LLMs cannot spot math errors, even when allowed to peek into the solution
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Abstract

Large language models (LLMs) demonstrate
remarkable performance on math word prob-
lems, yet they have been shown to struggle
with meta-reasoning tasks such as identifying
errors in student solutions. In this work, we
investigate the challenge of locating the first
error step in stepwise solutions using two er-
ror reasoning datasets: VtG and PRM800K. Our
experiments show that state-of-the-art LLMs
struggle to locate the first error step in student
solutions even when given access to the ref-
erence solution. To that end, we propose an
approach that generates an intermediate cor-
rected student solution, aligning more closely
with the original student’s solution, which helps
improve performance.’

1 Introduction

Large language models (LLMs) demonstrate im-
pressive performance on existing reasoning bench-
marks, particularly on math word problems
(Liu et al., 2024; Dubey et al., 2024; Achiam
et al.,, 2023). For example, the state-of-the-
art L1lama3.1-405B (Dubey et al., 2024) model
achieves 96.8% accuracy on the challenging GSM8K
reasoning benchmark (Cobbe et al., 2021). How-
ever, recent work has revealed that models ex-
celling at end-task accuracy often fail when probed
about their underlying reasoning processes — what
we refer to here as meta-reasoning. For instance,
both Zeng et al. (2024) and Tyen et al. (2024)
have reframed LLMs from passive problem solvers
into active evaluators, revealing that even top-
performing LLMs struggle with tasks like locating
the first error step in a student’s solution.

The ability to pinpoint and categorize errors is
not only a critical diagnostic tool for understand-
ing models’ limitations but is also essential for
developing assistive educational feedback tools in

'All data and code are available at https: //github.com/
kvadityasrivatsa/llms-cannot-spot-math-errors

<< PROBLEM >>
The space station, Lupus-1, is an enormous spacecraft made up of three identical cylindrical structures that house the
living quarters for the crew. The three cylindrical structures are linked together by a series of tunnels that hold them
together and allow the crew to move between cylinders. Each cylindrical structure contains 12 bedrooms, 7 bathrooms,
and several kitchens.  f the entire space station has 72 rooms, how many kitchens are there on the entire space station?

<< REFERENCE SOLUTION >>

STEP-1: If there are 3 identical cylindrical structures, with a combined total of 72 rooms,

then each individual cylindrical structure contains 72/3=24 rooms.

STEP-2: In each 24-room cylindrical structure, there are 24-12-7=5 kitchens. LLM
STEP-3: Thus, the entire, three-cylinder space station contains a total of 35=15 kitchens.

Final Answer: 15

Poor Step-Level Strong Step-Level
Alignment 4__Alignment
N

<< STUDENT SOLUTION >> << CORRCETED STUDENT SOLUTION >>

STEP-1: Each cylindrical structure has 12 +7 + x = 19 +
X rooms, where X is the number of kitchens.

STEP-1: Each cylindrical structure has 12 + 7 + x = 19
+ X rooms, where x is the number of kitchens.

STEP-2:Since there are three cylindrical structures, the
total number of rooms is 3(19+x) = 57+3x.

STEP-2:Since there are three cylindrical structures,
the total number of rooms is 3(19+x) = 57+3x.

STEP-3: We know that the total number of rooms is 72,
50 57+3x = 72.

STEP-3: We know that the total number of rooms is
72,50 57+3x = 72.

STEP-4: Subtracting 57 from both sides gives 3x = 15. STEP-4: Subtracting 57 from both sides gives 3x = 15,
STEP-5: Dividing both sides by 3 gives x = 5. STEP-5: Dividing both sides by 3 gives x = 5.

STEP-6: Therefore, there are 5 kitchens on the entire
space station.

STEP-6: Since there are 3 identical cylindrical
structures, the total number of kitchens is 3x = 3(5)
=15.

Final Answer: 5

STEP-7: Therefore, there are 15 kitchens on the
entire space station.

Final Answer: 15

Figure 1: In this example, the corrected version of the
original student solution (with L1ama3-70B) makes the
location of the student’s first mistake more apparent as
compared to the reference (i.e., gold) solution.

intelligent tutoring systems (Jia et al., 2024; Nifio-
Rojas et al., 2024). Accurate error detection and
categorization promote better personalized and ef-
fective feedback generation (Anderson et al., 1990;
Hattie and Timperley, 2007). This was demon-
strated using LLMs by Daheim et al. (2024), where
decomposing the feedback generation process to
verify the student’s solution before providing hints
produces more reliable results. Existing research
typically tests LLMs on error localization using
only the original question and the student’s erro-
neous solution (Zeng et al., 2024; Tyen et al., 2024).
Pedagogical research indicates that when teachers
have a canonical solution, they can “offload” the
problem-solving process and focus on comparing
student work against the expert path (Sweller et al.,
1998; Carpenter et al., 1989). Motivated by this,
we investigate what information helps an LLM
in locating the first error step in a math problem
solution. Our preliminary experiments suggest that
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even when gold (reference) solution is provided,
LLMs still struggle.

Therefore, we explore an alternative approach
that generates an intermediate corrected version of
the student’s solution. This version preserves the
student’s method while applying only necessary
structural adjustments, yielding a reference that
both mirrors the student’s reasoning and maintains
consistency. We call it corrected student solution.
Figure 1 shows a math problem from GSM8K with
its reference solution, an incorrect stepwise student
solution from the VtG (Daheim et al., 2024) dataset,
and a corrected version produced by L1ama3-70B
LLM (Grattafiori et al., 2024). Aligning the stu-
dent’s solution with the ground truth is crucial to
pinpoint the first error but is challenging due to: (1)
Poor Step Alignment: the student’s 6 steps versus
the reference’s 3 steps do not correspond directly,
and there are no matching intermediate variables
until the 4th step; and (2) Different Approaches:
the student introduces an unknown variable x, while
the reference follows a more direct method. The
corrected student solution shows that although the
student computes the number of kitchens per cylin-
drical structure correctly, they overlook calculating
the total number of kitchens in the space station. By
updating the solution to mirror the reference while
retaining the student’s approach, the corrected so-
lution achieves better step alignment, simplifying
error identification and error localization. Our anal-
ysis (see §C.1) shows that these generated corrected
student solutions semantically align with student
solutions better than the gold solutions.

