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Abstract

Large language models (LLMs) have shown
strong potential in complex reasoning tasks.
However, as task complexity increases, their
performance often degrades, resulting in hal-
lucinations, errors, and logical inconsistencies.
To enhance reasoning capabilities, Monte Carlo
Tree Search (MCTS) has been introduced to
guide the exploration of reasoning paths in a
structured manner. Despite its advantages, tra-
ditional MCTS relies on fixed reasoning strate-
gies, limiting the diversity of reasoning paths
and the coverage of the solution space. To ad-
dress these limitations, we propose Dynamic
Strategy-Guided MCTS (DSG-MCTS), a novel
framework that dynamically integrates multi-
ple reasoning strategies, such as abductive and
analogical reasoning, to expand the reasoning
space. At the same time, DSG-MCTS enhances
reasoning efficiency through a dynamic strat-
egy selection mechanism that adapts to the task
context. Experimental results on challenging
reasoning benchmarks demonstrate that DSG-
MCTS achieves improved accuracy and effi-
ciency, outperforming existing state-of-the-art
methods.

1 Introduction

Large language models (LLMs) have achieved
impressive results in tasks such as mathematical
reasoning, code generation, and complex plan-
ning (Anil et al., 2023; Zhao et al., 2024; Parmar
et al., 2024; Ahn et al., 2024; Li et al., 2025; Wang
et al., 2025), but their auto-regressive nature still
leads to error accumulation and consistency issues
in multi-step reasoning (Sprague et al., 2024; Li
et al., 2023). To mitigate this, researchers have
introduced heuristic search mechanisms such as
Monte Carlo Tree Search (MCTS) to enhance rea-
soning through planning and path exploration (Hao
et al., 2023a; Sun et al., 2024).

†The corresponding author.

Question: In triangle ABC, what is the maximum value of cosA⋅cosB⋅cosC ?

Path 1(Deduction): A+B+C=π → cos𝐶=−cos(𝐴+𝐵) → Substitute 
cos(𝐴+𝐵)=cos𝐴cos𝐵−sin𝐴sin𝐵→ Simplify →𝑦≤​ 1/5．

Path 2(Deduction):Let 𝑦 = cos𝐴⋅cos𝐵⋅cos𝐶→ Substitute 2𝑦 = 
[cos(𝐴+𝐵)+cos(𝐴−𝐵)]⋅cos𝐶→ Simplify →𝑦≤​ 1. 

Path 3(Deduction):Let 𝑦 = cos𝐴⋅cos𝐵⋅cos𝐶→ Substitute
cos2𝐶−cos(𝐴−𝐵)cos𝐶+2𝑦=0 → Simplify →𝑦≤​ 1/3.

(a)Single-Strategy Reasoning

DSG-MCTS

MCTS

(b) Diverse-Strategy Reasoning

Path 1(Deduction): A+B+C=π → cos𝐶=−cos(𝐴+𝐵) → 
Substitute cos(𝐴+𝐵)=cos𝐴cos𝐵−sin𝐴sin𝐵→ 
Simplify →𝑦≤​ 1/5．

Strategy A

Path 1 Path 2 Path 3

Path 2(Abduction): Consider the equilateral 
triangle → cos𝐴⋅cos𝐵⋅cos𝐶 = 1/8 

Path 3(Analogy): Analogous to a symmetry → Assume the 
B=C=45°→ cos𝐴⋅cos𝐵⋅cos𝐶 = 0.

×

×

×

×

×

√
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Strategy B Strategy C
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Figure 1: The comparison of reasoning answers between
traditional MCTS and our proposed DSG-MCTS.

The core objective of MCTS-based methods is to
conduct a thoughtful search for a broader range of
solutions. The lack of diversity in the exploration
limits their potential for further development. As
shown in Figure 1(a), when solving the extreme
value problem in trigonometric functions, tradi-
tional MCTS constructs a search tree with three so-
lution paths. However, all three paths are based on
the same deductive reasoning strategy. Specifically,
the paths all start from the premises, apply the prop-
erties of triangles, and progressively reason towards
the final solution. The deductive reasoning strat-
egy leads the model into redundant trigonometric
calculation traps, with the cumbersome reasoning
steps often resulting in computational errors. Build-
ing on previous studies (de Freitas, 2022), extreme
value problems are often solved through abduc-
tion, which uses prior knowledge and case-specific
analysis to simplify complexity. In comparison,
deductive reasoning relies on a rigid logical frame-
work, limiting flexibility and narrowing the search
space, which reduces its effectiveness for complex
problems (Wang et al., 2024; Li et al., 2024).

The root cause of this limitation lies in the re-
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liance of existing MCTS methods on fixed action
spaces to expand reasoning paths. For example, Al-
phaMath (Chen et al., 2024) and MindStar (Kang
et al., 2024) both use predefined rules, such as
generating the next reasoning step, to expand the
search tree. This fixed strategy results in paths that
are limited to traditional deductive reasoning dur-
ing different sampling iterations. While this fixed
strategy works well for simpler tasks with solutions
derived through traditional deductive reasoning, it
proves inadequate for more complex problems.

This limitation can be addressed by encourag-
ing LLMs to utilize a broader range of reason-
ing strategies, which can enhance the diversity
of their thinking. Humans employ different rea-
soning strategies depending on the nature of the
problem at hand (Bronkhorst et al., 2020; Li et al.,
2022). In addition to deductive reasoning, strate-
gies such as induction (Flach and Kakas, 2000),
abduction (Balepur et al., 2024), and analogical rea-
soning (Veloso, 2000) can significantly broaden the
scope of reasoning. For instance, when presented
with a multiple-choice mathematical problem, hu-
mans often prefer to verify the correctness of the
options rather than derive a solution solely from
the given conditions. This approach can greatly
simplify the reasoning process, reducing the com-
putational burden and increasing efficiency.

To enhance the diversity of paths in MCTS,
we introduce the concept of Diversified Thought,
which incorporates a variety of reasoning strate-
gies to improve path diversity. In contrast to the
more rigid and limited Static Thought approaches,
which rely on a fixed set of reasoning strategies,
Diversified Thought allows for the dynamic inte-
gration of diverse reasoning strategies as structural
foundations for tree construction. As shown in Fig-
ure 1(b), this method generates three distinct solu-
tion paths guided by different reasoning strategies,
including an optimal solution identified through a
abduction strategy, which traditional methods fail
to uncover. Our dynamic strategy enhances MCTS
by increasing solution space diversity and coverage,
improving performance on complex tasks.

