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Abstract

Bit-flip errors (BFEs) are hardware faults where
individual bits in memory or processing units
are unintentionally flipped. These errors pose
a significant threat to neural network reliabil-
ity because even small changes in model pa-
rameters can lead to large output shifts. Large
language models (LLMs) are particularly vul-
nerable to resource-constrained or outdated
hardware. Such hardware often lacks error-
correction mechanisms and faces aging issues,
leading to instability under the vast parame-
ter counts and heavy computational loads of
LLMs. While the impact of BFEs on tradi-
tional networks like CNNs is relatively well-
studied, their effect on the complex archi-
tecture of transformers remains largely unex-
plored. Firstly, this paper presents a compre-
hensive systematic analysis of BFE vulnera-
bilities in key LLM components, revealing dis-
tinct sensitivities across parameters, activations,
and gradients during fine-tuning and inference.
Secondly, based on our findings, we introduce a
novel defense strategy FlipGuard: (i) exponent
bit protection, and (ii) a self-correction based
fine-tuning mechanism, to address BFE conse-
quences. FlipGuard minimizes performance
degradation while significantly enhancing ro-
bustness against BFEs. Experiments demon-
strate an average 9.27% reduction in accuracy
drop under 1% BFEs on the SST-2 dataset us-
ing BERT, and an average 36.35-point improve-
ment in perplexity on the Wikitext-103 dataset
using GPT-2, compared to unprotected mod-
els. These results show the potential of our
approach in enabling reliable LLM deployment
on diverse and less reliable hardware platforms.

1 Introduction

Bit-flip Errors (BFEs) are hardware faults where
individual bits in memory or processing units (e.g.,
GPUs) are unintentionally flipped from 0 to 1 or
vice versa, as shown in Figure 1. While often linked
to aging or resource-constrained hardware, recent
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Figure 1: Illustration of how BFEs occur and impact
LLMs. BFEs change values in GPUs, altering binary
representations (e.g., flipping 1 bit, value shifts from
6.293799 to 412468.5), which causes collapse outputs.

studies highlight that even minimal bit manipula-
tions can severely degrade LLM performance or
create backdoors (Liu et al., 2024), and BFEs in
common LLM data formats like bfloat16 can cause
up to 98% performance loss (Lhoussaine et al.,
2024).

LLMs, with their vast parameter scales (Rad-
ford, 2018; Devlin, 2018) and high computational
demands (Ajay Jain, 2024), exacerbate this vul-
nerability. Their deployment on diverse hardware,
including older GPUs lacking robust error correc-
tion or specialized units prioritizing speed over
fault tolerance (e.g., for bfloat16 operations), in-
creases BFE risk. This leads to instability from fre-
quent memory operations, making BFE investiga-
tion crucial for reliable LLM deployment. Besides,
BFEs can also be intentionally induced by attacks
such as Rowhammer (Kim et al., 2014), which ex-
ploits the increasing transistor density in DRAM,
even in modern chips like DDR4 and DDR5 mem-
ory technologies (Frigo et al., 2020; Jattke et al.,
2024). Moreover, the increasing reliance on cloud
infrastructure for LLMs, particularly in large-scale
clusters, amplifies this threat. The multi-tenant
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setup in public clouds, such as OpenAI’s use of
Microsoft Azure, shares memory hardware among
clients, raising the risk of Rowhammer attacks and
BFEs due to extensive data processing and compu-
tations (Xiao et al., 2016). Therefore, investigating
BFEs in LLMs is essential for ensuring their reli-
ability and robustness in real-world environments
where hardware limitations are common.

Previous research has extensively explored
the impact of BFEs on traditional neural net-
works, such as Convolutional Neural Networks
(CNNs) (Breier et al., 2018). In these networks,
BFEs can lead to significant drops in accuracy.
However, these networks typically have fewer pa-
rameters and simpler architectures. In contrast,
LLMs, with their massive parameter sizes and
multi-layer structure, are prone to the propagation
of errors. Despite this, the impact of BFEs on
transformer-based LLMs remains under-explored.
Given the increased vulnerability of LLMs due to
their scale and complexity, we propose investigat-
ing how different components respond to BFEs in
both fine-tuning and inference stages. This leads to
the first critical research question:

RQ1: How do bit-flip errors affect LLMs,
given their unique architecture and scale?

While some defense mechanisms have been pro-
posed for smaller models, they are optimized for
simpler architectures and are not directly applica-
ble to LLMs. The massive scale of LLMs, coupled
with intricate components like self-attention layers,
requires novel strategies for detecting and mitigat-
ing BFEs. In addition, the diverse deployment
environments for LLMs, including outdated hard-
ware and potentially hostile cloud infrastructures,
compounds the need for flexible solutions. This
brings us to the second research question:

RQ2: How can we design effective strategies
to mitigate BFEs in LLMs?

