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Abstract

We introduce AdamS, a simple yet effective
alternative to Adam for large language model
(LLM) pretraining and post-training. By lever-
aging a novel denominator, i.e., the root of
weighted sum of squares of the momentum and
the current gradient, AdamS eliminates the need
for second-moment estimates. Hence, AdamS
is efficient, matching the memory and com-
pute footprint of SGD with momentum while
delivering superior optimization performance.
Moreover, AdamS is easy to adopt: it can di-
rectly inherit hyperparameters of AdamW, and
is entirely model-agnostic, integrating seam-
lessly into existing pipelines without modifica-
tions to optimizer APIs or architectures. The
motivation behind AdamS stems from the ob-
served (L0, L1) smoothness properties in trans-
former objectives, where local smoothness is
governed by gradient magnitudes that can be
further approximated by momentum magni-
tudes. We establish rigorous theoretical conver-
gence guarantees and provide practical guide-
lines for hyperparameter selection. Empirically,
AdamS demonstrates strong performance in var-
ious tasks, including pre-training runs on GPT-
2 and Llama2 (up to 13B parameters) and re-
inforcement learning in post-training regimes.
With its efficiency, simplicity, and theoretical
grounding, AdamS stands as a compelling alter-
native to existing optimizers.

1 Introduction

Due to the scaling law (Kaplan et al., 2020) of
neural networks, it has been enthusiastic in the AI
community to pre-train large foundation models
with enormous data over the past years (Touvron
et al., 2023a; Brown et al., 2020; Zhang et al., 2022;
Rae et al., 2021; Chowdhery et al., 2022; Du et al.,
2021; Liu et al., 2024; Dubey et al., 2024; Yang

*The first two authors contribute equally. Correspon-
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lxchen25@stu.pku.edu.cn.
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Figure 1: Training and validation loss curves for pretrain-
ing LLaMA 2–7B models. The proposed AdamS achieves
convergence comparable to or better than baseline methods
under the same hyperparameter settings as LLaMA 2 (Touvron
et al., 2023b), while eliminating the need to store AdamW’s
second-moment estimates.

et al., 2024). Training such large foundation mod-
els become super challenging because of tremen-
dous engineering efforts, computational cost (Rajb-
handari et al., 2019; Guo et al., 2025), and potential
training spikes (Zhang et al., 2022; Molybog et al.,
2023; Chowdhery et al., 2022).

One reason for such high cost comes from the
widely used optimizer Adam (Kingma and Ba,
2014) or AdamW (Loshchilov and Hutter, 2019):
the optimizers require storing both the state of mo-
mentum and the state of second-moment estimates,
which consumes 2 ∼ 4 times GPU memories of
the model size, huge for models with hundreds of
billions of parameters. In practice, practitioners
employ advanced distributed-training frameworks,
such as Fully Sharded Data Parallel (FSDP) (Zhao
et al., 2023) and DeepSpeed’s ZeRO optimizer (Ra-
jbhandari et al., 2019), to shard optimizer state
across multiple GPUs and exchange only the nec-
essary parameters over high-bandwidth intercon-
nects, thereby compensating memory consumption
by communication.

In this paper, we try to reduce such memory
cost by proposing a simple yet effective opti-
mizer AdamS, an alternative to AdamW. AdamS
eliminates the need for second-moment estimates,
by leveraging a novel denominator: the root of
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weighted sums of squares of the momentum and
the current gradient. As a consequence, AdamS
matches the memory and compute footprint of
stochastic gradient descent (SGD) with momen-
tum while delivering superior performance as good
as AdamW.

The design of AdamS is inspired by the obser-
vation that transformer-based models, which dom-
inate modern large language models (LLMs), ex-
hibit unique smoothness properties in their opti-
mization landscapes. Specifically, the local smooth-
ness of these objectives is governed by gradient
magnitudes, which suggests that the learning rate
should be proportional to the reciprocal of the
gradient norm at each iteration, explaining why
Adam optimizer beats SGD on training transformer-
like architectures (Zhang et al., 2019; Wang et al.,
2023b). We further employ the fact that momen-
tum, an exponential average of historical gradients,
can provide a good and robust estimate of gradi-
ent magnitude (Cutkosky and Mehta, 2020; Zhang
et al., 2020) without the need for complex second-
moment computations. By leveraging this insight,
AdamS reduces memory cost of the optimizer states
by half. Such efficiency of AdamS is particularly
attractive for large-scale training, where even small
improvements in efficiency can translate into sig-
nificant cost savings.

Recognizing this deep-rooted dependency on
AdamW, we emphasize that AdamS is easy to adopt
and can serve as a drop-in replacement for AdamW
for pre- and post-training tasks of LLM. Moreover,
AdamS is model-agnostic, making it easy to inte-
grate into existing pipelines without modifications
to APIs or model architectures. More importantly,
it inherits AdamW’s hyperparameter configuration,
thereby mitigating the often prohibitive costs of
hyperparameter re-tuning and minimizing the risk
associated with deploying a new optimizer at scale.

Empirically, AdamS demonstrates strong perfor-
mance across a wide range of tasks and architec-
tures, namely the transformer-based next-token pre-
diction pretraining tasks and GRPO reinforcement
learning tasks. In pretraining scenarios, it matches
or exceeds the performance of AdamW on mod-
els ranging from GPT-2 to Llama2, with parame-
ter counts up to 13B as shown in Figure 1. This
scalability is particularly important given the grow-
ing trend toward even larger models and datasets.
Additionally, AdamS excels in post-training tasks,
including reinforcement learning (RL), where it
achieves state-of-the-art results in tasks such as

the DeepSeek R1-Zero replication. This versatil-
ity underscores its potential as a general-purpose
optimizer for both pretraining and post-training
paradigms.

On the theoretical side, we establish rigorous
convergence guarantees that demonstrate the effec-
tiveness of AdamS in optimizing non-convex ob-
jectives, which are typical in LLM training. These
guarantees are derived under realistic assumptions
about the smoothness and noise properties of the
optimization landscape.

Our contributions can be summarized as follows:

• Innovative Optimizer Design: We introduce
AdamS, which eliminates the need for second-
moment estimates by leveraging a novel
normalization strategy based on a weighted
momentum-gradient combination. This ap-
proach reduces the memory footprint of opti-
mizers’ state by 50% while maintaining the
ease of adoption.

• Theoretical Grounding: We rigorously an-
alyze the convergence guarantees of AdamS
for optimizing non-convex objectives under
relaxed smoothness and weak noise assump-
tions, which matches the lower bounds of any
gradient-based optimizers.

• Empirical Validation: Through extensive
experiments, e.g., large-scale pretraining on
models like GPT-2 and Llama2 (up to 13B
parameters) and reinforcement learning post-
training tasks such as DeepSeek R1-Zero
replication, we demonstrate that AdamS con-
sistently matches AdamW, underscoring its
versatility across different training paradigms.

In the following sections, we detail the motiva-
tion and formulation of AdamS. We then present the
theoretical analysis and convergence guarantees,
followed by an extensive empirical study spanning
a variety of tasks and architectures. Through this
comprehensive exploration, we aim to establish
AdamS as a compelling alternative in the evolving
landscape of large language model pretraining and
post-training optimization.