While our dynamic strategy approach alleviates
the lack of diversity in reasoning paths, it also in-
troduces new challenges. One key issue is the po-
tential efficiency loss due to managing and select-
ing among multiple diverse strategies. The system
must dynamically evaluate task requirements and
effectively identify the most suitable strategy to
avoid excessive computation overhead. Another

critical challenge is ensuring that the MCTS tree ex-
pansion process consistently adheres to the chosen
strategy, maintaining alignment with the intended
reasoning objectives throughout the search.

To address these challenges, we propose a
novel approach, Dynamic Strategy-Guided Monte
Carlo Tree Search (DSG-MCTS), aimed at en-
hancing path diversity and problem-solving ca-
pabilities. First, we propose a Markov Decision
Process (MDP)-based strategy selection mecha-
nism that evaluates the potential benefits of var-
ious strategies before tree expansion. By priori-
tizing high-potential strategies and pruning low-
potential branches, this mechanism reduces unnec-
essary computation and exploration costs. Second,
we develop a strategy-driven path generation mod-
ule that ensures the expanded MCTS tree adheres
to the objectives of the chosen strategy. This mod-
ule constrains each step of the path expansion pro-
cess to align with the requirements of the current
strategy. Experiments conducted on complex rea-
soning benchmarks demonstrate that DSG-MCTS
outperforms state-of-the-art (SOTA) methods in
both reasoning accuracy and inference overhead.
This paper makes the following contributions:

• We propose the DSG-MCTS framework that
integrates diverse reasoning strategies to en-
hance path diversity and expand solution
space coverage.

• We design efficient dynamic strategy selection
and strategy-guided path generation modules
to address challenges in reasoning efficiency
and diversity.

• We validate DSG-MCTS on multiple reason-
ing benchmarks, demonstrating its superior
performance over baselines in diversity, rea-
soning efficiency, and accuracy.

2 Problem Definition

For a LLM πθ parameterized by θ, solving com-
plex problems can be formalized as a multi-step
reasoning process. Specifically, given an input
problem q and a predefined prompt ψ , the model
generates a reasoning path {s0, s1, . . . , sT }, where
s0 = q is the initial state and sT is the final answer
a ∼ πθ(ψ(q)). Each state st represents an interme-
diate result or step within the reasoning process.

At each reasoning step t, the current state st−1

comprises the original input q and all previously
generated reasoning steps {s1, . . . , st−1}. Based

10543



Math QA 

DSG-MCTs

Strategy for Questions

Dynamic Strategy Selection

LLM Deliberative Planning Answers 

①

②

③

Reasoning Path Construction 

Modeling Mathematical Reasoning Strategies as an MDP

MDP-Based Strategy Optimization

Strategy Ranking and Selection

Answer the given questions：{Q} and use 
the strategy to generate the rationale 
and answer.

Deduction
Induction
Abduction
Analogy
Others

State Action Reward 

S’

S

EvaluateInitialize MDP Update Reward & Transition

Strategy A Strategy B

Q

Strategy C

Induction
Action1：
Pattern Recognition
Action2:
Rule Generalization
Action3:
Validation

Q
a1 a2 a3

Generate the tree 
from strategy-specific 
actions.

Strategy Ranking

Deduction
Induction
Abduction
Analogy
Others

√Selection

Select
Backup
Path node
Answer node
Visited node

UCT 𝑠 𝑎 = 𝑄 𝑠 𝑎 + 𝐶
l n𝑁 𝑠

𝑁 𝑎

𝑅 𝑠 𝑎 = 𝐺 − 𝜆 ⋅ 𝑇 𝑎

𝑇(𝑎) : Time Cost

𝜆 : Time Penalty Weight

𝐺 : Problem-Solving Gain

Deduction
Induction
Abduction
Analogy
Others

√

DSG-MCTS

Figure 2: The overview of our framework. It comprises two key steps: Dynamic Strategy Selection and Reasoning
Path Construction.

on this context, the model produces an action αt =
πθ(ψ(st−1)), which determines how the reasoning
will proceed to transition from state st−1 to a new
state st. This process is repeated iteratively as the
model incrementally constructs the reasoning path,
terminating when a complete reasoning sequence
is formed, culminating in the final answer sT .

3 Methodology

Figure 2 illustrates the framework of the pro-
posed Dynamic Strategy-Guided Monte Carlo Tree
Search (DSG-MCTS) paradigm for solving multi-
step reasoning tasks. Given the input reasoning
task, the framework first employs an MDP-based
strategy selection to evaluate and choose the most
suitable reasoning approach. Each selected strategy
guides the reasoning process, determining the steps
taken to solve the problem. Subsequently, the DSG-
MCTS framework integrates the selected strategies
into the tree construction process. The tree ex-
pands dynamically, incorporating both the selected
reasoning strategies and their associated paths. Fi-
nally, the reasoning paths are evaluated and refined,
ensuring the optimal solution is achieved.

3.1 Dynamic Strategy Selection

In this subsection, we describe the process of se-
lecting reasoning strategies for complex tasks using
a Markov Decision Process (MDP). The detailed
process is described as follows.

3.1.1 Modeling Reasoning Strategies
To select the optimal global reasoning strategy, we
model the strategy selection process as a MDP.
The MDP is defined as a five-tuple ⟨S,A, P,R, µ⟩,
where each component is carefully designed to cap-
ture the characteristics of reasoning tasks.

The state space (S) defines the context of the
reasoning task, with each state s ∈ S representing
relevant task features, reasoning history, and struc-
tural information, such as variables and problem
complexity in mathematical reasoning.

The action space (A) consists of various rea-
soning strategies, where each action a ∈ A cor-
responds to a specific strategy. Examples include
deductive reasoning, induction, abduction, analogi-
cal reasoning, which guide the reasoning process
by facilitating high-level decisions.

The state transition function (P (s′|s, a)) mod-
els the probability of transitioning from state s to
state s′ after action a, estimated using historical
data reflecting strategy impacts on state evolution.

The reward function,R(s, a), measures the per-
formance or effectiveness of a strategy a when exe-
cuted in a specific state s. It is defined as follows:

R(s, a) = G− λ · T (a), (1)

where G is the gain, T (a) is the time cost, and
λ is the gain-time trade-off factor.

The initial state distribution (µ) represents the
distribution of starting states, reflecting both prob-
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lem complexity and the diversity of potential rea-
soning paths.

