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Abstract

Video question answering benefits from the
rich information in videos, enabling various ap-
plications. However, the large volume of tokens
generated from long videos presents challenges
to memory efficiency and model performance.
To alleviate this, existing works propose to
compress video inputs, but often overlook the
varying importance of static and dynamic in-
formation across different queries, leading to
inefficient token usage within limited budgets.
We propose a novel token selection strategy,
EXPLORE-THEN-SELECT, that adaptively ad-
justs static and dynamic information based on
question requirements. Our framework first
explores different token allocations between
key frames, which preserve spatial details, and
delta frames, which capture temporal changes.
Then it employs a query-aware attention-based
metric to select the optimal token combina-
tion without model updates. Our framework
is plug-and-play and can be seamlessly inte-
grated within diverse video language models.
Extensive experiments show that our method
achieves significant performance improve-
ments (up to 5.8%) on multiple video ques-
tion answering benchmarks. Our code is avail-
able at https://github.com/ANDgate99/Explore-
Then-Select.

1 Introduction

Video Question Answering (VideoQA) has broad
applications across various fields (Mogrovejo and
Solorio, 2024; Zhang et al., 2024a). Compared to
text, videos provide more intuitive and dynamic
information, delivering richer context and details
by combining visual and temporal elements. Cur-
rent research primarily leverages powerful large
language models to build video language mod-
els (VideoLMs) (Lin et al., 2023; Zhang et al.,
2024b), significantly enhancing AI performance
in VideoQA tasks. However, the extensive visual
information in long videos leads to a dramatic

…

Question1: How many Spider-Men are visible in the video?

Question2: As can be seen in the video, what happens when the 
black Spider-Man is blamed by the other Spider-Man?

Question3: What is the traffic situation in the city?

… …

… … …

Figure 1: Different question types vary in their depen-
dence on static and dynamic information in videos. For
example, Question 2 relies on fine-grained dynamic
information, while Question 1 and 3 only require key
frames. The frames needed to answer the questions are
highlighted with corresponding colored boxes.

increase in token counts. For instance, if one
frame generates 196 tokens (Li et al., 2024a), a
5-minute video sampled at 1 fps would produce
nearly 60,000 tokens, posing significant challenges
to memory requirements and model capabilities.

Given the strict token limitations in practical
VideoLM deployments, effectively representing es-
sential video information requires a careful alloca-
tion between static and dynamic content. Static in-
formation, which refers to the visual content within
individual frames, is crucial for questions like ob-
ject recognition, where spatial details dominate. In
contrast, dynamic information captures temporal
changes and motion patterns across consecutive
frames, which are essential for understanding ac-
tions or events. Figure 1 illustrates different types
of questions, which vary in their reliance on static
and dynamic information. Considering these vary-
ing dependencies, the challenge lies in optimiz-
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ing the allocation of limited tokens to preserve the
most relevant aspects of both static and dynamic
information, depending on specific question re-
quirements. Although existing studies (Shen et al.,
2024; Nie et al., 2024) have explored token com-
pression through changing frame sampling rates
or intra-frame downsampling, they fail to address
the varying dependencies on static and dynamic
information across different question types.

To achieve an effective allocation between static
and dynamic information in visual token compres-
sion, we propose a novel token selection strategy,
EXPLORE-THEN-SELECT, that adaptively aligns
visual tokens with textual queries under a limited
token budget. Unlike previous approaches that rely
on fixed rules, our strategy autonomously and adap-
tively combines static and dynamic content based
on the nature of the questions (e.g., action descrip-
tion, event sequence, or object recognition), ensur-
ing more precise responses to diverse queries.

Specifically, we categorize video frames into key
and delta frames. Key frames are fully retained to
preserve essential spatial details, such as objects,
while delta frames are sparsely processed, keep-
ing only a subset of tokens to capture important
temporal changes. To optimize token allocation be-
tween these two types of frames, EXPLORE-THEN-
SELECT uses a two-stage process. In the explo-
ration stage, we construct a search space compris-
ing various combinations of key and delta frames,
each yielding a token subsequence of constrained
length. By adjusting the proportion of key and delta
frames, we can prioritize either static details or dy-
namic changes based on the question requirements.
In the selection stage, we evaluate each combi-
nation using a query-aware metric derived from
the shallow attention layers of VideoLMs. This
metric quantifies the alignment between the query
and visual tokens, enabling us to select the optimal
combination to answer the question.

Notably, our framework is training-free, as nei-
ther the exploration nor selection processes require
model updates. Leveraging its seamless integra-
tion with diverse VideoLMs, we demonstrate the
effectiveness of our approach on two widely recog-
nized VideoLMs across multiple benchmarks for
both long and short videos. Using our framework,
models can achieve improvements of up to 5.8%.
Our key contributions are summarized as follows:

• Building on the observation that questions rely
differently on static and dynamic video infor-

mation, we propose a novel EXPLORE-THEN-
SELECT framework to adaptively and effec-
tively select visual tokens reflecting the opti-
mal balance of static and dynamic information
under limited token budgets.