1.1 Related Works
The smoothness property of transformer-like
architectures. The seminal work (Zhang et al.,
2019) introduced the (L0, L1)-smooth condition
that assumes local smoothness bounded by the lo-
cal gradient norm, which is nicely verified by the
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optimization landscape of training transformer-like
models. Under these assumptions, convergence
properties of adaptive optimizers, AdaGrad (Faw
et al., 2023; Wang et al., 2023b), Adam (Wang
et al., 2022; He et al., 2023; Wang et al., 2023b;
Li et al., 2023) are established and the benefit over
SGD is demonstrated. Our design of AdamS is in-
spired by these local smoothness properties, and
delivers robust empirical performance, where gra-
dient magnitudes govern optimization dynamics
particularly in transformer-like architectures.

Memory-efficient adaptive learning rate op-
timizers. In the development of memory-efficient
adaptive learning rate optimizers, several notable
methods have been proposed to address the chal-
lenges of high memory consumption in large-scale
neural network training. Shazeer and Stern (2018)
introduced Adafactor, which reduces memory us-
age by maintaining only per-row and per-column
sums of the second-moment estimates for weight
matrices. Anil et al. (2019) proposed SM3, a
memory-efficient adaptive optimization method
that approximates second-moment statistics with
sublinear memory cost by partitioning parame-
ters and sharing second-moment estimates among
them. SM3 achieves per-parameter adaptivity with
reduced memory overhead, facilitating the train-
ing of larger models and mini-batches. Luo et al.
(2023) developed CAME to address the instabil-
ity issues of existing memory-efficient optimiz-
ers via a confidence-guided adaptive strategy. Lv
et al. (2023) introduced AdaLomo, which combines
low-memory optimization techniques with adaptive
learning rates by employing non-negative matrix
factorization for second-order moment estimation.
Zhao et al. (2024) proposed GaLore that projects
weight gradients onto a low-rank subspace, and up-
date the model in the low-rank subspace, enabling
fine-tuning LLM with consumer-grade GPUs with
24GB memory, where the idea of low-rank projec-
tion has been initiated in (Yu et al., 2021). Recently,
Zhang et al. (2024) proposed Adam-mini, an opti-
mizer that reduces memory usage by partitioning
model parameters into blocks based on the Hes-
sian structure and assigning a single learning rate
to each block, reducing memory consumption of
optimizer state by approximately 45% to 50%.

Despite the proliferation of all these advance-
ments, practitioners often hesitate to move away
from AdamW because they either need to tune
more hyperparameters, or require to be aware of
the model architecture, or do not systematically

surpassing AdamW in large-scale learning (Kad-
dour et al., 2023; Hoffmann et al., 2022). In con-
trast, AdamS offers a model-agnostic solution that
seamlessly integrates into existing workflows. It re-
quires no additional hyperparameters beyond those
used in AdamW, allowing for straightforward adop-
tion and tuning. Moreover, AdamS matches the
memory efficiency of vanilla SGD with momen-
tum while delivering performance comparable to
AdamW, making it a practical drop-in replacement
that one can enjoy benefits with minimal effort.

Adam-mini indeed targets memory efficiency,
but it requires architectural awareness (e.g., group-
ing parameters), whereas AdamS applies in a
model-agnostic way, without model-specific mod-
ifications. Adam-mini also maintains a second-
moment approximation, albeit coarsely, while
AdamS eliminates it entirely.

The main claim of Adam-mini paper is that
Adam-mini can mimic the performance of AdamW
with memory saving of the second moments.
Hence it is sufficient to compare AdamS with
AdamW given the performance of Adam-mini is
fully captured by AdamW.

2 Motivation and Design Choices of
AdamS

This section outlines the motivation behind our opti-
mizer design—specifically, the rationale for adopt-
ing the root mean square of a properly weighted
momentum itself and the current gradient as an
adaptive denominator. We then formalize the algo-
rithm and analyze its properties.

2.1 Motivation and (L0, L1) smoothness

In classical optimization settings, gradient de-
scent provably decreases the loss at each itera-
tion—provided the learning rate is smaller than the
inverse of the smoothness constant. However, this
principle fails to hold for transformer-based mod-
els, where stochastic gradient descent (SGD) with
momentum exhibits poor convergence empirically.
Recent work (Zhang et al., 2019) identifies a key
observation: Transformer training objectives vio-
late standard smoothness assumptions and instead
obey a relaxed (L0, L1)-smoothness condition. Un-
der this regime, the local smoothness depends on
the gradient magnitude, enabling pathological cur-
vature that can arbitrarily slow SGD’s progress
(Wang et al., 2023a). The (L0, L1)-smoothness
assumption is as follows.
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Assumption 2.1 ((L0, L1)-smooth condition). As-
suming that f is differentiable and lower bounded,
there exist constants L0, L1 > 0, such that
∀w1,w2 ∈ Rd satisfying ∥w1 −w2∥ ≤ 1

L1
,

∥∇f(w1)−∇f(w2)∥
≤(L0 + L1∥∇f(w1)∥)∥w1 −w2∥.

Assumption 2.1 is a general form of (L0, L1)-
smooth condition, equivalent to the Hessian-bound
form (Zhang et al., 2019) when Hessian exists.

When Assumption 2.1 holds, the local smooth-
ness of the objective function is bounded by the
the linear form of the gradient norm (i.e., L(w) ≤
L0 + L1∥∇f(w)∥. We know that the smoothness
constant L(w) governs how much the gradient can
change locally. If L(w) scales with ∥∇f(w)∥,
the curvature (and thus the risk of overshooting)
increases with the gradient’s magnitude. This ne-
cessitates a smaller learning rate when the gradient
is large and allows a larger rate when the gradient
is small.

A brief derivation (see details in Appendix C)
gives a range of ηt that guarantees decreasing
function value at each step, i.e., ηt ≤ 1/(L0 +
L1∥∇f(wt)∥), which ensures convergence by bal-
ancing the descent and curvature terms. This adap-
tively scales η inversely with the grad’s magnitude.

In practice, we do not know the exact values of
L0 and L1, a typical choice of ηt should be

ηt =
C

∥∇f(wt)∥+ ϵ
,

for some constant or scheduled constant C after
taking account of avoiding explosion near minima.
Such an argument can be extended to coordinate-
wise sense, which necessitates per-coordinate adap-
tive learning rates.

We note that Adam adapts learning rates using
second-moment estimates, i.e., the exponential av-
erage of of the square of historical gradients to
approximate the gradient magnitude. We draw in-
spiration from (Zhang et al., 2020), which demon-
strates that momentum—the exponential moving
average of historical gradients—can itself serve as a
robust proxy for gradient magnitudes. Building on
this insight, we propose replacing second-moment
estimation with a novel denominator derived from
a weighted combination of momentum and the cur-
rent mini-batch gradient. This approach retains
the benefits of adaptive learning rate tuning while
eliminating the computational overhead of tracking
second moment statistics.

2.2 The Design of AdamS

The design of AdamS is given by Algorithm 1.
Specifically, the denominator is

νt ← β2m
⊙2
t−1 + (1− β2)g

⊙2
t .