3.1.2 MDP-Based Strategy Optimization
Once the MDP is constructed, the next step is to
optimize the selection of strategies to maximize cu-
mulative rewards.In our framework, following (Liu
et al., 2024), we employ a policy gradient-based
reinforcement learning approach to train a policy
network πθ(a|s), which predicts the probability
distribution over strategies a given a state s. The
detailed process can be described as follows:
State Encoding: The current state s is represented
as a high-dimensional feature vector, incorporating
task-specific features and the historical success of
strategies.
Action Selection: The policy network computes a
probability distribution over strategies, normalizing
scores with the softmax function:

πθ(a|s) =
exp(fθ(s, a))∑

a′∈A exp(fθ(s, a′))
, (2)

where fθ(s, a) is the score of action a for state s,
produced by the policy network.
Reward Optimization and Policy Update: After
executing a strategy, the reward R(s, a) is com-
puted based on its performance. The goal of re-
inforcement learning is to maximize the expected
cumulative reward J(πθ)(Prajapat et al., 2024).

J(πθ) = Eτ∼πθ

[
T∑

t=1

R(st, at)

]
. (3)

The policy is updated using the policy gradient
method:

∇θJ(πθ) = Eτ

[
T∑

t=1

∇θ log πθ(at|st) ·R(st, at)

]
. (4)

To encourage exploration, an entropy regulariza-
tion term is added to the objective:

J ′(πθ) = J(πθ) + βH(πθ), (5)

where H(πθ) = −∑
a∈A πθ(a|s) log πθ(a|s).

3.1.3 Strategy Ranking and Selection
After training the policy network, strategies are
ranked and selected based on their predicted perfor-
mance, with the most effective ones being chosen.
Strategy Scoring: The policy network assigns a
score to each strategy based on its predicted effec-
tiveness for a given state.

Prioritization: Strategies are ranked by their
scores, and the top-ranked strategy is selected as
the primary option. If the primary strategy fails,
a fallback strategy is selected from the remaining
candidates.
Validation: The chosen strategy is executed, and if
its performance is suboptimal, the system dynami-
cally switches to the next candidate strategy.

This MDP-based strategy selection process en-
sures the selection of the most optimal strategy
for each reasoning task, thereby enhancing both
the accuracy and efficiency of the problem-solving
process.

3.2 Reasoning Path Construction
In our proposed Dynamic Strategy-Guided MCTS
(DSG-MCTS) framework, MCTS is enhanced by
integrating globally selected reasoning strategies
to dynamically construct reasoning paths. This
section provides a detailed explanation of the four
core phases of MCTS: Selection, Expansion, Sim-
ulation, and Backpropagation, and explores how
each phase integrates reasoning strategies and di-
versity constraints to optimize the construction of
solution paths.
Selection Phase: Balancing Exploration and Ex-
ploitation The selection phase begins at the root
node of the search tree and recursively selects child
nodes until a leaf node is reached. Candidate ac-
tions at each node are evaluated using the UCT
formula (Kocsis and Szepesvári, 2006).

UCT(s, a) = Q(s, a) + C

√
lnN(s)

N(a)
, (6)

whereQ(s, a) represents the cumulative reward for
taking action a in state s, N(a) denotes the number
of times action a has been selected, N(s) refers to
the total number of visits to state s, and C is the
exploration constant.

To further integrate the influence of global rea-
soning strategies, DSG-MCTS introduces a Strat-
egy Alignment Bonus (SAB), defined as:

Salign(s, a) = γ · I(a ∈ Active Strategy), (7)

where γ is a weight parameter, and I is an indicator
function that equals 1 if the action a is aligned with
the currently active global reasoning strategy, and
0 otherwise. The overall score for each action a is
then updated as:

Score(s, a) = UCT(s, a) + Salign(s, a). (8)
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This integration ensures that the selection process
prioritizes high-potential nodes aligned with the
global strategy while maintaining sufficient explo-
ration of alternative paths.
Expansion Phase: Strategy-Guided Action Se-
lection. Upon reaching a leaf node, the expansion
phase generates new child nodes based on the cur-
rent state and the active global reasoning strategy.
The core objective of this phase is to dynamically
select actions that align with the strategy while
maintaining computational efficiency.

To optimize the expansion process, a utility score
U(a) is assigned to each candidate action a:

U(a) = R(a)− C(a). (9)

Here, R(a) represents the predicted reward of
the action, C(a) denotes its computational cost.
Simulation Phase: Strategy-Aware Path Gener-
ation. Once new nodes are expanded, the simula-
tion phase proceeds to complete the reasoning path
from the current node to a terminal state. The goal
of this phase is to evaluate the quality of the termi-
nal state and the associated path. In DSG-MCTS,
simulations are guided by the active global strategy.

The reward for path p is computed as:

Rsim(p) = I(Correct)− Cost(p) + Diversity(p,P), (10)

where I(Correct) is a binary indicator of
whether the terminal state is correct, Cost(p) mea-
sures the total computational cost of the path,
Diversity(p,P) quantifies the dissimilarity be-
tween path p and existing paths in the set P .
Backpropagation Phase: Reward Optimization.
The backpropagation phase updates the cumulative
rewards and visit counts of all nodes along the
path from the terminal node back to the root. The
update formula for the cumulative reward Q(s, a)
at a node s for action a can be defined as follows:

Qnew(s, a) = (1− η) ·Qold(s, a) + η ·Rsim(p). (11)

Here, η represents the learning rate, which deter-
mines the influence of the newly simulated reward.
This process strengthens the nodes associated with
successful paths, effectively steering the search to-
ward promising solution regions.

