as GPS (Zhang
et al., 2024b) and SPT (He et al., 2023), which
demonstrate strong performance on vision tasks by
selectively fine-tuning subsets of parameters that
are most critical for the target task. Compared to
structured approaches and addition-based adapta-
tion methods, these unstructured strategies offer
greater flexibility in parameter selection, enabling
more precise and targeted model adaptation, and
thereby substantially improving downstream per-
formance (Shen et al., 2024; Fu et al., 2023). How-
ever, this sparse tuning paradigm leads to higher
memory usage due to mask-based implementations.
As shown in Figure 2, although only a small portion
of the parameters is selected for updating, memory
consumption remains comparable to that of full

fine-tuning. This limitation becomes particularly
problematic with the increase of model size (Zhai
et al., 2022; Shen et al., 2024; Dong et al., 2025b).

These limitations motivate us to explore whether
a unified approach can be designed that achieves
the fine-grained parameter tuning characteristic
of selective in-situ adaptation, while retaining the
memory efficiency advantages of addition-based
methods. To this end, we propose NeuroAda, an
additive, overlay-style adaptation method that uti-
lizes a carefully designed approach to introduce
new parameters to enable fine-grained adjustments
while maintaining memory efficiency. Specifi-
cally, as shown in Figure 1, NeuroAda first se-
lects the top-k highest-magnitude input connec-
tions (weights/parameters) for each neuron in the
network prior to finetuning and then, for each se-
lected parameter, a bypass connection (initialized
to zero) is introduced. During finetuning, only the
newly introduced parameters are fine-tuned, while
the original parameters remain frozen. This ap-
proach inherits both the performance benefits of
selective in-situ adaptation and the memory effi-
ciency of addition-based methods. Crucially, for
each neuron, at least one of its input connections is
selected for update, ensuring that all neurons have
the potential to modify their activation states and
thus change the state of the entire network for effec-
tive adaptation. Consequently, NeuroAda presents
a scalable and practical solution for large LLMs.

NeuroAda offers four key advantages that make
it both practical and effective in real-world scenar-
ios: (1) Highly efficient computation: NeuroAda
eliminates the need of the mask for sparse finetun-
ing, which typically requires full gradient compu-
tation. (2) Highly efficient GPU memory usage:
Only the newly added parameters are updated, sig-
nificantly lowering memory usage by avoiding op-
timizer state tracking for the full model. (3) Task-
agnostic and generalizable: Parameter selection
is based on weight magnitudes from the pretrained
model, enabling consistent selection across tasks,
making the method broadly applicable and easy to
deploy. (4) Fine-grained, neuron-level adapta-
tion: NeuroAda ensures every neuron has the po-
tential to change the activation state of each neuron
during finetuning, maximizing the representational
expressiveness of individual neurons. Empirically,
NeuroAda achieves state-of-the-art performance
on 23+ tasks compared with other PEFT methods,
including both natural language generation and un-
derstanding, highlighting its practical effectiveness.
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2 Related Work

Addition-based Adaptation. Includes adapter-
based methods (He et al., 2021; Pfeiffer et al., 2020;
Lin et al., 2020; Liao et al., 2023b,a) and low-rank
reparameterization techniques such as LoRA (Hu
et al., 2022a) and its variants AdaLoRA (Zhang
et al., 2023), VeRA (Kopiczko et al., 2023),
QLoRA (Dettmers et al., 2024), and DoRA (Liu
et al., 2024), which introduce trainable low-rank
matrices into projection layers. While LoRA
avoids inference-time overhead by merging updates
into base weights, it often suffers from scalability
issues and diminishing returns when applied to
large models or complex tasks (Liu et al., 2024).
A parallel direction modifies hidden states instead
of weights: activation steering (Liu et al., 2023;
Li et al., 2023), concept erasure (Belrose et al.,
2023; Avitan et al., 2024; Singh et al., 2024), and
block-level editing (Wu et al., 2024a) offer instance-
specific control but require task-specific adaptation.

Selective In-Situ Adaptation. This class of work
fine-tunes a subset of the model’s original param-
eters without introducing any additional modules
or weights, often achieving strong performance
with minimal architectural changes. However, its
practical memory and compute benefits frequently
fall short in large-scale settings. Methods such
as SIFT (Song et al., 2023), SHiRA (Bhardwaj
et al., 2024), SpIEL (Ansell et al., 2024) and work
from (Zhang et al., 2024a) enforce sparsity con-
straints, yet still require full backward passes to
compute gradients for the entire weight space.
More targeted approaches, including SMT (He
et al., 2024) and GPS (Zhang et al., 2024b), im-
prove efficiency by selecting submatrices or top-k
gradients per neuron, but rely on gradient-based
warm-up and dynamic masking. These mech-
anisms introduce additional overhead from bi-
nary mask storage, dense optimizer states, and
full-gradient tracking, making them difficult to
scale to large language models. In contrast, our
method, NeuroAda, inherits the advantages of both
paradigms by avoiding gradient-based selection
and selecting the top-k weights per neuron.

3 Methodology

In this section, we first present the necessary pre-
liminaries, and then introduce NeuroAda, a new
adaptation framework that activates each neuron’s
potential by selectively updating a small subset

(a) Pretrained Weights

Top-   weights per neuron

(b) Top-  weight gradients per neuron;
here 

Frozen Trainable

Figure 3: Neuron-wise Top-k Weight Selection and
Gradient Computation. (a) Pretrained weight matrix of
size dout × din, where for each neuron (row), only the
top-k weights(i.e., highest-magnitude) are selected for
adaptation (colored), and the rest remain frozen (white).
(b) Corresponding gradient matrix restricted to the top-k
weights per neuron (here k = 1), showing gradients only
for trainable entries. This strategy enables fine-grained,
neuron-level adaptation while preserving most of the
pretrained model, effectively activating each neuron’s
potential through less-invasive tuning.

of its weights. Specifically, we freeze all pre-
trained model weights and introduce sparse, addi-
tive overlay-style adaptation method in which top-k
bypasses of input connections (weights/parameters)
are introduced into each neuron in the neural net-
work for adaptation. This neuron-wise adaption
preserves the original parameters intact while en-
abling targeted learning signals at fine granularity.
As illustrated in Figure 3, NeuroAda ensures that
every neuron participates in adaptation, supporting
both efficiency and generalization. During infer-
ence, the small number of learned deltas can be
merged into the base weights, resulting in no addi-
tional overhead at runtime.

