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Abstract

Miscalibration in Large Language Models
(LLMs) undermines their reliability, highlight-
ing the need for accurate confidence estimation.
We introduce CCPS (Calibrating LLM Con-
fidence by Probing Perturbed Representation
Stability), a novel method analyzing internal
representational stability in LLMs. CCPS ap-
plies targeted adversarial perturbations to final
hidden states, extracts features reflecting the
model’s response to these perturbations, and
uses a lightweight classifier to predict answer
correctness. CCPS was evaluated on LLMs
from 8B to 32B parameters (covering Llama,
Qwen, and Mistral architectures) using MMLU
and MMLU-Pro benchmarks in both multiple-
choice and open-ended formats. Our results
show that CCPS significantly outperforms cur-
rent approaches. Across four LLMs and three
MMLU variants, CCPS reduces Expected Cali-
bration Error by approximately 55% and Brier
score by 21%, while increasing accuracy by 5
percentage points, Area Under the Precision-
Recall Curve by 4 percentage points, and Area
Under the Receiver Operating Characteristic
Curve by 6 percentage points, all relative to
the strongest prior method. CCPS delivers an
efficient, broadly applicable, and more accu-
rate solution for estimating LLM confidence,
thereby improving their trustworthiness.

Code — https://github.com/ledengary/CCPS

Data — https://huggingface.co/datasets/ledengary/CCPS

1 Introduction

Despite their impressive performance, large lan-
guage models (LLMs) consistently struggle with
confidence calibration (Guo et al., 2017; Geng
et al., 2024). Their confidence—the model’s in-
ternally estimated probability that a given response
is correct—frequently misaligns with actual out-
comes: LLMs often assign high confidence to

*Corresponding author: khanreza@msu.edu

wrong answers and low confidence to right ones.
This unreliability is particularly acute in high-
stakes domains like medicine, finance, and law. For
example, in a medical task like symptom extrac-
tion for cancer toxicity assessment, even if an LLM
often produces correct information, it might do so
with inappropriately low confidence, or conversely,
express high confidence for incorrect outputs. If
such confidence scores are not dependable guides
to actual correctness, human experts may be forced
to meticulously review every LLM-generated in-
stance, significantly diminishing the practical bene-
fits of automation. Accurate confidence estimation
for each specific response is therefore essential, as
it provides a vital mechanism for managing risk,
enabling users to prioritize human oversight, se-
lectively rely on LLM outputs, and foster more
responsible and effective LLM integration.

Existing approaches to LLM confidence esti-
mation include direct self-evaluation (Kadavath
et al., 2022), post-hoc adjustments (Jiang et al.,
2021), internal state probing with lightweight clas-
sifiers (Azaria and Mitchell, 2023; Liu et al., 2024),
and model fine-tuning (Kapoor et al., 2024b).
These methods often struggle to consistently de-
liver on multiple desirable properties simultane-
ously, namely achieving strong calibration (e.g.,
low Expected Calibration Error (ECE)) and high
discriminative power (e.g., high Area Under the
Precision-Recall Curve (AUCPR) or Area Under
the Receiver Operating Characteristic Curve (AU-
ROC)) while maintaining computational efficiency
and generalizability across the diverse set of LLM
architectures and families. Many methods excel in
some of these desirable properties but make trade-
offs in others; for instance, fine-tuning approaches
like Calibration-Tuning (CT) (Kapoor et al., 2024b)
often achieve strong calibration in ECE but may not
consistently lead in discriminative metrics like AU-
ROC, while lightweight methods such as LitCab
(Liu et al., 2024) can demonstrate strong AUROC
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but sometimes show variable ECE performance
across different LLM families. This leaves a need
for more holistically effective solutions.

In this work, we introduce CCPS (Calibrating
LLM Confidence by Probing Perturbed Representa-
tion Stability), a novel method that addresses these
challenges by assessing LLM confidence through
the stability of its internal representations. CCPS
operates on frozen base LLMs, applying targeted
adversarial perturbations to the final hidden states
that generate an answer’s tokens. From the LLM’s
response to these perturbations, we extract a rich
feature set and train a lightweight classifier to pre-
dict answer correctness. This model-agnostic prob-
ing offers an efficient confidence proxy without
modifying the base LLM.

Comprehensive evaluations demonstrate CCPS’s
significant advantages over existing confidence es-
timation approaches. Tested across four modern
LLMs (8B to 32B parameters, spanning three ar-
chitectural families) on MMLU and MMLU-Pro
benchmarks in both multiple-choice and open-
ended formats, CCPS consistently achieves supe-
rior performance across key calibration (e.g., ECE,
Brier score) and discrimination metrics (e.g., ACC,
AUCPR, AUROC). Our findings reveal that by
quantifying LLM representational stability through
targeted internal perturbations, CCPS achieves sub-
stantial improvements over other state-of-the-art
confidence estimation methods; for instance, CCPS
reduces average ECE by approximately 55% (up to
88%) and Brier score by 21% (up to 45%), while
also increasing average Accuracy (ACC) by 5 per-
centage points (pp) (up to +14 pp), AUCPR by 4
pp (up to +13 pp), and AUROC by 6 pp (up to +17
pp), relative to the best performing baseline. The
key contributions of this work include:

• A novel, model-agnostic, parameter-efficient,
and scalable framework (CCPS) offering a
fresh perspective on LLM confidence estima-
tion by quantifying it through the stability of
internal representations under targeted pertur-
bations.

• Demonstration of CCPS’s substantial im-
provements in both key calibration (ECE,
Brier score) and discrimination (ACC,
AUCPR, AUROC) metrics.

• Evidence of CCPS’s generalizability across di-
verse LLM architectures (Llama, Qwen, Mis-
tral; 8B to 32B).

• Extensive benchmarking of confidence estima-
tion methods on MMLU and MMLU-Pro in
both multiple-choice and open-ended formats.

These contributions establish CCPS as an effective
method for improving LLM confidence estimation,
helping to make LLM applications more trustwor-
thy, especially in critical domains where reliability
is crucial.

2 Related Work

Calibration in LLMs A model is considered
well-calibrated when its expressed confidence in
a prediction aligns with the empirical likelihood
of that prediction being correct. In the context of
LLMs, calibration efforts broadly diverge into two
streams. The first targets calibration of next-token
predictions and responses to reduce hallucinations.
This direction is exemplified by the work of Zhou
et al. (2025), which focuses on hallucination mit-
igation through comprehensive model calibration.
The second stream, more aligned with the present
work, focuses on developing and calibrating ex-
plicit confidence estimation mechanisms that assess
the correctness of statements generated by LLMs.

Confidence Estimation in LLMs Several ap-
proaches have been proposed for estimating an
LLM’s confidence in its assertions. One vein of re-
search explores probing the internal states of LLMs.
For instance, Azaria and Mitchell (2023) train an
auxiliary linear classifier on hidden layer activa-
tions from an LLM to predict the truthfulness of
statements. While this can reveal internal knowl-
edge, its efficacy depends on identifying the op-
timal representational layer and may vary across
evaluation metrics. Another approach involves elic-
iting the model’s inherent self-assessment. Kada-
vath et al. (2022) introduced concepts like P(True),
the probability an LLM assigns to its generated
answer being correct (often derived from probabili-
ties of “True” or “False” tokens when prompted to
evaluate its own previous answer), and P(IK), the
probability the model assigns to its own ability to
answer a given question correctly, estimated before
attempting to generate the answer. These methods
assess the model’s intrinsic confidence without ex-
ternal classifiers but rely on the LLM’s inherent,
and often uncalibrated, self-evaluation capabilities.

Improving Confidence Calibration in LLMs
Other research adapts the LLM or its outputs to
produce more reliable confidence scores. Logit

10461



Temperature Scaling (LTS) (Jiang et al., 2021)
is a post-hoc method that adjusts output logits
using a learned temperature parameter; however,
its performance can degrade under distributional
shifts between calibration and test data (Kapoor
et al., 2024b). More intensive methods involve
fine-tuning. CT (Kapoor et al., 2024a,b) builds
on the P(True) concept, prompting the LLM to
assess its own answers and then fine-tuning it on
this self-evaluation using methods like LoRA. This
can achieve strong ECE but may face challenges
in efficient class discrimination (e.g., AUROC) and
can be computationally demanding. In contrast,
LitCab (Liu et al., 2024) offers a lightweight ap-
proach by training a single linear layer to predict a
bias term added to the LLM’s output logits. While
LitCab shows strong discrimination, our experi-
ments reveal variable ECE across LLM families.
These diverse strategies highlight an ongoing trade-
off in achieving robust calibration, discriminative
power, computational efficiency, and generalization
in LLM confidence estimation.

3 Method

Our approach to LLM confidence estimation is
centered on evaluating the internal stability of the
model’s representations when its generated answer
is produced. We hypothesize that an LLM’s confi-
dence correlates with the robustness of its internal
states; specifically, the final hidden states that lead
to the tokens of a high-confidence answer should
exhibit greater stability when subjected to targeted
perturbations. This internal probing of represen-
tational stability offers an efficient alternative to
methods relying on multiple generation passes for
consistency checking. Notably, output consistency
has been identified as a strong indicator of LLM
reliability (Zhou et al., 2025), but external checks
involve significant computational overhead, which
our internal analysis aims to mitigate while lever-
aging a similar underlying principle of stability.

The methodology involves three primary stages,
applied while the base LLM (whose confidence is
being estimated) remains frozen: (1) token-level
adversarial perturbation of the LLM’s final hidden
states along a defined trajectory, (2) extraction of
features that quantify the impact of these perturba-
tions, and (3) a classification architecture that maps
these features to a confidence score, representing
the answer’s probability of correctness. These three
stages are illustrated in Figure 1.

In this work, we use the term adversarial in
a restricted sense: it refers to targeted, gradient-
informed perturbations that are designed to sys-
tematically probe representational stability by chal-
lenging the generation of token ti. This usage is
distinct from adversarial attacks aimed at induc-
ing misclassification with minimal input changes,
or from adversarial training schemes intended to
improve model robustness.

3.1 Probing Internal Stability

For a given input prompt P (which includes few-
shot exemplars and the target question) and an an-
swer A = (t1, t2, . . . , tL) generated by the base
LLM, where ti is the i-th token, we analyze each
token individually:

Original State Identification For each token ti
in A, we first identify the original final hidden state
H

(i)
0 ∈ Rdh from the LLM’s last transformer layer

that immediately led to the generation of ti. This
is obtained by feeding P and any preceding gener-
ated tokens t<i into the LLM. The corresponding
original logits are Z

(i)
0 = LM_Head(H(i)

0 ).

Adversarial Perturbation Trajectory Direction
To define a systematic perturbation trajectory that
challenges the LLM’s generation of the observed
token ti, we utilize the gradient of the loss associ-
ated with ti with respect to its generating hidden
state H(i)

0 . Let P (ti|H(i)
0 ) be the probability of the

token ti given H
(i)
0 . We define the loss as the nega-

tive log-likelihood: L(i) = − logP (ti|H(i)
0 ). The

Jacobian vector J (i) = ∇
H

(i)
0

L(i) then indicates
the direction in the hidden state space where this
loss L(i) increases most rapidly; equivalently, this
is the direction where the probability of token ti
decreases most steeply. We normalize this vector
to obtain the unit direction d(i) = J (i)/||J (i)||2. If
J (i) is a zero vector, d(i) is also set to zero. Per-
turbing along this direction d(i) is an adversarial
act aimed at making the original token ti less likely.
This contrasts with standard LLM training, where
one steps in the negative gradient direction (e.g.,
−∇L) to reduce loss for a target token. Here, by
moving along the positive gradient of L(i), we are
adversarially probing the stability of the LLM’s
initial choice ti by actively trying to dislodge it.

Iterative Adversarial Perturbation We then
explore the stability of H

(i)
0 by applying S dis-

crete adversarial perturbations along the direction
d(i). The maximum extent of this exploration is
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Figure 1: Overview of the CCPS method, illustrating its three primary stages. (1) For each token ti (e.g., ’d’ in the
example) from a frozen LLM’s response to an input prompt P , its original final hidden state H

(i)
0 is systematically

perturbed (details in §3.1). This involves moving H
(i)
0 along a derived adversarial direction d(i) with varying

magnitudes ϵs (visually represented by lighter to darker shades for increasing ϵs) to yield a trajectory of perturbed
hidden states H(i)

s and their corresponding logits Z(i)
s via the LM Head. (2) A Df -dimensional feature vector f (i)

is then engineered (§3.2), encompassing original state characteristics, perturbation stability indicators, and trajectory
divergence statistics derived from the original and perturbed representational data. (3) This feature vector f (i) is
subsequently processed by a trainable feature projection network (EMC/OE) and a classification head (C) (§3.3) to
output the final confidence score, P (True), indicating the likelihood of the LLM’s answer being correct.

defined by a radius ϵmax and the number of steps
is S. We deliberately used a fixed set of hyperpa-
rameters (ϵmax = 20.0, S = 5) across all models
and benchmarks to test the method’s robustness.
These values were chosen based on empirical ob-
servation; ϵmax = 20.0 was a practical upper bound
where the integrity of the LLM’s output distribu-
tion began to degrade into noise or "gibberish"
consistently across all models, while S = 5 was
selected as a pragmatic trade-off between capturing
the trajectory’s dynamics and managing the com-
putational cost. The s-th perturbation magnitude
is ϵs = s · (ϵmax/S), for s ∈ {1, . . . , S}. The s-th
perturbed hidden state is:

H(i)
s = H

(i)
0 + ϵs · d(i)

For each H
(i)
s , we compute the corresponding per-

turbed logits Z(i)
s = LM_Head(H(i)

s ). This creates
a trajectory of hidden states and their resulting out-
put distributions under these adversarial nudges.