4 Experiment

4.1 Experimental Settings
Datasets. We evaluate our framework on four
reasoning datasets that encompass diverse reason-
ing tasks. These include GSM8K (Cobbe et al.,

2021) and SVAMP (Patel et al., 2021a) for arith-
metic reasoning, MATH (Patel et al., 2021b) for
complex mathematical reasoning, AMC 2023 (AI-
MO, 2024) and AIME 2024 (MAA Committees)
are also included for more challenging mathemat-
ical reasoning, BBH (Suzgun et al., 2022) and
MMLU (Hendrycks et al., 2021) for multitask rea-
soning, and StrategyQA (Geva et al., 2021) for
multi-hop commonsense reasoning. These datasets
span a broad range of reasoning problems, includ-
ing multi-step arithmetic operations, complex alge-
braic calculations, and implicit multi-hop tasks.
Baselines. We compare our proposed DSG-
MCTS framework with several advanced reasoning
methods and closed-source large language mod-
els (LLMs). Specifically, the baselines include
prompting-based methods such as CoT+SC (Wang
et al., 2023) and MCTS-based methods includ-
ing RAP (Hao et al., 2023b), BEATS (Sun et al.,
2024), AlphaMath (Chen et al., 2024), and Mind-
Star (Kang et al., 2024). For closed-source models,
we evaluate Claude-3.5-Sonnet (Anthropic, 2024),
GPT-4 (OpenAI et al., 2024), GPT-4o, and GPT-4o
mini (OpenAI, 2024) to ensure a robust perfor-
mance comparison against state-of-the-art reason-
ing systems.
Models. To evaluate the performance of DSG-
MCTS, we leverage four open-source instruction-
tuned models: Qwen2-7B-Instruct (Yang et al.,
2024), Qwen2.5-7B-Instruct (Qwen Team, 2024),
Llama-3-8B-Instruct (Grattafiori et al., 2024),
Llama-3.1-8B-Instruct (Meta AI, 2024) and
Deepseek-R1-7B (DeepSeek-AI et al., 2025). With
parameter sizes ranging from 7 billion to 8 billion,
these models are widely recognized for their ef-
fectiveness in instruction-following and reasoning
tasks, ensuring that our experiments are both repre-
sentative and credible.
Evaluation Metrics. We evaluate the proposed
method using two key metrics: Accuracy(ACC)
and Generation Length(LEN). ACC is calculated as
ACC = 1

N

∑N
i=1 I{M(LLM(xi)) = yi}, where

xi is the input question, yi is the ground-truth an-
swer, LLM(·) denotes the model’s output, M(·)
extracts the predicted answer according to a prede-
fined format (e.g., starting with “The answer is. . . ”).
LEN measures the average number of generated
words, computed as LEN = 1

N

∑N
i=1 |LLM(xi)|,

where | · | counts the generated words. We use
Levenshtein Distance and n-gram overlaps to eval-
uate diversity. A larger Levenshtein distance and
smaller overlap indicate a more diverse path.
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MODEL SETTING ARITHMETIC MATH MATH-HARD COMMON MULTITASK AVERAGEGSM8K SVAMP MATH AMC2023 AIME2024 StrategyQA BBH MMLU

Qwen2-7B

CoT+SC 87.2±0.2 90.7±1.1 55.1±0.3 32.3±0.4 12.5±1.1 65.9±2.5 48.6±1.2 60.8±1.3 56.6±1.2

AlphaMath 71.8±1.3 76.9±0.4 35.9±1.3 45.7±1.5 14.2±0.1 61.7±1.6 35.3±2.3 39.8±0.4 47.7±1.3

MindStar 73.9±1.4 77.6±1.5 38.1±1.4 48.3±1.6 15.6±1.2 61.5±1.5 35.9±1.4 42.7±1.5 49.2±1.4

RAP 75.3±0.5 81.1±1.6 41.2±1.3 43.5±0.4 13.1±1.2 69.2±2.6 43.1±1.5 39.9±1.3 50.8±1.3

BEATS 81.2±1.6 88.6±0.7 58.9±1.5 53.6±1.6 16.3±1.3 67.7±1.3 43.8±1.5 65.6±0.6 59.5±1.5

DSG-MCTS(Ours) 91.6±1.0 91.9±1.1 63.7±0.3 57.2±1.4 23.8±1.2 71.9±1.5 49.8±2.4 70.3±1.5 65.0±1.3

Qwen2.5-7B

CoT+SC 90.9±0.1 91.8±1.2 70.7±1.3 32.4±1.4 12.6±1.3 71.6±2.5 49.7±1.4 72.2±1.5 61.5±1.3

AlphaMath 75.9±1.4 78.7±1.5 53.4±1.6 56.3±1.4 19.8±0.7 65.1±1.5 41.7±1.3 53.1±1.6 55.5±1.4

MindStar 77.3±2.5 82.6±1.6 54.8±1.4 58.1±1.5 21.4±1.3 67.1±1.7 45.1±0.4 55.7±1.6 57.8±1.5

RAP 79.6±0.6 83.8±0.7 55.1±1.9 45.9±1.5 16.8±1.9 68.9±1.6 41.9±1.4 39.8±1.3 54.0±1.5

BEATS 84.7±1.7 90.3±1.8 68.5±1.9 52.1±0.6 20.5±1.1 69.9±1.7 45.9±1.6 44.6±1.5 59.6±1.7

DSG-MCTS(Ours) 93.1±1.0 92.2±1.1 78.7±1.3 65.8±1.4 31.4±0.2 73.8±0.5 51.9±1.4 74.1±1.6 70.1±1.4

Llama-3-8B

CoT+SC 80.1±1.7 88.5±1.8 29.4±0.5 25.6±1.6 7.8±1.3 67.3±1.7 44.2±1.6 46.5±0.8 48.7±1.7

AlphaMath 67.1±1.5 71.7±1.6 35.6±2.8 30.9±1.5 9.2±0.2 63.0±1.7 34.6±1.5 38.5±0.6 43.8±1.6

MindStar 67.8±1.5 75.4±0.6 32.8±1.4 32.5±1.5 10.1±0.3 63.7±1.6 38.1±1.5 41.3±1.4 45.2±1.5

RAP 81.0±1.7 84.3±0.8 19.4±1.7 28.7±1.6 8.3±1.3 69.2±0.7 44.5±2.6 45.6±1.7 47.6±1.7

BEATS 86.3±1.6 88.9±0.7 39.1±1.5 36.8±1.6 14.7±1.3 71.7±1.6 38.0±1.5 43.7±1.2 52.4±1.3

DSG-MCTS(Ours) 89.5±1.0 92.7±1.1 45.3±1.2 39.5±1.3 17.2±1.1 74.1±0.5 45.5±1.4 48.7±1.5 56.6±0.7

Llama-3.1-8B

CoT+SC 81.1±2.7 84.2±1.6 43.7±1.1 35.2±1.6 12.1±1.4 70.4±1.4 41.6±1.5 60.5±1.8 53.6±1.6

AlphaMath 69.7±1.5 75.6±2.6 37.9±2.9 38.6±1.5 13.7±1.3 64.0±1.7 37.8±1.4 55.3±1.6 49.1±0.5