In this paper, we formulate and investigate two
key research questions: RQ1: Can LLMs accu-
rately locate errors in incorrect math problem solu-
tions when provided with access to the reference
solution? and RQ2: Can the incorporation of in-
termediate reasoning steps — such as corrected stu-
dent solution — enhance the overall performance of
LLMs in the task of error localization?

Our experiments on two public datasets — VtG
(Daheim et al., 2024) and PRM800@K (Lightman et al.,
2023) — confirm that state-of-the-art models like
Llama3.1-405B and GPT-4o0 face significant diffi-
culties in accurately localizing the first error even
when furnished with the dataset-provided gold solu-
tion. In contrast, supplying a corrected student so-
lution markedly improves error localization perfor-
mance, especially for more capable models, which
suggests that overall problem solving ability has
little bearing on error detection accuracy.

2 Methodology

Data We perform our experiments on two error-
reasoning datasets to investigate LLLMs’ capabili-
ties across varying levels of problem difficulty and
error typologies. The first dataset, referred to in
this work as VtG, was released by Daheim et al.
(2024) and comprises 1,002 incorrect stepwise stu-
dent attempts on grade school-level math word
problems in English. These attempts are sourced
from MathDial (Macina et al., 2023) and originally
from GSM8K (Cobbe et al., 2021), and include anno-
tations for the first erroneous step, a description of
the mistake, and its classification into one of seven
error types (see §A for more details). The second
dataset, PRM800K (Lightman et al., 2023), consists
of 80,000 incorrect stepwise student solutions —
with 2,077 designated for testing — each marked at
the first error step, and features math questions
drawn from the MATH (Hendrycks et al., 2021)
dataset, with more advanced problems than those in
GSM8K. Together, these datasets present diversity to
explore error reasoning and meta-reasoning across
elementary and advanced math levels.

LLMs We select a diverse array of 6 open and
closed-source, as well as generic and fine-tuned
LLM:s for our experiments (listed in Table 6). No-
tably, Qwen2.5-72B-Math (Yang et al., 2024) has
been fine-tuned for solving math problems, and
LearnLM-1.5-Pro (Team et al., 2024) has been
built for advanced pedagogical reasoning, guiding
mistake discovery and providing constructive feed-
back. In addition to these properties, these models
were chosen based on their problem-solving per-
formance on the underlying math problems in our
two datasets (see definition and scores in §B.3).
In particular, while most models in our selection
excel at the grade-school arithmetic problems from
GSM8K (Cobbe et al., 2021), they exhibit varied per-
formance on the more advanced questions from the
MATH (Hendrycks et al., 2021) dataset.

Modeling Approach Let () be the problem, G
the reference solution, S = {s;}", the stu-
dent trace, and E the first erroneous step. An
LLMy with prompt template P predicts £ under
three settings: (i) problem + student — £ =
LLMy(P(Q,S)); (ii) problem + student + gold
— E = LLMy(P(Q, S, G)); (iii) problem + stu-
dent + correction — first align the gold to the
student trace, 5" = {5}, = LLMy (P(G,9)),
producing a structurally and stylistically matched
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correction of S (see §C.1); then detect the error
with Q,S,5": E = LLMjy (P(Q, S, S’)).

Gold Solution vs. Corrected Solution Among
recent work, the approach of Li et al. (2024) is most
similar to ours. They ask the model to generate a
corrected version of the student’s solution from
scratch and then localize errors against that self-
generated reference, so they find that their success
depends on the model’s own problem-solving abil-
ity. Instead, we cast the model as a “teacher’: it is
given the gold solution and tasked with generating
a corrected version of the student’s solution. Pro-
viding the gold answer disentangles error detection
abilities from problem solving abilities. Since gold
solutions in benchmarks like GSM8K and MATH often
differ in style, step order, and content, we include a
brief intermediate step to rewrite the gold solution
to closely match that of the student, making only
minimal edits needed for correctness.

To evaluate the quality of these corrections (S”),
we manually annotated 90 randomly selected out-
puts across models for (1) correctness (overall and
step-level) and (2) stylistic similarity to the stu-
dent’s work. A subset of 30 was double-annotated
(Cohen’s k = 0.82 and 0.85 for correctness and
stylistic similarity) (see §C.2 for more details).
Most models produced accurate corrections in over
93.3% of cases and maintained stylistic similarity
in 87.4%. The exception was Qwen2.5-72B-Math,
which scored significantly lower on both metrics
(69.6% correctness, 63.3% stylistic similarity), con-
sistent with its weaker error localization perfor-
mance (see §4.1).