3.2 Quantifying Perturbation Impact

From the original hidden state H
(i)
0 and its corre-

sponding logits Z(i)
0 , along with the trajectory of S

perturbed hidden states {H(i)
s }Ss=1 and their respec-

tive logits {Z(i)
s }Ss=1, we extract a Df -dimensional

feature vector f (i) for each token ti. These features
are designed to capture the LLM’s initial output
characteristics for ti and how these characteristics
evolve under systematic adversarial perturbation.
Detailed definitions of all features are provided in
Appendix B. The primary categories are:

Original State Features This set quantifies the
LLM’s baseline predictive characteristics for token
ti prior to any perturbation, including measures
of output probabilities, logits, distribution entropy,
and prediction margins.

Overall Perturbation Features This category
comprises scalar metrics reflecting key aspects of
the perturbation process itself or its integrated ef-
fects, such as the L2 norm of the Jacobian vector
J (i), the perturbation magnitude required to change
the LLM’s top predicted token from ti (epsilon-to-
flip), and the Perturbation Energy Integral (PEI)
value which summarizes the impact of perturba-
tions on the log-probability of ti.

Perturbed State Features These features con-
sist of statistical summaries (e.g., mean, standard

10463



deviation, min, max, across the S perturbation
steps) of the LLM’s output characteristics (such as
token probabilities and distribution entropy) evalu-
ated after its hidden states have been perturbed.

Comparison Features This group includes sta-
tistical summaries of metrics that quantify the dif-
ferences or relationships (e.g., distributional diver-
gences like Kullback–Leibler and Jensen–Shannon,
cosine similarities) between the LLM’s original
state (hidden states, logits, probability distribu-
tions) and its perturbed states across the trajectory.

3.3 Confidence Classification Architecture

The per-token feature vectors serve as input to a
neural network designed to predict the correctness
of the entire answer A. This architecture comprises
a feature projection network and a classification
head.

Feature Projection Network The network struc-
ture adapts to the answer format. For Multiple-
Choice (MC) answers, which are typically single-
token responses, the feature vector f (1) is pro-
cessed by a Multi-Layer Perceptron (MLP), de-
noted as EMC, to yield an embedding e =
EMC(f

(1)). In contrast, for Open-Ended (OE) an-
swers consisting of L tokens, the sequence of fea-
ture vectors (f (1), . . . , f (L)) is passed through an
encoder EOE composed of 1D convolutional lay-
ers and adaptive pooling, resulting in a sequence
embedding e = EOE(f

(1), . . . , f (L)).
Both EMC and EOE are pre-trained using a Max-

Margin contrastive loss. Specifically, given a cor-
rect answer embedding e+ and an incorrect answer
embedding e− for the same question, the loss en-
courages the distance between e+ and e− to exceed
a margin γ > 0, formulated as

Lmax-margin = max
(
0, γ − (∥e+ − e−∥2 − ∥e+ − e+∥2)

)

This objective pushes embeddings of correct an-
swers closer together while enforcing separation
from incorrect ones. The choice of loss is aimed
at learning discriminative embeddings, a strategy
also found effective in other confidence estimation
works such as Liu et al. (2024). The objective of
this pre-training is to map features from correctly
answered questions to regions in the embedding
space that are separable from those associated with
incorrect answers, supervised by the ground truth
correctness of A.

Classification Head The embedding e is then
passed to an MLP classification head, C. This head
outputs a 2-dimensional logit vector, Zconf = C(e).
This architectural choice for binary correctness pre-
diction (incorrect vs. correct) is similar to that
used by Kapoor et al. (2024b). The final confi-
dence score, P (correct|A), is obtained via a soft-
max function applied to Zconf.

Training Procedure Following the contrastive
pre-training of the projection network, the projec-
tion network (EMC or EOE) and the classification
head C are jointly fine-tuned. This stage employs
a standard cross-entropy loss, again supervised by
the ground truth correctness of answer A. Further
implementation details of both EMC and EOE, in-
cluding the results of our hyperparameter search
and the finalized layer configurations, are provided
in Appendix E.

4 Experimental Setup

This section details the experimental setup de-
signed to empirically evaluate CCPS. Our eval-
uation framework provides a comprehensive and
rigorous comparison, benchmarking CCPS against
a wide array of recent confidence estimation
methods. This benchmark is conducted across
four modern LLMs of varying architectures and
scales, on knowledge-based question-answering
(QA) datasets including MMLU and MMLU-Pro in
both multiple-choice and open-ended formats. The
following subsections detail the specific language
models, datasets, training configurations, baselines,
and evaluation metrics employed in our study.

Datasets For training and validating our confi-
dence estimation models, we utilize the CT-CHOICE
and CT-OE datasets for multiple-choice and open-
ended QA formats, respectively. These datasets,
generated following the exact methodology de-
tailed by Kapoor et al. (2024b) (Apache License
2.0), comprise a large collection of commonly
used QA datasets from the literature. To as-
sess generalization and performance, we evaluate
on tasks from the Massive Multitask Language
Understanding (MMLU) benchmark (Hendrycks
et al., 2021) (MIT License). We created multiple-
choice and open-ended versions of these tasks,
namely MMLU-CHOICE and MMLU-OE, using the
same data processing approach as Kapoor et al.
(2024b) to ensure consistency. Additionally, we
employ MMLU-PRO-CHOICE (Apache License 2.0), a
multiple-choice version of the MMLU-Pro dataset
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(Wang et al., 2024), for further rigorous testing.
All dataset instances across training, validation,
and testing incorporate 5-shot exemplars within the
input prompt P to contextualize the LLMs. Ad-
ditional details on the dataset characteristics, re-
sponse generation process, and labeling procedures
are provided in Appendix C.

Training Details The full architectural details
of our projection networks and classification head
are provided in Appendix E. To ensure fair com-
parisons, training configurations were kept consis-
tent across all methods, including baselines. The
main classification/fine-tuning stage for all models
involved a total of 10,000 training steps. For our
proposed method, the contrastive feature projection
network (EMC or EOE) was pre-trained for 5,000
steps. Subsequently, the confidence classification
model was trained for an additional 5,000 steps.
Key hyperparameters for the AdamW optimizer
(Loshchilov and Hutter, 2019), such as a learning
rate of 1× 10−4, were aligned with those reported
by Kapoor et al. (2024b). Training was conducted
with a batch size of 32. A weight decay of 0.1 was
uniformly applied across all training stages and
methods.

Baselines We compare our method (CCPS)
against a comprehensive set of established con-
fidence estimation techniques. These include
P(True) and P(IK) (Kadavath et al., 2022), Logit
Temperature Scaling (LTS) (Jiang et al., 2021), In-
struction Tuning (IT) (Wei et al., 2022) on the un-
certainty query, SAPLMA (Azaria and Mitchell,
2023) (with variants SAPLMA-F, SAPLMA-M,
and SAPLMA-UM corresponding to different layer
inputs), Calibration Tuning (CT) (Kapoor et al.,
2024b), and LitCab (Liu et al., 2024). Detailed de-
scriptions of these baseline methods are provided
in Appendix D. Information regarding the computa-
tional setup and resources utilized for all methods
is available in Appendix F. Furthermore, a com-
parative analysis of the additional trainable param-
eters introduced by each method is presented in
Appendix G, underscoring the parameter efficiency
of our CCPS approach.

Evaluation Metrics We focus on two primary
metrics in the main text. For calibration, we use the
Expected Calibration Error (ECE), which measures
how well predicted confidences align with actual
accuracies. Intuitively, if a model assigns 70%
confidence to a set of answers, then about 70%

of those answers should be correct. To compute
this, the n samples are partitioned into b = 10
equally spaced bins {Bj}bj=1, and we compare the
average predicted confidence conf(Bj) against the
empirical accuracy acc(Bj) within each bin:

ECE =

b∑

j=1

|Bj |
n

∣∣conf(Bj)− acc(Bj)
∣∣.

Smaller values indicate that predicted probabilities
more faithfully reflect true correctness rates.

In addition, we report the Brier Score, which
directly measures the squared error between the
predicted confidence pk and the ground-truth out-
come ok ∈ {0, 1} for each sample k:

Brier =
1

n

n∑

k=1

(pk − ok)
2.

This metric captures both calibration and the sharp-
ness of predictions, with lower scores reflecting
more reliable and informative confidence estimates.

Additional classification-oriented met-
rics—including ACC, AUCPR, and AUROC—are
reported and formally defined in Appendix H.

Scientific Artifacts A detailed discussion regard-
ing the scientific artifacts utilized and developed
in this study, including our adherence to their in-
tended use and the intended applications of our
created artifacts, can be found in Appendix A.

5 Results

The performance of CCPS compared to baseline
methods across different LLMs and MMLU bench-
mark variants is presented in Table 1. Our method,
CCPS, consistently demonstrates notable improve-
ments in both calibration and discriminative power.

On the standard multiple-choice benchmark,
MMLU-CHOICE, CCPS consistently achieves supe-
rior performance across all four base LLMs. For
instance, ECE scores for CCPS are typically in the
range of 5.8-6.5%, representing substantial reduc-
tions compared to both LitCab and CT, which of-
ten exhibit much higher ECEs (e.g., LitCab’s ECE
of 45.6% and CT’s 45.2% on Qwen2.5-14B and
Qwen2.5-32B respectively, against CCPS’s 6.3%
on both). CCPS shows similar gains in Brier score
and discriminative metrics like AUCPR and AU-
ROC, often matching or outperforming baselines.

When evaluated on the more challenging
MMLU-PRO-CHOICE dataset, CCPS further extends
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MMLU-CHOICE

Meta-Llama-3.1-8B-Instruct Qwen2.5-14B-Instruct
Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑ Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑
LitCab 10.9 18.1 73.2 84.0 77.1 LitCab 45.6 20.0 78.3 83.7 65.3
CT 10.7 21.1 67.8 74.2 62.8 CT 12.1 17.0 78.6 84.7 64.8
CCPS 6.5 17.1 73.4 84.1 77.1 CCPS 6.3 13.1 80.2 92.1 81.6

Mistral-Small-24B-Instruct-2501 Qwen2.5-32B-Instruct
Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑ Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑
LitCab 13.5 15.1 79.5 91.5 78.2 LitCab 43.2 15.9 82.6 87.9 67.2
CT 8.2 15.5 79.6 83.3 56.5 CT 45.2 46.9 37.2 84.3 51.6
CCPS 5.8 11.5 83.0 93.1 83.3 CCPS 6.3 10.8 84.1 94.1 82.8

MMLU-PRO-CHOICE

Meta-Llama-3.1-8B-Instruct Qwen2.5-14B-Instruct
Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑ Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑
LitCab 16.6 24.7 66.1 51.7 63.6 LitCab 49.7 38.3 55.3 66.2 68.0
CT 21.5 29.8 50.4 43.7 57.3 CT 20.4 28.7 55.6 59.4 56.6
CCPS 4.5 20.0 70.4 55.2 67.9 CCPS 4.2 20.1 69.2 75.8 74.0

Mistral-Small-24B-Instruct-2501 Qwen2.5-32B-Instruct
Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑ Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑
LitCab 32.2 34.6 57.0 66.2 60.1 LitCab 48.4 33.7 60.8 72.7 70.3
CT 17.8 27.4 58.2 60.1 54.3 CT 38.0 41.6 44.8 60.5 49.9
CCPS 4.5 18.6 71.3 79.5 77.2 CCPS 4.6 18.5 71.8 82.4 77.8

MMLU-OE

Meta-Llama-3.1-8B-Instruct Qwen2.5-14B-Instruct
Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑ Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑
LitCab 8.8 22.5 65.3 46.2 66.0 LitCab 34.4 37.0 49.4 56.8 62.5
CT 8.8 21.1 65.3 48.9 70.9 CT 9.4 22.6 63.4 61.7 69.3
CCPS 8.0 20.2 69.5 49.4 69.3 CCPS 6.7 22.5 63.6 59.0 66.6

Mistral-Small-24B-Instruct-2501 Qwen2.5-32B-Instruct
Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑ Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑
LitCab 11.2 24.6 60.2 60.5 66.4 LitCab 28.4 33.2 52.7 60.2 62.3
CT 10.8 22.8 62.2 60.7 68.2 CT 22.9 31.1 57.1 52.9 56.3
CCPS 6.8 20.8 67.6 64.7 71.4 CCPS 8.7 23.3 62.6 62.0 66.4

Table 1: Average performance on MMLU variants across tasks per LLM. Arrows indicate whether lower (↓) or
higher (↑) values are better. All values are percentages. Best values per method-block are bolded. For brevity, only
the two best-performing baselines are shown here; full results are provided in Appendix J.

its performance advantages, particularly in cali-
bration. CCPS consistently achieves ECE values
around 4.5% across all tested LLMs, a significant
improvement over LitCab (ECEs ranging from
16.6% to 49.7%) and CT (ECEs from 17.8% to
38.0%). This strong calibration is paired with top
scores in Brier, ACC, AUCPR, and AUROC, show-
ing CCPS’s robustness on more difficult questions.
For example, with Mistral-24B, CCPS records an
ECE of 4.5% and an AUROC of 77.2%, compared
to LitCab’s 32.2% ECE and 60.1% AUROC, and
CT’s 17.8% ECE and 54.3% AUROC.

In the open-ended generation setting (MMLU-OE),
CCPS generally maintains strong calibration, con-
sistently achieving the best ECE and Brier scores,
especially with larger models like Mistral-24B

and Qwen2.5-32B where it leads across all met-
rics. For smaller models on MMLU-OE, while CCPS
leads in calibration, CT demonstrates competitive
discriminative performance in AUCPR and AU-
ROC (e.g., for Llama-3.1-8B, CT’s AUROC is
70.9% vs. CCPS’s 69.3%; for Qwen2.5-14B, CT
leads in AUCPR and AUROC). However, CCPS’s
calibration advantage remains evident, for exam-
ple, achieving an ECE of 6.7% with Qwen2.5-14B
compared to CT’s 9.4%. To further assess the
cross-domain robustness of CCPS, we conducted
an additional evaluation on the specialized MedM-
CQA benchmark; these results are detailed in Ap-
pendix I.

In summary, CCPS consistently delivers sub-
stantial improvements in confidence estimation, ex-
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celling in both calibration and the ability to dis-
criminate between correct and incorrect responses
across diverse LLMs and task formats, particu-
larly on challenging multiple-choice benchmarks.
The findings in Table 1 are further detailed in Ap-
pendix J, which includes comprehensive results for
all baselines (mean and standard deviation scores,
comparative bar charts, per-task breakdowns, and
feature importance analyses).