MindStar 71.9±1.9 79.0±0.7 43.1±1.1 40.2±2.6 15.3±1.4 66.3±1.3 40.6±1.9 58.9±1.8 51.9±0.7

RAP 82.9±1.5 89.0±1.6 22.1±0.9 31.5±1.5 9.8±2.3 73.1±1.7 39.7±0.5 48.6±1.6 49.6±1.4

BEATS 88.1±1.6 84.9±1.0 47.5±1.6 42.9±1.5 14.2±1.3 70.7±1.6 41.3±1.6 60.3±1.5 56.2±0.6

DSG-MCTS(Ours) 90.2±1.2 94.3±0.3 52.7±0.5 48.2±1.2 21.7±0.4 73.5±1.1 47.7±1.5 65.4±1.6 61.7±1.4

Table 1: Performance evaluation of DSG-MCTS on eight reasoning benchmarks. The best results in each category
are highlighted in bold. The improvement over the best-performing baseline methods is statistically significant
(significant test, p < 0.05). Results are reported as the mean and standard deviation over five sampling runs.

MODEL SETTING MATH AIME2024

Claude-3.5 CoT 71.1 26.7
GPT-4 CoT 64.5 9.3
GPT-4o CoT 76.6 13.4
GPT-4o mini CoT 70.2 10.2

Qwen2.5-7B Ours 78.7 31.4
Qwen2-7B Ours 63.7 23.8
Llama-3-8B Ours 45.3 17.2
Llama-3.1-8B Ours 52.7 21.7

Table 2: Comparison with leading closed-source LLMs.
The best results in each category are highlighted in bold.

Implementation Details. All experiments are con-
ducted using the vLLM framework with a tempera-
ture of 0.9 and top-p of 0.9. The reasoning depth
d is set to 5 for all tasks except for the MATH,
AMC 2023, and AIME 2024 datasets, where d
is increased to 8 to handle the higher complexity.
To ensure reliability and statistical validity, each
model and configuration is evaluated across five
sampling runs, with reported performance metrics
corresponding to the mean and standard deviation
over these runs. To further assess the statistical sig-
nificance of the performance differences between
our proposed method and the baseline models, we
conduct independent two-sample t-tests on the dis-
tributions of experimental results obtained from
different random seeds. By applying a significance

level of 0.05, we consider differences with p-values
below this threshold to be statistically significant.

4.2 Main Results

Evaluation on Reasoning Benchmarks. As
shown in Table 1, we evaluate DSG-MCTS on eight
mainstream reasoning datasets and compare its
performance with existing MCTS-based methods.
DSG-MCTS consistently achieves state-of-the-art
results across diverse reasoning tasks. For example,
with the Qwen2.5-7B model, DSG-MCTS achieves
78.7% on MATH, 93.1% on GSM8K, and 92.2%
on SVAMP, showcasing its strong problem-solving
capabilities in structured mathematical reasoning.
Furthermore, on the multi-task benchmark MMLU,
DSG-MCTS achieves average accuracies of 74.1%
using Qwen2.5-7B and 65.4% using Llama-3.1-8B,
underscoring its robust adaptability across various
reasoning domains. These gains can be attributed
to its dynamic search-guided strategy, which en-
hances both reasoning efficiency and cross-domain
generalization, enabling DSG-MCTS to better han-
dle tasks of increasing complexity.
Comparison with Closed-Source Models. As
shown in Table 2, we applied our DSG-MCTS
method to relatively smaller open-source models
and compared the results with those of closed-
source models. For example, the Qwen2.5-
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MODEL SETTING GSM8K MATH AMC 2023 AIME 2024 Overall
ACC ↑LEN ↓ ACC ↑LEN ↓ ACC ↑LEN ↓ ACC ↑LEN ↓ ACC ↑LEN ↓

Llama3.1-8B

CoT+SC 81.1 2953 43.7 3895 35.2 6130 12.1 7155 43.0 5033
MindStar 71.9 3257 43.1 4170 40.2 5893 15.3 8952 42.6 5568
BEATS 88.1 3050 47.5 4855 42.9 6341 14.2 8347 49.2 5648
DSG-MCTS(Ours) 90.2 2375 52.7 3159 48.2 4622 21.7 5780 53.2 3984

Qwen2.5-7B

CoT+SC 90.9 2373 70.7 3674 32.4 5226 12.6 6018 51.7 4323
MindStar 77.3 3128 54.8 4319 58.1 5091 21.4 7205 52.9 4936
BEATS 84.7 2760 68.5 3415 52.1 4738 20.5 6839 58.5 4438
DSG-MCTS(Ours) 93.1 1880 78.7 2869 65.8 3871 31.4 4696 67.3 3329

Table 3: Comparison of reasoning accuracy and efficiency between DSG-MCTS (Ours) and baseline methods.

TASK SETTING Lev Distance↑ n-gram↓

GSM8K

CoT+SC 0.4914 0.3558
MindStar 0.6211 0.2981
BEATS 0.6974 0.2147
Ours 0.8097 0.1673
Ours(w/o DSG) 0.7128 0.2487

MATH

CoT+SC 0.5526 0.3123
MindStar 0.6591 0.2616
BEATS 0.5526 0.1948
Ours 0.7892 0.1285
Ours(w/o DSG) 0.5974 0.2321

AIME 2024

CoT+SC 0.3160 0.3891
MindStar 0.4129 0.2840
BEATS 0.4991 0.2125
Ours 0.6854 0.1139
Ours(w/o DSG) 0.4312 0.2748

Table 4: Diversity comparison based on Levenshtein
distance and n-gram overlaps between baseline and pro-
posed methods.

7B-Instruct model, enhanced with DSG-MCTS,
achieves 78.7% accuracy on the challenging MATH
benchmark, surpassing GPT-4o’s 76.6%. Further-
more, on the challenging AIME 2024 dataset, it
attains 31.4% accuracy, demonstrating remarkable
reasoning capabilities. These results indicate that
our approach effectively enhances the reasoning
and problem-solving capacities of open-source
models. Notably, DSG-MCTS enables the 7B-
parameter Qwen2.5 model to reach performance
levels comparable to powerful closed-source mod-
els like GPT-4o and Claude-3.5.