3.1 Preliminaries
Let MΦ be an L-layer pretrained language model
with parameters Φ = {W(ℓ),b(ℓ)}Lℓ=1. For any
linear sub-layer we write hout = Whin +b, where
W∈Rdout×din and each row of W corresponds to
a neuron. During standard fine-tuning all entries
of W are updated, yielding heavy computational
and memory costs (§1).

Sparse additive updates. NeuroAda freezes Φ
and introduces a delta-parameter tensor ∆ with
the same shape as Φ but sparsity constrained:

Φ′ = Φ + ∆, ∥∆∥0 ≪ ∥Φ∥0, (1)

where ∥ · ∥0 counts non-zero elements. Only ∆ is
trainable; the base model remains intact, so ∆ can
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Table 1: Memory comparison per projection. Mask-
based sparse tuning methods require 1 bit per weight1.
NeuroAda with k = 1 only stores one BF16 value (2
bytes) and one index (2 bytes) per row, totaling 4 bytes
per neuron. This yields over 100× memory savings for
a single linear layer.

Model dmodel Mask [MB] NeuroAda[MB] Saving Ratio

LLaMA-1 7B 4096 40962

8×220
≈ 2.00 4096×4

220
≈ 0.016 ≈ 125×

LLaMA-2 7B 4096 2.00 0.016 125×
LLaMA-1 13B 5120 51202

8×220
≈ 3.13 5120×4

220
≈ 0.020 ≈ 156×

LLaMA-2 13B 5120 3.13 0.020 156×

be merged in-place after training, incurring zero
inference overhead.

3.2 Top-k selection

A core design goal is that every neuron receives
at least a small learning signal. For each neu-
ron—that is, for each row w ∈ Rdin of a weight
matrix, we identify the indices of its k largest-
magnitude components:

I(w) = arg top k
j∈{1,...,din}

∣∣wj

∣∣. (2)

We then allocate trainable delta weights only at
these positions:

[
∆
]
i,j

=

{
θi,j if j ∈ I(wi)

0 otherwise,
(3)

where θi,j is a trainable parameter defined only
for j ∈ I(wi) and initialized to 0. For all other
positions, ∆i, j is fixed to zero and excluded from
both optimization and memory storage. While Neu-
roAda uses weight magnitude for top-k selection,
the framework is flexible: task-guided criteria such
as gradient magnitude or random ticketing can be
substituted into I(·). We employ magnitude due
to its task-agnostic stability and the advantage of
requiring no warm-up or additional computation.
This design choice is empirically validated in our
ablation study, where magnitude-based selection
achieves strong performance without relying on
task-specific signals, as shown in Figure 7.

Mask-free implementation. Since the top-k
sparsity pattern is determined a priori, Eq. (3) can
be implemented without maintaining a full binary
mask over the weight matrix. Instead, we store a
compact list of indices and corresponding BF16

1While 1-bit-per-weight is a theoretical lower bound for
binary mask storage, actual implementations in PyTorch
and other frameworks use byte-addressable storage (e.g.,
BoolTensor), leading to significantly higher memory over-
head.

values—only k entries per row—eliminating the
need for dense masking or indexing during training.
This design leads to substantial memory savings
and indexing efficiency. As shown in Table 1, for
a single projection layer in LLaMA-2 13B, a 1-
bit-per-weight binary mask requires over 3 MB
of memory, while NeuroAda with k=1 uses only
0.02 MB—over 156× smaller. These savings scale
across layers and are especially beneficial for high-
throughput training on limited-memory devices.

3.3 Featherlight adaptation
During fine-tuning we optimize only {θi,j} while
re-using the forward path of the frozen backbone.
For a linear layer the forward pass becomes

hout = Whin︸ ︷︷ ︸
frozen

+
(
P⊙Θ

)
hin︸ ︷︷ ︸

trainable ∆

, (4)

where P is an index matrix with zeros every-
where except

[
P
]
i,j

= 1 when (i, j) ∈ I(wi), ⊙
denotes element-wise product, and Θ is the dense
tensor of learnable θi,j .2

Lightweight backward pass and optimizer
states. During back-propagation, NeuroAda up-
dates only the k selected coordinates per neuron.
As a result, the dominant memory contributors in
full-model training—BF16/FP32 gradients and the
two FP32 moment estimates in the AdamW opti-
mizer—are reduced proportionally by a factor of
k
din

. Because all delta parameters are stored directly
in BF16 and no FP32 master weights are needed,
the optimizer maintains only 2 × k FP32 values
per row instead of 2 × din.This yields a substan-
tial memory reduction in the optimizer state main-
tained by AdamW. In standard dense fine-tuning,
AdamW stores two FP32 moment estimates (first
and second moments) for each trainable parameter,
resulting in:

AdamW Mem. (Masked): 2× dout × din × 4(bytes), (5)

where 4 bytes denotes the size of a 32-bit float.
In contrast, NeuroAda updates only k weights per
row, so the optimizer state becomes:

AdamW Mem. (NeuroAda):2× dout × k × 4(bytes). (6)

This reduces memory usage by a factor of din
k

per linear layer. For example, with din = 5120 and
k = 1, this corresponds to a 5120× reduction in
AdamW state memory.

2We implement this with fused scatter-add so the additional
multiply is executed only on the k selected positions; no dense
mask is materialised.
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Figure 4: Performance comparison between our Neu-
roAda and mask-based methods on LLaMA-7B. Top-k
means selecting top-k input connections per neuron in
the neural network.

4 Neuron-wise Sparse Adaptation:
Comparative Analysis

In this section, we first compare the mask-based
method, which applies binary masks to zero out the
gradients of unselected (frozen) parameters (see
Figure 2), with our NeuroAda, which introduces
new trainable parameters to bypass the selected
ones, rather than directly tuning them, for sparse
fine-tuning. The comparison is conducted in terms
of effectiveness, GPU memory usage, and training
efficiency. We then further investigate the effec-
tiveness of the proposed method NeuroAda, which
aims to ensure that all neurons in the network have
the potential to update their activation states during
fine-tuning. This is done by analyzing the propor-
tion of neurons involved in fine-tuning and exam-
ining different parameter selection strategies for
activating them.

Experiment setup To ensure a fair comparison
between our NeuroAda and mask-based methods,
as well as across different parameter selection
strategies, we conduct a hyperparameter search
over the different learning rates for each experi-
ment using the training set. The best-performing
configuration is then selected based on validation
set performance. This is necessary because PEFT
methods are generally sensitive to the choice of
learning rate (Wu et al., 2024b). The hyperparame-
ter search space is presented in Table 7 in Appendix.
The details of used datasets: COMMONSENSE15K

and GSM8K are provided in Appendix C.1.