• To address static and dynamic information
needs, we design an effective search space
of key-delta frame combinations. During the
selection phase, we employ a query-aware ap-
proach, leveraging an attention-based metric
to adaptively evaluate candidates and select
the optimal combination for each question.

• We conduct extensive experiments on both
long and short video benchmarks, demonstrat-
ing the effectiveness of our method. Thanks
to its plug-and-play design, our approach gen-
eralizes well across different models without
extra fine-tuning and enables direct control
over the token budget for flexible adaptation
to resource constraints.

2 Related Work

2.1 Video Language Models
Significant progress has been made in video lan-
guage model research based on LLMs. These
models can be primarily classified into two types:
general-purpose vision language models (Team
et al., 2024; Chen et al., 2024b; OpenAI, 2024;
Yao et al., 2024; Ye et al., 2023) and specialized
video language models (Lin et al., 2023; Zhang
et al., 2024c; Li et al., 2024c; Zhang et al., 2025;
Liu et al., 2024). Among the former, LLaVA-
OneVision (Li et al., 2024a) unifies image and
video tasks, while Qwen2-VL (Wang et al., 2024)
introduces dynamic resolution support and three-
dimensional positional encoding for enhanced vi-
sual feature capture. Among specialized models,
VideoChat (Li et al., 2023b) targets deep video un-
derstanding and interaction, and LongVA (Zhang
et al., 2024b) extends the context length of lan-
guage models, transferring their advantages in long-
text processing to the video domain.

2.2 Visual Token Compression
Some studies (Bolya et al., 2022) focus on com-
pressing visual tokens in vision encoders. For ex-
ample, RLT (Choudhury et al., 2024) effectively
reduces the number of tokens by replacing re-
peated patches in videos with a single patch. Other
works (Li et al., 2024b; Qian et al., 2025; Shen
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Method Pre- Training-Video-
Input Free Specific

FastV (Chen et al., 2024a) ✗ ✓ ✗

ZipVL (He et al., 2024b) ✗ ✓ ✗

FrameFusion (Fu et al., 2024b) ✗ ✓ ✓

TokenPacker (Li et al., 2024b) ✓ ✗ ✗

VideoStreaming (Qian et al., 2025) ✓ ✗ ✓

SlowFocus (Nie et al., 2024) ✓ ✗ ✓

LongVU (Shen et al., 2024) ✓ ✗ ✓

Ours ✓ ✓ ✓

Table 1: Feature comparison with existing methods.
“Pre-Input” refers to methods that reduce tokens before
feeding them into large language models, while “Video-
Specific” denotes methods that leverage the unique char-
acteristics of video data.

et al., 2024; Lan et al., 2024) introduce dedicated
modules for token compression, such as BLIP-2 (Li
et al., 2023a), which uses a Q-Former module with
learnable queries to generate compact semantic rep-
resentations. Additionally, inspired by KV cache
compression in long text processing (Zhang et al.,
2023), some methods apply similar strategies to vi-
sual tokens (He et al., 2024b; Chen et al., 2024a; Fu
et al., 2024b). These methods optimize token usage
efficiency by setting thresholds based on specific
metrics to prune visual tokens.

Table 1 compares existing methods, noting that
training-free approaches mainly compress tokens
within the KV cache, reducing FLOPs but failing to
address the issue of excessive token input to large
language models. In contrast, methods that reduce
tokens in advance typically require training. This
paper introduces a novel pre-input, training-free
framework for more effective compression, balanc-
ing query-aware static and dynamic information.

3 Preliminary

In this section, we outline the common inference
pipeline of VideoLMs as the setup for our approach.
It consists of three key steps, including video frame
sampling, visual encoding and embedding, and
multimodal inference.

Video Frame Sampling. Given an input video, N
frames are uniformly sampled to form a represen-
tation V ∈ RN×C×Hv×Wv , where C = 3 denotes
the RGB channels, and Hv and Wv represent the
height and width of each frame, respectively.

Visual Encoding and Embedding. The sampled
frames are divided into non-overlapping spatiotem-
poral patches, which are processed by a vision en-

coder to extract spatiotemporal features. These fea-
tures are then projected into the language model’s
token space via a linear projection, resulting in vi-
sual token embeddings F ∈ RT×H×W×D, where
T represents the temporal resolution (typically
equal to N unless temporal downsampling is ap-
plied), H and W denote the spatial resolutions, and
D is the token embedding dimension.