4.3 Inference Overhead

As shown in Table 3, the results demonstrate that
our method consistently reduces reasoning length
while improving accuracy across different models
and four reasoning benchmarks with varying diffi-
culty levels. For instance, on Llama3.1, our method
decreases the generation length by an average of
29.5% compared to the second-best baseline across
the benchmarks, while achieving approximately an
8% improvement in accuracy. Notably, our method

exhibits more pronounced improvements on the
more challenging AIME 2024 dataset. For exam-
ple, with the Qwen2.5 model, our approach outper-
forms the second-best baseline by approximately
50%. The performance gain over the traditional
CoT+SC method on this difficult dataset is even
more significant. These results indicate that han-
dling harder problems requires more diverse explo-
ration strategies than simpler ones.

4.4 Diversity Improvement Analysis

Table 4 evaluates the diversity of generated answers
by comparing our method with CoT+SC and sev-
eral MCTS-based approaches. The experiments
use Qwen2.5-7B as the backbone model, and di-
versity is measured by assessing the Levenshtein
Distance and n-gram overlaps between generated
solutions, averaged across the test set. As shown
in the results, our method achieves significantly
higher diversity compared to CoT+SC and other
tree search methods. By incorporating diverse rea-
soning strategies, our approach enhances semantic
variation and effectively reduces redundant patterns
in the generated outputs, demonstrating its abil-
ity to explore a wider solution space and generate
more varied reasoning paths. We also conducted
an ablation study on the diversity of the Dynamic
Strategy-Guided Path Construction (DSG) method.
The ablation results verify that the diversity encour-
agement significantly improves reasoning diversity.

4.5 Ablation Study

Figure 3 shows a radar chart comparing model per-
formance with and without the DSG module across
multiple benchmark datasets on Qwen2.5-7B. The
radar visualization illustrates the multi-dimensional
accuracy improvements brought by the DSG mod-
ule. Experimental results confirm that integrating
the DSG module consistently enhances the model’s
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Figure 3: Ablation study on the influence of DSG on
multiple datasets.

Figure 4: Ablation study results on the influence of
MDP-based strategy selection module.

reasoning capability across different tasks, expand-
ing the coverage of the model’s problem-solving
space.

Figure 4 shows a bar chart comparing models
equipped with and without the MDP-based Dy-
namic Strategy Selection module on the AMC 2023
and MATH datasets, evaluated on Qwen2.5-7B.
The evaluation focuses on both accuracy and infer-
ence efficiency, measured by the generated output
length (words). The results show that the MDP
module enables the model to select more appro-
priate reasoning paths, reducing redundant steps
and improving inference efficiency. Notably, we
observe that the MDP module not only enhances ef-
ficiency but also brings a slight improvement in ac-
curacy, indicating that strategy selection tailored to
problem diversity contributes to improved problem-
solving accuracy.

4.6 Enhancing Diversity in o1-like LLMs

We conducted a case study to evaluate the effec-
tiveness of DSG-MCTS in enhancing the reasoning

Figure 5: Ratio of whether a solution provides a new
reasoning strategy for each index after fine-tuning.

diversity of large models similar to o1. Since o1 is
closed-source, we used the open-source Deepseek-
R1-7b (R1) as a substitute, which exhibits slow-
thinking capabilities. Experimental results showed
that R1 tends to repeat reasoning paths in multi-
step generation. To address this issue, we applied
DSG-MCTS to generate structurally diverse slow-
thinking data on the GSM8K and MATH datasets
and fine-tuned R1 accordingly.

We adopted the previously proposed distinctness
ratio to measure the diversity of reasoning strate-
gies. As shown in Figure 5, after fine-tuning, the
proportion of novel strategies in solutions 2 to 4
increases significantly, particularly on the MATH
dataset. This demonstrates that DSG-MCTS effec-
tively expands the reasoning space of models that
have internalized slow thinking.

5 Related Work

Current research on improving diversity still faces
significant limitations. While diversity-promoting
prompts and increased temperature can easily gen-
erate superficially diverse outputs (Naik et al.,
2024; Brown et al., 2024), they struggle to produce
reasoning paths with substantial differences and
high quality. Example-based methods (Yu et al.,
2025) rely on a limited number of examples for
guidance, and their diversity is constrained to the
sampling level, lacking systematic optimization
of reasoning path structures. This limitation re-
stricts their potential in complex multi-step reason-
ing tasks. In contrast, we propose a diversity-driven
reasoning framework based on Monte Carlo Tree
Search (MCTS), which dynamically structures the
search to generate multiple high-quality and sub-
stantially varied reasoning paths, effectively over-
coming the limitations of superficial diversity and
lack of structural optimization.
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To address the above limitations, we propose a
novel perspective: the empowerment of LLMs to
enhance their problem-solving capabilities through
the exploration and utilization of diverse reason-
ing strategies. Instead of confining the model to
a single predefined reasoning path, this approach
advocates for a dynamic and adaptable strategy.

6 Conclusion

We propose DSG-MCTS, a framework that en-
hances the reasoning capabilities of large language
models by integrating dynamic and diverse reason-
ing strategies. Through dynamic strategy selection
and MCTS-guided path generation, DSG-MCTS
addresses the limitations of traditional MCTS meth-
ods, improving both path diversity and solution
quality. Experiments on reasoning benchmarks
demonstrate its state-of-the-art performance in ac-
curacy and efficiency, highlighting its potential for
tackling complex reasoning tasks.

Limitations

The DSG-MCTS method enhances reasoning capa-
bilities through a diversity of strategies; however,
there remains room for improvement in the inter-
pretability of the reasoning process, particularly in
applications where a clear understanding of model
decisions is crucial. Therefore, enhancing the in-
terpretability of the model to make reasoning paths
and strategy choices more transparent will be an
important area for future improvement. Moreover,
while the method enhances the diversity of reason-
ing, the incorporation of higher-dimensional inno-
vative thinking and adaptive strategy generation
mechanisms to further augment flexibility and cre-
ativity represents a significant direction for future
research.
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A Related Work

CoT prompting methods have recently advanced
the multi-step reasoning capabilities of LLMs to
a remarkable degree. This can be achieved by
prompting the models to generate intermediate rea-
soning steps before arriving at the final answer (Wei
et al., 2022). Consequently, this method leads
to more accurate solutions through the methodi-
cal structuring of thought patterns. Following the
above initial CoT prompting work, lots of works
spring up aim to improve different parts of original
reasoning processing, including auto-cot (Zhang
et al., 2023), self-consistency (Wang et al., 2023),
active prompt (Diao et al., 2024) and automate-
cot(Shum et al., 2023). These methods are effective
but limited to certain tasks, as they depend on spe-
cific examples for the model to imitate, and such
examples often vary significantly.