Question 1: Can our method NeuroAda be a com-
petitive or even superior alternative to the mask-
based sparse tuning approach? We address this by
comparing their task performance, GPU memory
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Figure 5: Training GPU memory and training efficiency
on different models (RoBERTa-base, RoBERTa-large,
LLaMA-7B, LLaMA3-8B) with NeuroAda, mask-based
and full fine-tuning method.

usage, and training efficiency.

Performance To comprehensively and fairly
evaluate the effectiveness of the two methods, we
compare them under the same proportion of train-
able parameters, ranging from 0.02% to 10%, on
the COMMONSENSE15K and GSM8K tasks. As
shown in Figure 4, our proposed method NeuroAda
performs comparably to, or even better than, the
mask-based method across most parameter budgets
on both datasets. In particular, the NeuroAda out-
performs the mask-based method by approximately
9% and 14% in accuracy when using 6.05% and
10.09% of trainable parameters, respectively, on
the commonsense reasoning task.

Training memory and time We evaluate mod-
els of varying sizes, including RoBERTa-base,
RoBERTa-large (Liu et al., 2019), LLaMA-
7B (Touvron et al., 2023a), and LLaMA3-
8B (Vavekanand and Sam, 2024). Specifically,
we sample 500 examples from the MNLI task in
the GLUE natural language understanding bench-
mark (Wang et al., 2019), and another 500 ex-
amples from the natural language reasoning task
GSM8K. We use these samples to train the
RoBERTa and LLaMA models, respectively. All
experiments are conducted on a single NVIDIA
H100 GPU with a batch size of 2. We report the
GPU memory usage and training time for each
model. Figure 5 shows our proposed addition-
based sparse training method NeuroAda consumes
less GPU memory compared to the mask-based
counterpart, especially as the model size increases.
For example, the NeuroAda achieves up to 60%
memory savings on LLaMA3-8B. In addition, the
NeuroAda enables significantly faster training, par-
ticularly for larger models. It processes 16.6 sam-
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Figure 6: Comparison across different proportions of
neurons involved in the fine-tuning process.

ples per second, compared to only 1.1 samples per
second with the mask-based method.

Question 2: How effective is the proposed
method NeuroAda in enabling all neurons to update
their activation states during fine-tuning for down-
stream task adaptation? To answer this question,
we first investigate how different parameter selec-
tion strategies can be used to ensure that all neurons
have the potential to update their activation states
during fine-tuning. We further analyze how task
performance on COMMONSENSE15K and GSM8K
varies with the proportion of neurons allowed to
update their activation states during training.

Involved number of neurons. Our proposed
method selects the top-k input connections for each
neuron in the network, ensuring that at least one
input connection per neuron is selected for tuning.
This design enables all neurons to update their ac-
tivation states during fine-tuning, allowing better
adaptation to downstream tasks. To demonstrate
its effectiveness, we select parameters from vari-
ous proportion of neurons per layer for tuning and
evaluate the resulting performance on the COM-
MONSENSE15K and GSM8K tasks. As shown
in Figure 6, increasing the number of neurons in-
volved during training leads to consistent perfor-
mance improvements on both tasks. This suggests
that enabling all neurons to update their activation
states is beneficial—and likely necessary—for ef-
fective downstream task adaptation.

Different selection strategies To explore the ef-
fectiveness of enabling all neurons in the network
to update their activation states during training,
we experiment with different parameter selection
strategies for each neuron under different train-
able parameter budget. Specifically, for each neu-
ron, we select the top-k input connections based
on four criteria: highest weight magnitude, high-
est gradient absolute value, lowest weight magni-
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Figure 7: Comparison of different parameter selection
strategies for involving neurons for the fine-tuning pro-
cess. Among all input connections for each neuron in
the network, Top-k connection with highest magnitude
(Magnitude), highest gradient absolute value (Gradient),
lowest magnitude (Reverse) are selected for training us-
ing addition-based method. Random means randomly
selecting Top-k input connections per neuron.

tude, and random selection from all input connec-
tions. As shown in Figure 7, all selection methods
yield comparable performance on both the COM-
MONSENSE15K and GSM8K tasks across different
trainable parameter budgets. The average accura-
cies across all budgets for all selection methods are
closely aligned, ranging from 77.69% to 79.24% on
COMMONSENSE15K, and from 35.89% to 36.54%
on GSM8K. These results again highlight the im-
portance of involving all neurons in the adaptation
process, regardless of the specific selection method
used. Additionally, across both tasks, the Magni-
tude selection method achieves the highest win rate
across different parameter budgets compared to the
other strategies. Therefore, we adopt the Magni-
tude selection strategy as the default in NeuroAda.

5 Experiments

We evaluate NeuroAda on 23+ datasets spanning
commonsense reasoning (Section 5.1), arithmetic
reasoning (Section 5.2), and natural language un-
derstanding (Section 5.3). Experiments cover
both encoder-only (RoBERTa-base (Liu et al.,
2019)) and decoder-only (LLaMA (Touvron et al.,
2023a,b)) models up to 13B parameters. We bench-
mark against strong PEFT baselines, including Bit-
Fit (Ben Zaken et al., 2022b), prefix-tuning (Li and
Liang, 2021), adapters (He et al., 2021), LoRA (Hu
et al., 2022b), DoRA (Liu et al., 2024), SMT (He
et al., 2024), RED (Wu et al., 2024a), DiReFT, and
LoReFT (Wu et al., 2024b). Following LoReFT, all
models use torch.bfloat16 and run on a single
NVIDIA A100 or H100 GPU.

Our comparison considers not only benchmark
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Table 2: Performance comparison with existing PEFT methods on eight commonsense reasoning datasets across
four models: LLaMA-7B/13B, LLaMA2-7B, and LLaMA3-8B. ∗Most baseline results are taken from Hu et al.
(2023a). †Results are from Wu et al. (2024b), ‡ results are taken from He et al. (2024) and ⋆results are from Liu et al.
(2024), as they share the same experimental setting with Hu et al. (2023a). For a fair comparison, our NeuroAda
is also trained for 3 epochs to align with these baselines. +When 3-epoch results are not available in the original
paper, we re-trained the baselines using the official code and their reported best hyperparameters. All results for our
method are averaged over three runs with different random seeds. Our method selects the top-20 and top-1 input
connections per neuron for high-budget and low-budget parameter groups, respectively.