To address RQ1, we conduct a systematic anal-
ysis of the impact of BFEs on key components of
LLMs during both fine-tuning and inference (Sec-
tion 3). Specifically, we examine how BFEs affect
critical modules, including ❶ self-attention layers,
❷ multi-layer perceptrons (MLPs), and ❸ embed-
ding layers. Our analysis also explores the influ-
ence of bit-flips at different numerical positions,
with a particular focus on the exponent’s highest bit.
We experimentally illustrate that errors induced in

the most bit result in disproportionately large per-
formance degradation due to its exponential effect
on numerical values. Additionally, our study shows
that different LLM components are subjected to
varying degrees of susceptibility to BFEs. For
example, embedding layers and layers closer to the
input are more vulnerable because errors in these
parts propagate throughout the network.

Based on the findings, for RQ2, we propose a
defense strategy: (i) enhanced quantization tech-
niques to protect critical bits, and (ii) a self-
correction based fine-tuning mechanism that ex-
poses the model to random BFEs during fine-
tuning, allowing it to learn corrective patterns.
These strategies are designed to improve the robust-
ness of LLMs against BFEs, improving reliable
deployment across heterogeneous hardware envi-
ronments, including outdated devices and cloud-
based platforms susceptible to malicious attacks.
We summarize our key contributions as follows:

• Error Investigation. We systematically analyze
the impact of BFEs on key components of LLMs
during fine-tuning and inference, providing a de-
tailed understanding of how bit-flips at various
stages affect LLMs performance.

• Defense Design. We propose a novel two-
pronged defense strategy (i.e., bit protection and
self-correction mechanisms) to mitigate the ef-
fects of BFEs on LLM capabilities.

• Experiment Validation. We validate FlipGuard
through extensive experiments, demonstrating
significant improvements in robustness against
BFEs. For example, our techniques can achieve
a 36.35-point improvement in perplexity on the
Wikitext-103 dataset using GPT-2.

2 Related Works

Bit-flip Errors and Defense in Neural Networks.
Bit-flip attacks (BFAs) are closely related to bit-flip
errors (BFEs), as both involve changes in bit values
that can impact neural network performance (He
et al., 2020). BFAs focus on deliberately inducing
bit flips through methods like Rowhammer to ex-
ploit hardware vulnerabilities (Kim et al., 2014).
Attackers employ techniques such as Progressive
Bit Search to identify and flip critical bits, effec-
tively degrading model performance with minimal
perturbations. In contrast, BFEs occur randomly
and unintentionally due to hardware faults, often
caused by factors such as frequent access or ag-
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ing memory components (Liu et al., 2023). While
BFAs are an active area of research, the effects
of BFEs in LLMs remain underexplored but pose
a serious threat to model reliability on resource-
constrained hardware.

Defenses against BFAs are categorized into
two main approaches: fault tolerance and fault
detection. Fault tolerance methods, including
binarization-aware training, improve the model’s
resilience to BFEs but often come at the cost of
reduced accuracy or increased computational over-
head (He et al., 2020). RREC (Liu et al., 2022) uses
redundant error-correcting codes to prevent BFEs
propagation. NeuroPots (Liu et al., 2023) introduce
honey neurons to attract and trap bit-flips. On the
other hand, fault detection mechanisms monitor the
system for bit-flips during runtime. Hardware-level
defenses, such as SEC-DED (Hamming, 1950),
can mitigate some attacks but remain susceptible
to more advanced Rowhammer variants (Kwong
et al., 2020). WRecon (Li et al., 2020) focused on
recovering corrupted weights during inference by
reconstructing weights affected by bit-flip errors.
Bit-flip Errors in LLMs. LLMs are vulnerable to
numerical corruptions (Jiao et al., 2024; Mukher-
jee et al., 2003). Although there has been exten-
sive research on BFEs in CNNs (Liu et al., 2023;
He et al., 2020), the impact of bit-flip errors on
LLMs remains unexplored. Meta has highlighted
the importance of researching BFEs in LLMs (Jiao
et al., 2024). Given the increasing scale of LLMs
and their deployment in diverse hardware environ-
ments, it is crucial to investigate their vulnerability
to BFEs, which is essential for ensuring the reliable
deployment of LLMs in real-world applications.