LP

Algorithm 1 AdamW v.s. AdamS

1: Input: momentum parameter β1, denominator
parameter β2, weight decay λ, learning rate η,
objective f , regularizer ϵ

2: Initialize: w0, m0 ← 0,ν0 ← 0, t← 0
3: while wt not converged do
4: t← t+ 1
5: gt ← ∇wf(wt−1)
6: update state tracking
7: mt ← β1mt−1 + (1− β1)gt
8: AdamW: νt ← β2νt−1 + (1− β2)g

⊙2
t

9: AdamS: νt ← β2m
⊙2
t−1+(1−β2)g

⊙2
t

10: update model parameters
11: wt ← (1− ηtλ)wt−1 − ηt

(
1√
νt+ϵ ⊙mt

)

12: end while
13: return wt

2.3 The Properties of AdamS

We next compare the behavior of AdamS and that
of AdamW. We note that it is very hard to analyze
rigorously the update terms for AdamW and AdamS
because the correlations between the numerator
and the denominator, also the correlations among
historical gradients. The analysis here serves as
a thought experiment with simplified assumptions
(e.g., independence, distributional assumptions) to
help illustrate conditions when the denominator of
AdamS approximates that of AdamW.

Analytical comparison. The numerators of
AdamS and AdamW are the same. To illustrate
the behavior of denominators for a thought verifi-
cation, we consider the following sequence {Xt},
where Xt ∼ N (µ, σ2) are independent. Then the
distribution of the exponentially weighted moving
average (EMA) of their squared values

St = (1− β2)X
2
t + β2St−1, t = 1, 2, . . . , T.

follows a weighted sum of noncentral chi-squared
distributions. As t becomes large, such a distribu-
tion tends to be a non-centered Gaussian distribu-
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tion. We compute the mean and variance of St,

E[St] = (µ2 + σ2)(1− βt
2),

Var(St) =
(
2σ4 + 4µ2σ2

) 1− β2
1 + β2

(1− β2t
2 ).

Consequently, E[S∞] = (µ2 + σ2), and
Var(S∞) = (2σ4 + 4µ2σ2)(1− β2)/(1 + β2).

On the other hand, the distribution of the expo-
nential moving average of Xt, i.e. Mt = (1 −
β1)Xt + β1Mt−1, t = 1, 2, . . . , follows a Gaus-
sian distribution.

The denominator of AdamS involves the follow-
ing quantity, Vt := βM2

t−1 + (1 − β)X2
t . Since

Xt and Mt−1 are independent, Vt is the sum of two
independent scaled noncentral chi–squared random
variables with one degree of freedom. We have

E[V∞] = µ2 + σ2

(
1− 2ββ1

1 + β1

)
,

Var(V∞) = 2σ4

[
β2

(
1− β1
1 + β1

)2

+ (1− β)2

]

+ 4µ2σ2

[
β2 1− β1

1 + β1
+ (1− β)2

]
.

We note that if µ≫ σ, which can be true when
the gradient noise becomes considerably small as
the batch size is extremely large. Alternatively, this
suggest that the behavior of AdamS could be more
resemble that of AdamW if the batch size get larger,
fitting to practical setup in LLM pretraining.

By comparing E[S∞] and E[V∞], we note that
if µ ≫ σ, i.e., a regime achievable under large
batch sizes where gradient noise becomes negligi-
ble, AdamS’s behavior increasingly resembles that
of AdamW. This alignment with AdamW’s dynam-
ics under low-noise conditions mirrors practical
LLM pretraining setups, where large batch sizes
are standard.

Moreover, root operation is non-expansive. the
denominators of AdamS and AdamW are quite
close when µ ≫ σ, which could hold for very
large batch size that is used in practice when train-
ing extremely large language models. We note that
β2 cannot be too close to 1.

For specific β1 = 0.9, β2 = 0.95, we have
Var[S∞] ≈ 0.0256(2σ4 + 4µ2σ2). The best
β = 0.95 to minimize the difference between the
variance of St and Vt, and Var[Vt] = 2σ4 ∗0.005+
4µ2σ2 ∗ 0.05.

Empirical comparison between the update
matrices of AdamS and AdamW. We analyze the

update matrices of AdamW and AdamS along the
training trajectory of a GPT-2 Small model. The de-
tailed experimental setup is provided in Section 4.1.

To quantify the similarity between the updates,
we compute the cosine similarity between the up-
date matrices of AdamS and AdamW throughout
the training process with AdamW. The results are
presented in Figure 2. For comparison, we also
include the cosine similarity between AdamW and
the recently proposed Adam-mini (Zhang et al.,
2024). The results show that AdamS exhibits a
strong alignment with AdamW, closely matching
its update direction.

The magnitude of AdamS update. For β1 =
0.9, we plot the update magnitude of AdamS when
the gradient/momentum values span [−13, 13],
covering most values in practice, in Figure 3. We
can see that overly large β2 values can destabilize
updates by inflating the denominator’s sensitivity
to outliers. To mitigate this, we recommend not
setting β2 too large, and a typical value of β2 =
0.95 works well and aligns with empirical choice
of AdamW for LLM pretraining.

Memory cost and throughput of AdamS.
AdamS effectively reduces optimizer state memory
usage by half. However, the extent of improvement
in throughput and maximum batch size compared
to the original AdamW depends on the model size
and GPU type, as the primary bottleneck may be
either memory or computation. Notably, as model
size increases, the benefits of AdamS become more
pronounced, aligning well with practical large lan-
guage model (LLM) training scenarios. As shown
in Table 1, AdamS can improve over AdamW in
terms of throughput by almost 36%, i.e., reducing
the time 6.9s to 4.4s of passing a batch of tokens,
for GPT2-XL pretraining.

Model Optimizer Max batch Throughput

774M
AdamW 10 2.0s
AdamS 10 2.0s

1.5B
AdamW 1 6.9s
AdamS 3 4.4s

Table 1: Memory cost and throughput comparison between
AdamW and AdamS. The maximum batch size (Max batch)
is the largest allowable batch without Out of Memory and the
throughput (Throughput) is measured by the time (in seconds)
for one iteration of passing 480K tokens with gradient accumu-
lation. Experiment setup: 8 A100 GPUs with 40GB memory,
training with GPT2-XL (1.5B) and GPT2-Large (774M).
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Figure 2: The cosine similarities between the update matrices of AdamS and AdamW
(left), Adam-mini and AdamW (right) for all layers of GPT2-Small model. Across the
training trajectory, the update direction of AdamS closely aligns with that of AdamW.
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3 Convergence of AdamS

This section establishes the theoretical convergence
of AdamS. We first introduce another key assump-
tion on the gradient noises.

Assumption 3.1 (Sub-gaussian noise). We as-
sume that the stochastic noise gt is unbiased, i.e.,
E|Ftgt = Gt. We further assume gt is centered
with sub-gaussian norm, i.e., there exists some pos-
itive constant R, such that P|Ft(∥gt−∇f(wt)∥ ≥
s) ≤ 2e−

s2

2R2 .