Model PEFT Params (%) Accuracy (↑)

Commonsense Reasoning
BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

ChatGPT∗ − − 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

Series∗ 1.953% 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
Parallel∗ 3.542% 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.3
LoRA∗ 0.826% 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
DoRAhalf

⋆ 0.427% 70.0 82.6 79.7 83.2 80.6 80.6 65.4 77.6 77.5
DoRA⋆ 0.838% 68.5 82.9 79.6 84.8 80.8 81.4 65.8 81.0 78.1

LLaMA SMT‡ 0.840% 68.7 81.7 78.3 91.6 78.8 84.1 67.7 77.4 78.7

(7B) NeuroAda 0.404% 73.1 85.4 80.9 94.3 84.3 87.8 71.7 84.2 82.7

PrefT∗ 0.039% 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
DiReFT+ 0.031% 66.1 82.5 78.8 92.6 81.9 83.2 67.1 79.8 79.0
LoReFT† 0.031% 68.3 83.5 79.7 92.7 82.6 83.2 67.4 78.5 79.5

NeuroAda 0.020% 69.6 83.6 80.5 92.3 81.1 84.0 68.1 80.4 80.0

Series∗ 1.586% 71.8 83.0 79.2 88.1 82.4 82.5 67.3 81.8 79.5
Parallel∗ 2.894% 72.5 84.9 79.8 92.1 84.7 84.2 71.2 82.4 81.5
LoRA∗ 0.670% 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
DoRAhalf

⋆ 0.347% 72.5 85.3 79.9 90.1 82.9 82.7 69.7 83.6 80.8
LLaMA DoRA⋆ 0.681% 72.4 84.9 81.5 92.4 84.2 84.2 69.6 82.8 81.5
(13B) SMT‡ 0.680% 71.1 84.4 81.7 93.7 83.2 86.7 73.7 85.2 82.4

NeuroAda 0.327% 73.3 87.9 82.7 96.0 86.9 90.2 77.1 88.6 85.3

PrefT∗ 0.031% 65.3 75.4 72.1 55.2 68.6 79.5 62.9 68.0 68.4
DiReFT+ 0.025% 70.2 86.6 82.5 95.0 85.2 86.3 73.5 84.4 83.0
LoReFT† 0.025% 72.0 85.6 82.1 94.8 85.3 86.9 73.0 85.0 83.1

NeuroAda 0.016% 73.0 86.4 82.2 94.5 84.0 87.6 74.5 86.0 83.5

LoRA∗ 0.826% 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DoRAhalf

⋆ 0.427% 72.0 83.1 79.9 89.1 83.0 84.5 71.0 81.2 80.5
DoRA⋆ 0.838% 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7

Llama2 SMT‡ 0.840% 72.0 83.8 80.8 93.3 82.8 86.7 74.0 81.0 81.8

(7B) NeuroAda 0.404% 73.6 86.5 81.1 94.8 87.8 89.1 75.9 85.6 84.3

DiReFT+ 0.031% 68.2 83.4 79.8 93.4 83.1 84.6 70.3 79.4 80.3
LoReFT+ 0.031% 66.6 81.8 79.3 93.4 82.6 83.0 70.2 80.8 79.7

NeuroAda 0.020% 71.4 82.8 79.8 93.3 84.0 85.4 70.1 81.2 81.0

LoRA∗ 0.700% 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
DoRAhalf

⋆ 0.361% 74.5 88.8 80.3 95.5 84.7 90.1 79.1 87.2 85.0
DoRA⋆ 0.710% 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2

Llama3 SMT‡ 0.710% 75.7 88.4 81.4 96.2 88.2 92.7 83.2 88.6 86.8

(8B) NeuroAda 0.343% 75.0 89.3 83.0 96.5 89.2 93.0 82.9 89.6 87.3

DiReFT+ 0.026% 73.0 89.8 81.4 96.1 87.8 92.3 79.9 85.4 85.7
LoReFT+ 0.026% 72.9 89.1 81.7 96.1 88.0 92.0 80.1 85.0 85.6

NeuroAda 0.017% 71.7 84.9 81.4 93.9 85.4 88.8 77.0 83.8 83.4
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performance but also parameter efficiency. To
demonstrate the robustness of our method under
varying parameter budget constraints, we catego-
rize all baseline methods into two groups based
on the proportion of trainable parameters: those
with ≥ 0.1% and those with < 0.1%. Note that
these two groups differ by orders of magnitude in
the number of trainable parameters, allowing us to
assess performance across both relatively high and
extremely low parameter budgets. We then com-
pare our NeuroAda against these baselines under
comparable levels of parameter efficiency to ensure
a fair and meaningful evaluation. Specifically, we
select the top-1 and top-20 input connections per
neuron for matching the budget of the two groups,
resulting in 0.016% and 0.327% trainable parame-
ters on LLaMA-13B, respectively.

5.1 Commonsense reasoning
Following the experimental protocol of Hu et al.
(2023b), we fine-tune LLaMA-7B/13B, LLaMA2-
7B, and LLaMA3-8B on COMMONSENSE170K, a
composite dataset consisting of eight commonsense
reasoning tasks, as described in Appendix A. Then,
We evaluate each task on its test set and compare
our results with baselines from Hu et al. (2023b),
as well as DoRA (Liu et al., 2024), DiReFT,
LoReFT (Wu et al., 2024b), and SMT (He et al.,
2024) under the same setting.

Hyperparameter tuning Inspired by Wu et al.
(2024b), we use COMMONSENSE15K, a subset of
COMMONSENSE170K, to perform hyperparame-
ter search. The search space is detailed in Table 6.
Specifically, we split COMMONSENSE15K into
training and validation sets, as described in Sec-
tion 4. Our hyperparameter search is conducted
only on LLaMA-7B, and the best-performing con-
figuration on the validation set is subsequently
applied to all other models, including LLaMA-
7B/13B, LLaMA2-7B, and LLaMA3-8B, for train-
ing on COMMONSENSE170K.

Results As shown in Table 2, our NeuroAda
achieves state-of-the-art performance under both
parameter budget regimes (≥ 0.1% and < 0.1%).
Notably, under the higher parameter budget setting,
NeuroAda outperforms all baselines by a consid-
erable margin. For example, its average accuracy
surpasses the second-best baseline, SMT, by 4%.
In addition, NeuroAda remains effective even un-
der the lower parameter budget setting, consistently
outperforming other baselines in this regime.