3 LLM Serving with Bit-flip Errors

3.1 Bit-flip Error Setups

In this section, we define the BFEs simulation se-
tups for LLMs. These errors arise naturally due
to aging or resource-constrained hardware and oc-
cur unpredictably. The random nature of BFEs
can differently impact key components, leading to
different consequences. We aim to simulate the
effects of BFEs through the components of LLMs.
Error Properties. We assume that BFEs randomly
occur during fine-tuning or inference, affecting any
bit of the stored or processed numerical data.
Error Scenarios. We define the following scenar-
ios to simulate the occurrence of BFEs in LLMs:
• Inference-Time BFEs: These BFEs may lead to

temporary incorrect outputs for a given prompt.
A small amount of BFEs can potentially bring a
dramatically different response.

• Fine-tuning BFEs: These BFEs may lead to per-
manent degradation in the model’s learned pa-
rameters, degrading future inference.

Multi-Level Error Simulations. We conduct tar-
geted simulations to evaluate the impact of BFEs
at multiple levels of the model:
• Model Parameters: We simulate BFEs across

layers, focusing on embedding, attention, MLP,
and LayerNorm layers to reveal whether BFEs
affect different components differently.

• Activations: We analyze BFEs in activations at
different stages of the model, exploring whether
BFEs have different impacts on stages closer to
the input versus those closer to the output.

• Gradients: We examine gradient-level BFEs’ im-
pact during fine-tuning and the differences in
BFE behavior between fine-tuning and inference.

• Bits Position: We simulate BFEs at different bit
positions to identify which bit positions are more
sensitive and critical to model stability.

3.2 Multi-Level Bit-Flip Error Simulation

3.2.1 BFE Impact on Model Parameters

Observation 1 BFEs in the parameter of the
embedding layer have the most significant
impact on the model’s performance.

In transformer-based LLMs, bit-flip errors can
impact various components, including the embed-
ding, self-attention, MLP, and LayerNorm layers.
BFEs can disrupt token representations and alter
attention scores, leading to performance degrada-
tion. This analysis helps us understand how errors
in each layer differently affect model behavior.

Given a model with parameters W =
{W 1,W 2, . . . ,WL}, where W l are the parame-
ters of the l-th layer. Each element W l

i from layer
l is a floating-point number with Nf -bit binary rep-
resentation. The bit-flip error is introduced by flip-
ping a randomly selected bit in the floating-point
representation of W l

i . For a randomly chosen bit
position k ∈ {0, 1, . . . , Nf − 1}, the bit-flip error
is injected using the following XOR operation:

Ŵ l
i = W l

i ⊕ 2k (1)
where Ŵ l

i is the perturbed weight after BFE, and⊕
denotes the XOR operation. This formula applies
BFE to the k-th bit of the binary representation.
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Figure 2: Performance degradation of GPT-2 on the SST-2 dataset under varying bit-flip error (BFE) rates. (a)
illustrates the effect of BFEs on different model parameters (Embedding, Attention, MLP, and LayerNorm). (b)
displays the accuracy changes when BFEs are applied to activations across different model layers. (c) shows the
accuracy impact when BFEs are introduced at different bit positions within the model’s parameters.

Thus, the error-injected model parameter set is:

Ŵ = {Ŵ 1, Ŵ 2, . . . , ŴL} (2)
We experiment with GPT-2 on the SST-2 dataset
to measure the impact of BFEs across four differ-
ent layers. BFEs are simulated at rates of {0.1%,
1%, 5%, 10%} in each type of layer. Figure 2(a)
shows that BFEs in the embedding layer most sig-
nificantly degrade performance. We argue this is
because errors in embeddings propagate through
the entire model. The attention and MLP layers
exhibit moderate sensitivity, while LayerNorm is
the least affected. These results highlight the im-
portance of preserving embedding layer integrity
to maintain model accuracy.

3.2.2 BFE Impact on Activations

Observation 2 BFEs in activations near the
input layer have more significant impact on
model performance due to their larger cas-
cading effect.

In our analysis of how BFEs impact activations,
we investigate errors introduced at different layers
of the model: near the input, middle, and output.
Activations represent the immediate output of a
layer’s computation, defined as: Al = f(W lAl−1+
bl) where Al is the activation at layer l, W l are the
weights, bl are the biases, and f(·) is the activation
function. A BFE in the activation matrix Al at
position i is modeled as:

Âl
i = Al

i ⊕ 2k (3)
where ⊕ is the XOR operation, and k is the bit
position affected in the binary representation of the
activation value Al

i. This bit-flip error modifies the
output of the layer and propagates forward:

Al+1 = f(W l+1Âl + bl+1) (4)

In Figure 2(b), we evaluate the impact of BFEs
on activations using GPT-2 and the SST-2 dataset.
We inject BFEs at various activation stages of the
model. Errors in activations closer to the input
layer have a cascading effect through subsequent
layers, leading to widespread performance degra-
dation. Conversely, errors in later activations have
fewer impacts. This underscores the importance of
detecting and mitigating errors in earlier activations
to maintain model integrity.