Assumption 3.1 is one of the weakest assump-
tions on the noise in existing literature, and gen-
eralizes bounded gradient assumption (Défossez
et al., 2022) and bounded noise assumption (Li
et al., 2023). Based on Assumption 2.1 and 3.1

Theorem 3.2. Let Assumptions 2.1 and 3.1 hold.
Then, setting ηt = Õ( 1√

T
), β1 = 1− Θ̃( 1√

T
), and

β2 = 1− Θ̃( 1
T ) with 1−β1

η ≥ C, where C is some
constant defined in Eq. (4) , we have that AdamS
in Algorithm 1 satisfies

E min
t∈[1,T ]

∥∇f(wt)∥ ≤ Õ
(

1
4
√
T

)
.

Proof. The proof is relegated to Appendix D due
to space constraints.

The derived convergence rate matches the known
lower bound of Ω(1/ 4

√
T ) for any gradient-based

optimizer, including AdamW (Arjevani et al.,
2022). This result not only demonstrates that
the convergence rate in Theorem 3.2 is tight —-
achieving the theoretically optimal bound —- but
also provides a rigorous theoretical guarantee for
AdamS’s efficiency in optimizing Transformer ar-
chitectures.

4 Empirical Performance of AdamS

In this section, we apply AdamS for large language
model pretraining tasks and post-training tasks to
demonstrate that AdamS can achieve performance
comparable to AdamW with similar hyperparame-
ters while requiring significantly less memory.

4.1 GPT2 experiments

In this experiment, we demonstrate that AdamS
achieves performance comparable to AdamW for
pretraining GPT2 (Radford et al., 2019) on the
OpenWebText dataset (Gao et al., 2020) using the
popular nanoGPT codebase1. We evaluate three
variants: GPT2 Small (125M parameters), GPT2
Medium (355M parameters), and GPT2 Large
(770M parameters).

Baselines. We primarily compare AdamS with
AdamW (Loshchilov and Hutter, 2019), the most
widely used optimizer in language modeling tasks,
and Lion (Chen et al., 2023), a recently proposed
optimizer that eliminates the need for second-
moment estimates, discovered by symbolic search.

We adopt typical hyperparameter choices, fol-
lowing the settings used in (Zhang et al., 2024;
Liu et al., 2023). For AdamW, we set (β1, β2) =
(0.9, 0.95) with a weight decay of 0.1, and we use a
learning rate of 6×10−4 for the GPT2 Small model
and lr = 3×10−4 for the GPT2 Medium and GPT2
Large models. For Lion, as suggested by Chen et al.
(2023), we use (β1, β2) = (0.95, 0.98), set the
learning rate to 0.1× lrAdamW, and choose a weight
decay of 10 × weight_decayAdamW. For AdamS,
we use the same hyperparameters as AdamW; that
is, lr = lrAdamW, (β1, β2) = (0.9, 0.95), and
weight_decay = weight_decayAdamW.

Implementation. Following standard practices,
for all GPT-2 models, we set the context length

1https://github.com/karpathy/nanoGPT
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Figure 4: Validation loss curves for pretraining GPT-2 models. Across three different model sizes and with the same
hyperparameters as AdamW, the proposed AdamS achieves convergence comparable to baseline methods—without the need to
store AdamW’s second-moment estimates.

to be 1024 tokens. We use a batch size of 480
and employ a cosine learning rate schedule, setting
the final learning rate to 0.1 × lr as suggested by
Rae et al. (2021). We employ gradient clipping by
norm with a threshold of 1.0, and we use a fixed
warm-up period of 2,000 steps. The algorithms
are implemented in PyTorch (Paszke et al., 2019),
and training is conducted in float16 precision on
clusters equipped with Nvidia Ampere or Hopper
GPUs for the GPT2-Small, Medium, and Large
models.

Results. The results are shown in Figure 4. As
observed in Figure 4, the performance of AdamS
closely mirrors the AdamW curves across all three
model sizes throughout the training process. This is
achieved using the same hyperparameters as those
for AdamW. Further details and longer training
steps are provided in Appendix B.

4.2 Llama2 Pretraining Experiments

In this experiment, we confirm the behavior of
AdamS for pretraining an even larger model
Llama2-7B (Touvron et al., 2023b). It is trained
with the well-known Torchtitan library2 on the C4
dataset (Raffel et al., 2020).

Training setup. We use the same hyperparame-
ters for Llama2-7B pretraining as those in Touvron
et al. (2023b). The training setup involves a batch
size of 1024, a context length of 4096, where the
batch size is 4M in terms of tokens, and gradi-
ent clipping with a maximum norm of 1.0. The
learning rate schedule includes a fixed 2000 step
warmup followed by linear decay. The training
is conducted in bfloat16 precision on one node
equipped with 8 Nvidia Hopper GPUs with 80G
memory. Due to budget limitations, we train the
model for 8K steps, which corresponds to process-
ing over 32B tokens. The validation loss is evalu-

2https://github.com/pytorch/torchtitan

ated every 200 steps.
Other hyperparameter choice. For AdamW,

we use (β1, β2) = (0.9, 0.95), a peak learning rate
of 3×10−4, and a weight decay of 0.1. For AdamS,
Adam-mini, we use the same hyperparameters as
AdamW. For Lion, we use the recommended set-
tings: lr = 0.1 × lrAdamW and weight_decay =
10 × weight_decayAdamW. We choose ϵ = 10−8

for Llama model pretraining, whose value scales
with model size according to (Yang et al., 2021).

Results. The results are summarized in Fig-
ure 1. As shown in Figure 1, AdamS achieves
slightly better convergence than other strong base-
lines: AdamW, Adam-mini and Lion across the
training trajectory under the same default hyper-
parameters as in Touvron et al. (2023b). Notably,
training with AdamS reduces memory consump-
tion by 20% when using a popular training recipe,
i.e., Fully Sharded Data Parallel (FSDP) technique
(Paszke et al., 2019) on 4 NVIDIA Hopper GPUs.
By eliminating the need to communicate second-
moment estimates across GPUs and nodes, AdamS
alleviates communication bottlenecks, a critical ad-
vantage for low-end GPU clusters where inter-card
bandwidth is often a limiting factor.

Due to space limit, we present a setting of
Llama2-13B pretraining with smaller batch size
in Appendix B.

4.3 RL Post-training of LLMs

In this experiment, we leverage the TinyZero
project (Pan et al., 2025) that provides a clean, min-
imal, and accessible reproduction of the DeepSeek
R1-Zero framework (Guo et al., 2025). We choose
two models Qwen2.5-3B (Team, 2024) and R1-
Distilled-Llama8B (Guo et al., 2025) and evalu-
ate the DeepSeek R1-Zero Group Relative Policy
Optimization (GRPO) method on the Countdown
Numbers Game. In this task, the model is asked to
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Figure 5: Mean critic scores for reinforcement learning (RL)
post-training using the GRPO algorithm on the CountDown
task are presented for the Qwen2.5-3B and DeepSeek-R1-
Distill-Llama-8B models. The proposed AdamS closely re-
sembles AdamW’s performance trajectory, achieving similar
convergence curves. In contrast, Lion with default hyperpa-
rameters demonstrates significantly slower convergence under
the same conditions.

use a set of randomly chosen numbers along with
basic arithmetic operations (+,−,×,÷) to reach a
target number, with each number used only once.