3 Experimental Setup

To generate first error step predictions, we adapt
the few-shot prompt from Daheim et al. (2024)
and define four prompt types, as described in Sec-
tion 2: (1) w/o-S (without gold solution) presents
only the math problem and the student’s incorrect
stepwise solution, asking the LLM to identify the
first error; (2) w-GS (with gold solution) addition-
ally provides the dataset’s stepwise gold solution;
(3) w-Cor (with corrected student solution) first
prompts the LLM to generate a corrected version
of the student’s solution—retaining their approach
but fixing errors using the problem and gold solu-
tion—and then uses this in the main prompt; and
(4) random selects a random error step within the
student’s solution span, averaged over 100 runs
with different seeds. We also evaluate each LLM’s

Model VG | PRM80QK
Random 18.32 | 9.52

w/o-S  w-GS w-Cor ‘ w/o-S  w-GS w-Cor
Llama3-70B 4251 4950 61.28 | 19.64 24.12 33.03
Llama3.1-70B 49.10 5798 64.17 | 24.46 3423 38.39
Llama3.1-405B 49.90 6238 64.77 | 24.12 39.54 47.86
GPT-40 54.49 63.57 64.57 | 39.29 4372 49.40
Qwen2.5-72B-Math 45.01 3044 19.10 | 21.86 28.50 21.47
LearnLM-1.5-Pro  54.89 64.07 63.67 | 42.51 49.69 51.13

Table 1: First error step localization accuracy (in %) on VtG
and PRM800K datasets. For each task, within each dataset, the
bold value represents the highest accuracy per LLM, whereas
the underlined value represents the overall highest accuracy.

problem-solving ability on both datasets to com-
pare against their error localization performance.
Exact prompt templates, LLM settings, and other
details are provided in §B.1.

4 Results and Analyses
4.1 Exact Error Step Prediction

Table 1 shows error step prediction accuracies for
all model and prompt type combinations across
both datasets. In general, scores are higher for VtG
than PRM80@0K—Iikely due to a greater number of
steps per solution on average in PRM800K (13.3)
than in GSM8K (5.9). Score variation is larger in
PRM800K, with smaller models like L1ama3-70B
and Llama3.1-70B performing comparably to
larger ones on VtG. Without any reference solu-
tion (w/0-S), accuracy remains low, as reported in
previous studies (Zeng et al., 2024; Tyen et al.,
2024). Although providing the gold solution (w-
GS) increases accuracy, most models still struggle
to pinpoint the exact error step (see RQ1). The
corrected solution (w-Cor) improves performance
over w-GS and yields the highest accuracy across
most models for both datasets (see RQ2). Inter-
estingly, LearnLM-1.5-Pro shows almost no gain
from intermediate corrections: its w-GS accuracy
slightly surpasses w-Cor on VtG. This likely re-
flects the model’s prior fine-tuning for mistake de-
tection and feedback generation, which already
leverages the gold solution signal, leaving little
headroom for additional corrections. In sharp
contrast, Qwen2.5-72B-Math—tuned for problem
solving rather than critique—records the lowest ac-
curacies overall and even drops in both w-GS and
w-Cor compared to w/o-S, while scoring highly in
problem-solving on both datasets (see Table 5).

A follow-up qualitative analysis of the predic-
tions of Qwen2.5-72B-Math reveals that while gen-
erating the corrected solution (w-Cor), the model
often fails to rectify the first error step in student
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<< REFERENCE SOLUTION >>
James is now 27+3=30 years old
In 5 years James will be 30+5=35 years old
So in 5 years Matt will be 35*2=70 years old
That means Matt is now 70-5=65 years old

Final Answer: 65

!

<< PROBLEM >>

3 years ago James turned 27. In 5 years Matt will be twice James age. How old is Matt now?

Input: Only << PROBLEM >> |

LLM
(Qwen2.5-Math)

<< STUDENT SOLUTION >>
Step 1: James is currently 27+3 = 30 years old
Step 2: In 5 years, James will be 30+5 = 35 years old
Step 3: Let x be Matt's current age

Step 4: In 5 years, Matt will be x+5 years old

iv- Ste| th
Step 6: Expanding the left side gives 2x+10 = 35
Step 7: Subtracting 10 from both sides gives 2x = 25
Step 8: Dividing both sides by 2 gives x = 12.5
Step 9: Therefore, Matt is currently 12.5 years old.

Step 10: 12.5

_| (i) Actual

<< CORRECTED STUDENT SOLUTION >>
Step 1: James is currently 27+3 = 30 years old
Step 2: In 5 years, James will be 30+5 = 35 years old

Step 3: Let x be Matt's current age

Step 4: In 5 years, Matt will be x+5 years old (il Error Left
: 2 | Unresolved

Step 6: Multiplying both sides by 2 gives 2x+10 = 70

Step 7: Subtracting 10 from both sides gives 2x = 60

Step 8: Dividing both sides by 2 gives x = 30

Step 9: Adding 5 to both sides gives x+5 = 35

(iii) Inaccurate
E\ Step 10: Subtracting 5 from both sides gives x = 65| Deduction

Step 11: Therefore, Matt is currently 65 years old.

Step 12: 65

s

- We know that in 5 years Matt will be twice James's age. (iv) LLM
-=-James. will be. 35.years old jo.§ years. -.| Can Solve
1 - Therefore, Matt will be (2 times 35) years old s.| Error Step

“1Zfimes 35 =707

i

<< STANDALONE SOLUTION>>
To determine Matt's current age, we need to follow these steps:

1. Find James's current age:

- We know that 3 years ago James turned 27.

- To find James's current age, we add 3 years to 27.
[27+3=30]

So, James is currently 30 years old.

2. Determine James's age in 5 years:

- James is currently 30 years old.

- In 5 years, we add 5 years to his current age.
[30+5=35]

So, James will be 35 years old in 5 years.

3. Determine Matt's age in 5 years:

So, Matt will be 70 years old in 5 years.

4. Find Matt's current age:

- Matt will be 70 years old in 5 years.

- To find Matt's current age, we subtract 5 years from 70.
[70-5=65]

So, Matt is currently 65 years old.

Therefore, Matt's current age is (boxed{65}).