3.2.3 BFE Impact on Gradients

Observation 3 BFEs occurring in the fine-
tuning stage will cause more long-term dam-
age to model performance compared to
inference-stage BFEs.

BFE rate FT-Grad. FT-All Infer.-All
0.1% 77.34 75.12 81.31
1% 71.88 69.89 75.61

Table 1: Accuracy results for different BFE rates on
GPT-2 with SST-2 dataset under various experimental
conditions. FT-Grad. refers to BFEs in gradients during
fine-tuning, FT-All to BFEs in all values during fine-
tuning, and Infer.-All to BFEs during inference.

Bit-flip errors during fine-tuning can have a far
more detrimental effect than those occurring during
inference. This is because BFEs in the fine-tuning
stage can corrupt gradient updates, directly impact-
ing model weights and leading to permanent perfor-
mance degradation. These corrupted updates can
either amplify parameter changes or render them
ineffective, causing unstable training, poor conver-
gence, and a model that is more vulnerable to errors
in future inference. As a result, fine-tuning BFEs
poses a higher long-term risk to model robustness.
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The results in Table 1 confirm this trend and
illustrate that BFEs during fine-tuning, particu-
larly when they corrupt gradients, have a more
pronounced and lasting impact on model perfor-
mance than BFEs during inference.

3.2.4 BFE Impact on Bit Positions

Observation 4 BFEs in the highest exponent
bit lead to the most significant performance
degradation due to the large magnitude shift
they cause.

Floating-point numbers in computing are typ-
ically represented using the IEEE 754 standard.
For an N -bit floating-point number W k

i , the bits
are divided into three components: Sign Bit (S):
b1, Exponent Bits (E): b2, b3, . . . , b1+e, Mantissa
(Fraction) Bits (M ): b2+e, . . . , bN . The floating-
point value is calculated as:

W l
i = (−1)S · 2E−Ebias · (1 +M) (5)

Where Ebias = 2e−1 − 1. For 32-bit single-
precision floating-point numbers, S is b1, E spans
b2 to b9, and M spans b10 to b32. In our ex-
periments shown as Table 2, 99.9988% of GPT-
2 parameters lie within [−(2 − 2−23), 2 − 2−23],
meaning the highest exponent bit, b2, is typically
0. When b2 = 0, the exponent E − Ebias can
range from −127 to 0, constraining W l

i,j within
[−2, 2]. Since the maximum mantissa value Mmax
is less than 1, even when other bits change, param-
eters remain within [−2, 2] range. If b2 is flipped
from 0 to 1, the exponent increases by 27, causing
E′ = E + 128, which leads to extreme parameter
values. This dramatic increase causes Ŵ l

i to be-
come extremely large or small, risking overflow or
instability. When lower exponent bits (e.g., b3) or
mantissa bits flip, the changes are much smaller
and parameters stay within a manageable range.
Our experiments of GPT-2 on SST-2 in Figure 2(c)
show that flipping b2 from 0 to 1 leads to the most
significant performance degradation, while errors
in lower bits have minimal impact. This demon-
strates the importance of preserving the highest
exponent bit for model stability and robustness.

4 Methodology

In this section, we introduce our defense strate-
gies against bit-flip errors (BFEs) in large language
models (LLMs), guided by the key observations
from our analysis in Section 3. Our approach fo-
cuses on enhancing model robustness during the

|W l
i | Range Proportion |W l

i | Range Proportion
(2−32, 2−8] 3.106% (2−2, 2−1] 6.183%

(2−8, 2−4] 37.09% (2−1, 2] 0.248%

(2−4, 2−2] 53.38% (2,+∞) 0.0012%

Table 2: Distribution of absolute parameter values for
GPT-2 fine-tuned on the Wikitext-103 dataset. The
proportion of |W l

i,j | greater than 2 is extremely small
(1,445 of 124,439,808).

fine-tuning phase and mitigating the impact of
BFEs in critical components of the model.

4.1 Defense Design

Self-Correction Fine-Tuning. According to Ob-
servation 3, BFEs during fine-tuning have a greater
impact than those occurring during inference. This
is because errors introduced during fine-tuning
propagate into the learned parameters, leading
to long-term degradation in the model. To ad-
dress this, we propose a self-correction mechanism
where the model is exposed to BFEs during fine-
tuning, allowing it to learn to correct such errors.