Multimodal Processing. The visual token em-
beddings F are then flattened into a sequence
Tv ∈ RL×D, where L = T × H × W is the se-
quence length. The sequence Tv, instruction em-
beddings Ti, and query embeddings Tq are concate-
nated into a unified input T = [Ti,Tv,Tq], where
[·] denotes token concatenation. Finally, the Vide-
oLM processes the unified input sequence T to
generate a textual response to the question.

4 Method

4.1 Problem Definition
Due to GPU memory and model capability con-
straints, the number of visual tokens processed dur-
ing inference is capped at Lb. The fixed token
budget limits frame sampling to a reduced num-
ber of frames, resulting in a significant loss of rich
visual information, particularly in long videos.

In this work, we aim to sample more frames
to expand the amount of information we can cap-
ture, which generates an excessive number of to-
kens, leading to a sequence length L ≫ Lb. Then
we compress the tokens to meet the token budget,
enabling more effective utilization of rich visual
information within the limited length.

To meet our goal, we propose a token-efficient
framework that automatically and adaptively se-
lects a limited yet informative set of visual tokens
by leveraging the textual query’s relevance to both
static and dynamic visual information. Our method
emphasizes balancing these two types of informa-
tion, ensuring that the selected tokens maximize
their alignment with the query while maintaining
memory efficiency.

4.2 Framework Overview
We adopt an EXPLORE-THEN-SELECT framework,
as illustrated in Figure 2. In the token exploration
stage (Section 4.3), we construct a search space
of n visual token subsequences, each of length Lb,
where every visual token subsequence reflects a dis-
tinct balance of static and dynamic information. In
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Figure 2: Overview of our EXPLORE-THEN-SELECT framework for token selection. During the exploration stage,
multiple subsequences are generated from different combinations of key and delta-frame tokens. In the selection
stage, these subsequences are evaluated using query-aware metrics computed from shallow attention layers, and the
optimal subsequence is chosen as input to the LLM.

the token selection stage (Section 4.4), we identify
the optimal sequence that best aligns with the query
requirements. Details will be discussed below.

4.3 Exploration: Search Space Design

In this section, we describe the generation of n
token subsequences, each of length Lb, from a to-
ken sequence of length L. To balance static and
dynamic information in videos according to query
requirements, we classify frames into key and delta
frames. Note that, due to temporal downsampling
in some models, “frames” here refer to visual token
embeddings F , and the total number of frames is T .
Based on whether the tokens in a subsequence orig-
inate from key or delta frames, we divide them into
two subsets: key-frame tokens Tkey and delta-frame
tokens Tdelta.

Key-frame Token. The key-frame tokens are ex-
tracted from the key frames. Assuming Ns key
frames are selected in the video, we select them
uniformly from F . The temporal indices of these
frames are:

I =

{⌊
kT

Ns

⌋
+ 1 | k = 0, 1, . . . , Ns − 1

}
, (1)

where the first frame is always selected as a key
frame. All tokens from these key frames are re-
tained to form Tkey:

{F i,h,w | i ∈ I, h ∈ [1, H], w ∈ [1,W ]}, (2)

where F i,h,w ∈ RD represents the token embed-
ding at the i-th frame and spatial location (h,w) in
F . Hence, the total number of key-frame tokens is
|Tkey| = Ns ×H ×W .

Delta-frame Token. As illustrated in Figure 3, the
key frames partition the entire sampled frame se-
quence into Ns intervals. The frames between con-
secutive key frames within each interval are defined
as delta frames, and delta-frame tokens Tdelta are
extracted from them to capture dynamic informa-
tion relative to the preceding key frames. Given a
subsequence length of Lb, the total number of delta-
frame tokens is |Tdelta| = Lb−|Tkey|. These tokens
are uniformly distributed across the intervals, such
that the number of delta-frame tokens selected from
the i-th interval is |Tdelta,i| = ⌊|Tdelta|/Ns⌋.

Inspired by video coding techniques, to retain as
much dynamic information as possible, we select
tokens from each interval that exhibit the largest
differences compared to the corresponding tokens
in the preceding key frame. We first define the to-
ken difference metric based on the cosine similarity
between two token embeddings:

D(fi,fj) = 1− fi · fj
∥fi∥∥fj∥

. (3)

This metric increases as the two embeddings be-
come more dissimilar.

For interval i, we compute the difference be-
tween each token in the frames within the interval
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Generated Token Subsequence

… … … …

Interval 1 Interval 2

1 2 3 4 5 6

Key-frame Tokens Delta-frame Tokens

Figure 3: An example of token subsequence generation
with 6 total frames and 2 key frames.

and the token at the corresponding spatial position
in the preceding key frame. Specifically, we define:

∆i(j, h, w) = D(F 0,h,w
i ,F j,h,w

i )

j ∈ [1, Ti], h ∈ [1, H], w ∈ [1,W ],
(4)

where F 0,h,w
i denotes the token embedding at spa-

tial location (h,w) in the preceding key frame of
interval i, and F j,h,w

i denotes the token embedding
at the same spatial location in the j-th delta frame
within the interval. Here, Ti is the number of delta
frames contained in interval i.