Hyperparameter choice. For the baseline
AdamW setup, we use the default learning rate
of 1× 10−6, (β1, β2) = (0.9, 0.999), and a weight
decay of 1 × 10−2. We test the Group Relative
Policy Optimization (GRPO) reinforcement learn-
ing algorithm (Shao et al., 2024; Guo et al., 2025)
with all other hyperparameters maintained as in the
original project. For AdamS, we adopt the same
hyperparameters as AdamW, except that we set
β2 = 0.95 for good stability, as explained in Sec-
tion 2.2 and Figure 3. For Lion, we follow the
recommendations from the original paper by set-
ting lr = 0.1 × lrAdamW, weight_decay = 10 ×
weight_decayAdamW, and (β1, β2) = (0.95, 0.98).

Implementation. The TinyZero framework im-
plements the DeepSeek R1-Zero reinforcement
learning objective, which encourages the models to
generate an extended chain-of-thought before pro-
ducing a final answer. This approach aims to guide
the models in developing a structured reasoning
process for the Countdown Numbers Game.

Results. The results are shown in Figure 5.
Across two distinct base models—Qwen2.5-3B and
the distilled DeepSeek-R1-Distill-Llama-8B—the
score curves of AdamS closely align with those of
AdamW, even occasionally surpassing its valida-
tion performance. This consistency underscores
AdamS’s ease of adoption across diverse tasks, re-
quiring no specialized tuning. In contrast, Lion,
when applied with its default hyperparameters, ex-
hibits much slower convergence under identical
experimental conditions.

This point holds significant practical value:
while many optimizers excel in some specific
scenarios with carefully tuned hyperparameters,
AdamS’s robust performance easily generalizes to

unseen tasks without much hyperparameter tuning,
making it a scalable solution for both current and
future applications.

4.4 Sensitivity to Hyperparameters
We ablate the hyperparameter choices of (β1, β2)
of AdamS. Table 2 shows the performance sensitiv-
ity to (β1, β2) for the GPT2-small pretraining task.
The numbers are validation loss after training 100K
iterations with other hyperparameters the same as
those in Section 4.1.

β1\β2 0.90 0.95 0.98 0.99 0.999

0.90 2.902 2.898 2.904 2.904 2.902
0.95 - 2.897 2.892 2.898 3.460

Table 2: Validation loss for different (β1, β2) pairs of GPT2-
small pretraining with AdamS.

These results indicate that AdamS is robust and
stable over a wide range of configurations except
for very large (β1, β2) pair, supporting its practical
use and easy adoption.

5 Discussion and Conclusion

We have proposed a well-motivated design of LLM
optimizer, AdamS, which can serve as the newly
default optimizer for training large-scale language
model training, because of its efficiency, simplicity,
and theoretical rigor. By replacing second-moment
estimation with a momentum-weighted root mean
square denominator, the method achieves compu-
tational parity with SGD while matching the per-
formance of Adam-family optimizers in both pre-
training and post-training scenarios. Its seamless
integration into existing frameworks—enabled by
AdamW-compatible hyperparameters and model-
agnostic design—removes adoption barriers, offer-
ing practitioners a "plug-and-play" upgrade.

The theoretical property of AdamS has also been
extensively analyzed, including the update mag-
nitude estimation and convergence under relaxed
smoothness assumption. This theoretical insight,
coupled with empirical validation across architec-
tures (e.g., GPT-2, Llama2) and training paradigms
(e.g., RL post-training), demonstrates robustness
to scale and task diversity. Notably, AdamS’s elim-
ination of communication overhead for second-
moment statistics positions it as a scalable solution
for communication-bounded environments.

Future work may explore AdamS’s applicability
to emerging architectures and its synergies with
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advanced parallelism strategies for next-generation
LLM development.

Limitations

While AdamS achieves promising performance
across tasks and model scales, several limitations
deserve discussion. First, our experiments were
constrained by computational resources, partic-
ularly in pretraining scenarios (e.g., Llama2-7B
& 13B). Validating AdamS’s efficacy at extreme
scales—such as models beyond 100B parameters,
datasets exceeding 1T tokens, or emerging archi-
tectures like Mixture of Experts (MoE)—remains
critical for confirming its scalability in production-
grade pipelines. Such studies would require compu-
tational resources far beyond our current capacity.

Second, fairly benchmarking optimizers has in-
herent challenges due to confounding variables
like learning rate schedules, weight decay policies,
optimizer-specific hyperparameters (e.g., AdamS’s
momentum weighting), and implementation effi-
ciency. While our work compares AdamS against
strong baselines (AdamW, Lion) using established
hyperparameters, we limited exhaustive hyperpa-
rameter searches across all optimizers to maintain
parity.

These limitations underscore the need for
community-driven standardization of optimizer
evaluations and deeper exploration of AdamS’s be-
havior in extreme-scale regimes. To foster repro-
ducibility, we will release all code, configurations,
and training protocols to facilitate reproducibility
and encourage broader investigation.
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A Algorithms: Lion and Adam-mini

Two related algorithms used as baselines in the paper are presented as follows.

Algorithm 2 Lion Optimizer (Chen et al., 2023)

1: Input: momentum parameters β1, β2, weight decay λ, learning rate η, objective function f
2: Initialize starting point w0, initial m0 ← 0, t← 0
3: while wt not converged do
4: t← t+ 1
5: gt ← ∇wf(wt−1)
6: ### update model parameters
7: ut ← β1mt−1 + (1− β1)gt
8: wt ← wt−1 − ηt(sign(ut) + λwt−1)
9: ### update momentum tracking

10: mt ← β2mt−1 + (1− β2)gt
11: end while
12: return wt

Algorithm 3 Adam-mini (Zhang et al., 2024)

1: Input: weight-decay coefficient λ and current step t
2: Partition: Partition params into param_blocks by Principle A.1
3: for param in param_blocks do
4: g = param.grad
5: param = param− ηt · λ · param
6: m = (1− β1) · g + β1 ·m
7: m̂ = m

1−βt
1

8: v = (1− β2) ·mean(g ⊙ g) + β2 · v
9: v̂ = v

1−βt
2

10: param = param− ηt · m̂√
v̂+ϵ

11: end for

Principle A.1 (Zhang et al. (2024) Principle 1). We should partition parameters into blocks, such that
each parameter block is associated with the smallest dense sub-block in Hessian.

It is worthy noting that Algorithm 3 requires partition of parameters based on the Hessian structure of
the architecture, which makes it not able to be model agnostic.

B More Experiments

We put more experiments here due to space limit.

B.1 Llama2-13B Pretraining Experiments
In this experiment, we confirm the behavior of AdamS for pretraining an even larger model Llama2-
13B (Touvron et al., 2023b). It is trained with the well-known Torchtitan library3 on the C4 dataset (Raffel
et al., 2020).

Training setup. The training setup involves a batch size of 2×8, a context length of 2048, and gradient
clipping with a maximum norm of 1.0. The learning rate schedule includes a fixed 100-step warmup
followed by linear decay. The training is conducted in bfloat16 precision on one node equipped with 8
Nvidia Hopper GPUs with 80G memory. Due to budget limitations, we train the model for 30K steps,
which corresponds to processing over 0.96B tokens. This follows the setting used in Adam-mini (Zhang
et al., 2024).