We inject BFEs into the model during the fine-
tuning phase. Let θ represent the original model
parameters, and θ̃ represent the parameters after
introducing BFEs. For each parameter θi in layer
l, a randomly selected bit position k in its floating-
point representation by XOR operation:

θ̃i = θi ⊕ 2k (6)
This bit-flip injection allows the model to simulate
errors that occur during deployment, forcing it to
correct them during training. The total loss func-
tion Ltotal combines the standard task-specific loss
Ltask and a self-correction loss LSC, encouraging
the model to learn outputs resilient to BFEs:

L = Ltask(θ) + λSCLSC(θ̃, θ)

LSC(θ̃, θ) = Ex∼D
[
ℓ
(
fθ̃(x), fθ(x)

)] (7)

where the self-correction loss LSC is the divergence
between outputs with and without BFEs. ℓ denotes
l2-norm by default.
Exponent Bit Protection. Observation 4 shows
that BFEs in the highest exponent bit of floating-
point parameters result in drastic performance
degradation. To prevent significant magnitude
shifts, we mask the highest exponent bit and further
constrain parameter values during training. Dur-
ing inference, we modify the parameters to ensure
the highest exponent bit remains 0. The corrected
parameter θ̂i is then given by:

θ̂i = θi & (1≪ (N − 2)) (8)
Alternatively, to prevent parameters from reaching
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Algorithm 1: FlipGuard
Input :Model parameters θ, dataset D,

learning rate η, self-correction
weight λSC, BFE rate ρ

for each epoch e = 0, 1, . . . , E do
Step 1: Randomly select ρ× |θ|

parameters from θ;
for each selected parameter θi do

Randomly select bit k and flip:
θ̃i = θi ⊕ 2k;

Step 2: Compute task loss:
Ltask(fθ̃(x), y);

and self-correction loss:
LSC = ℓ(fθ̃(x), fθ(x));
Ltotal = Ltask + λSCLSC;
Step 3: Update parameters by
θ ← θ − η∇Ltotal;

Step 4: Apply exponent mask and clip:
θ̂i = clip(θi,−(2− 2−M ), 2− 2−M );

values that would set the highest exponent bit to
1, during fine-tuning, we clip the parameter values
within a defined range [−ϵ, ϵ], where ϵ = 2− 2−M

and M denotes the number of mantissa bits, ensur-
ing the highest exponent bit remains unaffected:

θ̂i = clip(θi,−ϵ, ϵ) (9)
This range represents the safe interval within which
the parameters can fluctuate without causing the
most significant bit of the exponent to flip to 1.
Thus, we avoid potential numerical instability or
overflow issues that arise from range exceeding.

4.2 Discussion

Theoretical Analysis of BFEs and FlipGuard.
Sensitivity analysis are widely used to study the ro-
bustness of neural networks by quantifying the rela-
tionship between input or parameter perturbations
and output stability. Previous works (Virmaux and
Scaman, 2018; Chen et al., 2024) show that Lips-
chitz continuity ensures bounded output changes
for small input perturbations. Lipschitz constant
is defined as L = supx1 ̸=x2

∥f(x1)−f(x2)∥
∥x1−x2∥ , Such

stable neural networks require small and bounded
Lipschitz constant. However, bit-flip perturbations,
especially in the highest exponent bit, can cause
unbounded changes (e.g., up to 2128 for 32-bit FP
value) which invalidates the utility of the Lips-
chitz constant. Our Exponent Bit Protection con-
strains parameters to a safe interval [−ϵ, ϵ], ensur-

ing that errors remain bounded. Besides, our Self-
Correction Fine-Tuning trains the model to mini-
mize divergence between outputs with and without
BFEs, further bounding the Lipschitz constant.
Combination with LoRA and quantization.
Quantization reduces model size and cost by oper-
ating at the weight and activation level, but BFEs
still occur at the bit representation level in hard-
ware. This distinction means BFEs can still occur
post-quantization. While fewer bits in quantized
models (e.g., 4-bit, 8-bit) reduce exponent-related
perturbations, they may amplify BFE impact due
to lower numerical precision. Our method, which
self-corrects bit-level perturbations, remains fully
compatible with other techniques. Combining it
with LoRA (Hu et al., 2021) and quantization en-
hances computational efficiency while maintaining
robustness to BFEs, enabling resource-efficient de-
ployment in constrained environments. We further
discuss computational overhead in 5.3.