6 Discussion

CCPS Excels in Both Calibration and Discrim-
ination. A significant finding is the ability of
CCPS to simultaneously achieve strong calibration
(low ECE and Brier scores) and high discriminative
power (high AUCPR and AUROC), as evidenced
in Table 1. This contrasts with observations for
some baselines; for instance, while LitCab often
demonstrates good discrimination, its ECE can be
variable, particularly with certain LLM families
(e.g., Qwen models). Conversely, Calibration Tun-
ing (CT) generally achieves good ECE but can lag
in discriminative metrics compared to CCPS. Our
method’s dual strength suggests that the features ex-
tracted from internal perturbation trajectories effec-
tively capture signals relevant to both the reliability
and the correctness of an LLM’s answer.

The CCPS Framework Provides an Efficient
and Scalable Approach to Confidence Estima-
tion. CCPS is designed to be lightweight. Once
features are extracted, the confidence estimation
model itself consists of relatively small MLPs or
CNNs (as detailed in Appendix E), making its train-
ing and inference efficient. Specifically for our
OE models, the convolutional architecture proves
to be an effective design choice; a Token Mask-
ing Impact Analysis (detailed in Appendix K.1)
demonstrates that the model successfully learns to
prioritize semantically meaningful tokens by being
significantly more sensitive to content words than
to grammatical filler words, all within a compact
architecture. This efficiency contrasts sharply with
methods like CT, which, despite using LoRA, re-
quire fine-tuning larger portions of the base LLM
and can be resource-intensive (e.g., CT report-
edly takes ∼4 GPU days on an NVIDIA V100).
Furthermore, CCPS avoids some scalability con-
cerns present in other methods. For example, Lit-
Cab’s projection layer size (hidden_dim × vocab-
ulary_size) can become very large for LLMs with
extensive vocabularies, and its reliance on multiple

negative samples per question for its contrastive
learning imposes specific data curation require-
ments. CCPS, on the other hand, uses more com-
pact projection networks and only requires labels
of correctness for the LLM’s generated answers.

Probing Internal Representational Stability
Forms the Core of CCPS’s Mechanism. The
methodological foundation of CCPS lies in quanti-
fying internal consistency. Prior work has shown
that external output consistency is a useful reli-
ability signal—for example, generating multiple
responses and measuring consensus, as in the Self-
Consistency (SC) method (Xiong et al., 2024).
Such approaches, however, are computationally
costly because they require repeated full-generation
passes (Zhou et al., 2025). CCPS internalizes this
idea by perturbing hidden state representations in-
stead. The premise is that if an LLM is truly confi-
dent, its internal decision-making process for a to-
ken should remain stable under small, targeted per-
turbations. Our results suggest that features derived
from this stability serve as effective proxies for con-
fidence. Furthermore, our direct empirical compari-
son in Appendix K.2 shows that CCPS consistently
outperforms SC, particularly in calibration, validat-
ing our approach as a more efficient and effective
way to measure consistency. To further isolate the
source of these gains, Appendix K.3 presents a de-
tailed ablation study contrasting feature sets from
unperturbed states, perturbation-derived features,
and their combination. The results confirm that
perturbation features are the dominant driver of
CCPS’s strong performance, especially on more
difficult tasks.

Perturbation-Derived Features Offer Key In-
sights into LLM Confidence Signals. The
SHAP value analyses (Appendix K.4 provide in-
sights into which features derived from our pertur-
bation process are most influential. Consistently
across different LLMs and datasets, the original
entropy of the LLM’s output distribution for a to-
ken emerges as an important feature. As expected,
higher original entropy typically shows a nega-
tive correlation with the prediction of correctness
(meaning higher entropy contributes to predicting
the answer as incorrect), signifying that greater
initial uncertainty in the LLM’s choice is indica-
tive of a potentially incorrect answer. More reveal-
ingly, many of the top-ranking features are those
derived from the perturbed states. For instance,
the margin between the logits of the top-ranked
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and second-ranked tokens after perturbation of-
ten shows a positive correlation with correctness;
a larger margin, even under adversarial stress, in-
dicates a more decisive and less ambiguous out-
put from the LLM, which CCPS learns as a sign
of confidence. Similarly, a higher epsilon-to-flip
value, indicating that a larger perturbation magni-
tude is needed to make the LLM change its pre-
dicted token, consistently contributes positively to
the confidence score. These findings affirm that
the dynamic response to perturbation, not just the
initial state, provides critical signals for confidence
estimation. To further validate these findings and
rigorously quantify the importance of each feature,
we conducted a comprehensive leave-one-out abla-
tion study, detailed in Appendix K.5.

CCPS Demonstrates Consistent Efficacy Across
Diverse LLM Architectures. The strong per-
formance of CCPS is not confined to a specific
model architecture or size, as it demonstrates effec-
tiveness across Llama, Qwen, and Mistral families
(8B to 32B parameters). This consistency, particu-
larly when compared to methods like LitCab which
showed variable ECE performance across LLM
families in our experiments (Table 1), suggests that
the feature set derived from our internal perturba-
tion methodology captures fundamental aspects of
LLM decision-making relevant to confidence, re-
gardless of the specific base model.

7 Conclusion

In this work, we introduced CCPS, a novel method
for estimating LLM confidence by evaluating the
stability of their internal representations when sub-
jected to targeted adversarial perturbations, us-
ing features derived from this process with a
lightweight classifier. Our approach demonstrated
significant improvements over existing methods,
consistently achieving superior calibration (mea-
sured by ECE and Brier scores) and discrimina-
tive ability (evidenced by strong AUCPR and AU-
ROC results). This effectiveness was observed
across a diverse range of LLMs, various MMLU
and MMLU-Pro task formats (including multiple-
choice and open-ended question answering), and
differing levels of difficulty. The features derived
from the LLM’s response to adversarial nudges
proved highly indicative of confidence. CCPS of-
fers an effective and lightweight way to assess LLM
reliability, requiring no changes to generation or
extensive fine-tuning, and marks a promising step

toward more trustworthy, interpretable systems.

Limitations

Despite its strong performance, CCPS has limita-
tions. Firstly, the pre-processing stage of quanti-
fying features from perturbation impacts incurs a
computational cost. For each token in an answer,
this cost includes an initial Jacobian calculation
and subsequently, for each of the S perturbations,
processing the perturbed hidden state through the
LLM’s head to obtain perturbed logits. Access
to model internals is also a prerequisite for this
feature extraction phase. Secondly, feature effec-
tiveness depends on perturbation hyperparameters
(e.g., ϵmax, S), which, though optimized in our ex-
periments, may need retuning for different models
or tasks. Lastly, the quality of extracted features
inherently relies on the meaningfulness of the base
LLM’s internal representations; if an LLM’s hid-
den states do not systematically encode information
related to its certainty, the efficacy of any method
probing these states might be constrained.

These limitations also highlight opportunities for
improvement. One avenue is using the learned sta-
bility signals not just for post-hoc estimation but
to directly inform and calibrate the generation pro-
cess, potentially reducing hallucinations. Addition-
ally, while this work perturbs only the final hidden
state, exploring perturbations across different trans-
former layers may yield richer or complementary
indicators of confidence.

Ethical Considerations

While CCPS is developed with the aim of enhanc-
ing the reliability and trustworthiness of LLMs,
several ethical considerations are relevant to its ap-
plication and interpretation. A primary concern is
the potential for over-reliance on the confidence
scores produced. Although CCPS demonstrates
improved calibration and discrimination, it is cru-
cial to recognize that no confidence estimation
method is perfect. In high-stakes domains, such as
medicine, finance, or law, an uncritical acceptance
of automated confidence scores without appropri-
ate human judgment and oversight could lead to
adverse outcomes if the underlying LLM makes an
error that is not perfectly flagged by the confidence
score.

Secondly, the fairness of CCPS across diverse
demographic groups and data distributions war-
rants careful attention during deployment. If the
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base LLMs, from which internal representations
are extracted, contain inherent biases or exhibit
differential performance characteristics for certain
populations, CCPS’s confidence assessments could
potentially reflect or even inadvertently amplify
these disparities. This could result in confidence
scores that are less reliable for some groups than for
others, potentially leading to inequitable or unfair
consequences. Therefore, the deployment of any
confidence estimation method, including CCPS,
especially in sensitive applications, should be ac-
companied by rigorous testing for fairness, ongoing
monitoring of its performance across relevant sub-
groups, and a clear framework emphasizing its role
as an assistive tool to augment, not replace, human
expertise and critical decision-making.
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A Artifact Usage and Creation

Consistency with Intended Use of Existing Arti-
facts: All existing scientific artifacts employed in
this research, including pre-trained LLMs, bench-
mark datasets (MMLU, MMLU-Pro, and the constituent
datasets of CT-CHOICE/CT-OE), and software li-
braries, were used in a manner consistent with their
specified intended uses, primarily for academic
research, evaluation, and the development of new
methodologies within the field of Natural Language
Processing. The use of proprietary models like
GPT-4o-mini for data labeling was conducted in
accordance with its API terms of service for re-
search applications.

Intended Use of Created Artifacts: The scientific
artifacts created as part of this work—including the
source code for the CCPS method, our trained con-
fidence estimation models, and the derived feature
sets—are primarily intended to support academic
research. Their release aims to ensure the repro-
ducibility of our findings, encourage further investi-
gation into LLM confidence estimation techniques,
and allow the community to build upon our con-
tributions. The use and distribution of any created
artifacts that are derivative of existing datasets or
models will be governed by terms compatible with
the original access conditions and licenses of those
foundational resources, particularly ensuring that
derivatives of artifacts intended for research remain
within research contexts where applicable.
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B Feature Set Description

This appendix details the features extracted for ana-
lyzing the language model’s token-level generative
behavior. Our final model uses a 75-dimensional
feature vector (Df = 75) per token, which is
derived from 30 base metric definitions. These
features are calculated from the model’s internal
states and its responses to systematic perturba-
tions, where a token’s hidden state is incrementally
moved along an adversarial direction. The 75 fea-
tures are composed of 15 single scalar values (12
Original State features and 3 Overall Perturbation
features), and 60 features derived from statistical
summaries (mean, standard deviation, minimum,
and maximum) of the remaining 15 base metrics
that are computed across the perturbation trajectory.
This process yields a total of 15 + (15× 4) = 75
features per token. The definitions for the base
metrics are provided in Table 2.

B.1 Original State Features

This feature set quantifies the model’s baseline pre-
dictive characteristics for each token prior to ex-
perimental perturbation. These include measures
of output probabilities, logits, distribution entropy,
prediction margins, and vector norms of internal
representations. These features establish a refer-
ence for evaluating perturbation effects.

B.2 Overall Perturbation Features

This group comprises scalar Features quantifying
specific properties related to the perturbation mech-
anism itself or its direct consequences. These in-
clude the L2 norm of the Jacobian vector, the per-
turbation magnitude required to alter the model’s
top-1 predicted token (epsilon_to_flip_token),
and the integrated effect of perturbations on the log-
probability of the token guiding the perturbation
direction (PEI value).

B.3 Perturbed State Features

These features describe the model’s output char-
acteristics (e.g., token probabilities, distribution
entropy, decision margins, as listed in Table 2) eval-
uated after its hidden states are perturbed. The base
metrics are calculated at each discrete perturbation
step. Statistical summaries (minimum, maximum,
mean, standard deviation) of these per-step metrics
are then computed across all applied perturbation
magnitudes for a given token. This process sum-
marizes the model’s output behavior under varying

degrees of targeted hidden state modification.

B.4 Comparison Features (Original vs.
Perturbed)

This feature set quantifies the differences between
the model’s original state (hidden states, logits,
probability distributions) and its state after each
perturbation step. Base comparison metrics are de-
tailed in Table 2. These metrics, such as changes
in log-probabilities, distributional divergences (KL,
JS), and vector similarities/distances, are statisti-
cally summarized (minimum, maximum, mean,
standard deviation) across all perturbation magni-
tudes. The summaries indicate the extent of change
in model representations and outputs due to the
applied perturbations.

A total of Df = 75 such features are extracted
per token.

C Datasets

This section provides further details on the datasets
used for training, validation, and evaluation of our
confidence estimation models. All datasets em-
ployed in this study are in English. For comprehen-
sive information regarding the original construc-
tion, specific domain coverage, linguistic charac-
teristics, and any available demographic details
for the underlying public benchmarks (such as
MMLU, MMLU-Pro, and the constituent datasets
of CT-CHOICE and CT-OE), we refer readers to their
respective original publications, which are cited
upon their introduction in the subsequent subsec-
tions.