5.2 Arithmetic reasoning
Following Hu et al. (2023b) and Wu et al. (2024b),
we fine-tune LLaMA-7B/13B, LLaMA2-7B, and
LLaMA3-8B on MATH10K, a composite dataset
comprising seven arithmetic reasoning tasks, and
evaluate each task separately. The dataset details
are provided in Appendix C.1.

Hyperparameter tuning Following Wu et al.
(2024b), we perform hyperparameter search on
the LLaMA-7B model using the GSM8K dataset,
which is split into training and validation sets as
in Wu et al. (2024b). The best-performing config-
uration on the validation set is then applied to all
models, including LLaMA-7B/13B, LLaMA2-7B,
and LLaMA3-8B—for training on the MATH10K
dataset. The full hyperparameter search space is
provided in Table 5 in Appendix.

Results As shown in Table 3, NeuroAda consis-
tently achieves the highest average accuracy across
all model sizes and parameter budgets. Under a
higher parameter budget (e.g., 0.327% on LLaMA-
13B), it outperforms all baselines by a clear margin.
For example, NeuroAda outperforms the second-
best baseline, LoRA, by 6%, while using even
fewer trainable parameters. Even under extremely
low budgets (e.g., 0.020% on LLaMA2-7B), Neu-
roAda remains competitive and surpassing other
low-budget baselines by up to 6% with even fewer
trainable parameters.

5.3 Natural language understanding
We evaluate the effectiveness of our method on the
GLUE benchmark (Wang et al., 2018), a widely
used suite of sequence classification tasks for evalu-
ating natural language understanding (NLU), using
the RoBERTa-base model. To ensure fair compari-
son, we follow the training, evaluation, and hyper-
parameter tuning procedures in Wu et al. (2024b).

Results We report the result in table 4 in the Ap-
pendix due to the space limitation. It shows Neu-
roAda achieves the highest average score across
both moderate (0.2674%) and extreme low-budget
(0.0297%) regimes. Compared to LoRA (0.239%),
it improves the average GLUE score by +0.7. Un-
der the extreme budget, it surpasses LoReFT by
+0.8, RED by +0.7, and DiReFT by +1.8, de-
spite using fewer parameters. Notably, NeuroAda
achieves the best score on 6 out of 8 tasks in the
low-budget setting, demonstrating its strong gener-
alization even with minimal adaptation capacity.
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Table 3: Performance comparison with existing PEFT methods on seven arithmetic reasoning datasets across four
models: LLaMA-7B/13B, LLaMA2-7B, and LLaMA3-8B. ∗Most baseline results are taken from Hu et al. (2023a).
†Results are from Wu et al. (2024b), ‡ results are taken from He et al. (2024) and ⋆results are from Liu et al. (2024),
as they share the same experimental setting with Hu et al. (2023a). For a fair comparison, our NeuroAda is also
trained for 3 epochs to align with these baselines. +When 3-epoch results are not available in the original paper, we
re-trained the baselines using the official code and their reported best hyperparameters. All results for our method
are averaged over three runs with different random seeds. Our method selects the top-20 and top-1 input connections
per neuron for high-budget and low-budget parameter groups, respectively.

Model PEFT Params (%) Accuracy (↑)

Arithmetic Reasoning
MulAri GSM8K AddSub AQuA SinEq SVAMP MAWPS Avg.

GPT-3.5175B
∗ − − 83.8 56.4 85.3 38.9 88.1 69.9 − 70.4

Series∗ 1.953% 92.8 33.3 80.0 15.0 83.5 52.3 − 59.5
Parallel∗ 3.542% 94.5 35.3 86.6 18.1 86.0 49.6 − 61.7
LoRA∗ 0.826% 95.0 37.5 83.3 18.9 84.4 52.1 − 61.9
SMT‡ 0.860% 91.5 34.2 85.8 23.6 84.6 53.6 − 62.2
SMT‡ 1.260% 93.4 35.6 86.8 24.2 85.3 54.8 − 63.4

LLaMA NeuroAda 0.404% 96.0 36.5 92.4 22.0 94.1 53.2 − 68.4

(7B) PrefT∗ 0.039% − 24.4 − 14.2 − 38.1 63.4 35.0
DiReFT+ 0.031% − 20.5 − 21.3 − 39.9 68.1 37.5
LoReFT† 0.031% − 21.6 − 22.4 − 43.6 69.5 39.3

NeuroAda 0.020% − 30.3 − 22.8 − 48.9 77.7 44.9

Series∗ 1.586% 93.0 44.0 80.5 22.0 87.6 50.8 − 63.0
Parallel∗ 2.894% 94.3 43.3 83.0 20.5 89.6 55.7 − 64.4
LoRA∗ 0.670% 94.8 47.5 87.3 18.5 89.8 54.6 − 65.4

LLaMA NeuroAda 0.327% 97.5 43.9 92.2 21.7 93.9 61.4 − 71.4

(13B) PrefT∗ 0.031% − 31.1 − 15.7 − 41.4 66.8 38.8
DiReFT+ 0.025% − 32.1 − 23.2 − 51.2 76.1 46.7
LoReFT† 0.025% − 35.5 − 23.4 − 54.6 81.8 48.8

NeuroAda 0.016% − 43.0 − 25.6 − 56.7 83.6 52.2

DiReFT+ 0.031% − 26.4 − 23.6 − 48.4 71.8 42.6
LLaMA2 LoReFT+ 0.031% − 26.2 − 18.5 − 46.7 76.9 42.1

(7B) NeuroAda 0.020% − 36.1 − 22.8 − 52.1 82.4 48.4

DiReFT+ 0.026% − 57.2 − 30.1 − 68.6 87.8 60.9
LLaMA3 LoReFT+ 0.026% − 56.9 − 24.8 − 70.9 88.2 60.2

(8B) NeuroAda 0.017% − 63.7 − 26.4 − 75.0 88.7 63.5

6 Conclusion

This paper introduced NeuroAda, a featherlight
and scalable fine-tuning framework that activates
each neuron’s potential through top-k magnitude-
based weight selection. By inheriting the perfor-
mance benefits of sparse tuning and the memory
efficiency of addition-based methods, NeuroAda
avoids structural modifications, runtime masking,
and full-gradient computation. Its static selection
of high-magnitude weights per neuron enables task-
agnostic, fine-grained adaptation with significantly
reduced memory and computational overhead. Em-
pirical results across diverse reasoning and lan-
guage understanding tasks show that NeuroAda
surpasses strong adaptation baselines, achieving ro-

bust generalization under an extremely few number
of trainable parameters and tight memory budgets.