5 Experiment

5.1 Experimental Setup

Models We use four widely-used pre-trained Large
Language Models in our experiments: BERT (De-
vlin, 2018), GPT-2 Medium (Radford et al., 2019),
OpenLlama-3B (Touvron et al., 2023; Geng and
Liu, 2023), Gemma 2-2B (Team et al., 2024) and
Llama 3.2-1B (Dubey et al., 2024).
Datasets. We employ eight datasets across vari-
ous NLP tasks to evaluate the impact of bit-flip
errors on model performance: MRPC (paraphrase
detection) (Dolan and Brockett, 2005), MNLI (nat-
ural language inference) (Williams et al., 2017),
SST-2 (sentiment classification) (Socher et al.,
2013), CoLA (linguistic acceptability) (Warstadt,
2019), MMLU (multi-task language understand-
ing) (Hendrycks et al., 2020), ARC-E (science
question answering) (Clark et al., 2018), Wikitext-
103 (language modeling, text generation) (Merity
et al., 2016), SQuAD (question answering) (Ra-
jpurkar, 2016), and GSM8K (math problem solv-
ing) (Cobbe et al., 2021).
Metrics. we report accuracy or F1-score for classi-
fication tasks and perplexity for generation tasks.
Implementation Details. All experiments were
implemented using PyTorch, with models run-
ning on two RTX 2080Ti GPUs. We used pre-
trained models from HuggingFace. Fine-tuning
was conducted with a learning rate of 5e-5 and
batch sizes of 16 (classification) and 8 (genera-
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Model Dataset Clean BFEs SEC-DED DHBFA WRecon RREC NeuroPots Ours

BERT

MRPC ↑ 87.64±2.29 70.27±2.24 73.95±2.12 62.74±2.26 72.19±2.53 73.51±2.13 76.18±1.79 75.93±1.78

MNLI ↑ 84.32±0.74 68.73±0.95 71.92±0.81 66.89±0.99 63.27±1.35 69.45±0.66 72.16±0.85 78.12±0.79

SST-2 ↑ 93.18±1.52 76.12±1.71 78.56±1.48 70.19±1.67 78.84±1.59 77.63±1.70 79.27±1.63 85.39±1.54

CoLA ↑ 60.49±2.03 42.73±2.27 49.78±2.14 46.29±2.35 47.83±2.34 48.95±2.22 50.31±2.09 52.67±2.05

GPT-2

MMLU ↑ 45.17±1.89 32.71±1.67 34.52±1.88 34.21±1.52 37.82±1.64 30.96±1.64 36.82±1.84 38.94±1.44

SST-2 ↑ 92.73±1.46 75.61±1.65 76.52±1.59 71.32±1.76 74.51±1.82 77.35±1.73 79.12±1.81 80.58±1.72

ARC-E ↑ 62.24±1.94 46.78±1.83 50.21±1.90 41.87±1.66 49.73±1.82 47.61±1.77 52.31±1.99 54.12±1.71

Wikitext-103 ↓ 40.45±2.87 92.64±3.56 88.45±3.03 78.34±3.44 83.83±3.55 97.39±3.83 75.72±3.25 56.29±3.11

Llama 1

MNLI ↑ 83.21±0.72 67.12±0.97 70.56±0.87 68.29±0.96 71.11±1.30 65.79±0.93 73.18±0.99 75.23±0.73

MMLU ↑ 47.61±1.98 33.19±1.85 36.19±1.77 35.12±1.97 34.45±1.79 36.84±1.94 38.84±1.80 39.34±1.84

ARC-E ↑ 61.13±1.12 45.79±1.90 49.18±1.14 48.26±1.52 50.31±1.34 47.23±2.20 52.49±1.01 53.94±1.15

Wikitext-103 ↓ 22.89±2.20 55.94±3.09 43.61±2.53 49.82±2.8 55.23±2.60 52.34±3.20 44.91±2.50 40.62±2.20

Gemma 2

MRPC ↑ 88.68±2.32 69.38±2.17 72.14±2.08 68.15±2.35 70.92±2.22 67.81±2.29 75.29±2.24 73.88±1.81

SST-2 ↑ 91.23±1.89 74.58±1.98 76.79±1.95 75.23±1.95 72.84±1.81 77.64±1.96 80.17±1.87 79.64±1.77

ARC-E ↑ 63.87±1.91 47.26±2.02 51.74±1.77 50.91±1.92 48.12±1.75 51.34±2.00 54.32±1.74 55.63±1.69

Wikitext-103 ↓ 23.45±2.90 60.64±3.24 58.45±2.88 50.34±3.09 54.83±3.23 59.39±3.55 48.72±2.14 48.29±2.94

Llama 3.2
SQuAD ↑ 86.17±1.12 67.84±1.31 72.91±1.25 69.83±1.20 74.23±1.16 75.92±1.29 74.15±1.28 78.35±1.05

GSM8K ↑ 44.41±1.48 32.35±0.98 35.63±1.70 36.81±1.05 34.95±1.62 32.53±0.71 37.84±2.62 38.84±1.50

Table 3: Performance comparison of models on corresponding datasets under various inference conditions: clean,
with 1% BFEs, and using different defense methods. Accuracy is the evaluation metric for tasks {MRPC, MNLI,
SST-2, CoLA, MMLU, ARC-E, GSM8K}, perplexity for task {Wikitext-103}, and F1-score for task {SQuAD}.

tion), across 5 epochs. Bit-flip errors were sim-
ulated at various rates. Specifically, we simulate
errors at 0.1%, 1%, 5%, and 10% of the model’s
numerical representations during fine-tuning and
inference by default. The code can be found at
https://github.com/UNITES-Lab/FlipGuard.
Counterparts. To validate the effectiveness of
our proposed defense strategies, we compare them
against several baseline and state-of-the-art meth-
ods designed to mitigate bit-flip errors:
• SEC-DED (Hamming, 1950): Single Error Cor-

rection, Double Error Detection, a classic error
correction technique for hardware fault tolerance.