C.1 Training and Validation Datasets
For training and validating our confidence estima-
tion models, we utilize the CT-CHOICE and CT-OE
datasets, designed for multiple-choice and open-
ended QA formats, respectively. These datasets,
generated following the methodology of Kapoor
et al. (2024b), aggregate a diverse collection of
commonly used public QA datasets. Instances from
these datasets were formatted to ensure a maximum
input sequence length of 1,600 tokens during our
training process. The underlying datasets include:

• AI2 Reasoning Challenge (ARC) (Clark et al.,
2018)

• Boolean Questions (BoolQ) (Clark et al.,
2019)

• CommonsenseQA (Talmor et al., 2019)
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• CosmosQA (Huang et al., 2019)

• HellaSwag (Zellers et al., 2019)

• MathQA (Amini et al., 2019)

• Recognizing Textual Entailment (RTE/SNLI)
(Bowman et al., 2015)

• Adversarial NLI (Nie et al., 2020)

• OpenBookQA (Mihaylov et al., 2018)

• PIQA (Bisk et al., 2019)

• SciQ (Welbl et al., 2017)

• The CommitmentBank (CB) (de Marneffe
et al., 2019)

• Multi-Sentence Reading Comprehension
(MultiRC) (Khashabi et al., 2018)

• Choice of Plausible Alternatives (CoPA) (Gor-
don et al., 2012)

• TREC (Li and Roth, 2002)

• Adversarial Winograd (Winogrande) (Sak-
aguchi et al., 2021)

C.2 Evaluation Datasets
Our evaluation suite consists of variants of the Mas-
sive Multitask Language Understanding (MMLU)
(Hendrycks et al., 2021) and MMLU-Pro (Wang
et al., 2024) benchmarks, formatted for both
multiple-choice and open-ended evaluation.
MMLU-CHOICE and MMLU-OE: These
datasets are derived from the standard MMLU
benchmark, which covers 57 diverse tasks span-
ning STEM, humanities, social sciences, and other
areas. We created multiple-choice (MMLU-CHOICE)
and open-ended (MMLU-OE) versions following the
data processing approach of Kapoor et al. (2024b).
The constituent tasks and their respective sample
sizes for MMLU are listed in Table 3.
MMLU-PRO-CHOICE: This dataset is the
multiple-choice version of MMLU-Pro (Wang
et al., 2024), which includes 14 tasks designed
with more challenging questions that often require
deeper domain knowledge. Unlike the standard
MMLU, the structure of MMLU-Pro questions of-
ten makes the provided choices an indispensable
part of the question’s context, meaning it could not
be meaningfully converted to an open-ended for-
mat without fundamentally altering the nature of

the problems. Furthermore, the answer options in
MMLU-Pro frequently extend beyond the typical
A-D choices, sometimes including E, F, or more.
The tasks and their sample sizes for MMLU-Pro
are detailed in Table 4.

C.3 Response Generation and Labeling
For all datasets described above, responses from
the base LLMs were first generated to create the
instances for our confidence estimation task. The
user prompt, which includes the question and any
contextual information (such as few-shot exem-
plars), was constructed following the methodol-
ogy of Kapoor et al. (2024b), to which we refer
the reader for further details. We employed spe-
cific system prompts for guiding the base LLMs
during response generation, as detailed in Table
5. These prompts are similar to those used by
Kapoor et al. (2024b) but were slightly refined
for improved clarity to the LLMs. In line with
their approach, for multiple-choice QA datasets
(CT-CHOICE, MMLU-CHOICE, MMLU-PRO-CHOICE),
answers were generated with a maximum token
limit of 1, corresponding to the chosen option let-
ter. For open-ended datasets (CT-OE, MMLU-OE),
responses were generated using greedy decoding
with a maximum length of 30 tokens.

Each generated response was subsequently la-
beled as correct or incorrect. For multiple-choice
questions, correctness was determined by a straight-
forward string match between the LLM’s generated
option letter and the ground truth option. For open-
ended responses, assessing semantic equivalence
requires a more nuanced approach. To this end,
and consistent with recent literature, we employed
a powerful auxiliary LLM not as a knowledge or-
acle, but as a semantic equivalence assessor. The
grader model’s task was constrained: for each ques-
tion, it was provided with the ground-truth answer
available in the dataset and the LLM’s generated
response, and was prompted to determine if the
two answers were semantically equivalent. The
reliability of using a powerful LLM for this spe-
cific equivalence task has been validated by Kapoor
et al. (2024b), who conducted a comparative analy-
sis against human evaluations. Their study found
that GPT-4 assessments exhibited a low average
absolute difference of 4.5% in accuracy estima-
tion compared to human annotators. Building upon
their findings, and given the availability of even
more capable models since their study, we utilized
the more recent GPT-4o-mini model to ensure the
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highest quality semantic equivalence judgments.
The prompts used for this grading task are detailed
in Table 6.

The distribution of these correct and incorrect
LLM responses across all datasets, for each base
model used in our experiments, is detailed in Table
7.

D Baseline Method Details

This section details the baseline methods imple-
mented for comparison against our proposed CCPS
method. Our selection of baselines was guided
by the aim to provide a comprehensive benchmark
against prominent, recent, and state-of-the-art tech-
niques in LLM confidence estimation, many of
which are established through peer-reviewed publi-
cations in highly regarded scientific venues. While
the work introducing CT by Kapoor et al. (2024b)
provided a valuable starting point by evaluating
methods such as P(True), Instruction Tuning (IT),
Logit Temperature Scaling (LTS), and a specific
variant of SAPLMA (SAPLMA-F), our study ex-
pands significantly on this comparison. We include
P(IK), which was not part of their direct compari-
son, and additional SAPLMA variants (SAPLMA-
M, SAPLMA-UM) to explore signals from differ-
ent representational depths. Furthermore, our eval-
uation framework encompasses a broader range
of test conditions, including comprehensive train-
ing and testing on both multiple-choice and open-
ended formats, and performance on datasets like
MMLU-PRO-CHOICE, aspects not exhaustively cov-
ered for all these prior methods in the context of
confidence estimation by Kapoor et al. (2024b). We
also incorporate LitCab (Liu et al., 2024), another
significant and well-regarded recent contribution in
lightweight white-box confidence estimation also
originating from a top-tier conference, which pro-
vides an important additional point of comparison.
For all established baseline methods, we adhered
to the architectural descriptions and training con-
figurations reported in their original publications.
Common training hyperparameters, such as total
steps and optimizer settings, are described in Sec-
tion 4 (Training Details).

D.1 P(True)

Introduced by Kadavath et al. (2022), P(True) as-
sesses an LLM’s self-evaluation of a generated an-
swer. After an LLM generates an answer to an
input prompt P , it is presented with the question,

"Is the proposed answer correct? a) no b) yes"
(referred to as the uncertainty query). The prob-
abilities assigned by the original, frozen LLM to
options ’a’ and ’b’ are then normalized (e.g., via
softmax) to derive the confidence score, represent-
ing the probability of correctness. This method
requires no additional training.

D.2 P(IK)

Also from Kadavath et al. (2022), P(IK) (short for
"I Know") estimates the LLM’s probability of cor-
rectly answering a given question before it gener-
ates a specific response. This typically involves
training a lightweight classifier head on a hidden
state representation from the LLM (e.g., the final
hidden state after processing the input prompt P ) to
predict correctness. The output probabilities from
this classifier serve as the confidence score.

D.3 Logit Temperature Scaling (LTS)

As described by Jiang et al. (2021), LTS is a post-
hoc calibration technique that adjusts a model’s
output probabilities. It introduces a scalar tem-
perature parameter τ > 0 which is applied to
the logits before the LLM’s final softmax func-
tion. In our application, after the LLM responds
to the uncertainty query, the temperature τ is ap-
plied to the logits corresponding to the ’a’ and
’b’ options. The calibrated probability is then
softmax(logitsuncertainty query/τ). The temperature
τ is optimized on a held-out development set. LTS
is computationally very light as it involves learning
only a single parameter.

D.4 Instruction Tuning (IT)

Instruction tuning, as introduced by (Wei et al.,
2022), involves fine-tuning language models on a
collection of tasks framed as natural language in-
structions. In our setting, this baseline involves
fine-tuning the base LLM to respond to the uncer-
tainty query more accurately. The model is trained
using Low-Rank Adaptation (LoRA) (Hu et al.,
2021), a parameter-efficient fine-tuning technique,
to predict the correct option (’a’ or ’b’) for the
uncertainty query, based on ground-truth labels de-
rived from the answer grading phase. While LoRA
makes this more efficient than full fine-tuning of
all parameters, it remains more resource-intensive
than non-fine-tuning methods.
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D.5 SAPLMA

SAPLMA (Statement Accuracy Prediction based
on Language Model Activations) (Azaria and
Mitchell, 2023) trains a lightweight feedforward
classifier on LLM hidden state activations to pre-
dict statement truthfulness, while the LLM itself
remains frozen. SAPLMA’s classifier employs a
feedforward neural network featuring three hidden
layers with decreasing numbers of hidden units
(256, 128, 64), each followed by a ReLU acti-
vation. Their studies suggest that signals related
to an LLM’s internal assessment of truthfulness
or confidence can manifest at different network
depths depending on the model architecture and
task. Therefore, while a common approach is to
use final hidden states (SAPLMA-F), we also im-
plemented variants using activations from the mid-
dle layer (SAPLMA-M) and an upper-middle layer
(SAPLMA-UM) of the LLM to explore these po-
tentially richer representational layers. The output
probabilities from these classifiers are used as con-
fidence scores.

D.6 Calibration-Tuning (CT)

Proposed by Kapoor et al. (2024b), CT fine-tunes
an LLM (using LoRA) to explicitly predict its an-
swer’s correctness in response to the uncertainty
query. It uses a classification loss combined with
a divergence-based regularizer (such as Jensen-
Shannon or KL Divergence) to help maintain the
LLM’s original generation capabilities. While
LoRA reduces the training burden compared to
full fine-tuning, CT can still be resource-intensive,
reportedly taking about 4 GPU days on an NVIDIA
V100 for their experiments. The divergence term,
particularly with longer sequences in open-ended
tasks, can also be memory-demanding.

D.7 LitCab

This lightweight calibration method by Liu et al.
(2024) involves a trainable linear layer of size (hid-
den_dim × vocabulary_size) that is attached to the
LLM’s final hidden states. This layer predicts a
bias term which is added to the original output log-
its of the LLM. LitCab is trained using a contrastive
max-margin loss, which typically requires multiple
incorrect answer examples per question. The con-
fidence score is then derived from the geometric
mean of the adjusted probabilities of the response
tokens.

E CCPS Architecture Details

Our CCPS approach employs a feature projection
network (EMC for multiple-choice, EOE for open-
ended) followed by a classifier head (C). The spe-
cific architectures for these components were deter-
mined through a systematic hyperparameter search
for both MC and OE formats, aimed at optimizing
for the loss on validation data. Key training hyper-
parameters such as learning rate (1×10−4), weight
decay (0.1), batch size (32), and training steps were
kept consistent during this search, aligned with
those detailed in Section 4 (Training Details). The
finalized best-performing architectures are detailed
below.

E.1 Multiple-Choice Question Answering

For the Multiple-Choice (MC) CCPS model, the
hyperparameter search explored various configu-
rations for the contrastive encoder (EMC), includ-
ing different embedding dimensions, the number
and size of hidden layers, and a range of activa-
tion functions (ReLU, GeLU, SiLU, ELU, Leaky
ReLU). Similarly, various hidden layer structures
and activation functions were evaluated for the
MLP-based classifier head (C). The selected ar-
chitecture, which yielded the optimal balance of
performance metrics, is as follows: the contrastive
encoder (EMC) is an MLP that processes the Df -
dimensional feature vector. It consists of a se-
quence of linear layers with output dimensions 64,
32, 16, and a final 8-dimensional embedding layer.
ELU activation is applied after each layer except
the output embedding layer. The subsequent clas-
sifier head receives the 8-dimensional embedding
and passes it through an MLP with layers having
output dimensions 48, 24, 12, each followed by
ELU activation, and concludes with a final linear
layer producing 2 output logits for classification.

E.2 Open-Ended Question Answering

For the Open-Ended (OE) CCPS model, the hyper-
parameter search for the contrastive encoder (EOE)
covered different embedding dimensions, the num-
ber and size of hidden channels for its 1D convo-
lutional layers, various kernel sizes for these con-
volutional layers, and a range of activation func-
tions (ReLU, GeLU, SiLU, ELU, Leaky ReLU).
The MLP-based classifier head (C) also underwent
a search over its hidden layer structures and acti-
vation functions. The best-performing configura-
tion found is detailed here: the contrastive encoder
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(EOE) processes sequences of Df -dimensional to-
ken features. It employs two 1D convolutional
layers; the first maps the input features to 64 chan-
nels (kernel size 3), and the second maps from 64
to 32 channels (kernel size 3). ReLU activation is
applied after each convolutional layer. An adap-
tive max-pooling layer then reduces the sequence
to a fixed-size representation, which is projected
by a linear layer to a 16-dimensional embedding.
The classifier head takes this 16-dimensional em-
bedding, passes it through a linear layer to a 32-
dimensional representation with ReLU activation,
and finally to an output linear layer producing 2
logits for classification.

F Computational Setup and Resources

All computational experiments were conducted
on a GPU cluster equipped with NVIDIA A100-
SXM (48GB VRAM) and NVIDIA H200 (141GB
VRAM) GPUs. The allocation of GPU resources
and specific setup details for the different confi-
dence estimation methods are outlined below.

F.1 P(True):
This method involves no training. Inference
to obtain responses to the uncertainty query
was performed using a single NVIDIA A100
GPU for the Meta-Llama-3.1-8B-Instruct and
Qwen2.5-14B-Instruct models, and a single
NVIDIA H200 GPU for the Mistral-Small-24B
-Instruct-2501 and Qwen2.5-32B-Instruct
models.

F.2 P(IK), SAPLMA, LitCab, and CCPS:
Hidden State / Feature Extraction: For these
methods, the initial stage of extracting hidden
states or features (including perturbation pro-
cesses for CCPS) from the base LLMs was per-
formed using a single NVIDIA A100 GPU for
the Meta-Llama-3.1-8B-Instruct and Qwen2.5
-14B-Instruct models. Due to their larger size,
a single NVIDIA H200 GPU was used for the
Mistral-Small-24B-Instruct-2501 and Qwen
2.5-32B-Instruct models. This allocation en-
sured that each base LLM could be loaded onto an
appropriate GPU.
Training of Confidence Modules: The subsequent
training of the lightweight confidence modules for
P(IK), SAPLMA variants, LitCab, and our CCPS
classifiers (which typically comprise fewer than 1
million trainable parameters) was conducted on a
single NVIDIA A100 GPU for all base LLMs.

F.3 IT and LTS:

For IT, the LoRA-based fine-tuning of the
base LLMs on the uncertainty query, and for
LTS, the optimization of the temperature pa-
rameter, were performed on a single NVIDIA
A100 GPU for Meta-Llama-3.1-8B-Instruct
and Qwen2.5-14B-Instruct. For the larger
Mistral-Small-24B-Instruct-2501 and Qwen
2.5-32B-Instruct models, these processes uti-
lized a single NVIDIA H200 GPU.