Figure 2: Qwen2.5-72B-Math is often unable to rectify the first error step (i) in the student’s solution when
generating the corrected solution (ii). Instead, additional erroneous deductions (iii) are made later in the solution to
make sure that the final answer matches that of the gold (reference) solution. Note that the model can correctly

solve the corresponding step in a standalone problem-solving setup (iv).

solutions and instead produces inaccurate deduc-
tions later in the solution, possibly hallucinating
to ensure that the final answer matches that of the
gold solution. We present one such example in
Figure 2. We see that the actual error step (i) re-
mains erroneous in the corrected solution (ii). The
model later generates multiple contradictory val-
ues of x (ii1). This inaccurate correction, in turn,
leads to an incorrect error-step prediction. Note that
Qwen2.5-72B-Math can correctly solve the under-
lying math problem by itself, including the exact
step (iv), which corresponds to the student’s first
error step.

4.2 Feature Importance Analysis

Following prior work on interpretability for black-
box models (Thakur et al., 2025; Dang et al., 2024),
we train a Random Forest classifier to predict
whether a student error will be correctly localized,
using key features related to the problem, solu-
tion, and error. We favor a Random Forest model
over a Linear Regressor based on their F1-scores
as goodness-of-fit proxies (0.996 and 0.572 respec-
tively). The feature set includes linguistic attributes
of the math problem (e.g., FKGL, constituency tree
depth), the complexity of the gold solution (e.g.,
counts and types of operations), and descriptors
of the student error (e.g., error type and position).
We also include a semantic alignment estimate,
Semantic Recall (§C.1), measuring how well

Semantic Recall : 17.9%

Rel. Error Step Loc. : 13.1%

G. Arg. Count : 9.9%
Q. Tree Depth : 8.5%
G. Param. Usage : 8.3%
Error Type : 7.2%
Step Count : 6.6%
G. ADD count : 4.5%

G. MUL count : 4.3%

G. DIV count : 3.7%

G. SUB count : 3.5%

Solved? : 1.2%

Feature

Feature Group
I Error Analysis (E)
Question Phrasing (L)
BN Math Complexity (M)
Il Problem Solving

0.0 2.5 5.0 7.5 10.0

Percentage (%)

125 15.0 175

Figure 3: Relative Importance of Features Toward Cor-
rect Error Localization

the reference solution (G for w-GS, S’ for w-Cor)
aligns with the student’s work up to the first error.
See §C.4 for feature set definitions and detailed
analysis description.

Figure 3 shows mean feature importances. The
features related to question phrasing (orange) and
math complexity (green) are some of the most in-
formative. However, the two most informative fea-
tures pertain to the error made (blue). Semantic
Recall is the most important (17.9%), highlighting
the role of alignment in successful error localiza-
tion. The relative position of the error (Rel. Error
Step Loc., 13.1%) and error type (Error Type,
7.2%) also rank highly.

Interestingly, whether the LLM solved the prob-
lem correctly (Solved?) has low importance
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— Calculation error easily solved by a calculator
— Extra quantity or Missing quantity
— Missing / Wrong factual knowledge
40 — Misunderstanding of a question
Reached correct solution but proceeded further
Unit conversion error
None of the above

Percentage of Cases (%)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Normalized Signed Error Distance

Figure 4: Distribution of ground-truth error types in VtG
across models’ normalized error step distance

(1.1%). A chi-squared test for independence con-
firms that error localization and problem-solving
accuracy are weakly correlated (p > 0.01; ¢ <0.2)
across models and prompts (see §C.3 for more de-
tails), suggesting that LLMs are not guaranteed to
localize errors correctly even when they can solve
the underlying problem.

4.3 Error Location vs. Type

Finally, we examine cases where models’ predicted
error steps increasingly deviate from the actual
steps. We define the normalized error-step dis-
tance as the difference between the predicted and
actual error steps divided by the total number of
steps in the student’s solution. In Figure 4, we plot
the distribution of ground-truth error types from
VtG against the combined normalized error-step
distance across models and prompt types. A distri-
bution shifted to the right indicates that models tend
to overshoot the actual error step, while a leftward
shift indicates undershooting. We observe that
question-independent errors, such as calculation or
unit-conversion mistakes, are uniformly distributed
regardless of prediction deviation, whereas errors
resulting from question misunderstanding are pre-
dicted much later than they occur. In contrast, er-
rors involving missing or extra variables tend to
be predicted a little before they occur. This sug-
gests that error-step prediction strategies should
also account for the type of error.

5 Conclusions

In this paper, we explored whether incorporat-
ing gold solutions enhances LLMs’ ability to pin-
point errors in student math solutions from VtG
and PRM800K datasets. Gold solutions improve
performance compared to using only the problem
and student response, though scores remain low.

Replacing the gold solution with an intermedi-
ate corrected student solution further boosts per-
formance—especially for smaller models—even
though error localization still lags behind overall
problem-solving accuracy. Our analysis shows that
high problem-solving ability does not guarantee ef-
fective error detection, highlighting the need for tar-
geted meta-reasoning improvements. Our feature-
led analysis also shows that the alignment between
the incorrect solution and the reference supports
better error localization. These insights will guide
our future work in enhancing LLM performance on
error localization and related meta-reasoning tasks.

Limitations

This work is subject to several limitations that
frame the scope of our findings. First, our exper-
iments are confined to the math domain. While
using math word problems provides a controlled
setting to explore error localization, it remains un-
clear whether the observed challenges and bene-
fits would generalize to other domains requiring
different reasoning strategies. Second, the study
depends on corrections generated by LLMs that are
guided by a ground-truth solution. Although these
corrected solutions were confirmed to yield the cor-
rect final answer, they may still harbor inconsisten-
cies in their intermediate steps. Expert-annotated
corrections, which could potentially offer a more
reliable reference, were not employed due to the
considerable resources required. Third, our evalua-
tion uses a targeted prompting setup designed for
comparability across models. Advanced prompt-
ing strategies—such as tree-of-thought prompt-
ing—have not been explored in this study, leav-
ing open the possibility that alternative approaches
might impact error localization performance. Fi-
nally, the study is limited to English-language math
problems. Given that error localization perfor-
mance is already challenged in English, it is plau-
sible that the difficulties would be exacerbated in
languages with less extensive data representation.