• DHBFA (He et al., 2020): A defense against ad-
versarial BFAs by leveraging binarization-aware
training and piece-wise clustering.

• WRecon (Li et al., 2020): A method focused on
recovering corrupted weights during inference by
reconstructing weights affected by bit-flip errors.

• RREC (Liu et al., 2022): Uses redundant error-
correcting codes to prevent BFEs propagation.

• NeuroPots (Liu et al., 2023): Introduce honey
neurons to attract and trap bit-flips.

5.2 Comparisons to State-of-the-Art

We compare accuracy and perplexity across all
methods on clean data and under a 1% BFE rate,
as shown in Table 3.

❶ Impact of BFEs on Performance. BFEs de-
grade performance significantly across all models.
For instance, BERT accuracy on MRPC drops from
87.64% to 70.27%, while Gemma 2’s perplexity
on Wikitext-103 rises sharply from 23.45 to 60.64,
highlighting the severity of BFE-induced errors.
❷ Effectiveness of Defense Mechanisms. De-
fense methods mitigate BFE impact to varying ex-
tents. For BERT on MRPC, our method improves
accuracy from 70.27% to 75.93%, outperforming
SEC-DED (73.95%) and approaching NeuroPots
(76.18%). For Llama 1-3B on Wikitext-103, our
defense reduces perplexity from 55.94 to 40.62,
demonstrating strong error resilience.
❸ Comparison of Defense Methods. Across mod-
els, our defense consistently achieves superior re-
sults. For instance, in Llama 1-3B on MNLI, ac-
curacy improves from 67.12% to 75.23%, surpass-
ing other defenses and confirming its robustness
against BFEs.

5.3 Diagnostic Analysis

Ablation Study on Defense Components. We
evaluate the impact of the two defense mechanisms
through four configurations: (1) baseline (no de-
fense), (2) self-correction fine-tuning, (3) exponent
bit protection, and (4) their combination. Table 4
presents the results across BFE rates {0.1%, 1%,
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SC EP 0.1% 1% 5% 10%
✗ ✗ 81.31 75.61 66.31 60.81

✓ ✗ 82.44↑1.13 77.32↑1.71 72.12↑5.81 70.97↑10.16

✗ ✓ 84.32↑3.01 78.34↑2.73 74.23↑7.92 71.56↑10.75

✓ ✓ 85.92↑4.61 80.58↑4.97 76.56↑10.25 74.12↑13.31

Table 4: Ablation Study on defense components under
varying BFE rates for GPT-2 on the SST-2 dataset. BFE
rates are set to {0.1%, 1%, 5%, 10%}. SC denotes Self-
Correcting Fine-tuning and EP denotes Exponent Bit
Protection in Section 4.
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(b) λSC Sensitivity Analysis.
Figure 3: (a) Performance of models under different
bit-flip error rates {0.1%, 1%, 5%, and 10%}. We test
BERT on MRPC, GPT-2 on SST-2, and Gemma 2 on
ARC-E. (b) Sensitivity analysis assessing the impact of
varying λSC on model robustness and task accuracy.

5%, 10%}. While both defenses individually im-
prove performance, the combined strategy consis-
tently outperforms them, especially at higher BFE
rates. For instance, at 10% BFEs, the combined
defense achieves the highest accuracy of 74.12%.
Resilience to BFEs at Different Error Rates. We
evaluate model resilience to varying BFE rates
({0.1%, 1%, 5%, 10%}) on BERT (MRPC), GPT-2
(SST-2), and Gemma2 (ARC-E). Without defense,
accuracy steadily drops, while our defense mecha-
nisms significantly mitigate performance degrada-
tion, especially at higher BFE rates.
Hyper-parameter λSC Sensitivity Analysis. We
analyze the effect of the self-correction weight λSC
on model robustness. As shown in Figure 3, in-
creasing λSC improves resilience to BFEs, but ex-
cessively high values risk overfitting to errors, re-
ducing overall performance.
Defense for Component-Specific BFEs. Using
GPT-2 on MMLU, we inject 1% BFEs into individ-
ual components (embedding, self-attention, MLP,
LayerNorm) and apply our defense strategies. Re-
sults show our methods are effective across all
components, with embedding and self-attention
layers benefiting the most. Even for less vulnerable
components like LayerNorm, our defenses improve
stability, demonstrating robustness at both whole-
network and component levels.
Impact of Fixed BFEs Count. Using the same
BFE rate across modules allows us to compare