We then select the delta-frame tokens cor-
responding to the |Tdelta,i| largest values of
∆i(j, h, w), forming the set Tdelta,i as:

{F j,h,w
i | (j, h, w) ∈ arg Top|Tdelta,i|∆i(j, h, w)}.

(5)

Token Subsequence Generation. Then we merge
Tkey and Tdelta according to their original order to
obtain the Lb-long token subsequence T̂v.

To generate n candidate token subsequences,
we vary the number of key frames Ns from 1 to
n. A smaller Ns results in more delta-frame to-
kens, thereby capturing more dynamic information
within the same token budget. Conversely, a larger
Ns increases the number of key-frame tokens, pre-
serving more static information. In this way, we
can generate token subsequences with varying pro-
portions of static and dynamic information to adapt
to the requirements of different queries.

Notably, our frame division is inspired by the
GOP structure in video codec (Lee et al., 2006),

where I-frames encode full scene information and
P/B-frames encode temporal differences. Similar to
adjusting GOP sizes, varying the proportion of key
and delta frames allows us to control the emphasis
on static or dynamic cues.

4.4 Selection: Quick Evaluation
After obtaining n token subsequences of length Lb,
we perform an evaluation and select the optimal
subsequence based on the chosen metric. Previ-
ous studies have identified certain characteristics
of visual tokens in attention mechanisms. For in-
stance, Chen et al. (2024a) shows that most visual
tokens can be removed at the second layer with-
out significant performance loss, and Wan et al.
(2024) observes that visual tokens are generally
less attended. Based on these findings, we con-
sider that the attention mechanism at the second
layer already provides meaningful clues of token
importance. Besides, we hypothesize that higher
cumulative attention scores on visual tokens indi-
cate a better utilization of the visual information.

To enable quick evaluation, we compute the at-
tention score matrix S at the second layer of the
VideoLMs, using textual query tokens as the query
input, and instruction and visual tokens as the key
input:

Q = WQHq, (6)

K = WK concat(Hi,Hv), (7)

S = softmax
(
QK⊤
√
dk

)
, (8)

where Hq, Hi, and Hv denote the hidden features
of the textual query, instruction, and visual inputs.
Here, dk is the dimension of key vectors in the at-
tention mechanism. To quantify the attention allo-
cated to the visual tokens, we compute the summed
attention scores of the visual tokens. Specifically,
to ensure comprehensive consideration of each text
query token, we first extract the maximum values
along the query dimension from S, yielding an at-
tention score vector s for each visual token. Then
we sum the attention scores of the visual tokens:

s = max
i

Sij , (9)

s =

Ni+Nv∑

j=Ni

sj , (10)

where Sij represents the attention score of the i-th
query token to the j-th visual token, Ni denotes the
number of instruction tokens, and Nv is the number
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Model Settings EgoSchema VideoMME MLVU
Method Sample Budget Short Medium Long Overall

VideoChat2 - 16 - 54.4 48.3 37.0 33.2 39.5 -
LongVA - 128 - - 61.1 50.4 46.2 52.6 -
mPLUG-Owl3 - 128 - - 70.0 57.7 50.1 59.3 -
LongVU - 1fps - 67.6 - - - 60.6 65.4

Qwen2-VL-7B

Original 64 - 66.2 71.1 59.4 50.8 60.4 50.6
Retrieval 256 64 63.6 71.0 61.3 52.2 61.5 49.4
Similarity 256 64 66.6 71.4 60.6 51.8 61.3 53.0
Ours 256 64 67.8 72.4 63.1 53.2 62.9 54.4

Original 32 - 64.7 68.9 55.2 48.7 57.6 46.8
Retrieval 128 32 61.7 70.0 58.6 51.6 60.0 46.8
Similarity 128 32 65.6 70.1 58.7 51.8 60.2 47.2
Ours 128 32 66.7 71.4 61.0 51.7 61.4 52.2

LLaVA-OneVision-7B

Original 64 - 60.1 70.6 55.8 47.8 58.0 50.8
Retrieval 256 64 57.7 64.0 53.4 47.0 54.8 44.6
Similarity 256 64 59.6 71.0 57.9 50.8 59.9 48.4
Ours 256 64 60.3 71.9 58.3 51.4 60.6 51.2

Original 32 - 60.4 71.3 57.4 48.0 58.9 46.8
Retrieval 128 32 57.9 63.2 53.9 46.0 54.4 44.0
Similarity 128 32 60.2 70.8 57.1 49.7 59.2 50.2
Ours 128 32 60.5 70.2 58.0 51.6 59.9 51.0

Table 2: Results on long video benchmarks show that our method achieves significant improvements over the
baselines, particularly on the advanced Qwen2-VL, with up to a 5.8% gain on the VideoMME medium subset.

of visual tokens. Finally, from the n candidates,
we select the input with the highest sum of visual
token attention scores as the optimal input:

T̄v = argmax
m∈{1,2,...,n}

sm, (11)

where sm denotes the summed attention score for
the m-th token subsequence.