Ethical Statement

As the scope of our study is solely to evaluate
LLM performance and does not involve private
data or manual data creation, we do not foresee any
major ethical implications of our work. However,
LLMs inherently present risks. These models may
generate outputs that, despite being plausible, are
factually inaccurate or nonsensical. Such hallu-
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cinations can lead to misguided decision-making
and the propagation of biases, particularly in high-
stakes contexts where accuracy is paramount. In
the absence of appropriate safeguards, the broad
deployment of LLMs could exacerbate these is-
sues. Thus, it is imperative to develop mechanisms
that mitigate the risks of hallucinations to ensure
the responsible and effective application of these
models.
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A Dataset Details

This section provides further details about the
datasets used in our experiments. Tables 2 and 3
provide the distribution statistics of various aspects
for VtG and PRM80OK respectively, including the
number of steps in the student and gold solutions
and the location of error steps. Table 4 lists the er-
ror types annotated in VtG and their corresponding
share of cases in the dataset. There is no asso-
ciated human labeling for error type in PRM800K.
Both VtG (CC BY 4.0 License) and PRM80@K (MIT
License) are publicly accessible datasets.
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Dimension Min Max Median I o

Gold Solution Word Length 6 125 49 50.51 20.13
Student Solution Word Length 48 109 73 73.62  10.97
Gold Solution Step Length 3 5 4 427 073
Student Solution Step Length 3 15 5 592 184
First Error Step Index 1 9 3 277 143

Table 2: Key distributional statistics for VtG

Dimension Min Max Median 1w o
Gold Solution Word Length 1 441 72 8775  67.82
Student Solution Word Length 6 1470 209 235.86 123.57
Gold Solution Step Length 1 62 3 5.72 7.02
Student Solution Step Length 2 52 12 13.31 6.52
First Error Step Index 1 34 5 5.81 4.29

Table 3: Key distributional statistics for PRM800K

Error Type Percent of Cases (%)
Calculation error easily solved by a calculator 12.77
Extra quantity or Missing quantity 23.95
Missing / Wrong factual knowledge 13.97
Misunderstanding of a question 28.64
Reached correct solution but proceeded further 6.99
Unit conversion error 4.99
None of the above 8.68

Table 4: Annotated error types for student solutions in
VtG with their respective percentage of each case

B Querying Details

B.1 Prompts

This section presents the exact prompts used in our
experiments. We begin with the problem-solving
prompts used to collect the solutions and final an-
swers to the underlying math questions from VtG
and PRM800OK in Figure 5. The initial prompt is
used to generate verbose solutions to the ques-
tions, followed by a follow-up prompt, where we
append the model output with a concluding phrase
(i.e., Therefore, the final answer is:) to
get the model to specify the final numerical or
expression-based answer clearly. We find that this
method works best to extract the final answer with-
out additional pattern matching. Next, we show
the prompts to predict the exact error-step in the
three settings, i.e., without any reference solution
(w/0-S), with the gold solution (w-GS), and with
the corrected student solution (w-Cor) in Figures 6,
7, and 8 respectively. Finally, we show the prompt
used to generate the corrected form of the student
solutions in Figure 9.

B.2 Querying Setup

This section describes the querying setup used
for our experiments. Table 7 shows the exact
model versions used. All models were queried
with the temperature set to 0, top_p to 0.95,
and max_tokens to 2048. All L1ama models were
queried using the Google Cloud (Vertex) API and
GPT-40 queries were made using the OpenAl APL

B.3 Problem-Solving Performance

We define LLMs’ problem-solving performance as
their average accuracy on the math word problems
from the test sets of VtG and PRM80@K. Each model
is prompted with the math word problem using the
prompt templates shown in Figure 5 and described
in §B.1.

Model VtG  PRM800K
Llama3-70B 81.04 48.15
Llama3.1-70B 88.82 62.88
Llama3.1-405B 92.22 69.76
GPT-40 77.45 76.22
Qwen2.5-72B-Math 83.13 87.34
LearnLM-1.5-Pro 83.93 85.36

Table 5: Mean problem-solving accuracy (%) on the
underlying math problems from VtG and PRM800K

C Additional Analyses & Details

C.1 Alignment with Student Solution

We discuss the importance of aligning the ground
truth and student solutions for effective comparison
and error localization in Section 1. Specifically, we
generated intermediate corrected versions of the
student solution to serve as ground truth instead
of the dataset-provided gold solutions. Ideally, a
ground-truth solution should match the student so-
lution up to the first error step, after which diver-
gence is expected. Thus, we measure the seman-
tic overlap between the ground truth and student
solutions (truncated before the first error) using

LLM Souree?  Count | Tuned?
LLaMA3-70B (Dubey et al., 2024) 4 70B X
LLaMA3.1-7@B (Dubey et al., 2024) v 70B X
LLaMA3.1-405B (Dubey et al., 2024) v 405B X
GPT-40 (OpenAl et al., 2024) X - X
Qwen2.5-72B-Math (Yang et al., 2024) v 72B v
LearnLM-1.5-Pro (Team et al., 2024) X - v

Table 6: The diverse set of LLMs included in this study
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Model Version

Llama3-70B
Llama3.1-70B
Llama3.1-405B
GPT-40
Qwen2.5-72B-Math
LearnLM-1.5-Pro

meta-1llama/Meta-Llama-3-7@0B-Instruct
meta-1lama/Llama-3.1-70B
meta-1llama/Llama-3.1-405B
gpt-40-2024-08-06
Qwen/Qwen2.5-Math-72B-Instruct
learnlm-1.5-pro-experimental

Table 7: Model versions for the LLMs used in our ex-
periments

Problem-Solving Prompts

(A)Initial Prompt

You are experienced at solving math word problems. Solve
the following problem to the best of your ability in a
stepwise manner.