3https://github.com/pytorch/torchtitan
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Other hyperparameter choice. For AdamW, we use (β1, β2) = (0.9, 0.95), a peak learning rate of
1× 10−4, and a weight decay of 0.1. For AdamS, we use the same hyperparameters as AdamW.

Results. The results are summarized in Figure 6. As shown in Figure 6, AdamS achieves performance
nearly identical to AdamW across the training trajectory under the same hyperparameters.
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Training Loss of Llama2-13B
Baseline: AdamW_lr1e-4_wd0.1_betas(0.9,0.95)
Ours: AdamS_lr1e-4_wd0.1_betas(0.9,0.95)

Figure 6: Training and validation loss curves for pretraining LLaMA 2–13B models. The proposed AdamS achieves convergence
comparable to or better than baseline methods under the same hyperparameter settings as AdamW, while eliminating the need to
store AdamW’s second-moment estimates.

B.2 GPT2 Experiments

Longer pretraining. In this part, the pretraining setup is the same as Section 4.1, we present the final
validation losses after pretraining for 100K and 300K in Table 3. We can see that the performance of
AdamS closely mirrors the AdamW curves across all three model sizes throughout the training process.
This is achieved using the same hyperparameters as those for AdamW.

Model Iterations Optimizer Peak LR Weight decay (β1, β2) Valid. PPL

124M 100K AdamW 6e-4 0.1 (0.9, 0.95) 2.902
Lion 6e-5 1.0 (0.95, 0.98) 2.886

AdamS 6e-4 0.1 (0.9, 0.95) 2.890

300K AdamW 6e-4 0.1 (0.9, 0.95) 2.867
Lion 6e-5 1.0 (0.95, 0.98) 2.847

AdamS 6e-4 0.1 (0.9, 0.95) 2.866

Table 3: Comparison of Lion, AdamW and AdamS on training GPT2 with the OpenWebText dataset.

Comparison with other optimizers. As the Adafactor and SM3 performs strictly inferior to AdamW
for GPT2-small pretraining, as shown in Figure 8 of Zhang et al. 2024 (the Adam-mini paper) and we
omit the comparison here.

We add experiments on GPT2-small pretraining with Adagrad and RMSProp. We note that there are
not public training recipes for RMSprop and Adagrad of large language model pretraining. We use the
same learning rate and learning rate decay schedule as those of AdamW, and use other hyperparameters
as default. The results are shown in below.

Metric AdamW Adagrad RMSprop AdamS

Valid loss of GPT-2 small 2.909 3.887 3.089 2.898

Table 4: Validation loss of GPT-2 small after 100K training iterations using different optimizers.
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C Derivation of the Learning Rate under (L0, L1) Smoothness

The smoothness constant L(w) governs how much the gradient can change locally. If L(w) scales with
∥∇f(w)∥, the curvature (and thus the risk of overshooting) increases with the gradient’s magnitude. This
necessitates a smaller learning rate when the gradient is large and allows a larger rate when the gradient is
small.

Here is a brief derivation for the above intuition.
Descent Lemma: For L(w)-smooth f , the update wt+1 = wt − η∇f(wt) satisfies:

f(wt+1) ≤f(wt)− η∥∇f(wt)∥2 +
η2L(wt)

2
∥∇f(wt)∥2.

Substitute L(wt) ≤ L0 + L1∥∇f(wt)∥:

f(wt+1) ≤ f(wt)− η∥∇f(wt)∥2 +
η2(L0 + L1∥∇f(wt)∥)

2
∥∇f(wt)∥2.

Ensure Decrease: For f(wt+1) ≤ f(wt), require:

−η∥∇f(wt)∥2 +
L0 + L1∥∇f(wt)∥

2
η2∥∇f(wt)∥2 ≤ 0.

Factor out η∥∇f(wt)∥2:

η∥∇f(wt)∥2
(
−1 + η

L0 + L1∥∇f(wt)∥
2

)
≤ 0.

This implies:

η ≤ 2

L0 + L1∥∇f(wt)∥
.

D Proof of Theorem 3.2

This section collects the proof of Theorem 3.2. Overall, the proof is inspired by the proof of Theorem 4.2
in Li et al. (2023), which utilizes stopping time to bound the norm of stochastic gradients.

In the following proof, we define

σ
△
= max

{√
2R2 log

T

δ
, L

ηt
1− β1

max{ β1√
β2

,
1− β1√
1− β2

}, 3L0

4L1

}
, (1)

G
△
= max{3L0

4L1
, 72L1(f(w1)− f∗),

√
72L1σ2ηt((1− β1)T + 1), 60

√
L1R2σ2ηt

√
2T log(1/δ)}, (2)

F
△
=

G2

3(3L0 + 4L1G)
, (3)

C
△
=

√
4L2

ε4
(G+ σ + ε). (4)

We consider the following stopping time:

τ := min{t | f(wt)− f∗ > F} ∧min{t | ∥∇f(wt)− gt∥ > σ} ∧ (T + 1). (5)

Due to Lemma D.2 and the definition of F (Eq. (3)), one can easily see that for any t < τ , ∥∇f(wt)∥ ≤
G.

Also, as we are dealing with optimizers with coordinate-wise learning rates, we introduce the following
norm to ease the burden of writing. Specifically, let b ∈ Rd be a vector with each coordinate positive. For
any a ∈ Rd, we define

∥a∥b =
√
⟨a⊙ b,a⟩.
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D.1 Useful Lemmas
The following lemma bounds the change of f through its local second-order expansion.

Lemma D.1. Let Assumption 2.1 holds. Then, for any three points w1,w2 ∈ Rd satisfying ∥w1−w2∥ ≤
1
L1

, we have

f(w2) ≤ f(w1) + ⟨∇f(w1),w2 −w1⟩+ 1

2
(L0 + L1∥∇f(w1)∥)∥w2 −w1∥2.

Proof. By the Fundamental Theorem of Calculus, we have

f(w2)

=f(w1) +

∫ 1

0
⟨∇f(w1 + a(w2 −w1)),w2 −w1⟩da

=f(w1) + ⟨∇f(w1),w2 −w1⟩+
∫ 1

0
⟨∇f(w1 + a(w2 −w1))−∇f(w1),w2 −w1⟩da

≤f(w1) + ⟨∇f(w1),w2 −w1⟩+
∫ 1

0
∥∇f(w1 + a(w2 −w1))−∇f(w1)∥∥w2 −w1∥da

(⋆)

≤f(w1) + ⟨∇f(w1),w2 −w1⟩+
∫ 1

0
(L0 + L1∥∇f(w1)∥)∥a(w2 −w1)∥∥w2 −w1∥da

≤f(w1) + ⟨∇f(w1),w2 −w1⟩+ 1

2
(L0 + L1∥∇f(w1)∥)∥w2 −w1∥2,

where Inequality (⋆) uses the fact ∥w2 −w1∥ ≤ 1
L1

, so that Assumption 2.1 can be applied.
The proof is completed.