F.4 CT

The LoRA-based fine-tuning process for CT was
conducted using 4 NVIDIA A100 GPUs operating
in parallel for each combination of base LLM and
dataset. This multi-GPU setup, managed with li-
braries such as Hugging Face Accelerate (Gugger
et al., 2022) and DeepSpeed (Rasley et al., 2020)
(Zero Redundancy Optimizer Stage 2), was imple-
mented in accordance with the original CT method-
ology to handle its more intensive training require-
ments.

G Analysis of Additional Trainable
Parameters

This appendix quantifies and compares the addi-
tional learnable parameters introduced by each
evaluated confidence estimation method, includ-
ing our proposed CCPS, when applied to a base
LLM. We first detail the architectural parameters
of the base LLMs used, then provide the formulas
for calculating additional trainable parameters for
each confidence estimation method, followed by
the exact parameter counts for the specific LLMs
analyzed in our experiments. This analysis sup-
ports our claim regarding the lightweight nature of
CCPS. All parameter counts include biases unless
otherwise specified for asymptotic estimates.

G.1 Base LLM Architectural Parameters

The key architectural dimensions of the base Large
Language Models (LLMs) utilized in this study,
which influence the number of trainable parame-
ters for certain confidence estimation methods, are
provided in Table 8. These include the hidden size
(dh), tokenizer vocabulary size (V ), and the num-
ber of decoder layers (L).
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G.2 Formulation of Additional Trainable
Parameters

The number of additional trainable parameters for
each confidence estimation method is determined
as follows (Table 9). We define Df = 75 as the
input feature dimension for CCPS, and r = 8 as
the rank for LoRA implementations.

For CCPS (MC), the encoder EMC layers are
(Df , 64), (64, 32), (32, 16), (16, 8), and classifier
CMC layers are (8, 48), (48, 24), (24, 12), (12, 2).
The sum of hihi+1 (weights) and hi+1 (biases) for
EMC, and gjgj+1 (weights) and gj+1 (biases) for
CMC yields the total. For CCPS (OE), the encoder
EOE consists of two 1D convolutional layers (first:
Df to 64 channels, kernel 3; second: 64 to 32 chan-
nels, kernel 3) and a linear projection layer (32 to
16 dimensions). The classifier head COE is an MLP
(16 to 32 dimensions, then 32 to 2 outputs). The
exact calculation for CCPS (OE), including convo-
lutional layer parameters (weights and biases) and
MLP parameters, results in approximately 22,000
parameters, as detailed in Appendix E.

G.3 Exact Additional Trainable Parameter
Counts

Based on the formulations above and the LLM
dimensions in Table 8, the exact number of ad-
ditional trainable parameters introduced by each
method when applied to the different base LLMs
is presented in Table 10. For methods like IT and
CT, LoRA with rank r = 8 is applied to the Query
(Q) and Value (V) matrices within each of the L
attention blocks of the base LLMs.

G.4 Discussion of Parameter Efficiency

The results presented in Table 10 highlight the pa-
rameter efficiency of CCPS. Irrespective of the base
LLM’s size, our CCPS (MC) method introduces
only 9,542 trainable parameters, and the CCPS
(OE) variant introduces approximately 22,000 pa-
rameters. This contrasts sharply with other meth-
ods. For instance, LitCab requires hundreds of mil-
lions of parameters (e.g., over 525 million for Meta
-Llama-3.1-8B-Instruct) due to its vocabulary-
sized projection. LoRA-based fine-tuning (IT/CT
with r = 8) adds several million parameters (e.g.,
4.2 million to 10.5 million). SAPLMA, with its
MLP architecture, introduces a moderate num-
ber of parameters (e.g., approximately 1.1 million
for Meta-Llama-3.1-8B-Instruct), while sim-
pler probes like P(IK) remain very light (e.g., 8,194

for the same LLM). CCPS remains significantly
more parameter-efficient than SAPLMA, LoRA-
based methods, and LitCab.

To further illustrate this, Table 11 shows the rel-
ative parameter budgets compared to CCPS (MC).
CCPS (MC) is approximately 440 to 1,100 times
smaller than LoRA-based IT/CT, and 55,000 to
81,000 times smaller than LitCab for the LLMs
tested. This extreme parameter efficiency, com-
bined with CCPS’s strong performance demon-
strated in the main paper, underscores its suitability
as a highly scalable solution for confidence estima-
tion on large, frozen LLMs.

H Evaluation Metrics

We assess the performance of our confidence esti-
mation method using a suite of standard metrics.
This comprehensive set allows for a nuanced un-
derstanding beyond ECE and ACC, which can be
less informative for imbalanced datasets often en-
countered in correctness prediction.

H.1 Expected Calibration Error (ECE)

A model’s uncertainties are well-calibrated if they
align with empirical probabilities—i.e., an event
assigned probability p occurs at rate p in reality.
Following Kapoor et al. (2024b), we estimate ECE
by binning the predicted confidence score (proba-
bility of correctness) for each of n samples into b
equally-spaced bins B = {Bj}bj=1. The empirical
ECE estimator is given by:

ECE =

b∑

j=1

|Bj |
n

|conf(Bj)− acc(Bj)|

where conf(Bj) is the average predicted confidence
of samples in bin Bj and acc(Bj) is the correspond-
ing ACC (fraction of correct LLM answers) within
that bin. Consistent with common practice, we
use b = 10 bins. An ECE of 0 signifies perfect
calibration.

H.2 Brier Score

This measures the mean squared difference be-
tween the predicted probability of correctness pk
for sample k and its actual binary outcome ok (1
if correct, 0 if incorrect), summed over all N sam-
ples:

Brier Score =
1

N

N∑

k=1

(pk − ok)
2
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It provides a measure of both calibration and refine-
ment, with lower scores being better.

H.3 Accuracy (ACC)
Refers to the proportion of the LLM’s answers that
are correct on the given task. While our method
estimates confidence in these answers rather than
altering them, ACC provides context for the diffi-
culty of the underlying task.

H.4 Area Under the Precision-Recall Curve
(AUCPR)

This metric summarizes the trade-off between pre-
cision (the proportion of positively predicted in-
stances that are truly positive, TP/(TP + FP)) and
recall (the proportion of actual positive instances
that are correctly predicted, TP/(TP+FN)) for the
binary correctness classification task. The confi-
dence score is used as the discrimination thresh-
old, varied to plot the curve. AUCPR is particu-
larly informative for imbalanced datasets where the
number of incorrect answers might significantly
outweigh correct ones, or vice-versa.

H.5 Area Under the Receiver Operating
Characteristic Curve (AUROC)

This evaluates the discriminative ability of the con-
fidence score to distinguish between correct and
incorrect answers. It plots the true positive rate (Re-
call) against the false positive rate (FP/(FP+TN))
at various threshold settings of the confidence score.
An AUROC of 1.0 indicates perfect discrimination,
while 0.5 suggests random guessing.

I Evaluation on a High-Stakes Domain:
MedMCQA

To further assess the cross-domain robustness of
CCPS and validate its performance in a critical,
high-stakes setting as motivated in our introduction,
we conducted an additional set of experiments on
the MedMCQA benchmark (Pal et al., 2022). This
medical QA dataset provides a specialized domain
to test the generalizability of our method. We com-
pared CCPS against the strong Calibration Tuning
(CT) baseline on all four base LLMs, using the
identical experimental settings and fixed hyperpa-
rameters from our main evaluations to ensure a fair
comparison. The performance on both multiple-
choice and open-ended formats is presented in Ta-
ble 12.

The results on this specialized medical dataset
show that CCPS’s performance advantages are

not only maintained but often amplified. In the
multiple-choice setting, CCPS substantially im-
proves upon CT across all metrics, reducing ECE
by over 59% for Llama-8B and nearly 69% for
Qwen-32B. In the open-ended setting, CCPS again
demonstrates superior calibration and discrimina-
tion across nearly all models and metrics. These
new results provide strong evidence that the advan-
tages of CCPS generalize robustly beyond standard
knowledge benchmarks to this critical, high-stakes
domain.

J Extended Results and Analyses

This section provides supplementary results and
analyses that further substantiate the findings pre-
sented in the main paper. We include comprehen-
sive performance comparisons across all baseline
methods, detailed per-LLM and per-task break-
downs, calibration curve visualizations, and feature
importance analyses for our CCPS model.

J.1 Per-Dataset Aggregate Performance
Tables

To offer a comprehensive comparison of all eval-
uated methods, including all baselines, Tables 13,
14, and 15 present aggregate performance met-
rics for the MMLU-CHOICE, MMLU-PRO-CHOICE, and
MMLU-OE datasets, respectively. Unlike the main
paper’s Table 1 which shows mean scores across
tasks for selected methods, these tables detail the
mean ± standard deviation for all methods across
all evaluated LLMs for each metric, providing in-
sight into the consistency of performance.

J.2 Per-LLM Performance Bar Charts

For a visual comparison of method performance on
each specific LLM, Figures 2, 3, 4, and 5 present
bar charts. Each figure corresponds to one of the
four LLMs used in our experiments, illustrating
the performance of every confidence estimation
method across the different MMLU variant datasets
on all evaluation metrics.

J.3 Calibration Curves

To visually assess the calibration of the confidence
scores produced by different methods, we provide
calibration curves. Figure 6 offers an overview,
displaying calibration curves across all models and
MMLU variants. Additionally, Figures 7, 8, 9, and
10 present detailed calibration curves for each spe-
cific LLM across the test datasets, allowing for
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a more granular inspection of calibration perfor-
mance.

J.4 Per-Task Performance Analysis
For an in-depth understanding of performance at
a finer granularity, this section provides per-task
results. Figures 11 through 30 illustrate the com-
parative performance of all methods on every indi-
vidual task within the MMLU datasets for each of
the four base LLMs, across all evaluation metrics
(ECE, Brier score, ACC, AUCPR, and AUROC).

K Ablation Studies

K.1 Token Importance in OE Models
To address the concern that using features from all
tokens in an OE generation might be excessive, we
conducted an ablation study to determine whether
our convolutional architecture learns to prioritize
semantically meaningful tokens over less informa-
tive "filler" words.

For this analysis, we used our final trained OE
CCPS models. We performed a Token Masking Im-
pact Analysis, which involved the following steps:

1. For each sample in our test set, we first ob-
tained the baseline confidence score from the
full, unmasked sequence of token features.

2. We then systematically masked one token at
a time by zeroing out its entire feature vector
and re-calculated the confidence score with
the masked sequence.

3. The "impact" of each token was measured as
the absolute difference between the baseline
confidence and the confidence score from the
sequence where that token was masked.

4. Finally, using Part-of-Speech (POS) tagging,
we categorized each token as either a "Con-
tent" word (e.g., nouns, verbs, adjectives, ad-
verbs) or a "Function" word (e.g., determiners,
prepositions, pronouns) and compared the av-
erage impact scores for each category.

The results, summarized in Table 16, con-
firm that our convolutional architecture effectively
learns to prioritize semantically meaningful to-
kens. Across all four LLMs, masking Content
Words had a statistically significant and substan-
tially larger impact on the final confidence score
than masking Function Words. For example, for
the Qwen2.5-14B and Qwen2.5-32B models, the

impact of content words was over 75% greater than
that of function words. This analysis demonstrates
that the model’s sensitivity is not uniform across all
tokens; the convolutional architecture effectively
learns to place greater weight on semantically rich
words while attenuating the influence of less infor-
mative ones, thus validating our approach to using
the full feature sequence.

K.2 Comparison with Self-Consistency
Baseline

In response to reviewer feedback, and to pro-
vide a more comprehensive comparison against
methods that rely on output sampling, we imple-
mented and evaluated the Self-Consistency (SC)
baseline (Xiong et al., 2024). The SC method es-
timates confidence by generating multiple answer
samples for a given question and using the consen-
sus or frequency of the most common answer as
the confidence score. We tested the SC method
using our full experimental setup across all MMLU
variants.

The results of this comparison are presented in
Table 17. The findings show that while SC is a
competitive baseline, CCPS consistently outper-
forms it, particularly in calibration metrics. As
shown, CCPS achieves substantially lower ECE
and Brier scores across all models and datasets,
indicating significantly better calibration. Further-
more, CCPS generally demonstrates superior dis-
criminative power, leading in AUCPR and AUROC
in nearly all cases. These results further validate
the effectiveness of our internal stability probing
approach compared to methods based on external
output consistency.

K.3 Disentangling Feature Contributions

To assess whether the observed performance gains
of CCPS arise from its novel perturbation mech-
anism or merely from classification on features
extracted from the LLM’s unperturbed represen-
tations, we conducted a comprehensive ablation
study. This study aims to isolate and quantify the
contribution of our perturbation-derived features.

While our main results demonstrate CCPS’s su-
perior performance over other established probing
baselines like SAPLMA, we designed this ablation
to provide a more direct, controlled comparison
within our own framework. We created and evalu-
ated three variants of the CCPS model:

• Original Only (O): A CCPS classi-
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fier trained exclusively on the 12 features
derived from the LLM’s initial, unper-
turbed hidden state (e.g., original_entropy,
original_log_prob_actual). This serves
as our non-perturbation-based probe baseline.

• Perturbation Only (P ): A CCPS classi-
fier trained exclusively on the 63 features
derived from the perturbation process and
its effects (e.g., epsilon_to_flip_token,
pei_value_token, perturbed state statistics,
and comparison features).

• Full (F ): Our complete CCPS model, which
uses all 75 features (Original + Perturbation).

For each variant, the model architecture and train-
ing process were kept identical, with only the input
dimension of the first layer adjusted to match the
feature set size. The results for each LLM across
the three MMLU variants are presented in Table 18.
The results of this ablation study clearly demon-
strate that our perturbation-based features are the
primary driver of CCPS’s strong performance.

Perturbation Features are the Dominant Per-
formance Driver. As shown across all datasets,
the P model consistently and substantially outper-
forms the O probe. This is particularly evident
in ECE, where the perturbation-derived features
consistently yield much better calibration than fea-
tures from the unperturbed state. For example,
on MMLU-PRO-CHOICE with Qwen2.5-14B, the P
model cuts the ECE in half (21.0% → 11.0%)
and boosts AUROC by over 11 percentage points
(59.0% → 70.7%) compared to the O model. This
directly isolates and confirms the significant contri-
bution of our core perturbation mechanism.