7 Limitations

While NeuroAda demonstrates strong empirical
performance across diverse tasks and architectures,
our current evaluation is limited to models up to
13 billion parameters. We anticipate that the ben-
efits of our method may further amplify at larger
scales, but assessing its efficacy on models beyond
13B remains an important direction for future work.
Evaluating scalability and stability under extreme
model sizes is critical for deployment in real-world,
high-capacity systems. Also, we expect future re-
search to verify NeuroAda on VLM models with
vision-related tasks (Dong et al., 2025a).
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A Datasets

Our experiments primarily target both natural lan-
guage understanding (NLU) and natural language
generation (NLG) tasks. Specifically, we evaluate
commonsense reasoningand arithmetic reasoning
for NLG task and GLUE for NLU task.

A.1 Commonsense Reasoning

We evaluate the our method on eight widely-used
datasets that span various forms of open-ended
question answering:

• BoolQ(Clark et al., 2019): a yes/no question-
answering dataset composed of naturally oc-
curring questions. Following prior work, we
remove the associated passages to focus solely
on the question context.

• PIQA(Bisk et al., 2020): designed to test
physical commonsense, this dataset requires
selecting the most plausible action in a given
hypothetical situation.

• SIQA(Sap et al., 2019): targets social com-
monsense by asking models to reason about
human actions and their social consequences.

• HellaSwag(Zellers et al., 2019): involves se-
lecting the most coherent sentence comple-
tion given a narrative context, emphasizing
grounded commonsense inference.

• WinoGrande(Sakaguchi et al., 2021), in-
spired by the Winograd Schema Chal-
lenge(Levesque et al., 2012), tests pronoun
resolution in context, requiring fine-grained
commonsense reasoning.

• ARC-Easy (ARC-e)(Clark et al., 2018): a
benchmark of multiple-choice elementary sci-
ence questions with relatively straightforward
reasoning.

• ARC-Challenge (ARC-c)(Clark et al., 2018):
a more difficult subset of ARC designed to be
resistant to simple co-occurrence-based solu-
tions.

• OpenBookQA (OBQA) (Mihaylov et al.,
2018): a knowledge-intensive QA dataset re-
quiring multi-hop reasoning across both tex-
tual context and external knowledge.

We adopt the same experimental protocol as de-
scribed in Hu et al. (2023b), aggregating the train-
ing sets of the above datasets into a unified corpus
referred to as COMMONSENSE170K. Fine-tuning
is conducted on this joint dataset, and evaluation
is performed on the individual test sets of each
benchmark. Detailed dataset statistics and simpli-
fied training examples are also available in Hu et al.
(2023b).

A.2 Arithmetic reasoning

We train and evaluate our method using seven
benchmark datasets that span a diverse range of
mathematical word problem domains:

• AddSub(Hosseini et al., 2014), a dataset com-
posed of elementary arithmetic problems in-
volving addition and subtraction.

• AQuA(Ling et al., 2017), which presents al-
gebraic word problems in a multiple-choice
format.

• GSM8K(Cobbe et al., 2021), consisting of
grade-school math problems that require
multi-step reasoning.

• MAWPS(Koncel-Kedziorski et al., 2016), a
collection of math word problems with varied
linguistic and arithmetic complexity.

• MultiArith(Roy and Roth, 2015), featuring
problems that demand reasoning through mul-
tiple arithmetic steps.

• SingleEq(Koncel-Kedziorski et al., 2015),
which includes math problems that can be
solved by formulating a single equation of
varying complexity.

• SVAMP (Patel et al., 2021), designed to test
a model’s robustness to structural variations
in math problem formulations by rephrasing
original problems in a challenging way.

• MAWPS (Koncel-Kedziorski et al., 2016) is a
collection of math word problems of varying
complexity, involving basic arithmetic opera-
tions such as addition, subtraction, multiplica-
tion, and division. Each instance is annotated
with both the natural language problem and
its corresponding symbolic equation, facilitat-
ing studies in semantic parsing and numerical
reasoning.
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We follow the experimental design of Hu
et al. (2023b), which also provides dataset statis-
tics and representative examples for each bench-
mark. Our training is conducted on a unified
dataset—MATH10K—which comprises training
samples from four datasets: GSM8K, MAWPS,
MAWPS-single, and AQuA. Following (Wu et al.,
2024b), we compare our method with LoReFT and
DiReFT on four tasks: GSM8K, MAWPS, SVAMP
and AQuA and with other baselines on all above
tasks except for MAWPS Hu et al. (2023b).

A.3 Natural language understanding

Following the evaluation protocol established by
Wu et al. (2024a), we ensure a fair assessment
on the GLUE validation set by partitioning it into
two subsets. One subset, determined using a fixed
random seed, is reserved for in-training evaluation,
while the other is used exclusively for final testing.
After each training epoch, we evaluate the model
on the in-training subset and select the checkpoint
with the best performance across all epochs for
testing. For datasets with relatively large validation
sets (i.e., QQP, MNLI, and QNLI), we randomly
sample 1,000 instances for in-training evaluation.
For smaller datasets, we use 50% of the validation
data for this purpose. As for the evaluation metrics,
we adopt the Matthews correlation coefficient for
CoLA, the Pearson correlation coefficient for STS-
B, and classification accuracy for the remaining
tasks. For MNLI, we report results on the matched
subset only.

B Results on natural language
understanding tasks

we evaluate our NeuroAda on the GLUE for natu-
ral language understanding tasks. The results are
shown in table 4.

C Hyperparameters

C.1 Hyperparameter tuning and decoding
strategy

Arithmeric reasoning Following Wu et al.
(2024b), we adopt their training and validation
splits of the GSM8K dataset. Models are trained
on the training set, and hyperparameters are se-
lected based on performance on the validation set.
All hyperparameters are tuned using LLaMA-7B,
and the resulting configuration is directly applied
to LLaMA-13B, LLaMA2-7B, and LLaMA3-8B

without additional tuning. We use a maximum se-
quence length of 512 tokens during training and
hyperparameter tuning, and generate up to 32 new
tokens during inference. Table 5 summarizes the
full hyperparameter search space.