5 Experiments

5.1 Experimental Settings
Benchmarks. To comprehensively evaluate per-
formance, we select benchmarks for both long and
short videos. We use VideoMME, EgoSchema,
and MLVU for long videos, and MSVD-QA and
ActivityNet-QA for short videos.

VideoMME (Fu et al., 2024a) contains 900
videos (11 seconds to 1 hour) and 2,700 QA pairs.
EgoSchema (Mangalam et al., 2023) includes over
5,000 questions based on videos averaging 3 min-
utes in length. MLVU (Zhou et al., 2024) provides
videos ranging from 3 minutes to 2 hours, with
the test set containing over 500 QA pairs. MSVD-
QA (Xu et al., 2017) includes 1,970 short clips (10
seconds on average), with a test split of approx-
imately 13,000 questions. ActivityNet-QA (Yu
et al., 2019) provides 800 videos and 8,000 QA

pairs in the test set.
We adopt multiple-choice accuracy as the eval-

uation metric for VideoMME, EgoSchema, and
MLVU, and employ GPT-4o mini (OpenAI, 2024)
to score answers for the open-ended MSVD-QA
and ActivityNet-QA.

Baselines. We validate our plug-and-play method
on two representative models: Qwen2-VL (Wang
et al., 2024), featuring dynamic resolution and mul-
timodal rotary position embeddings, and LLaVA-
OneVision (Li et al., 2024a), supporting multi-
ple tasks, both in their 7B versions. Results for
Qwen2.5-VL (Bai et al., 2025) are included in Ap-
pendix A.1.

As shown in Table 1, prior methods either com-
press only within the KV cache, leaving long input
sequences unaddressed, or require training models,
making direct comparison with our training-free
approach unfair. Thus, we consider three baselines:
1) Original: uniform frame sampling within the to-
ken budget; 2) Retrieval: oversample frames, then
prune based on cosine similarity between frame
and query embeddings to fit the token limit; 3) Sim-
ilarity: oversample frames, then prune based on
cosine similarity between adjacent token embed-
dings. In practice, both “Retrieval” and “Similarity”
strategies are commonly adopted in compression
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modules (Qian et al., 2025; Song et al., 2024; He
et al., 2024a). For reference, we also report results
from several training-based video understanding
methods (Li et al., 2023b; Zhang et al., 2024b; Ye
et al., 2024; Shen et al., 2024) in the first block of
Table 2, though they are not directly comparable
due to training cost differences. To further validate
the advantages of our method, we include a com-
parison with our reproduced training-free LongVU
in Appendix A.2.

Implementation Details. All experiments are run
on two 40GB A100 GPUs or one 80GB A100 GPU.
For multiple-choice questions, the model generates
one token (three for MLVU), while for open-ended
questions, outputs are limited to 30 tokens. The
prompts used are detailed in Appendix B. Sampling
is disabled to ensure deterministic results.

Note that video resolution affects the number
of frame tokens generated by Qwen2-VL, making
a fixed token budget yield varying frame counts
across videos and complicating comparisons. To
address this, we set a frame-based budget Tb, so the
token limit is Lb = Tb×H ×W , where H ×W is
the token count per frame. This approach stream-
lines implementation and ensures fair comparison.
Besides, unless otherwise specified, the number
of subsequences generated during the exploration
stage is set to half of the frame budget Tb.

5.2 Main Results
Long Video Results. Table 2 shows results on
long video benchmarks for two settings: 256-frame
sampling with a 64-frame budget (256-64) and 128-
frame sampling with a 32-frame budget (128-32).
Our method outperforms baselines across all bench-
marks and most subsets. Qwen2-VL-7B signif-
icantly outperforms baselines by up to 4.2% on
EgoSchema, 2.5% on VideoMME, and 5.0% on
MLVU (256-64), and by up to 5.0%, 3.8%, and
5.4% (128-32), with a 5.8% gain on VideoMME
medium subset. While our method also achieves
notable improvements on LLaVA-OneVision-7B,
the gains are less pronounced than on Qwen2-VL,
likely due to noise from its one-dimensional posi-
tional encoding. The three-dimensional positional
encoding of Qwen2-VL-7B offers more stable re-
sults, highlighting the importance of positional en-
coding design. Overall, these results demonstrate
the effectiveness of our method and reveal some
model-specific behaviors and limitations.