The following lemma bounds the gradient norm through the function value when Assumption 2.1 holds.

Lemma D.2. Under Assumptions 2.1, we have ∥∇f(w)∥2≤ 3(3L0 + 4L1 ∥∇f(w)∥)(f(w)− f∗).

Proof. Denot L := 3L0 + 4L1 ∥∇f(w)∥. Let v := w − 1
2L∇f(w). Then one can easily see

∥v −w∥ ≤ 1

2L1
,

and thus Lemma D.1 can be applied. Therefore, we have

f∗ − f(w) ≤ f(v)− f(w) ≤ ⟨∇f(w),v −w⟩+ L

2
∥v −w∥2

= −3L ∥∇f(w)∥2
8

≤ −L ∥∇f(w)∥2
3

.

The proof is completed.

The following lemma bounds the update of AdamS:

Lemma D.3. For any t, let wt be the parameter of AdamS after the t-th iteration. Then,

∥wt+1 −wt∥ ≤ ηt
√
dmax{ β1√

β2
,
1− β1√
1− β2

}.

Therefore, under the hyperparameter selection of Theorem 3.2, we have ∥wt+1 −wt∥ = O( 1√
T
).

Proof. We have

∥wt+1 −wt∥ = ηt

∥∥∥∥
1√

νt + ε
⊙mt

∥∥∥∥ = ηt

∥∥∥∥∥∥
1√

β2m
⊙2
t−1 + (1− β2)g

⊙2
t + ε

⊙mt

∥∥∥∥∥∥
.
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On the other hand, by Young’s inequality, we have that coordinate-wisely

m⊙2
t ≤ β2

1m
⊙2
t−1 + (1− β1)

2g⊙2
t .

The proof is completed.

The following lemma bounds the adaptive conditioner νt.

Lemma D.4. If t < τ , we have the i-th coordinate νt,i of νt satisfies

0 ≤ √νt,i ≤ G+ σ.

Proof. The first inequality is obvious.
For the second inequality, one can easily see that gt,i satisfies the same inequality according to the

definition of τ . According to the definition of νt, we have

νt,i = (1− β2)g
2
t,i + β2((1− β1)

t−1∑

s=0

βt−1−s
1 gs,i)

2.

Applying the estimation of gs,i completes the proof.

The following lemma provides a rough bound of the gap between∇f(wt) and mt.

Lemma D.5. Let ∆t = mt −∇f(wt). If t ≤ τ , we have ∥∆t∥ ≤ 2σ.

Proof. We prove this claim by induction. First, note that for t = 1, we have

∥∆1∥ = ∥g1 −∇f(w1)∥ ≤ σ ≤ 2σ.

Now suppose ∥∆t∥ ≤ 2σ for some 2 ≤ t ≤ τ . According to the update rule of mt, we have

∆t =β1(∆t−1 +∇f(wt−1)−∇f(wt)) + (1− β1)(gt −∇f(wt)),

which implies

∥∆t∥ ≤ (1 + β1)σ + ∥∇f(wt−1)−∇f(wt)∥ ≤ (1 + β1)σ + Lηtmax{ β1√
β2

,
1− β1√
1− β2

}
√
d ≤ 2σ,

where in the second inequality, we use ∥wt−1 −wt∥ ≤ 1
L1

when T is large enough and thus Assumption
2.1 can be applied, and Lemma D.3, and in the last inequality, we use the definition of σ (Eq. 1).

As (1− β1)σ = Θ(log T/
√
T ), which is larger than O(1/

√
T ) when T is large enough. The proof is

completed.

The following lemma bounds the gap between∇f(wt) and mt recursively.

Lemma D.6. Let ∆t = mt −∇f(wt). With probability 1− δ,

τ−1∑

t=1

(
4(G+ σ + ε)

ε2
∥∆t∥2 − ∥∇f(wt)∥2

)
≤4σ2((1− β1)T + 1) + 20R2σ2

√√√√2
T∑

t=2

log(1/δ)

=O(σ2
√
T log(1/δ)).

Proof. According to the definition of mt, we have

∆t =β1(∆t−1 +∇f(wt−1)−∇f(wt)) + (1− β1)(gt −∇f(wt)). (6)

As T is large enough, by Lemma D.3, we have ∥wt −wt−1∥ ≤ 1
L1

. Therefore by Assumption 2.1,

∥∇f(wt−1)−∇f(wt)∥ ≤ L∥wt −wt−1∥ ≤
ηL

ε
∥mt−1∥ ≤

ηL

ε
(∥∇f(wt−1)∥+ ∥∆t−1∥) , (7)
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Therefore,

∥(∆t−1 +∇f(wt−1)−∇f(wt))∥2

≤ 1

β1
∥∆t−1∥2 +

1

1− β1
∥∇f(wt−1)−∇f(wt)∥2

≤ 1

β1
∥∆t−1∥2 +

1

1− β1

4η2L2

ε2
(∥∇f(wt−1)∥2 + ∥∆t−1∥2)

where the first inequality uses Young’s inequality, and the second inequality uses Eq. (7).
Due to our choice of β1 and η, we have β2

1
1−β1

4η2L2

ε2
= O(1/

√
T ), which is smaller than 1− 1

2(1− β1)
when T is large enough. Therefore,

β2
1∥(∆t−1 +∇f(wt−1)−∇f(wt))∥2 ≤

(
1

2
+

β

2

)
∥∆t∥2 +

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥2.

Therefore, applying the above inequality back to Eq. (6), we have if t ≤ τ ,

∥∆t∥2

=β2
1∥∆t−1 +∇f(wt−1)−∇f(wt)∥2 + 2β1(1− β1)⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩
+ (1− β1)

2∥gt −∇f(wt)∥2

≤1 + β1
2
∥∆t−1∥2 +

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥2 + (1− β1)

2∥gt −∇f(wt)∥2

+ 2β1(1− β1)⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩, (8)

where in the last equation we use Young’s inequality.
On the other hand, note that

β1(1− β1)
τ∑

t=2

⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩

=β1(1− β1)
T∑

t=2

1τ≥t⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩.

As E|Ft [1τ≥t⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩] = 0, we have that

Vt
△
= 1τ≥t⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩

is a martingale difference sequence. Also, according to Lemma D.5, we have when T is large enough,
∥∆t−1 +∇f(wt−1)−∇f(wt)∥ ≤ 3σ, thus by Assumption 3.1, we have Vt is subgaussian with constant
3σR. Then by the Azuma-Hoeffding inequality, we have with probability at least 1− δ/2,

∣∣∣∣∣
T∑

t=2

Vt

∣∣∣∣∣ ≤ 5R2σ2

√√√√2
T∑

t=2

log(1/δ).

Also, due to Assumption 3.1, we have with probability at least 1− δ/2T ,

∥gt −∇f(wt)∥2 ≤
√
2R2 log

T

δ
≤ σ.