The Value of Perturbation Increases with Task
Difficulty. The performance gap between the
perturbation-based models and the simple probe
widens on more challenging datasets. While the
O probe is a reasonable baseline on standard
MMLU-CHOICE, its performance degrades consider-
ably on the more difficult MMLU-PRO-CHOICE and
MMLU-OE tasks. In contrast, the P model remains
robust, showing much smaller performance degra-
dation. For instance, with Meta-Llama-3.1-8B,
the AUROC gap between P and O is 6.7 pp on
MMLU-CHOICE, but this gap widens to 12.7 pp on
the more challenging MMLU-OE. This strongly sug-
gests that as task complexity increases and simple
signals like initial log-probabilities become less

reliable, the deeper stability signals captured by
CCPS’s perturbation mechanism become critical
for robust confidence estimation.

Features Combine Synergistically. Finally, the
Full (F ) model, which combines both feature sets,
consistently achieves the best performance across
all metrics and datasets. This indicates that the orig-
inal state features, while less powerful on their own,
provide complementary information that further
refines the predictions made using the dominant
perturbation-based features. This study provides
clear evidence that the performance gains of CCPS
are fundamentally driven by the novel perturbation
mechanism we introduce, sharpening its distinction
from prior probing methods.

K.4 Feature Importance Analysis with SHAP

To investigate the contributions of various engi-
neered features to the predictions of our CCPS
model, we employed SHAP (SHapley Additive
exPlanations) (Lundberg and Lee, 2017) (MIT Li-
cense). This analysis utilized a model wrapper
around our trained CCPS classifiers and a subset
of the respective training data as background refer-
ences for the shap.KernelExplainer with a logit
link function. For Multiple-Choice (MC) mod-
els, which take a single feature vector as input,
SHAP values directly indicate the importance of
each of the Df features. The resulting "Feature-
SHAP Correlation" plots (Figures 31 through 34
for MC model results) visualize the Pearson correla-
tion between scaled feature values and their SHAP
values, where colors typically distinguish positive
and negative correlations, indicating how feature
magnitudes influence the prediction towards cor-
rectness.

Due to the sequential nature of inputs (a ma-
trix of feature vectors per token) for Open-Ended
(OE) models, SHAP analysis was adapted to as-
sess feature importance across the initial N tokens
(e.g., N = 10) of an answer. For each feature
type, SHAP values were computed based on its
influence at these initial positions and then aver-
aged across these N positions to derive an overall
impact score. Consequently, the "Feature-SHAP
Correlation" plots for OE models (also presented
in Figures 31 through 34 for the respective LLMs’
OE results) illustrate the correlation between these
position-averaged feature values and their corre-
sponding position-averaged SHAP values.
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K.5 Leave-One-Out Feature Ablation
To investigate the utility of our 75 features and ad-
dress the possibility of redundancy, we performed
a comprehensive leave-one-out feature ablation
study. For this analysis, we retrained our CCPS
model 75 times for each of the four base LLMs,
each time with one feature removed, and evalu-
ated the performance on both MMLU-CHOICE and
the more challenging MMLU-PRO-CHOICE test sets.
The importance of each feature was quantified by
the resulting drop in AUROC when it was excluded
from the model. Table 19 summarizes the five
most and least influential features shared across all
LLMs for each dataset, based on the average drop
in AUROC.

The Ablation Confirms that Features Measur-
ing the Response to Perturbation are Most Im-
portant Our analysis confirms the utility of our
feature set, as removing any single feature did not
improve performance across all model-task combi-
nations, indicating a well-designed, non-redundant
set. On MMLU-CHOICE, the most impactful features
directly measure the outcome of the perturbation,
such as whether the model’s top prediction changed
(did_argmax_change...). This validates our core
hypothesis that the stability of the LLM’s predic-
tion under a targeted challenge is a key confidence
signal.

The Nature of Informative Confidence Sig-
nals Shifts with Increasing Task Difficulty
Interestingly, when evaluating on the more
challenging MMLU-PRO-CHOICE dataset, the
nature of the most influential features shifts.
The most vital shared features become those
measuring the holistic distributional change
under perturbation, such as js_div_perturbed
_from_original_mean (the divergence be-
tween original and perturbed output distribu-
tions) and cosine_sim_logits_perturbed
_to_original_mean (the similarity between origi-
nal and perturbed logit vectors). This key insight
suggests that on harder problems, quantifying the
degree of representational shift appears to be a
more robust indicator of confidence than tracking
the stability of just the single top prediction.
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Original State Features

original_log_prob_actual Log-probability of the actual token based on the model’s original
(unperturbed) output distribution, i.e. logPoriginal(actual_token).

original_prob_actual Probability of the actual token based on the model’s original output
distribution, i.e. Poriginal(actual_token).

original_logit_actual Logit value of the actual token from the model’s original output.
original_prob_argmax Highest probability assigned to any token by the original model, i.e.

Poriginal(argmax_token).
original_logit_argmax Highest logit value assigned to any token by the original model.
original_entropy Entropy of the original predictive distribution:

−∑
i Poriginal(i) logPoriginal(i).

original_margin_logit_top1_top2 Difference between top-1 and top-2 logits in the original output.
original_margin_prob_top1_top2 Difference between top-1 and top-2 probabilities in the original output.
original_norm_logits_L2 L2 norm of the original logit vector.
original_std_logits Standard deviation of the original logit values.
original_norm_hidden_state_L2 L2 norm of the original last hidden state vector.
is_actual_token_original_argmax Indicator (1/0) if the actual token is the argmax under the original

model.

Overall Perturbation Features

jacobian_norm_token L2 norm of the Jacobian of the token’s log-prob w.r.t. the original
hidden state (sensitivity measure).

epsilon_to_flip_token Minimum perturbation magnitude along the Jacobian direction to
change the top-1 token.

pei_value_token Perturbation Energy Integral (PEI): total normalized drop in log-prob
of the actual token over all perturbation steps.

Perturbed State Features

perturbed_log_prob_actual Log-prob of the actual token after hidden-state perturbation,
logPperturbed(actual_token).

perturbed_prob_actual Probability of the actual token after perturbation,
Pperturbed(actual_token).

perturbed_logit_actual Logit value of the actual token after perturbation.
perturbed_prob_argmax Highest probability assigned after perturbation.
perturbed_logit_argmax Highest logit value assigned after perturbation.
perturbed_entropy Entropy of the perturbed predictive distribution.
perturbed_margin_logit_top1_top2 Difference between top-1 and top-2 logits post-perturbation.
perturbed_norm_logits_L2 L2 norm of the perturbed logit vector.

Comparison Features (Original vs. Perturbed)

delta_log_prob_actual_from_original Change in log-prob: logPoriginal − logPperturbed for the actual token.
did_argmax_change_from_original Indicator (1/0) if the argmax token changed after perturbation.
kl_div_perturbed_from_original KL divergence DKL(Poriginal ∥ Pperturbed).
js_div_perturbed_from_original Jensen-Shannon divergence between original and perturbed distribu-

tions.
cosine_sim_logits_perturbed_to_original Cosine similarity of logit vectors before vs. after perturbation.
cosine_sim_hidden_perturbed_to_original Cosine similarity of hidden-state vectors before vs. after perturbation.
l2_dist_hidden_perturbed_from_original L2 distance between hidden-state vectors before vs. after perturbation.

Table 2: Definitions of features employed in this study, grouped by feature set type.
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Task Name Size Task Name Size

Abstract Algebra 100 High School Statistics 216
Anatomy 135 High School Us History 204
Astronomy 152 High School World History 237
Business Ethics 100 Human Aging 223
Clinical Knowledge 265 Human Sexuality 131
College Biology 144 International Law 121
College Chemistry 100 Jurisprudence 108
College Computer Science 100 Logical Fallacies 163
College Mathematics 100 Machine Learning 112
College Medicine 173 Management 103
College Physics 102 Marketing 234
Computer Security 100 Medical Genetics 100
Conceptual Physics 235 Miscellaneous 783
Econometrics 114 Moral Disputes 346
Electrical Engineering 145 Moral Scenarios 895
Elementary Mathematics 378 Nutrition 306
Formal Logic 126 Philosophy 311
Global Facts 100 Prehistory 324
High School Biology 310 Professional Accounting 282
High School Chemistry 203 Professional Law 1,534
High School Computer Science 100 Professional Medicine 272
High School European History 165 Professional Psychology 612
High School Geography 198 Public Relations 110
High School Government And Politics 193 Security Studies 245
High School Macroeconomics 390 Sociology 201
High School Mathematics 270 US Foreign Policy 100
High School Microeconomics 238 Virology 166
High School Physics 151 World Religions 171
High School Psychology 545

Total 14,042

Table 3: Tasks and sample sizes in the MMLU benchmark.

Task Name Size

Biology 717
Business 789
Chemistry 1,132
Computer Science 410
Economics 844
Engineering 969
Health 818
History 381
Law 1,101
Math 1,351
Other 924
Philosophy 499
Physics 1,299
Psychology 798

Total 12,032

Table 4: Tasks and sample sizes in the MMLU-Pro benchmark.

Format System Prompt

Multiple-Choice You are an expert who responds with concise, correct answers. For
multiple-choice questions, respond only with the letter of the correct option
(e.g., a, b, c, d, ...). Do not include any explanation or additional text.

Open-Ended You are an expert who responds with concise, correct answers. Directly state
the answer without phrases like ’the correct answer is’.

Table 5: System prompts used for base LLM response generation.
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Prompt Type Content

System Prompt You are an automated grading assistant helping a teacher grade student answers.

User Prompt The problem is: "{question}"

The correct answer for this problem is: "{gt_answer}"

A student submitted the answer: "{llm_answer}"

The student’s answer should be semantically equivalent to the correct
answer—that is, it should express the same meaning, even if the wording
or format is slightly different. However, answers that are ambiguous,
incorrect, or include conflicting or multiple answers should not be
considered equivalent. Do not penalize superficial differences (e.g.,
spelling, synonyms, or phrasing), but ensure the core meaning is preserved.

Did the student provide a semantically equivalent answer to the ground
truth? Please answer yes or no without any explanation:

Table 6: Prompts used for GPT-4o-mini-based grading of open-ended responses.

CT-CHOICE

Model Train Validation
Correct Incorrect Total Correct Incorrect Total

Meta-Llama-3.1-8B-Instruct 12,654 (67.8%) 5,996 (32.1%) 18,650 1,688 (84.4%) 312 (15.6%) 2,000
Qwen2.5-14B-Instruct 15,116 (81.0%) 3,534 (18.9%) 18,650 1,796 (89.8%) 204 (10.2%) 2,000
Mistral-Small-24B-Instruct-2501 15,255 (81.8%) 3,395 (18.2%) 18,650 1,787 (89.3%) 213 (10.7%) 2,000
Qwen2.5-32B-Instruct 15,724 (84.3%) 2,926 (15.7%) 18,650 1,828 (91.4%) 172 (8.6%) 2,000

CT-OE

Model Train Validation
Correct Incorrect Total Correct Incorrect Total

Meta-Llama-3.1-8B-Instruct 9,165 (49.5%) 9,369 (50.5%) 18,534 1,014 (50.7%) 986 (49.3%) 2,000
Qwen2.5-14B-Instruct 11,656 (62.9%) 6,878 (37.1%) 18,534 1,221 (61.0%) 779 (39.0%) 2,000
Mistral-Small-24B-Instruct-2501 10,532 (56.8%) 8,002 (43.2%) 18,534 1,145 (57.2%) 855 (42.8%) 2,000
Qwen2.5-32B-Instruct 12,083 (65.2%) 6,451 (34.8%) 18,534 1,201 (60.0%) 799 (40.0%) 2,000

MMLU-CHOICE

Model Test
Correct Incorrect Total

Meta-Llama-3.1-8B-Instruct 9,041 (64.4%) 5,001 (35.6%) 14,042
Qwen2.5-14B-Instruct 10,898 (77.6%) 3,144 (22.4%) 14,042
Mistral-Small-24B-Instruct-2501 11,231 (80.0%) 2,811 (20.0%) 14,042
Qwen2.5-32B-Instruct 11,488 (81.8%) 2,554 (18.2%) 14,042

MMLU-PRO-CHOICE

Model Test
Correct Incorrect Total

Meta-Llama-3.1-8B-Instruct 4,135 (34.4%) 7,897 (65.6%) 12,032
Qwen2.5-14B-Instruct 6,187 (51.4%) 5,845 (48.6%) 12,032
Mistral-Small-24B-Instruct-2501 6,523 (54.2%) 5,509 (45.8%) 12,032
Qwen2.5-32B-Instruct 6,870 (57.1%) 5,162 (42.9%) 12,032

MMLU-OE

Model Test
Correct Incorrect Total

Meta-Llama-3.1-8B-Instruct 4,225 (30.1%) 9,817 (69.9%) 14,042
Qwen2.5-14B-Instruct 6,386 (45.5%) 7,656 (54.5%) 14,042
Mistral-Small-24B-Instruct-2501 6,338 (45.1%) 7,704 (54.9%) 14,042
Qwen2.5-32B-Instruct 6,814 (48.5%) 7,228 (51.5%) 14,042

Table 7: Distribution of correct and incorrect responses across CT-CHOICE, CT-OE, and MMLU variants.
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Table 8: Architectural dimensions for the base LLMs used.

Base LLM dh V L

Meta-Llama-3.1-8B-Instruct 4,096 128,256 32
Qwen2.5-14B-Instruct 5,120 152,064 48
Mistral-Small-24B-Instruct-2501 5,120 131,072 40
Qwen2.5-32B-Instruct 5,120 152,064 64

Table 9: Formulas for additional trainable parameters introduced by each method.