Short Video Results. Short video benchmarks

Model Method MSVD-QA ActivityNet-QA
Acc Score Acc Score

Qwen2-VL

Original 66.0 3.59 50.3 2.82
Retrieval 64.4 3.52 48.6 2.74
Similarity 66.5 3.60 51.4 2.87
Ours 66.8 3.61 52.4 2.90

LLaVA-
OneVision

Original 54.3 3.09 52.6 2.90
Retrieval 54.8 3.12 50.1 2.77
Similarity 54.3 3.10 52.4 2.89
Ours 54.7 3.11 53.0 2.92

Table 3: Results on short video benchmarks. Although
primarily focused on long videos, our method show
stable and generalizable performance on short videos.

Method EgoSchemaVideoMME MLVU

Original 64.7 57.6 46.8
Explore + Random 66.3 60.7 50.2
Explore + Select 66.7 61.4 52.2

Table 4: Ablation study of our method. Results demon-
strate the effectiveness of both stages, with each compo-
nent yielding improvements over the baseline.

inherently contain fewer frames, simpler scenes,
and primarily coherent motion, making them less
affected by token length limitations. As a result,
the trade-off between static and dynamic informa-
tion is less pronounced, and performance gains
tend to be smaller compared to long video settings.
Nonetheless, we evaluate our method’s generaliza-
tion on short video benchmarks by sampling 64
frames and setting the budget to 16 for videos aver-
aging 10 seconds. As shown in Table 3, our method
consistently outperforms all baselines on Qwen2-
VL-7B, achieving up to 3.8% higher accuracy and
0.16 higher scores. On LLaVA-OneVision-7B, it
achieves strong results on ActivityNet-QA and per-
forms comparably to the “Retrieval” baseline on
MSVD-QA. These results demonstrate the robust-
ness and generalization ability of our method even
under short video scenarios.

5.3 Ablation Studies

Stage Ablation. As shown in Table 4, we conduct
a two-stage ablation study on our method. The abla-
tion experiments are performed on Qwen2-VL-7B,
sampling 128 frames with a budget of 32 frames.
First, we validate the effectiveness of the explo-
ration stage. As indicated by the “Explore + Ran-
dom” row in the table, generating multiple token
subsequences followed by random selection results
in improvement compared to the original opera-
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Question 1 - What is the result of the match? (OCR)      
Key-frame : Delta-frame Token Number - 3 : 1

Question 2 - What is the performance of Brazil‘s player number 9 in the match? (Action) 
Key-frame : Delta-frame Token Number - 5 : 11

…

… ……

Figure 4: The qualitative analysis demonstrates that our method adjusts token allocation according to the query. For
Question 1, an OCR task, the ratio of key-frame tokens to delta-frame tokens was 3:1. In contrast, for Question 2,
an action recognition task, the ratio was 5:11.

Model Method EgoSchema VideoMME

Qwen2-VL

w/ query 66.3 61.6
w/o query 66.7 61.4

mean 66.0 60.9
max 66.7 61.4

Table 5: Ablation study on metric design. The first
block shows that including the query token in K has
a negligible impact, so it is omitted. The second block
finds that the max operation in Equation (9) outperforms
the mean on both benchmarks.

66.5

66.6

66.7

66.8

66.9

 1/4  1/2 1

(a) EgoSchema

61.1

61.2

61.3

61.4

61.5

 1/4  1/2 1

(b) VideoMME

Figure 5: Search space size analysis. The x-axis repre-
sents the search space size. There are n subsequences
in the space, and their key frame number ranges from
{1, 2, . . . , n}. Assuming the budget frame is Nb, “1”
refers to n = Nb, “1/2” indicates n = ⌊Nb/2⌋, “1/4”
represents n = ⌊Nb/4⌋. Larger search spaces benefit
EgoSchema but hurt VideoMME and increase the time
cost. A balanced setting uses half the budget size.

tion, demonstrating the rationality of our search
space design. Then we verify the effectiveness of
the selection phase. On all benchmarks, our selec-
tion method achieves improvement over random
selection.

Metric Ablation. Table 5 presents two ablation
studies on our metric design using Qwen2-VL-7B
(128-frame sampling, 32-frame budget). The first
block compares including or excluding the query
token in the construction of K in Equation (7),
finding only marginal differences; for simplicity,
we exclude the query token in our final design. The

second block compares max and mean operations
for query aggregation in Equation (9), showing that
the max operation consistently yields better results,
thus supporting our metric choice.

5.4 Further Analysis
Qualitative Analysis. Figure 4 shows two ques-
tions from the same video, both correctly answered
using our method. In this example, we employ
128-frame sampling with a 32-frame budget, and
the search space is defined as the full frame bud-
get. Question 1, an OCR problem predominantly
reliant on static information, prompts the method
to allocate a key-to-delta-frame token ratio of 3:1.
Conversely, action-related Question 2, necessitat-
ing the identification of a player scoring a goal,
leads to the adoption of a key-to-delta-frame token
ratio of 5:11.