Then Least-to-Most prompting (Drozdov et al.,
2022) and Decomposed prompting (Khot et al.,
2022) are proposed. These methods usually emu-
late basic human reasoning patterns by deconstruct-
ing complex tasks into simpler, more manageable

10552

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.18653/v1/2023.findings-emnlp.811
https://doi.org/10.18653/v1/2023.findings-emnlp.811
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.17972
https://arxiv.org/abs/2409.17972
https://arxiv.org/abs/2409.17972
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2410.01952
https://arxiv.org/abs/2410.01952
https://doi.org/10.48550/ARXIV.2506.11088
https://doi.org/10.48550/ARXIV.2506.11088
https://doi.org/10.48550/ARXIV.2506.11088
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2406.05673
https://arxiv.org/abs/2406.05673
https://arxiv.org/abs/2406.05673
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://arxiv.org/abs/2303.18223


(a) The trend of accuracy with
the increasing value of explo-
ration depth.

(b) The trend of accuracy with
the increasing value of temper-
ature.

Figure 6: Hyperparameter sensitivity analysis.

steps. However, since they fail to simulate the dy-
namic nature of human thought processes when
confronted with varied and novel challenges, these
approaches are typically rigid and lack flexibility.

At the same time, Tree-of-Thought (ToT) (Yao
et al., 2023a), Graph-of-Thought (Besta et al.,
2023; Yao et al., 2023b), and other related tech-
niques like Branch-solve-merge (Saha et al., 2023)
and RAP (Hao et al., 2023b) are also proposed.
They are used to explore a broader range of rea-
soning pathways by simulating interconnected and
branching thought processes. However, they are
frequently complex and require manual interven-
tion to tailor prompts for specific tasks.

B Algorithm

Algorithm 1 outlines the proposed DSG-MCTS
framework for solving multi-step reasoning tasks.
The algorithm is divided into three main com-
ponents. First, an MDP-based strategy selection
mechanism models reasoning as a Markov Deci-
sion Process, where states represent task contexts
and actions correspond to reasoning strategies. A
policy network is trained using reinforcement learn-
ing to select the optimal strategy based on the task
at hand. Second, the selected strategy is integrated
into MCTS, guiding the four phases of the search
process: Selection, Expansion, Simulation, and
Backpropagation. This ensures that the tree expan-
sion aligns with the chosen strategy, incorporates
diverse paths, and optimizes solution quality. Fi-
nally, the algorithm iteratively refines the selected
reasoning strategy and reasoning paths until satis-
factory termination criteria are achieved, ensuring a
robust and efficient solution to complex reasoning
tasks.

Algorithm 1 DSG-MCTS
Require: Initial state s0, reasoning strategies S,

threshold ϵ
Ensure: Optimized reasoning path and solution

Step 1: Initialization
Initialize search tree with root node s0
Define active reasoning strategies Sactive ⊆ S
Step 2: Tree Search Phases
while termination criteria not met do

Selection: Select a node using UCT
Expansion: Expand the selected node

based on Sactive
Simulation: Simulate reasoning paths
Backpropagation: Update node values

with rewards
end while
Step 3: Strategy Optimization
Use MDP to select strategies
Reevaluate strategies if performance gap > ϵ
Output: Reasoning path and solution

C Hyper-parameter Analysis

DSG-MCTS relies on two critical hyperparame-
ters: the exploration depth (ds) and the tempera-
ture. Their influence on performance is illustrated
in Figure 6.

Exploration Depth. Figure 6 (a) shows the ac-
curacy on the MATH dataset as the exploration
depth ds varies from two to ten for both Llama3.1-
8B and Qwen2.5-7B. For Llama3.1-8B, accuracy
rises from approximately 38% at ds = 2 to 52.7%
at ds = 8, then decreases to 51.0% at ds = 9
and 48.4% at ds = 10. For Qwen2.5-7B, accu-
racy increases from about 65.0% at ds = 2 to
78.2% at ds = 8, then falls to 76.8% at ds = 9
and 73.2% at ds = 10. The steady improvement up
to ds = 8 suggests that deeper exploration uncov-
ers additional correct solution paths. Beyond this
point, further increases in ds lead to exploration
of lower-utility branches, offering no benefit and
slightly reducing performance. Therefore, setting
ds = 8 provides the best trade-off between accu-
racy and computational efficiency.

Temperature. Figure 6 (b) reports accuracy on
the MATH dataset as temperature varies from 0.1
to 1.3 for both Llama3.1-8B and Qwen2.5-7B. For
Llama3.1-8B, accuracy rises from 44.0% at temper-
ature 0.1 to 52.7% at 0.9, then decreases to 51.8%
at 1.1 and 51.3% at 1.3. For Qwen2.5-7B, accuracy
increases from 65.8% at 0.1 to 78.7% at 0.9, then
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falls to 78.1% at 1.1 and 77.0% at 1.3. The steady
gain up to temperature 0.9 indicates that moder-
ate sampling randomness enhances exploration of
alternative solution paths. Beyond 0.9, increased
randomness injects noise without further benefits,
causing performance to decline. Therefore, setting
the temperature to 0.9 achieves the highest accu-
racy for both models while avoiding unnecessary
sampling noise.

D Diversity Strategy Definitions and
Action Construction in DSG-MCTS

C.1 Diversity Strategy Definitions
In DSG-MCTS, reasoning strategies (Strate-
gies) serve as high-level guiding frameworks for
problem-solving, determining the global genera-
tion of reasoning paths. To address various types
of complex reasoning tasks, DSG-MCTS designs
four core strategies, as outlined below:

• Deduction Strategy: This strategy de-
rives conclusions from general principles or
premises. In mathematical reasoning, for in-
stance, it applies known axioms or theorems
to deduce specific facts or solutions.

• Induction Strategy: This strategy generates
general principles from specific instances. For
example, in statistical reasoning, it identifies
patterns or trends from observed data to make
broader generalizations.

• Abduction Strategy: This strategy infers the
best possible explanation for a set of observa-
tions, often under uncertainty. In diagnostic
tasks, for instance, it proposes hypotheses that
best explain observed symptoms or phenom-
ena.

• Analogy Strategy: This strategy generates
new reasoning paths by leveraging solutions to
similar problems. For example, in geometry,
it utilizes properties of analogous shapes to
deduce solutions for the current problem.