Dataset MATH10K is annotated with language
model-generated chain-of-thought reasoning steps.
In the tasks, models are required to generate a chain
of thought (Wei et al., 2022) before producing the
final answer. The included tasks are AddSub (Hos-
seini et al., 2014), AQuA (Ling et al., 2017),
GSM8K (Cobbe et al., 2021), MAWPS (Koncel-
Kedziorski et al., 2016), MultiArith (Roy and Roth,
2015), SingleEq (Koncel-Kedziorski et al., 2015),
and SVAMP (Patel et al., 2021). See Appendix A.2
for detailed descriptions of each task. For fair com-
parison, we follow both evaluation settings used in
prior work. Specifically, Wu et al. (2024b) report
results on GSM8K, AQuA, SVAMP, and MAWPS,
while Hu et al. (2023b) evaluate on MultiArith,
GSM8K, AddSub, AQuA, SingleEq, and SVAMP.
We compare our method with theirs under both
settings to ensure a comprehensive and fair evalua-
tion.

Commonsense reasoning Motivated by Wu et al.
(2024b), we perform hyperparameter tuning on
COMMONSENSE15K, a subset of the full COM-
MONSENSE170K benchmark. Details of the search
space are provided in Table 6. We divide COM-
MONSENSE15K into training and validation splits
using a ratio 7:3. Hyperparameter tuning is con-
ducted exclusively on LLaMA-7B, and the opti-
mal configuration identified on the validation set
is reused for all other models, including LLaMA-
7B/13B, LLaMA2-7B, and LLaMA3-8B, during
training on the full COMMONSENSE170K dataset.

For the commonsense reasoning benchmark, we
adopt greedy decoding without sampling, as the
task requires multi-token classification. In contrast,
for the arithmetic reasoning benchmark, we follow
the decoding setup used by Hu et al. (2023b), em-
ploying a higher decoding temperature of 0.3. This
change is made to avoid instability issues caused by
near-zero token probabilities, which can lead to de-
coding errors in the HuggingFace implementation
when using beam search.

Dataset Our comparative experiments are pri-
marily conducted on LLaMA-7B, using two
lightweight reasoning datasets to enable rapid eval-
uation and comparison: COMMONSENSE15K for
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Table 4: Performance comparison with existing PEFT methods on RoBERTa-base for the GLUE benchmark. ∗Most
baseline results are taken from Wu et al. (2024a). The result is presented as the mean with standard deviation (SD)
over five runs with different random seeds. †Results are from Wu et al. (2024b) as it shares the same experimental
setting with Wu et al. (2024a). For a fair comparison, our NeuroAda also follows the same setting.

Model PEFT Params (%)
Accuracy (↑) (SD)

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

FT 100% 87.3(0.34) 94.4(0.96) 87.9(0.91) 62.4(3.29) 92.5(0.22) 91.7(0.19) 78.3(3.20) 90.6(0.59) 85.6

Adapter∗ 0.318% 87.0(0.28) 93.3(0.40) 88.4(1.54) 60.9(3.09) 92.5(0.02) 90.5(0.08) 76.5(2.26) 90.5(0.35) 85.0
LoRA∗ 0.239% 86.6(0.23) 93.9(0.49) 88.7(0.76) 59.7(4.36) 92.6(0.10) 90.4(0.08) 75.3(2.79) 90.3(0.54) 84.7
AdapterFNN∗ 0.239% 87.1(0.10) 93.0(0.05) 88.8(1.38) 58.5(1.69) 92.0(0.28) 90.2(0.07) 77.7(1.93) 90.4(0.31) 84.7

RoBERTa NeuroAda 0.2674% 87.7(0.12) 94.3(0.10) 89.7(0.13) 56.1(0.09) 92.0(0.18) 90.2(0.23) 82.0(0.08) 91.0(0.23) 85.4

Base BitFit∗ 0.080% 84.7(0.08) 94.0(0.87) 88.1(1.57) 54.0(3.07) 91.0(0.05) 87.3(0.02) 69.8(1.51) 89.5(0.35) 82.3
RED∗ 0.016% 83.9(0.14) 93.9(0.31) 89.2(0.98) 61.0(2.96) 90.7(0.35) 87.2(0.17) 78.0(2.06) 90.4(0.32) 84.3
DiReFT † 0.015% 82.5(0.22) 92.6(0.76) 88.3(1.23) 58.6(1.99) 91.3(0.19) 86.4(0.27) 76.4(1.48) 89.3(0.56) 83.2
LoReFT † 0.015% 83.1(0.26) 93.4(0.64) 89.2(2.62) 60.4(2.60) 91.2(0.25) 87.4(0.23) 79.0(2.76) 90.0(0.29) 84.2

NeuroAda 0.0297% 85.1(0.09) 94.3(0.16) 90.7(0.07) 59.8(0.12) 92.1(0.12) 88.1(0.24) 79.1(0.23) 90.7(0.10) 85.0

Table 5: Hyperparameter search space for the LLaMA-7B model using our NeuroAda on the validation set of the
GSM8K. The best-performing settings are underlined for selecting top-1 and

::::
wavy

:::::::::
underline for selecting top-20

parameters per neuron in the model. Greedy decoding (without sampling) is used throughout the hyperparameter
tuning process.

Hyperparameters (LLaMA-7B on GSM8K)

Optimizer AdamW

LR {6×10−4, 9×10−4, 1×10−3,
::::::::
3×10−3, 6×10−3, 9×10−3, 1×10−2, 3×10−2 }

Weight decay {0}

LR scheduler Linear

Batch size {
:
8, 16, 32}

Warmup ratio {0.00, 0.06,
::::
0.10}

Epochs {3}

Top-k {1,
:::
20}

commonsense reasoning and GSM8K for arith-
metic reasoning. COMMONSENSE15K is a subset
of the larger COMMONSENSE170K dataset, orig-
inally partitioned by Hu et al. (2023b). (1) COM-
MONSENSE170K comprises eight commonsense
reasoning tasks, including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), SIQA (Sap et al.,
2019), HellaSwag (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), ARC-e, ARC-
c (Clark et al., 2018), and OBQA (Mihaylov et al.,
2018), as detailed in Appendix A.1. All examples
are presented as multiple-choice questions, where
the model is required to directly output the cor-
rect option without generating intermediate ratio-
nales. We adopt the prompt template from Hu et al.
(2023b), with an additional string normalization
step (removal of leading and trailing whitespace).

We split COMMONSENSE15K into training and val-
idation sets using a 7:3 ratio for our experiments.
(2) GSM8K(Cobbe et al., 2021) dataset comprises
grade-school-level arithmetic word problems that
require multi-step reasoning to arrive at the cor-
rect answer. In contrast to COMMONSENSE15K,
solving GSM8K typically involves generating a
chain-of-thought (Wei et al., 2022) prior to produc-
ing the final answer. We adopt the same prompt
template as used in Hu et al. (2023b).