Search Space Size. We investigate the impact of
search space size on performance using Qwen2-
VL-7B, sampling 128 frames with a 32-frame bud-
get. Figure 5 shows that performance improves
on EgoSchema when the search space matches the
budget, but declines on VideoMME. We attribute
this to excessive key frames, causing sparse delta-
frame token selection and deviation from the train-
ing distribution, reducing effectiveness. Addition-
ally, the time cost rises with the search space size.
Therefore, we set the search space to half the frame
budget to balance these factors.

Efficiency Trade-off. With a limited token budget,
sampling more frames prior to compression and
input can improve performance. As shown in Ta-
ble 6, compressing 32 to 256 sampled frames into
a 32-frame budget consistently improves accuracy.
While compression introduces computational over-
head, our primary focus is on memory efficiency
and information retention. This approach involves
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Metric 32 64 128 256 512

Accuracy (%) 46.8 52.0 52.2 54.0 54.6

Encoding (s) 0.125 0.222 0.424 0.827 1.628
Selection (s) - 0.537 0.557 0.565 0.575

Table 6: Performance and efficiency trade-off on
the MLVU dataset using Qwen2-VL. Sampling more
frames before compression improves accuracy. While
the encoding cost increases roughly linearly (not spe-
cific to our method), the selection cost introduced by
our framework remains stable.

a trade-off between performance and time cost; all
reported time measurements are averaged over 10
runs to reduce variance. The main overhead stems
from token selection and the increased load on the
vision encoder. The selection cost, introduced by
our framework, remains stable at approximately
0.5–0.6s and affects only the first-token latency,
leaving subsequent decoding unaffected. The en-
coding cost scales roughly linearly with the number
of sampled frames, but this is a general issue that
can be largely mitigated by using asynchronous
computation in multi-GPU environments.

6 Conclusion

Given that long videos possess tokens far exceed-
ing the capacity that models can process, we ad-
vance token compression strategies by unveiling
the following crucial fact: different question types
exhibit varying dependencies on dynamic and static
information. Based on this discovery, we propose
a novel token selection strategy for visual token
compression. Our method splits video frames into
key and delta frames, and adaptively determines
the optimal token allocations among key and delta
frames guided by each specific query. Experiments
demonstrate the effectiveness and generalizability
of our method across multiple models and datasets.

Limitations

In this paper, we propose a novel token selection
strategy for visual token compression in video ques-
tion answering, addressing the varying dependen-
cies of questions on dynamic versus static video
information. Our method has demonstrated effec-
tiveness across multiple datasets, yet certain lim-
itations remain. First, variations in positional en-
coding mechanisms across models may affect the
ability to accurately estimate video length and tem-
porally localize events. Nonetheless, we believe

our approach offers valuable insights for design-
ing compression modules in both pre-trained and
fine-tuned video models. In terms of efficiency, our
method introduces no additional memory overhead
(superior to pruning in the key-value cache) but
does incur extra time cost. This overhead mainly
arises from the token selection process, where the
selection metric is computed using the output of a
shallow (second-layer) attention layer. Here, only
the attention map between query and visual tokens
is calculated, and multiple subsequences must be
compared to finalize the selection. Importantly,
this overhead occurs only during the initial token
inference and does not affect subsequent decod-
ing, and such costs are a common trade-off in most
compression methods.
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A Additional Experiments

The appendix presents additional experiments,
including results on the advanced Qwen2.5-VL
model and comparisons between our method and
the reproduced training-free LongVU approach.

A.1 Experiments on Qwen2.5-VL
Qwen2.5-VL is the latest vision language model
in the Qwen series models, officially released in
February 2025. Building upon the foundation of
Qwen2-VL, Qwen2.5-VL introduces significant en-
hancements in long video comprehension. Notably,
it incorporates absolute time encoding, enabling
the model to handle videos of extended durations
with second-level event localization. To provide a
more comprehensive evaluation of our method, we
report experimental results on the Qwen2.5-VL-7B
model using the same experimental settings as in
the main text.