Method Trainable Component(s) Formula for Parameters (incl. Biases)

P(True) None (prompting only) 0
LTS Temperature scalar τ 1
P(IK) Linear layer (dh → 2) 2dh + 2
SAPLMA MLP (dh → 256 → 128 → 64 → 2) 256dh +(256×128+128)+ (128×64+

64) + (64×2 + 2)
= 256dh + 41, 282

IT & CT (LoRA) LoRA layers (adapting Q & V matrices in
all L layers, rank r)

2L · (dhr + rdh) = 4Ldhr

LitCab Linear bias layer (dh → V ) dhV + V
CCPS (MC) Encoder EMC + Head CMC (MLPs)

∑
(hihi+1+hi+1)+

∑
(gjgj+1+gj+1)

EMC widths: (Df , 64, 32, 16, 8)
CMC widths: (8, 48, 24, 12, 2)

CCPS (OE) Encoder EOE + Head COE (See text for detailed breakdown)

Table 10: Additional trainable parameters introduced by each confidence estimation method per base LLM (CCPS
values for MC variant; LoRA rank r = 8 adapting Q and V matrices in all L layers).

Base LLM P(True) LTS P(IK) SAPLMA IT/CT (LoRA-r) LitCab CCPS (MC)

Meta-Llama-3.1-8B-Instruct 0 1 8,194 1,089,858 4,194,304 525,464,832 9,542
Qwen2.5-14B-Instruct 0 1 10,242 1,352,002 7,864,320 778,719,744 9,542
Mistral-Small-24B-Instruct 0 1 10,242 1,352,002 6,553,600 671,219,712 9,542
Qwen2.5-32B-Instruct 0 1 10,242 1,352,002 10,485,760 778,719,744 9,542

Table 11: Relative trainable parameter budgets with respect to CCPS (MC variant; ↓ indicates better/fewer
parameters).

Base LLM LitCab ÷ CCPS IT/CT LoRA-r ÷ CCPS

Meta-Llama-3.1-8B-Instruct 55, 069× 440×
Qwen2.5-14B-Instruct 81, 610× 824×
Mistral-Small-24B-Instruct-2501 70, 344× 687×
Qwen2.5-32B-Instruct 81, 610× 1, 099×
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Dataset Model Method ECE ↓ Brier ↓ ACC ↑ AUCPR ↑ AUROC ↑

MedMCQA (Multiple-Choice)

Meta-Llama-3.1-8B CT 26.8 31.7 51.1 56.4 54.7
CCPS 11.0 20.9 67.7 74.0 73.9

Qwen2.5-14B CT 28.0 30.1 62.2 68.2 55.3
CCPS 13.8 20.5 66.1 80.0 73.9

Mistral-Small-24B CT 23.4 27.9 64.3 69.4 53.7
CCPS 21.2 25.4 65.2 70.8 54.5

Qwen2.5-32B CT 41.1 41.8 44.0 72.4 52.4
CCPS 12.7 19.0 70.2 87.2 76.8

MedMCQA (Open-Ended)

Meta-Llama-3.1-8B CT 12.1 18.7 71.8 38.7 66.4
CCPS 9.1 18.9 74.3 45.0 74.7

Qwen2.5-14B CT 14.0 22.2 59.3 41.2 65.5
CCPS 11.5 21.2 68.5 44.5 68.6

Mistral-Small-24B CT 14.6 29.7 63.4 36.6 53.9
CCPS 12.4 22.3 69.3 45.0 62.4

Qwen2.5-32B CT 18.5 24.6 67.0 31.8 56.2
CCPS 18.3 21.9 72.4 43.5 70.1

Table 12: Performance on MedMCQA across two setups: Multiple-Choice and Open-Ended. Arrows indicate
whether lower (↓) or higher (↑) values are better. Best results per model are bolded.
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Model Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑

Meta-Llama-3.1-8B-Instruct

P(True) 35.9±5.7 39.4±4.2 45.4±5.9 66.0±14.6 49.2±5.7

P(IK) 18.9±9.6 25.4±2.4 63.9±14.8 65.3±14.9 49.8±1.8

LTS 28.9±6.6 34.5±3.7 44.6±6.9 66.6±14.1 50.1±4.3

IT 33.4±5.3 37.5±3.7 47.2±4.9 66.5±14.7 49.8±5.0

SAPLMA-M 17.9±9.7 24.8±2.7 64.9±15.1 64.9±15.3 49.5±3.1

SAPLMA-UM 18.1±9.8 24.9±2.7 64.9±15.1 64.6±15.4 49.3±3.3

SAPLMA-F 18.2±9.8 24.9±2.6 64.9±15.0 65.0±15.0 49.6±2.3

CT 10.7±6.7 21.1±5.7 67.8±12.2 74.2±15.5 62.8±8.0

LitCab 10.9±4.8 18.1±5.5 73.2±8.7 84.0±13.5 77.1±8.2

CCPS 6.5±3.9 17.1±4.7 73.4±8.5 84.1±13.5 77.1±8.5

Qwen2.5-14B-Instruct

P(True) 47.0±6.2 47.0±4.8 41.3±6.4 79.2±12.5 51.2±5.8

P(IK) 25.1±13.0 24.1±3.1 76.8±12.2 78.3±12.1 49.9±2.4

LTS 41.5±6.5 43.0±4.3 38.6±6.2 78.9±12.6 49.7±5.7

IT 44.7±5.9 44.0±5.2 45.7±7.1 79.4±12.4 50.4±6.7

SAPLMA-M 23.8±13.2 23.0±4.0 78.1±12.1 78.4±12.3 50.5±3.0

SAPLMA-UM 23.7±13.2 23.0±4.0 78.2±12.1 78.4±12.1 50.3±2.4

SAPLMA-F 24.0±12.9 23.0±3.7 78.1±12.1 78.5±12.2 50.3±3.0

CT 12.1±8.1 17.0±8.1 78.6±11.5 84.7±10.9 64.8±9.1

LitCab 45.6±11.3 20.0±10.8 78.3±12.0 83.7±10.2 65.3±5.4

CCPS 6.3±3.7 13.1±5.8 80.2±9.5 92.1±8.1 81.6±7.0

Mistral-Small-24B-Instruct-2501

P(True) 42.1±8.5 43.3±5.7 38.1±7.9 80.5±12.1 49.3±8.0

P(IK) 12.4±9.3 17.8±8.7 73.9±18.8 82.6±12.2 56.3±8.9

LTS 36.2±9.0 38.3±4.7 36.1±8.4 80.2±12.6 49.2±6.2

IT 37.3±7.3 39.4±5.0 42.9±7.7 81.3±12.0 49.8±7.9

SAPLMA-M 24.5±14.0 22.5±4.0 79.8±12.9 79.9±12.8 49.8±2.0

SAPLMA-UM 24.6±14.1 22.5±4.1 79.8±12.9 80.1±12.9 50.6±2.9

SAPLMA-F 25.2±14.3 22.9±4.1 79.8±12.9 79.8±12.9 49.8±2.3

CT 8.2±7.4 15.5±7.8 79.6±13.1 83.3±11.5 56.5±7.6

LitCab 13.5±6.7 15.1±7.4 79.5±9.8 91.5±8.4 78.2±8.0

CCPS 5.8±3.2 11.5±6.0 83.0±10.3 93.1±7.8 83.3±7.6

Qwen2.5-32B-Instruct

P(True) 44.0±7.0 45.7±5.5 41.9±7.4 84.0±10.3 52.1±7.3

P(IK) 28.6±12.7 23.5±4.2 81.7±10.7 82.6±10.4 49.9±2.9

LTS 37.1±6.7 40.2±4.4 41.9±7.4 84.1±10.3 52.2±7.3

IT 41.9±7.6 44.0±6.2 44.6±8.3 84.6±10.5 54.8±7.6

SAPLMA-M 27.3±13.2 22.7±4.7 82.3±10.6 82.4±10.6 49.7±4.2

SAPLMA-UM 27.7±12.8 22.8±4.7 82.3±10.6 82.3±10.7 49.4±3.6

SAPLMA-F 27.2±12.9 22.5±4.5 82.3±10.6 82.4±10.7 49.9±2.8

CT 45.2±7.0 46.9±5.1 37.2±6.1 84.3±10.1 51.6±8.0

LitCab 43.2±11.0 15.9±9.3 82.6±10.4 87.9±7.9 67.2±6.5

CCPS 6.3±3.1 10.8±5.2 84.1±8.9 94.1±5.9 82.8±6.9

Table 13: Complete performance metrics for the MMLU-CHOICE dataset. Arrows indicate whether lower (↓) or
higher (↑) values are better. All values are percentages and show mean ± standard deviation. Best values per model
are bolded.

10488



Model Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑

Meta-Llama-3.1-8B-Instruct

P(True) 25.3±6.7 33.1±4.5 54.8±6.8 37.1±11.7 49.8±2.1

P(IK) 41.7±15.6 44.1±11.5 38.2±11.7 37.3±13.7 49.9±3.2

LTS 17.0±6.7 29.1±3.5 55.4±7.0 36.9±12.3 49.9±2.2

IT 26.8±4.7 33.8±2.9 52.8±4.8 37.7±12.2 50.0±2.7

SAPLMA-M 40.4±14.0 40.3±8.6 36.7±12.7 37.3±13.0 50.1±1.8

SAPLMA-UM 41.0±14.3 41.0±9.1 36.7±12.7 37.5±13.3 50.3±3.0

SAPLMA-F 40.2±14.9 40.7±10.0 36.8±12.7 37.2±12.9 50.3±1.8

CT 21.5±11.5 29.8±5.9 50.4±11.7 43.7±14.4 57.3±4.4

LitCab 16.6±2.9 24.7±2.6 66.1±4.2 51.7±18.4 63.6±9.0

CCPS 4.5±2.1 20.0±2.2 70.4±4.0 55.2±19.4 67.9±8.1

Qwen2.5-14B-Instruct

P(True) 33.7±7.1 38.6±4.8 49.9±6.0 55.4±12.6 51.4±1.3

P(IK) 27.3±11.4 33.9±8.2 53.6±11.5 53.5±13.4 49.1±2.3

LTS 26.7±7.4 34.5±4.5 49.3±6.7 54.6±11.8 50.7±2.2

IT 33.5±6.0 38.3±3.6 50.5±4.2 55.6±12.1 51.1±2.4

SAPLMA-M 28.1±13.2 33.4±8.6 53.4±12.5 54.1±13.3 50.1±3.0

SAPLMA-UM 27.4±13.5 33.0±8.6 53.5±12.5 53.8±13.0 49.9±3.1

SAPLMA-F 25.7±12.3 32.1±7.7 53.4±12.5 53.8±12.5 49.3±2.8

CT 20.4±10.3 28.7±6.3 55.6±11.4 59.4±12.9 56.6±3.5

LitCab 49.7±4.2 38.3±8.8 55.3±11.6 66.2±10.1 68.0±3.7

CCPS 4.2±1.8 20.1±2.9 69.2±5.4 75.8±10.5 74.0±4.8

Mistral-Small-24B-Instruct-2501

P(True) 32.0±8.1 37.2±5.0 46.9±7.3 57.5±12.3 50.2±2.2

P(IK) 32.3±11.4 36.3±9.7 56.1±10.9 57.4±13.4 50.6±2.1

LTS 24.7±7.6 32.7±3.7 46.2±7.2 56.6±12.3 49.2±1.7

IT 31.2±6.7 36.2±3.9 47.0±6.1 58.4±12.0 50.3±2.8

SAPLMA-M 24.5±12.1 30.7±8.0 56.7±12.4 57.0±13.3 49.9±2.8

SAPLMA-UM 24.5±11.7 30.7±8.0 56.7±12.4 57.6±13.4 50.6±3.1

SAPLMA-F 25.1±12.8 31.4±8.5 56.7±12.4 56.8±12.2 49.8±2.2

CT 17.8±9.7 27.4±5.9 58.2±11.6 60.1±13.1 54.3±3.1

LitCab 32.2±3.1 34.6±3.2 57.0±3.7 66.2±12.8 60.1±5.0

CCPS 4.5±1.9 18.6±3.3 71.3±6.4 79.5±9.4 77.2±5.2

Qwen2.5-32B-Instruct

P(True) 34.6±6.8 39.5±4.9 46.1±5.9 60.1±12.2 50.3±2.7

P(IK) 23.6±9.9 30.8±7.7 58.0±10.8 59.5±11.9 50.2±2.5

LTS 27.5±6.7 34.8±3.9 46.1±5.9 60.1±12.2 50.3±2.7

IT 36.6±6.7 40.9±5.3 45.9±5.9 60.1±12.1 51.0±2.7

SAPLMA-M 24.8±12.0 30.5±8.3 59.3±11.8 59.9±12.1 49.9±2.8

SAPLMA-UM 26.9±12.1 31.8±8.9 59.3±11.8 60.2±12.0 49.8±3.3

SAPLMA-F 23.7±11.2 30.0±7.9 59.3±11.8 59.4±11.6 49.5±2.7

CT 38.0±8.5 41.6±6.4 44.8±7.2 60.5±11.3 49.9±2.7

LitCab 48.4±3.5 33.7±8.7 60.8±11.0 72.7±8.8 70.3±4.7

CCPS 4.6±2.1 18.5±3.4 71.8±6.1 82.4±7.7 77.8±4.7

Table 14: Complete performance metrics for the MMLU-PRO-CHOICE dataset. Arrows indicate whether lower (↓)
or higher (↑) values are better. All values are percentages and show mean ± standard deviation. Best values per
model are bolded.
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Model Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑

Meta-Llama-3.1-8B-Instruct

P(True) 25.9±7.0 32.0±5.2 56.0±7.7 29.9±12.5 46.2±5.8

P(IK) 22.6±12.0 26.6±5.0 30.5±11.8 29.9±11.5 49.8±1.1

LTS 27.9±5.6 34.0±3.5 47.8±4.9 31.5±13.6 47.5±5.9

IT 27.8±5.9 33.2±4.6 53.9±6.1 30.6±13.3 47.2±6.0

SAPLMA-M 23.0±12.5 26.6±5.2 67.0±15.7 29.6±11.3 49.9±0.9

SAPLMA-UM 22.8±11.7 26.2±3.5 29.6±11.3 29.6±11.3 49.9±0.9

SAPLMA-F 22.5±11.5 26.1±3.5 29.7±11.4 29.7±11.4 49.8±1.4

CT 8.8±6.4 21.1±4.9 65.3±11.4 48.9±16.8 70.9±7.5

LitCab 8.8±7.6 22.5±4.8 65.3±9.1 46.2±13.8 66.0±9.6

CCPS 8.0±5.7 20.2±3.8 69.5±8.6 49.4±15.9 69.3±7.8

Qwen2.5-14B-Instruct

P(True) 33.9±7.6 36.9±5.9 54.1±7.4 46.3±12.6 52.6±5.0

P(IK) 14.1±9.9 26.3±4.3 55.8±12.7 42.8±12.2 49.5±1.9

LTS 27.8±5.4 32.8±4.0 55.9±5.6 49.2±13.1 56.5±6.0

IT 33.6±6.1 36.7±4.8 55.0±6.0 47.5±13.9 54.0±5.9

SAPLMA-M 14.9±10.8 26.4±4.2 42.8±12.3 42.8±12.3 49.9±0.9

SAPLMA-UM 14.6±9.9 26.1±3.0 42.8±12.3 42.7±12.3 49.9±0.9

SAPLMA-F 14.7±10.1 26.2±3.3 42.8±12.3 42.8±12.4 49.9±1.0

CT 9.4±5.6 22.6±4.0 63.4±8.4 61.7±14.3 69.3±7.7

LitCab 34.4±10.3 37.0±7.3 49.4±10.1 56.8±13.4 62.5±6.8

CCPS 6.7±3.5 22.5±2.0 63.6±6.8 59.0±12.7 66.6±6.8

Mistral-Small-24B-Instruct-2501

P(True) 28.0±8.9 33.5±6.7 55.5±8.7 44.6±13.3 49.8±4.5

P(IK) 19.9±12.7 29.7±7.4 52.5±11.1 46.3±14.4 52.7±5.2

LTS 19.4±6.3 29.3±4.0 55.2±6.7 46.1±13.8 50.8±5.3

IT 26.2±7.9 32.5±5.6 55.2±7.4 45.5±13.6 50.6±4.5

SAPLMA-M 15.1±10.9 26.2±3.3 42.6±13.0 42.9±12.9 50.2±1.0

SAPLMA-UM 15.2±11.0 26.3±3.5 42.6±13.0 42.8±13.0 50.1±0.8

SAPLMA-F 14.9±10.9 26.2±3.4 42.6±13.0 42.7±13.0 50.0±1.6

CT 10.8±5.4 22.8±3.4 62.2±8.3 60.7±15.8 68.2±8.0

LitCab 11.2±5.0 24.6±3.1 60.2±6.8 60.5±13.3 66.4±6.5

CCPS 6.8±2.6 20.8±2.6 67.6±6.0 64.7±13.2 71.4±6.8

Qwen2.5-32B-Instruct

P(True) 36.3±4.6 38.0±3.7 54.8±4.3 53.8±12.9 57.1±5.5

P(IK) 13.1±10.4 26.3±4.5 52.8±12.5 46.5±12.3 49.9±0.6

LTS 29.5±4.8 34.4±3.4 53.7±4.0 52.7±13.3 55.5±5.5

IT 33.2±7.1 37.3±5.3 52.7±6.8 49.0±12.7 51.6±4.5

SAPLMA-M 13.6±10.0 26.2±3.7 46.2±12.5 46.2±12.6 49.9±0.6

SAPLMA-UM 13.7±10.4 26.3±4.1 46.1±12.5 46.2±12.5 49.8±1.2

SAPLMA-F 13.7±10.2 26.3±3.8 46.1±12.5 46.2±12.5 49.8±0.8

CT 22.9±4.7 31.1±3.5 57.1±5.2 52.9±12.8 56.3±5.7

LitCab 28.4±8.1 33.2±5.5 52.7±8.5 60.2±13.0 62.3±7.6

CCPS 8.7±4.9 23.3±2.1 62.6±6.8 62.0±11.8 66.4±5.8

Table 15: Complete performance metrics for the MMLU-OE dataset. Arrows indicate whether lower (↓) or higher
(↑) values are better. All values are percentages and show mean ± standard deviation. Best values per model are
bolded.

Base LLM Mean Impact of Content Mean Impact of Function Content vs. Function Impact Lift

Meta-Llama-3.1-8B 0.0182 0.0125 +45.6%
Qwen2.5-14B 0.0160 0.0091 +75.8%
Mistral-Small-24B 0.0385 0.0258 +49.2%
Qwen2.5-32B 0.0156 0.0088 +77.2%

Table 16: Impact of masking content vs. function words on the final confidence score. “Impact Lift” shows the
percentage increase in impact when masking a content word compared to a function word.
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Figure 2: Performance comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across
MMLU variants.
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Figure 3: Performance comparison of confidence estimation methods on Qwen2.5-14B-Instruct across MMLU
variants.
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Figure 4: Performance comparison of confidence estimation methods on Mistral-Small-24B-Instruct-2501
across MMLU variants.
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Figure 5: Performance comparison of confidence estimation methods on Qwen2.5-32B-Instruct across MMLU
variants.
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Figure 6: Calibration curves of confidence estimation methods across all models and MMLU variants.
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Figure 7: Calibration curves of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across MMLU
variants.
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Figure 8: Calibration curves of confidence estimation methods on Qwen2.5-14B-Instruct across MMLU variants.
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Figure 9: Calibration curves of confidence estimation methods on Mistral-Small-24B-Instruct-2501 across
MMLU variants.
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Figure 10: Calibration curves of confidence estimation methods on Qwen2.5-32B-Instruct across MMLU variants.
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Figure 11: ECE comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across different
tasks of MMLU variants.
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Figure 12: Brier score comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across
different tasks of MMLU variants.
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Figure 13: Accuracy (ACC) comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct
across different tasks of MMLU variants.
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Figure 14: AUCPR comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across
different tasks of MMLU variants.
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Figure 15: AUROC comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across
different tasks of MMLU variants.
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Figure 16: ECE comparison of confidence estimation methods on Qwen2.5-14B-Instruct across different tasks of
MMLU variants.
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Figure 17: Brier score comparison of confidence estimation methods on Qwen2.5-14B-Instruct across different
tasks of MMLU variants.
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Figure 18: Accuracy (ACC) comparison of confidence estimation methods on Qwen2.5-14B-Instruct across
different tasks of MMLU variants.
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Figure 19: AUCPR comparison of confidence estimation methods on Qwen2.5-14B-Instruct across different
tasks of MMLU variants.
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Figure 20: AUROC comparison of confidence estimation methods on Qwen2.5-14B-Instruct across different
tasks of MMLU variants.
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Figure 21: ECE comparison of confidence estimation methods on Mistral-Small-24B-Instruct-2501 across
different tasks of MMLU variants.
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Figure 22: Brier score comparison of confidence estimation methods on Mistral-Small-24B-Instruct-2501
across different tasks of MMLU variants.
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Figure 23: Accuracy (ACC) comparison of confidence estimation methods on
Mistral-Small-24B-Instruct-2501 across different tasks of MMLU variants.
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Figure 24: AUCPR comparison of confidence estimation methods on Mistral-Small-24B-Instruct-2501 across
different tasks of MMLU variants.
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Figure 25: AUROC comparison of confidence estimation methods on Mistral-Small-24B-Instruct-2501 across
different tasks of MMLU variants.
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Figure 26: ECE comparison of confidence estimation methods on Qwen2.5-32B-Instruct across different tasks of
MMLU variants.
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Figure 27: Brier score comparison of confidence estimation methods on Qwen2.5-32B-Instruct across different
tasks of MMLU variants.
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Figure 28: Accuracy (ACC) comparison of confidence estimation methods on Qwen2.5-32B-Instruct across
different tasks of MMLU variants.
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Figure 29: AUCPR comparison of confidence estimation methods on Qwen2.5-32B-Instruct across different
tasks of MMLU variants.
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Figure 30: AUROC comparison of confidence estimation methods on Qwen2.5-32B-Instruct across different
tasks of MMLU variants.
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Table 17: Unified comparison of CCPS vs. Self-Consistency (SC) across three datasets: MMLU-CHOICE,
MMLU-PRO-CHOICE, and MMLU-OE. Values are percentages. Best results per model are bolded.

Dataset Model Method ECE ↓ Brier ↓ ACC ↑ AUCPR ↑ AUROC ↑

MMLU-CHOICE

Meta-Llama-3.1-8B
SC 23.0 22.6 69.1 77.0 71.5
CCPS 6.5 17.1 73.4 84.1 77.1

Qwen2.5-14B
SC 46.1 20.8 78.1 79.9 55.5
CCPS 6.3 13.1 80.2 92.1 81.6

Mistral-Small-24B
SC 22.3 14.7 81.2 88.0 74.2
CCPS 5.8 11.5 83.0 93.1 83.3

Qwen2.5-32B
SC 26.3 16.4 82.6 84.5 56.8
CCPS 6.3 10.8 84.1 94.1 82.8

MMLU-PRO-CHOICE

Meta-Llama-3.1-8B
SC 19.3 29.8 60.3 51.9 68.7
CCPS 4.5 20.0 70.4 55.2 67.9

Qwen2.5-14B
SC 47.1 41.1 54.8 58.5 58.7
CCPS 4.2 20.1 69.2 75.8 74.0

Mistral-Small-24B
SC 20.2 25.0 67.2 72.7 73.0
CCPS 4.5 18.6 71.3 79.5 77.2

Qwen2.5-32B
SC 45.4 36.0 60.5 64.4 59.5
CCPS 4.6 18.5 71.8 82.4 77.8

MMLU-OE

Meta-Llama-3.1-8B
SC 11.2 21.2 71.2 46.6 67.0
CCPS 8.0 20.2 69.5 49.4 69.3

Qwen2.5-14B
SC 22.5 33.0 56.6 51.7 59.8
CCPS 6.7 22.5 63.6 59.0 66.6

Mistral-Small-24B
SC 14.0 24.1 65.8 58.9 67.2
CCPS 6.8 20.8 67.6 64.7 71.4

Qwen2.5-32B
SC 23.7 33.6 56.0 54.3 59.8
CCPS 8.7 23.3 62.6 62.0 66.4
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Dataset Model Variant ECE ↓ AUROC ↑

MMLU-CHOICE

Meta-Llama-3.1-8B-Instruct
O 17.1 56.3
P 11.3 63.0
F 6.5 77.1

Qwen2.5-14B-Instruct
O 12.1 62.8
P 8.6 74.7
F 6.4 81.6

Mistral-Small-24B-Instruct-2501
O 14.8 73.2
P 8.1 76.5
F 5.9 83.3

Qwen2.5-32B-Instruct
O 15.6 63.0
P 8.9 77.8
F 6.3 82.9

MMLU-PRO-CHOICE

Meta-Llama-3.1-8B-Instruct
O 17.1 58.6
P 6.1 61.2
F 4.5 67.9

Qwen2.5-14B-Instruct
O 21.0 59.0
P 11.0 70.7
F 4.2 74.0

Mistral-Small-24B-Instruct-2501
O 18.3 54.5
P 8.9 63.1
F 4.5 77.2

Qwen2.5-32B-Instruct
O 23.9 77.7
P 6.5 77.5
F 4.6 78.0

MMLU-OE

Meta-Llama-3.1-8B-Instruct
O 14.6 48.7
P 10.2 61.4
F 8.0 69.3

Qwen2.5-14B-Instruct
O 15.2 60.1
P 9.6 61.0
F 6.8 66.6

Mistral-Small-24B-Instruct-2501
O 10.8 50.1
P 9.7 66.3
F 6.8 71.4

Qwen2.5-32B-Instruct
O 23.4 52.2
P 12.5 59.1
F 8.7 66.4

Table 18: Ablation results of disentangling feature contributions. Variants are Original Only (O), Perturbation Only
(P ), and Full (F ). Best performance per model is bolded.
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Figure 31: Correlations between feature values and SHAP scores in CCPS on Meta-Llama-3.1-8B-Instruct
across all datasets. Blue bars denote positive correlations (higher feature values increase prediction ACC), and red
bars denote negative correlations.
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Figure 32: Correlations between feature values and SHAP scores in CCPS on Qwen2.5-14B-Instruct across all
datasets. Blue bars denote positive correlations (higher feature values increase prediction ACC), and red bars denote
negative correlations.
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Figure 33: Correlations between feature values and SHAP scores in CCPS on Mistral-Small-24B-Instruct-2501
across all datasets. Blue bars denote positive correlations (higher feature values increase prediction ACC), and red
bars denote negative correlations.
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Figure 34: Correlations between feature values and SHAP scores in CCPS on Qwen2.5-32B-Instruct across all
datasets. Blue bars denote positive correlations (higher feature values increase prediction ACC), and red bars denote
negative correlations.
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Test Dataset Influential Features

MMLU-CHOICE Top 5 Most Influential:
perturbed_logit_argmax_mean
did_argmax_change_from_original_max
did_argmax_change_from_original_mean
pei_value_token
perturbed_logit_argmax_std
Top 5 Least Influential:
l2_dist_hidden_perturbed_from_original_std
cosine_sim_hidden_perturbed_to_original_std
original_norm_logits_L2
is_actual_token_original_argmax
jacobian_norm_token

MMLU-PRO-CHOICE Top 5 Most Influential:
js_div_perturbed_from_original_mean
cosine_sim_logits_perturbed_to_original_mean
js_div_perturbed_from_original_max
kl_div_perturbed_from_original_std
did_argmax_change_from_original_mean
Top 5 Least Influential:
perturbed_prob_actual_std
original_prob_actual
jacobian_norm_token
is_actual_token_original_argmax
original_entropy

Table 19: Top 5 most and least influential features identified for MMLU-CHOICE and MMLU-PRO-CHOICE.
Each feature is shown on a separate line.
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