Applying the above inequalities back to Eq. (8),

1− β1
2
∥∆t−1∥2 ≤

1− β1
2
∥∆t−1∥2 ≤∥∆t−1∥2 − ∥∆t∥2 +

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥2

+ (1− β1)
2∥gt −∇f(wt)∥2 + 2β1(1− β1)Vt.
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Taking a summation over t from 2 to τ , we have with probability at least 1− δ,

1− β1
2

τ−1∑

t=1

(
∥∆t∥2 −

ε2

4(G+ σ + ε)
∥∇f(wt)∥2

)

≤
τ∑

t=2

1− β1
2
∥∆t−1∥2 −

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥2

≤∥∆1∥2 − ∥∆τ∥2 + (1− β1)
2σ2T + 10(1− β1)R

2σ2

√√√√2
T∑

t=2

log(1/δ)

≤2σ2((1− β1)
2T + 1) + 10(1− β1)R

2σ2

√√√√2

T∑

t=2

log(1/δ),

where the first inequality is due to the assumption in Theorem 3.2 that η
1−β1

≥ C, where C is defined in
Eq. (4).

The proof is completed.

D.2 Proof of the full theorem
Proof of Theorem 3.2. Recall that by Lemma D.3

∥wt+1 −wt∥ = O(
1√
T
).

When T is large enough, wt and wt+1 will fulfill the requirement of Lemma D.1, which gives

f(wt+1)− f(wt) ≤⟨∇f(wt),wt+1 −wt⟩+
L0 + L1∥∇f(wt)∥

2
∥wt+1 −wt∥2.

If t < τ , we further have ∥∇f(wt)∥ ≤ G. Therefore, if t < τ , the above inequality can be further
bounded by

f(wt+1)− f(wt)

≤⟨∇f(wt),wt+1 −wt⟩+
L0 + L1G

2
∥wt+1 −wt∥2

=− ⟨∇f(wt), ηt
1√

νt + ε
⊙∇f(wt)⟩+ ⟨∇f(wt), ηt

1√
νt + ε

⊙ (∇f(wt)−mt)⟩

+
L0 + L1G

2
η2t

∥∥∥∥
1√

νt + ε
⊙mt

∥∥∥∥
2

=− ηt ∥∇f(wt)∥2 1√
νt+ε

+ ⟨∇f(wt), ηt
1√

νt + ε
⊙ (∇f(wt)−mt)⟩

+
L0 + L1G

2
η2t ∥mt∥2 1

(
√
νt+ε)2

(◦)
≤ − ηt ∥∇f(wt)∥2 1√

νt+ε
+

1

4
ηt ∥∇f(wt)∥2 1√

νt+ε
+ ηt ∥∆t∥2 1√

νt+ε

+ (L0 + L1G)η2t ∥∆t∥2 1
(
√

νt+ε)2
+ (L0 + L1G)η2t ∥∇f(wt)∥2 1

(
√
νt+ε)2

=− 3

4
ηt ∥∇f(wt)∥2 1√

νt+ε
+ ηt ∥∆t∥2 1√

νt+ε

+ (L0 + L1G)η2t ∥∆t∥2 1
(
√

νt+ε)2
+ (L0 + L1G)η2t ∥∇f(wt)∥2 1

(
√
νt+ε)2

where ∆t is defined as ∆t = mt −∇f(wt) and inequality (◦) uses Young’s inequality.
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According to Lemma D.4, we further have

f(wt+1)− f(wt)

≤− 3

4
ηt ∥∇f(wt)∥2 1√

νt+ε
+ ηt ∥∆t∥2 1√

νt+ε

+
(L0 + L1G)η2t

ε
∥∆t∥2 1√

νt+ε
+

(L0 + L1G)η2t
ε

∥∇f(wt)∥2 1√
νt+ε

.

With large enough T , we have ηt ≤ ε
4(L0+L1G) , and thus

f(wt+1)− f(wt)

≤− 1

2
ηt ∥∇f(wt)∥2 1√

νt+ε
+ 2ηt ∥∆t∥2 1√

νt+ε

≤− 1

2(G+ σ + ε)
ηt ∥∇f(wt)∥2 + 2

ηt
ε
∥∆t∥2 1√

νt+ε

≤− 1

2(G+ σ + ε)
ηt ∥∇f(wt)∥2 + 2

ηt
ε2
∥∆t∥2 .

After taking sum over t and rearranging, we have

τ−1∑

t=1

(
∥∇f(wt)∥2 −

2(G+ σ + ε)

ε2
∥∆t∥2

)
≤ 2(G+ σ + ε)

ηt
(f(w1)− f(wτ )) .

Multiplying both sides of the above inequality by 2 and adding the inequality in Lemma D.6, we obtain
with probability at least 1− δ,

τ−1∑

t=1

∥∇f(wt)∥2 ≤2(G+ σ + ε)

ηt
(f(w1)− f(wτ )) + 4σ2((1− β1)T + 1) + 20R2σ2

√√√√2
T∑

t=2

log(1/δ) (9)

=Õ(
√
T ).

In the following proof, we will bound the probability of the event {τ ≤ T}. Note if we can show
P(τ > T ) ≥ 1− δ, the proof is completed, as conditional on {τ > T}, ∑τ−1

t=1 ∥∇f(wt)∥2 in the above
inequality will become

∑T
t=1 ∥∇f(wt)∥2.

Obviously, the stopping time τ (eq. (5)) can be decomposed as τ := min{τ1, τ2}, where τ1 and τ2 are
two stopping times defined as

τ1 :=min{t | f(wt)− f∗ > F} ∧ (T + 1),

τ2 :=min{t | ∥∇f(wt)− gt∥ > σ} ∧ (T + 1),

We then bound P(τ1 ≤ T ) and P(τ2 ≤ T ) respectively.
Bound of P(τ2 ≤ T ). We bound this term by a similar practice as Lemma D.6. According to the definition
of τ2

P(τ2 ≤ T ) =P


 ⋃

1≤t≤T

{∥∇f(wt)− gt∥ > σ}




≤
∑

1≤t≤T

P (∥∇f(wt)− gt∥ > σ)

≤2Te−
σ2

2R2

≤δ

2
,

where the last inequality uses the definition of σ.
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Bound of P(τ1 ≤ T ). Simple rearranging of Eq. (9) gives that, with probability 1− δ
2 ,

2(G+ σ + ε)

ηt
(f(wτ )− f∗)

≤
τ−1∑

t=1

∥∇f(wt)∥2 +
2(G+ σ + ε)

ηt
(f(wτ )− f∗)

≤2(G+ σ + ε)

ηt
(f(w1)− f∗) + 4σ2((1− β1)T + 1) + 20R2σ2

√√√√2
T∑

t=2

log(1/δ).

Therefore, by dividing both sides of the above inequality, we obtain

f(wτ )− f∗

≤(f(w1)− f∗) +
ηt

2(G+ σ + ε)
4σ2((1− β1)T + 1) +

ηt
2(G+ σ + ε)

20R2σ2

√√√√2
T∑

t=2

log(1/δ)

≤ G2

3(3L0 + 4L1G)

=F,

where the last inequality uses the definition of G.
Therefore, we have that

P(τ1 ≤ T ) ≤ P(Eq. 9 fails to hold) ≤ δ

2
.

The proof is completed by P(τ ≤ T ) ≤ P(τ1 ≤ T ) + P(τ2 ≤ T ) ≤ δ.
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