Clearly specify your final answer at the end of your solution
in a new line.

Problem: <<PROBLEM>>

(B)_Follow-Up Prompt

You are experienced at solving math word problems. Solve
the following problem to the best of your ability in a
stepwise manner.

Clearly specify your final answer at the end of your solution
in a new line.

Problem: <<PROBLEM>>
<<RESPONSE_TO_INITIAL_PROMPT>>

Therefore, the final answer is:

Figure 5: Problem-solving prompts

BERTScore (Zhang et al., 2020) recall (see Table
8). Maximizing recall ensures that the ground truth
closely follows the student’s approach. We also use
this quantity (Semantic Recall) as a feature for
further analysis in §4.2. The results show that cor-
rected solutions from all models yield much higher
recall than the corresponding gold solutions for
both datasets, indicating superior semantic and
stylistic alignment with the student solutions.

C.2 Manual Verification of Generated
Corrections

We test whether an intermediate generation of a
corrected student solution using the gold solution
and the student solution serves as a better reference
for error localization than the gold solution itself.

The annotation for each correction involves two
questions:

* Correctness: Is the LLM-generated correc-
tion factually and mathematically sound at

Without Solution (w/o-S) Prompt

You are an experienced math teacher. Your goal is to identify the
step of the first mistake in the Student's Solution to a Problem.

Problem: Natalia sold clips to 48 of her friends in April, and then
she sold half as many clips in May. How many clips did Natalia
sell altogether in April and May?

Student Solution:

Step 1 - Natalia sold 48 clips in April.

Step 2 - She sold 48*2 = 96 clips in May.

Step 3 - She sold 48+96 = 144 clips in April and May together.

Q: Write only the step number with the first error.
A: 2

Problem: Natalia sold clips to 48 of her friends in April, and then
she sold half as many clips in May. How many clips did Natalia
sell altogether in April and May?

Student Solution:
Step 1 - She sold 48/2 = 16 clips in May.
Step 2 - Natalia sold 48+16 = 64 clips in April and May together.

Q: Write only the step number with the first error.
A1

Problem: <<PROBLEM>>

Student Solution:
<<STUDENT_STEPS>>

Q: Write only the step number with the first error.
A:
\. J

Figure 6: Prompt without solution (w/0-S)

Solution

Model VtG PRM800OK
Type
Gold - 89.52  85.12
Llama3-70B 94.77 94.46
Corrected Llama3.1-405B 96.04  95.34
Orrected | 1ama3.1-708 96.18  95.88
GPT-40 95.86  93.79
Qwen2.5-72B-Math 95.03 87.66
LearnLM-1.5-Pro  94.98 92.98

Table 8: BERTScore recall between ground-truth solu-
tions (gold or corrected) and student solutions. Recall
values for corrected solutions from different LLMs have
been recorded separately.

each step and does it arrive at the correct an-
swer? (Yes/No)

* Stylistic Similarity: Is the LLM-generated
correction, stylistically and in approach, simi-
lar to the student’s solution up to the first error
step? (Yes/No)

Table 9 shows the average percentage values for
the two questions for each LLM. The annotation
set spans 90 samples (15 samples per LLM), with
30 randomly selected samples (of the 90) to build
the agreement subset. We conducted a two-person
annotation where both annotators hold at least a
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With Gold Solution (w-GS) Prompt

You are an experienced math teacher. Your goal is to identify the
step of the first mistake in the Student's Solution to a Problem.

Problem: Natalia sold clips to 48 of her friends in April, and then
she sold half as many clips in May. How many clips did Natalia
sell altogether in April and May?

Expected Answer:
Step 1 - Natalia sold 48/2 = 24 clips in May.

Student Solution:

Step 1 - Natalia sold 48 clips in April.

Step 2 - She sold 48*2 = 96 clips in May.

Step 3 - She sold 48+96 = 144 clips in April and May together.

Q: Write only the step number with the first error.
A:2

Problem: Natalia sold clips to 48 of her friends in April, and then
she sold half as many clips in May. How many clips did Natalia
sell altogether in April and May?

Expected Answer:
Step 1 - Natalia sold 48/2 = 24 clips in May.

Student Solution:
Step 1 - She sold 48/2 = 16 clips in May.
Step 2 - Natalia sold 48+16 = 64 clips in April and May together.

Q: Write only the step number with the first error.
A:1

Problem: Ignatius owns 4 bicycles. A friend of his owns different
types of cycles, which have three times are many tires as
Ignatius's bikes have. He has one unicycle, a tricycle, and the
rest are bikes. How many bicycles does the friend own?

Expected Answer:
<<GOLD_STEPS>>

Student Solution:
<<STUDENT_STEPS>>

Q: Write only the step number with the first error.
A:

\,

Step 2 - Natalia sold 48+24 = 72 clips altogether in April and May.

Step 2 - Natalia sold 48+24 = 72 clips altogether in April and May.

\\

With Corrected Student Solution (w-Cor) Prompt

You are an experienced math teacher. Your goal is to identify the
step of the first mistake in the Student's Solution to a Problem.

Problem: Natalia sold clips to 48 of her friends in April, and then
she sold half as many clips in May. How many clips did Natalia
sell altogether in April and May?

Expected Answer:
Step 1 - Natalia sold 48/2 = 24 clips in May.
Step 2 - Natalia sold 48+24 = 72 clips altogether in April and May.

Student Solution:

Step 1 - Natalia sold 48 clips in April.

Step 2 - She sold 48*2 = 96 clips in May.

Step 3 - She sold 48+96 = 144 clips in April and May together.