Natural language understanding. Following
Wu et al. (2024b), we perform hyperparameter tun-
ing for each GLUE task individually using both
RoBERTa-base. Hyperparameters are selected
based on performance on a held-out validation set
with a fixed random seed of 42. To obtain the final
results, we evaluate the models using four addi-
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Table 6: Hyperparameter search space for the LLaMA-7B model using our NeuroAda on the validation set of
the COMMONSENSE15K. The best-performing settings are underlined for selecting top-1 and

:::::
wavy

::::::::
underline for

selecting top-20 parameters per neuron in the model. Greedy decoding (without sampling) is used throughout the
hyperparameter tuning process.

Hyperparameters (LLaMA-7B on COMMONSENSE15K)

Optimizer AdamW

LR {
::::::::
7×10−4, 9×10−4, 2×10−3, 4×10−3, 6×10−3, 8×10−3, 1×10−2, 2×10−2 }

Weight decay {0}

LR scheduler Linear

Batch size {8,
::
16, 32}

Warmup ratio {0.00,
::::
0.06, 0.10}

Epochs {3}

Top-k {1,
::
20 }

tional unseen seeds: 43, 44, 45, 46. We adopt the
evaluation protocol of Wu et al. (2024a). For QQP
with RoBERTa-large, due to observed stochasticity
across repeated runs with the same seed, we report
the best result from three trials for each seed. As
noted by Wu et al. (2024a), the evaluation results
on RTE are unstable due to the dataset’s small size.
We follow their approach and adjust the set of ran-
dom seeds accordingly to ensure fair comparison.
Additionally, we replace one or two random seeds
for CoLA to improve evaluation stability.

Preliminary Analysis We compare the mask-
based method—which applies binary masks to zero
out the gradients of unselected (frozen) parame-
ters—with the addition-based method, which in-
troduces new trainable parameters to bypass the
selected ones, rather than tuning them directly, for
the purpose of sparse fine-tuning. This comparison
is conducted across three dimensions: effective-
ness, GPU memory usage, and training efficiency.
We further investigate the effectiveness of the pro-
posed addition-based method, NeuroAda, which
is designed to ensure that all neurons in the net-
work retain the potential to update their activation
states during fine-tuning. To this end, we analyze
the proportion of neurons actively involved in the
tuning process and evaluate various parameter se-
lection strategies for determining which neurons
are activated.

To ensure a fair comparison between the
addition-based and mask-based approaches, as well
as across different parameter selection strategies,
we conduct a hyperparameter search over a range of

learning rates for each experiment using the train-
ing set. The optimal configuration is selected based
on performance on the validation set. This step is
essential, as PEFT methods are generally sensitive
to the choice of learning rate (Wu et al., 2024b).
The complete hyperparameter search space is pro-
vided in Table 7.

D Advantages of NeuroAda

NeuroAda significantly reduces the backward com-
putation costs with four core advantages. (1) It
achieves mask-free sparsity by statically selecting
top-k weights per neuron and storing only a com-
pact set of BF16 deltas and integer indices. This
avoids the memory and compute overhead associ-
ated with dynamic binary masks commonly used
in gradient-based sparse methods, as quantified
in Table 1. (2) It requires no warm-up or task-
specific signal: the magnitude-based selection op-
erates entirely offline and consistently across tasks,
eliminating the need for gradient accumulation or
adaptive heuristics. (3) It ensures neuron-level
coverage by allocating trainable updates to every
row of the weight matrix. This guarantees that all
neurons participate in learning and avoids the dead
filter problem often observed in block- or layer-
wise pruning. (4) It introduces no inference-time
overhead: the sparse update tensor ∆ is merged
into the original weights post-training, preserving
the model’s structure, runtime efficiency, and com-
patibility with standard inference stacks.
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Table 7: Hyperparameter search space for the LLaMA-7B model using our NeuroAda on the validation set of
the GSM8K and COMMONSENSE15K for different number of trainable parameters. Greedy decoding (without
sampling) is used throughout the hyperparameter tuning process.

Hyperparameters on LLaMA-7B for different number of trainable parameters

Optimizer AdamW

LR {6×10−5, 9×10−5, 5×10−4, 7×10−4, 9×10−4, 3×10−3, 6×10−3, 9×10−3, 1×10−2 }

Weight decay {0}

LR scheduler Linear

Batch size {16}

Warmup ratio {0.06}

Epochs {3}

Top-k {1 5 10 20 50 100 300 500}

E Algorithm

NeuroAda follows a three-phase procedure de-
signed for efficiency, simplicity, and compatibility
with standard inference infrastructure. As shown in
Algorithm 1, the process begins with an offline se-
lection phase, where the top-k highest-magnitude
weights are identified per neuron based on the pre-
trained weight matrix. This static selection re-
moves the need for gradient-based importance scor-
ing or dynamic masking during training.

During training, only the selected top-k coordi-
nates per neuron are updated, with all other param-
eters kept frozen. This enables mask-free, neuron-
wise sparse adaptation that significantly reduces
gradient computation and optimizer state mem-
ory. Crucially, NeuroAda performs updates directly
over a small number of stored deltas, requiring no
structural changes or auxiliary layers.

After training, the sparse deltas are merged into
the frozen weights via an in-place update, resulting
in a model that retains its original structure and
supports efficient, standard inference. This design
ensures minimal runtime overhead while offering
strong adaptation capabilities through fine-grained
parameter selection.

Algorithm 1: NeuroAda: Sparse top-
k neuron-wise adaptation with merge-
compatible updates.

Input: pretrained weight matrix Φ∈Rdout×din , top-k
budget k≪din, training mini–batches
{(x,y)}, learning-rate η

Output: adapted model with merged weights Φ+∆
Phase 1: Offline Top-k Selection;
foreach i = 1, . . . , dout do // row ≡ neuron

// store k index positions
Ii ← TopK

(
|Φi,:|, k

)

end
Phase 2: Sparse Training (mask-free);
For each neuron i, initialize ∆i,Ii ← 0;
foreach mini-batch (x,y) do

// forward pass;
h← (Φ+∆)x;
compute loss L(h,y);
// backward: update only selected
entries;

foreach i = 1, . . . , dout do
gi ← ∇∆i,Ii

L;
∆i,Ii −= η gi

end
end
Phase 3: One-shot Merge and Inference;
foreach i = 1, . . . , dout do

Φi,Ii ← Φi,Ii + ∆i,Ii ;
end
Delete ∆ from memory.;
# PyTorch (illustrative)
y = F.linear(x, merged_weight, bias)
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