Long Video Results. Table 7 presents the long
video benchmark results on Qwen2.5-VL-7B un-
der different sampling and budget settings. Across
both the 256-64 and 128-32 configurations, our
method consistently achieves the best performance
on EgoSchema, MLVU, and the VideoMME long
subset. Notably, it improves performance on the
VideoMME long subset and MLVU by up to 5.1%
and 8.4% compared to the baselines. For the
VideoMME short and medium subsets, due to the
shorter video length, our approach does not sig-
nificantly outperform all baselines but still deliv-
ers strong results. These findings demonstrate the
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Model Settings EgoSchema VideoMME MLVU
Method Sample Budget Short Medium Long Overall

Qwen2.5-VL-7B

Original 256 - 60.3 75.0 61.8 51.0 62.6 50.0
Retrieval 256 64 60.9 75.4 66.7 54.8 65.6 56.2
Similarity 256 64 60.8 74.0 64.7 54.3 64.3 53.6
Ours 256 64 61.6 75.8 65.2 56.1 65.7 58.4

Original 128 - 59.1 73.1 60.0 49.6 60.9 47.2
Retrieval 128 32 60.2 74.6 64.8 53.3 64.2 48.4
Similarity 128 32 60.0 73.3 60.9 51.6 61.9 47.6
Ours 128 32 60.6 74.1 63.2 53.9 63.7 51.6

Table 7: Long video benchmark results on Qwen2.5-VL-7B. Our method achieves the best performance on
EgoSchema, MLVU, and the VideoMME long subset, with improvements of up to 5.1% on the VideoMME long
subset and 8.4% on MLVU over the baselines, demonstrating strong effectiveness and generalization.

Model Method ActivityNet-QA
Accuracy Score

Qwen2.5-VL

Original 52.1 2.96
Retrieval 52.7 2.98
Similarity 53.1 2.99
Ours 54.3 3.07

Table 8: Short video benchmark results on Qwen2.5-VL.
Our method achieves the highest accuracy and score,
outperforming all baselines.

Model Method EgoSchema VideoMME

Qwen2-VL
Original 66.2 60.4
LongVU 67.2 62.3
Ours 67.8 62.9

LLaVA-
OneVision

Original 60.1 58.0
LongVU 60.3 59.3
Ours 60.3 60.6

Qwen2.5-VL
Original 60.3 62.6
LongVU 61.6 64.5
Ours 61.6 65.7

Table 9: Comparison with the reproduced training-
free LongVU. Our method consistently outperforms
the reproduced LongVU across models and benchmarks,
while offering more precise control over the token count.

effectiveness and robustness of our method and
further validate its strong generalization capability
across different models.

Short Video Results. Although our method is
primarily designed for long video understand-
ing, it also delivers strong results on short video
tasks. For example, on Qwen2.5-VL evaluated with
ActivityNet-QA under the 64-frame sampling and
16-frame budget setting, our approach achieves the
best performance among all baselines. As shown
in Table 8, it attains the highest accuracy of 54.3%

and a score of 3.07, outperforming the baselines by
up to 2.2% in accuracy and 0.11 in score. These re-
sults further demonstrate that our method remains
robust and effective across different video lengths.

A.2 Comparison with Training-free LongVU

To further highlight the advantages of our approach,
we compare it with LongVU (Shen et al., 2024) by
reproducing its compression method in a training-
free setting under the 256-frame sampling and 64-
frame budget configuration. Following the original
paper, we use DINOv2 (Oquab et al., 2023) with
a 0.83 threshold for frame reduction and apply a
⌊2/3⌋ downsampling ratio. However, we observe
that achieving an exact token budget with LongVU
requires careful tuning of thresholds and heuristics,
providing only indirect control over compression.
In contrast, our method employs top-K selection,
allowing direct and precise control of the token
count. As shown in Table 9, our approach consis-
tently outperforms the reproduced LongVU across
all models and benchmarks, while offering more
reliable and practical token budget management.

B Prompt Details

We use the template provided by the model for the
instruction prompt, while introducing our textual
organization format only in the questioning part.

B.1 Prompts for Multiple-Choice Questions

We add the sentence "Respond with only the
letter (A, B, C, or D) of the correct option." at the
beginning of the multiple-choice questions. Here
is an example for questions in VideoMME:

Respond with only the letter (A, B, C, or D) of the
correct option.
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Which elements are depicted in the painting intro-
duced by the video?
A. A little girl and a red balloon.
B. A little boy and a red balloon.
C. A little girl and a blue balloon.
D. An adult and a blue balloon.

Here is an example for EgoSchema:

Respond with only the letter (A, B, C, D or E) of
the correct option.
Taking into account all the actions performed by c,
what can you deduce about the primary objective
and focus within the video content?
A. C is cooking.
B. C is doing laundry.
C. C is cleaning the kitchen.
D. C is cleaning dishes.
E. C is cleaning the bathroom.

And here is an example for MLVU:

Respond with only the letter (A, B, C, D, E or F) of
the correct option.
In what setting does the video take place?
(A) Castle
(B) Forest
(C) Desert
(D) Countryside
(E) Ocean
(F) Campus

B.2 Prompts for Open-Ended Questions
We add the sentence "Answer the question
according to the video." at the beginning of the
open-ended questions. Here is an example:

Answer the question according to the video.
Who did circles on the back tire of his motorcycle
in the parking lot?
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