Q: Write only the step number with the first error.
A:2

Problem: Natalia sold clips to 48 of her friends in April, and then
she sold half as many clips in May. How many clips did Natalia
sell altogether in April and May?

Expected Answer:
Step 1 - Natalia sold 48/2 = 24 clips in May.
Step 2 - Natalia sold 48+24 = 72 clips altogether in April and May.

Student Solution:
Step 1 - She sold 48/2 = 16 clips in May.
Step 2 - Natalia sold 48+16 = 64 clips in April and May together.

Q: Write only the step number with the first error.
A1

Problem: Ignatius owns 4 bicycles. A friend of his owns different
types of cycles, which have three times are many tires as
Ignatius's bikes have. He has one unicycle, a tricycle, and the
rest are bikes. How many bicycles does the friend own?

Expected Answer:
<<CORRECTED_STUDENT_STEPS>>

Student Solution:
<<STUDENT_STEPS>>

Q: Write only the step number with the first error.
A:

J

Figure 7: Prompt with gold solution (w-GS)

masters degree in a STEM field. The first annotator
annotates all 90 samples and the second annotator
annotates just the agreement set. With this, we
estimate that the inter-annotator agreement is xk =
0.82 for correctness and 0.85 for stylistic similarity.

C.3 Chi-Square Test

In §4.2, we present the correlation between LLMs’
problem-solving performance and error localiza-
tion performance. As both variables are binary

Figure 8: Prompt with corrected student solution (w-
Cor)

Corrected Solution Generation Prompt

Here's a problem: <<PROBLEM>>

Here's the problem's correct reference solution:
<<GOLD_SOLUTION>>

Here's a stepwise candidate solution to the same problem:
<<STUDENT_STEPS>>
Based on the problem and the reference solution, correct and

rewrite the candidate solution.
Change only the portions that are incorrect and need edits.

categorical variables, the appropriate method to
determine their relation is to construct a 2 X2 con-
tingency table and perform a Chi-Square test to

check for a statistically significant association be-
tween them (Siegel, 1956). Table 10 presents the
results for the test (x? statistic, p-value, and ¢-
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Figure 9: Corrected solution generation prompt

coefficient) across models, datasets, and prompt
types. We interpret the correlation in each case by
the corresponding p-values and ¢-coefficients. A



Model Correctness  Stylistic Similarity
Llama3-70B 93.75 91.02
Llama3.1-70B 96.67 93.33
Llama3.1-405B 94.00 88.40
GPT-40 93.33 89.67
Qwen2.5-72B-Math 69.59 63.33
LearnLM-1.5-Pro 95.71 87.43

Table 9: Average percentage values of correctness and
stylistic similarity based on manual annotation on LLM-
generated corrected student solutions

Model P;‘ompt Vt6 | PRMBOOK
ype x?  pvalue ¢ | x* pvalue ¢
w/o-S 430 0038 0068 | 355 0059 0.043
Llama3-708 w-GS 800 0005 0092 | 1.34 0247 0.027

w-Cor 0.00 1.000  0.002 | 430 0.038 0.047

w/o-S 0.49 0.482  -0.025 | 10.09 0.001 0.071
Llama3.1-70B w-GS 0.24 0.620  0.019 | 16.49  0.000  0.090
w-Cor 0.08 0.774  0.012 | 29.70  0.000 0.121

w/o-S 0.08 0.768 -0.013 | 3.59  0.058 0.043
Llama3.1-405B w-GS 3.34 0.067 -0.062 | 12.19  0.000 0.078
w-Cor 0.05 0.824 -0.011 | 27.71  0.000  0.117

w/o-S 2.14 0.143  0.049 | 7.28  0.007 0.060
GPT-40 w-GS 0.94 0332 0.033 | 451 0.034 0.048
w-Cor 1.77 0.183  0.045 | 6.92  0.009 0.059

w/o-S 17356 0.000  0.134 | 3.077 0.079 0.040
Qwen2.5-72B-Math  w-GS 0.030 0863 0.008 | 9.840 0.002 0.070
w-Cor 4880  0.027 -0.073 | 5.042 0.025 0.051

w/o-S  13.021  0.000  0.117 | 3.426 0.064 0.042
LearnLM-1.5-Pro w-GS 5149  0.023 0.075 | 2.056 0.152 0.033
w-Cor 3208  0.073 0.059 | 2.198 0.138  0.034

Table 10: Chi-Square test and ¢-coefficient statistics between
models’ problem-solving performance and error localization
performance on VtG and PRM80@0OK test sets. A high p-value
(>0.01) or a low ¢-coefficient (<0.2) (i.e., weak effect size)
are both indicative of a poor correlation (Cohen, 1988; Rea
and Parker, 1992).

high p-value (>0.01) is indicative of poor statisti-
cal significance and a low ¢-coefficient (<0.2) is
indicative of a low effect size (Cohen (1988); Rea
and Parker (1992) regard coefficient values <0.2 as
weak).

We observe that no setting in Table 10 yields
a strong correlation. This means that, within
an LLM’s set of responses, solving the prob-
lem correctly does not strongly predict model’s
ability to pinpoint an error. E.g., even though
Qwen2.5-72B-Math outperforms most other mod-
els in problem solving across datasets (see Table
5), its error localization performance is the poorest.
This further motivates the need for LLMs tuned
for better error diagnostic capabilities among other
meta-reasoning abilities.

C.4 Feature Importance Analysis Details

We fit a Random Forest classifier to predict whether
an LLLM will be able to correctly predict the first
error step in a given student solution using key
features to determine their relative importance in

determining the LLM’s performance. In this sec-
tion, we describe the feature set that we used and
the process of fitting the model and extracting the
feature importance scores.