Each strategy provides global guidance for rea-
soning path generation, enabling the construction
of diverse reasoning paths by combining strategic
goals with sub-actions.

C.2 Action Construction Based on Strategies
In DSG-MCTS, Actions are specific operations that
execute the objectives of a reasoning strategy, dy-

namically expanding reasoning paths. These ac-
tions are essential for constructing and navigating
the reasoning process in an efficient and organized
manner. Each reasoning strategy corresponds to a
set of sub-actions, which, under the guidance of the
strategy, are structured and optimized as tree paths
to lead toward the final conclusion or solution.

(1) Deduction Strategy Actions Deduction is a
reasoning process that involves deriving specific
conclusions from general principles or premises.
It is a top-down approach where conclusions fol-
low logically from established facts or laws. The
sub-actions associated with Deduction ensure that
the reasoning process is systematic and rooted in
previously known facts. These sub-actions include:

• Premise Identification: In this step, we iden-
tify the foundational principles, rules, or ax-
ioms that will guide the deduction. This
could involve selecting mathematical theo-
rems, known facts, or logical principles rel-
evant to the problem at hand. For exam-
ple, in geometry, we might start by identi-
fying the properties of triangles, such as the
Pythagorean theorem.

• Logical Application: This sub-action in-
volves applying the identified premises to
generate new insights or conclusions. This
is typically done using logical rules such as
modus ponens or syllogisms. The reasoning
process might involve deriving intermediate
steps, each of which is valid under the rules
of logic. For example, if “All mammals have
hearts” and “A dog is a mammal”, we apply
this logical structure to conclude that “A dog
has a heart”.

• Conclusion Validation: After deriving the
conclusions, it is necessary to validate them
against the original problem or real-world con-
text. This step ensures that the conclusions are
consistent with the premises and that no logi-
cal errors have occurred. The validation could
involve testing the conclusions with empiri-
cal data or checking for contradictions. For
instance, in mathematical proofs, we might
verify that a derived formula holds true for all
edge cases.

(2) Induction Strategy Actions Induction is a
reasoning process that moves from specific obser-
vations to broader generalizations or theories. It is
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Type Definition Example

Deduction Derive conclusions based on established
principles or premises.

Given that “all even numbers are divisible by 2” and “12
is an even number”, we can deduce that “12 is divisible
by 2”.

Induction Make generalizations based on a set of ob-
served specific instances.

Observing that 2, 4, 6, and 8 are all divisible by 2, we can
infer that all even numbers are divisible by 2.

Abduction Generate a hypothesis based on available
evidence and test its validity.

If a number leaves a remainder of 1 when divided by 5, we
might hypothesize that the number is of the form 5n+ 1.
For example, 6, 11, 16, etc., fit this pattern.

Analogy Solve a problem by applying reasoning from
a similar case.

If a student can solve linear equations, they can likely
also solve quadratic equations using similar methods of
isolating variables. This analogy draws from the similarity
between the two types of equations.

Table 5: Description of different reasoning types with mathematical examples.

typically a bottom-up approach where patterns or
trends are observed from individual cases, which
are then generalized to make broader conclusions.
The sub-actions involved in Induction allow us to
build and test hypotheses based on observed evi-
dence. These sub-actions include:

• Pattern Recognition: In this phase, we ob-
serve specific instances or data points and look
for recurring patterns or trends. This could
involve analyzing numerical sequences, sci-
entific data, or observations of natural phe-
nomena. For example, if we observe that the
temperatures in a city rise every summer, we
might recognize a seasonal pattern.

• Generalization: Once patterns are identified,
we move to generalizing them. This involves
formulating broader theories or hypotheses
that explain the observed patterns. For exam-
ple, after noticing that all observed ravens are
black, we might generalize that “all ravens are
black”, even though we haven’t observed all
ravens.

• Validation: The generalized conclusions de-
rived through Induction must be tested for
their validity. This involves applying the gen-
eralized theory to new, unobserved cases to
determine whether it holds. This could in-
volve experiments, surveys, or collecting ad-
ditional data to confirm or refute the initial
hypothesis. For instance, after generalizing
that all ravens are black, we could attempt to
find a non-black raven to test the validity of
the generalization.

(3) Abduction Strategy Actions Abduction is a
reasoning process that involves generating hypothe-

ses to explain observed phenomena or events. It
is often used in situations where we need to deter-
mine the most plausible explanation for incomplete
or ambiguous data. Abductive reasoning is par-
ticularly useful when there are multiple possible
explanations, and we must identify the one that
best fits the evidence. The sub-actions involved
in Abduction allow for hypothesis generation and
testing. These sub-actions include:

• Observation Analysis: In this phase, we an-
alyze the available data or observations to
understand the underlying phenomena. This
could involve identifying symptoms or evi-
dence that point to a possible cause.

• Hypothesis Generation: After analyzing the
observations, we generate one or more hy-
potheses that could explain the phenomenon.
The goal here is to propose plausible explana-
tions that fit the available data.

• Hypothesis Testing: The hypotheses gener-
ated need to be tested against further obser-
vations or experiments. In this phase, we try
to validate the hypotheses by checking if the
observed evidence is consistent with the pro-
posed explanations.

(4) Analogy Strategy Actions Analogy is a rea-
soning process that constructs new reasoning paths
based on the similarity between a current problem
and a previous case or situation. It is widely used
when direct knowledge of a problem is unavailable,
and similarities to other known problems can guide
the solution process. The sub-actions involved in
Analogy allow for drawing parallels and making
inferences based on past experiences. These sub-
actions include:
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• Analog Retrieval: In this phase, we retrieve
similar problems or solutions from a knowl-
edge base, database, or historical context.
This could involve searching for previously
solved problems that share similarities with
the current problem. For example, if solving a
new type of equation, we might retrieve solu-
tions to similar types of equations from earlier
work.

• Solution Mapping: After retrieving analo-
gous problems and solutions, the next step
is to map the known solutions onto the cur-
rent problem. This involves identifying the
relevant features of both the old and new prob-
lems and determining how the solutions can
be applied to the new context. For instance, if
solving a linear equation, we might map the
method of isolating variables from a previous
problem to the current one.

• Analog Validation: The final step is to test
the validity of the analogy. We verify that
the reasoning path derived from the analogy
is applicable and correct in the new context.
This involves checking whether the mapped
solution correctly applies to the problem and
does not overlook important differences. For
example, after mapping a solution from a pre-
vious problem, we may need to verify that the
same operations apply to the new problem’s
variables.
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