Component w/o. Defense w. Defense
Embedding 29.10 37.25↑8.15

Self-Attention 31.32 38.45↑7.13
MLP 39.20 39.90↑0.70

LayerNorm 43.10 43.50↑0.40

Table 5: GPT-2 accuracy on the MMLU dataset un-
der component-specific BFEs (1%), comparing perfor-
mance with and without the proposed defense strategies.

the relative sensitivity of different components, as
it simulates real-world hardware faults where all
parameters have the same probability of bit-flips.
We further analyze the impact of fixed BFE count.
Despite not having the largest parameter size, the
embedding layer exhibits the most significant per-
formance degradation, highlighting its vulnerabil-
ity. Table 6 confirms that the embedding layer
remains the most sensitive.

Component 1 Bit 10 Bits 100 Bits 1000 Bits
Embedding 92.67 92.02 90.56 88.34
Attention 92.73 92.12 91.67 90.45

MLP 92.73 92.52 92.40 92.23
LayerNorm 92.73 92.68 91.65 89.43

Table 6: Impact of fixed BFE count on GPT-2 model
performance on the SST-2 dataset.

Computational Overhead. The primary computa-
tional overhead of FlipGuard comes from comput-
ing the self-correction loss, which requires outputs
from both clean and perturbed parameters. This
overhead scales linearly with model size. However,
leveraging LoRA (Hu et al., 2021) reduces this cost
by enabling clean and perturbed outputs in a sin-
gle forward pass, minimizing matrix multiplication
overhead. Although separate activation function ap-
plications (e.g., Softmax) are needed, their cost is
negligible compared to the linear transformations.
On SST-2 with GPT-2, FlipGuard with LoRA adds
only 22% computational time compared to standard
fine-tuning but improves performance by 4.97%.

6 Conclusion

In this paper, we systematically evaluated the ef-
fects of bit-flip errors (BFEs) across multiple levels
of large language models (LLMs), including model
parameters, activations, gradients, and bit positions.
Our simulations revealed distinct vulnerabilities in
different components. To mitigate the impact of
BFEs, we introduced a defense strategy that sig-
nificantly improves LLM robustness. Our findings
highlight the need for robust error-mitigation tech-
niques to ensure the reliability of LLMs across
diverse deployment environments.
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Limitation Discussions & Future Work

While our study provides comprehensive insights
into the impact of bit-flip errors on large language
models and proposes effective defense mechanisms,
several limitations remain that open avenues for
future research.

First, our experiments primarily focus on popu-
lar models, including BERT, GPT-2, Gemma, and
Llama. While these models represent diverse trans-
former architectures, LLMs vary significantly in
their scale, training regimes, and specific optimiza-
tions. Future work could extend our analysis to
other LLMs, such as newer models like GPT-3,
to verify the generalizability of our findings and
defense mechanisms across different architectures
and parameter scales.

Second, We evaluated our defense mechanisms
under specific BFE rates {0.1%, 1%, 5%, and
10%}. However, real-world hardware-induced
errors vary dynamically based on hardware age,
workload, and environment. Future studies should
simulate these dynamic conditions for a more com-
prehensive understanding of model behavior and
defense robustness.

Third, our current work focuses on post-training
defense mechanisms. Investigating the applica-
tion of these methods during training could pro-
vide valuable insights into how training-time error
simulations influence model robustness. While re-
training large-scale LLMs from scratch remains
computationally prohibitive for us, future work by
organizations with access to extensive computa-
tional resources could explore this avenue. Simu-
lating bit-flip errors during training might act as a
form of regularization, akin to dropout, potentially
enhancing the resilience of models under perturbed
conditions.

Lastly, the proposed defense mechanisms, espe-
cially during fine-tuning, introduce computational
overhead. This may limit practicality for time-
sensitive applications. Optimizing these mecha-
nisms to reduce runtime costs, possibly through
lightweight quantization or hardware-level support,
remains an important area for future research.

Ethical Statement

Our research focuses on defending Large Language
Models (LLMs) against bit-flip errors (BFEs) to
enhance AI system reliability and security. While
our findings could be misused to exploit hardware
vulnerabilities, we present our methods responsibly,
emphasizing countermeasures rather than attack de-
tails. All experiments were conducted in controlled
environments, without real user data and adhering
strictly to ethical guidelines to ensure that our work
supports the development of secure and trustworthy
AI technologies.
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