Feature Set We use a feature set capturing the
phrasing of the math problem (L), the mathematical
complexity of the underlying gold solution (M),
and details about the error made by the student (E).
We borrow the L and M type features and their
exact extraction implementation from Srivatsa and
Kochmar (2024). The feature set is as follows:

* Q. Word Length (L): The number of space-
separated words in the question text.

e Q. Arg. Count (L): Number of distinct
numerical quantities in the question text. E.g.,
“20 boxes” or “1.5 hours later”.

Q. FKGL (L): The FKGL readability grade
(Kincaid et al., 1975) of the question text.

Q. Tree Depth (L): The average depth of
the constituency tree for the sentences in the
question text.

Q. NP Count (L): The number of unique
noun phrases in the question text.

G. Arg. Count (M): The number of dis-
tinct numerical quantities in the gold solution.
These may include the arguments imported
from the question text and intermediate argu-
ments calculated in the solution steps.

G. ADD/ SuB/ MUL/ DIV Count (M): The
number of instances of each of the arithmetic
operators used in the gold solution.

e G. Op. Unique Count (M): The number of
unique arithmetic operators used in the gold
solution.

G. Op. Diversity (M): Ratio of G. Op.
Unique Count and G. ADD/ SUB/ MUL/ DIV
Count.

e G. Param. Usage (M): Ratio of G. Arg.
Count and Q. Arg. Count. This serves as a
measure of the proportion of input arguments
that are actually relevant to solving the prob-
lem. A lower ratio means a greater number of
distractors.
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¢ G. World Knowledge (M): The number of
arguments in the gold solution that are neither
input arguments from the question text nor
intermediate variables. Such arguments are
mainly real world quantities required to solve
the problem but not explicitly provided by the
question.

e Step Count (E): The total number of steps
in the incorrect student solution.

e Rel. Error Step Loc. (E): The relative
position of the first error step in the incorrect
student solution. This is defined as the ratio of
the first error’s step index and the total number
of steps in the student solution.

* Error Type (E): One of the 7 error types as
shown in Table 4.

e Semantic Recall (E): An estimate of se-
mantic alignment between the steps of the
student solution and the reference solution
(gold solution for w-GS and corrected student
solution for w-Cor) up to the first error step
in the student solution. This is defined as
the BERTScore (Zhang et al., 2020) recall be-
tween the two solutions for the solution texts
before the first erroneous step in the student
solution. See more details in C.1.

Model Fitting We use the Random Forest (RF)
implementation from Scikit-Learn. Before train-
ing the RF model, we prune the feature data to
only retain features with an absolute Spearman
correlation value <0.4. This removes redundant
features, which would otherwise make interpreting
feature importance scores difficult. The RF model
is trained with 200 estimators and each model and
prompt setting is trained 10 times with varying
initialization seeds.

Feature Importance Calculation Trained RF
models return the normalized (sum = 1.0) Gini im-
portance values for each input feature. The overall
importance value (A; %) for a feature ¢ across RF
models is aggregated as weighted mean of each
model’s feature importance for feature i (\;;), by
the corresponding goodness of fit, i.e., accuracy
(aj) (see Eq. 1).

225 @i - Nij

A; =100 x —=—=———
' Zjaj

)

Model P;ompt VtG |  PRMBOOK
S O I S +2
Random - 3189 555 |17.53 3242
w-GS 5647 82.64 | 28.17 46.78
L1lama3-70B w-GS 5647 82.64 | 28.17 46.78
w-Cor  59.20 84.48 | 3125  49.36
w/o-S 5728 82.82 | 2452 4191
Llama3.1-708 w-GS 5370 78.84 | 27.5 4538
w-Cor 5827 81.30 | 2597 41.70
w/o-S 4761 71.68 | 27.16 4549
L1lama3.1-4058 w-GS  54.86 82.00 | 26.72 48.03
w-Cor  56.01 83.58 | 30.79 47.85
wlo-S 5621 83.16 | 2536 4331
GPT-40 w-GS  53.12 7830 | 28.92 49.18
w-Cor  60.86 84.57 | 23.48  37.52
wio-S  48.36 7324 | 37.78 47.54
Quen2.5-72B-Math w-GS 4635 74.92 | 48.97 5851
w-Cor  32.68 65.08 | 43.69 56.37
wio-S 5436 80.77 | 61.70 72.22
LearnLM-1.5-Pro  w-GS  58.14 83.72 | 66.11 75.15
w-Cor 5726 8324 | 66.94 75.66

Table 11: Percentage of incorrect first error-step predictions
where the prediction lies within 1 and *2 steps of the actual
first error step. Bold values denote the greatest percentage
value among the three prompt settings for a given model and
dataset.

C.5 How far off are LLMs?

We aim to assess how close the predicted error
step is to the true error step when the prediction
is incorrect. To do so, we compute the percent-
age of incorrect predictions that fall within +1 and
+2 steps of the actual first error step, as detailed
in Table 11 and further distributions in §C.6. Our
analysis reveals that for VtG (median step count: 5),
between 45% and 60% of the incorrect predictions
are within £1 step, whereas for PRM800K (median
step count: 12), approximately 25% fall within +1
step and nearly 50% within +2 steps. Additionally,
among the three prompt settings, w-Cor most con-
sistently achieves the highest number of predictions
within both windows and performance across mod-
els is similar, with L1ama3-70B matching or sur-
passing both GPT-40 and L1ama3.1-4@5B. These
results suggest that while models often miss the
exact first error step, their predictions remain close,
motivating the development of fine-grained policies
to precisely pinpoint error steps in future work.

C.6 Error-Step Distance Distribution

In §C.5, we report the proportion of incorrectly
predicted error steps that lie within +1 and +2 steps
of the actual error step. In Figures 10 and 11, we
present a more detailed distribution of incorrectly
predicted error steps by their relative distance from
the actual error step for both datasets.
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Figure 10: Error-step distance distributions for VtG
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Figure 11: Error-step distance distributions for PRM800K
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